JP6352979B2 - Anisotropic conductive film, connection method, joined body, and production method of joined body - Google Patents

Anisotropic conductive film, connection method, joined body, and production method of joined body Download PDF

Info

Publication number
JP6352979B2
JP6352979B2 JP2016128386A JP2016128386A JP6352979B2 JP 6352979 B2 JP6352979 B2 JP 6352979B2 JP 2016128386 A JP2016128386 A JP 2016128386A JP 2016128386 A JP2016128386 A JP 2016128386A JP 6352979 B2 JP6352979 B2 JP 6352979B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
resin
electronic component
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128386A
Other languages
Japanese (ja)
Other versions
JP2016201365A (en
Inventor
泰伸 山田
泰伸 山田
尚也 上澤
尚也 上澤
和久 青木
和久 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016128386A priority Critical patent/JP6352979B2/en
Publication of JP2016201365A publication Critical patent/JP2016201365A/en
Application granted granted Critical
Publication of JP6352979B2 publication Critical patent/JP6352979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)

Description

本発明は、異方性導電フィルム、接続方法、及び接合体に関する。   The present invention relates to an anisotropic conductive film, a connection method, and a joined body.

従来より、電子部品同士を接続する手段として、異方性導電フィルム(ACF;Anisotropic Conductive Film)、異方性導電ペースト(ACP;Anisotropic Conductive Paste)などの接続材料が用いられている。   Conventionally, connecting materials such as anisotropic conductive film (ACF) and anisotropic conductive paste (ACP) have been used as means for connecting electronic components.

前記異方性導電フィルムは、例えば、熱硬化性樹脂を含んだ絶縁性バインダーに導電性粒子が分散されてなるフィルム状の接続材料である。異方導電接続したい電子部品同士の電極部分を、前記ACFを介して熱圧着することで、前記熱硬化性樹脂を含んだバインダーを熱硬化させて接続を行う。   The anisotropic conductive film is, for example, a film-like connection material in which conductive particles are dispersed in an insulating binder containing a thermosetting resin. The electrode parts of the electronic parts to be anisotropically connected are thermocompression-bonded via the ACF, whereby the binder containing the thermosetting resin is thermoset and connected.

前記異方性導電ペーストは、例えば、絶縁性バインダーと、導電性粒子と、溶剤とを含有する(例えば、特許文献1及び2参照)。前記溶剤を含有する前記ACPの使用方法は、例えば、以下のとおりである。フレキシブルプリント基板(FPC;Flexible Printed Circuits)などの電子部品に前記ACPを印刷して加熱乾燥させると、前記電子部品の電極部に前記ACPからなる塗膜が形成される。前記ACPによる前記塗膜が形成された前記FPCは、この状態で室温輸送されることが多い。そのため、前記ACPは、熱で硬化しない非反応型バインダーを用いるタイプも使用されている。   The anisotropic conductive paste contains, for example, an insulating binder, conductive particles, and a solvent (see, for example, Patent Documents 1 and 2). The method for using the ACP containing the solvent is, for example, as follows. When the ACP is printed on an electronic component such as a flexible printed circuit (FPC) and heated and dried, a coating film made of the ACP is formed on the electrode portion of the electronic component. The FPC on which the coating film is formed by the ACP is often transported at room temperature in this state. Therefore, a type using a non-reactive binder that is not cured by heat is used as the ACP.

ところで、近年、電子部品同士の接続には、低温、低圧力、及び短時間での接続が要求されている。低温での接続は、電子部品の熱的ダメージを低減する点、接続の際の加熱温度のバラツキ(電極部に接続した配線の先に部品が繋がっているかどうかによって、電極部における加熱温度が変わり、バラツキになる。実装密度が高密度になるとバラツキは特に顕著になる。)を防ぐ点、及び実装設備への負荷の低減の点で要求されている。低圧力での接続は、薄い基板やタッチパネルへのダメージの低減の点で要求されている。短時間での接続は、生産性の点で要求されている。   Incidentally, in recent years, connection between electronic components is required to be performed at low temperature, low pressure, and in a short time. Connection at low temperature reduces thermal damage to electronic components, and variation in heating temperature during connection (the heating temperature at the electrode varies depending on whether the component is connected to the tip of the wiring connected to the electrode. The variation is particularly noticeable when the mounting density is high, and is required in terms of reducing the load on the mounting equipment. Connection at low pressure is required in terms of reducing damage to thin substrates and touch panels. Connection in a short time is required in terms of productivity.

しかし、従来の前記異方性導電フィルムでは、熱硬化性樹脂を用いるため、低温及び短時間での接続に対応しようとすると、保管中に硬化が生じるために、保管期間を短くする必要があり、実用上適さないという問題がある。   However, since the conventional anisotropic conductive film uses a thermosetting resin, it is necessary to shorten the storage period because curing occurs during storage when trying to support connection at a low temperature and in a short time. There is a problem that it is not suitable for practical use.

また、従来の前記異方性導電ペーストでは、低圧力での接続に対応しようとすると、前記ACPの粘度を下げる必要がある。前記ACPの粘度を下げると、熱圧着の終了直後に発生する電子部品の復元力に前記ACP中のバインダーが耐えきれずに、導電性粒子の潰れが維持できなくなり、接続抵抗が不十分になるという問題がある。   Further, in the conventional anisotropic conductive paste, it is necessary to reduce the viscosity of the ACP in order to cope with connection at a low pressure. When the viscosity of the ACP is lowered, the binder in the ACP cannot withstand the restoring force of the electronic component generated immediately after the end of the thermocompression bonding, and the collapse of the conductive particles cannot be maintained, resulting in insufficient connection resistance. There is a problem.

したがって、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能な異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体の提供が求められているのが現状である。   Accordingly, an anisotropic conductive film that can be connected at a low temperature, low pressure, and in a short time while maintaining a sufficient connection resistance, a connection method using the anisotropic conductive film, and the anisotropic conductivity At present, it is required to provide a joined body using a film.

特開2011−132304号公報JP 2011-132304 A 国際公開第99/01519号パンフレットInternational Publication No. 99/01519 Pamphlet

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能な異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides an anisotropic conductive film that can be connected at a low temperature, a low pressure, and a short time while maintaining a sufficient connection resistance, a connection method using the anisotropic conductive film, and the above-mentioned It aims at providing the conjugate | zygote using an anisotropic conductive film.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
結晶性樹脂と、非晶性樹脂と、導電性粒子とを含有し、
前記結晶性樹脂が、前記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂を含有することを特徴とする異方性導電フィルムである。
<2> 下記の測定温度範囲、昇温速度、及び降温速度での示差走査熱量測定において、昇温時の溶融開始温度と吸熱ピーク温度との差の絶対値(ΔT1)と、降温時の結晶化開始温度と発熱ピーク温度との差の絶対値(ΔT2)とが、次式ΔT1>ΔT2を満たす前記<1>に記載の異方性導電フィルムである。
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
<3> 結晶性樹脂と非晶性樹脂との質量比(結晶性樹脂:非晶性樹脂)が、25:75〜75:25である前記<1>から<2>のいずれかに記載の異方性導電フィルムである。
<4> 結晶性樹脂が、結晶性ポリエステル樹脂を含有し、
非晶性樹脂が、非晶性ポリエステル樹脂を含有する前記<1>から<3>のいずれかに記載の異方性導電フィルムである。
<5> 更にエラストマーを含有する前記<1>から<4>のいずれかに記載の異方性導電フィルムである。
<6> 結晶性樹脂の含有量及び非晶性樹脂の含有量の和(X)と、エラストマーの含有量(Y)との質量比(X:Y)が、160:40〜60:140である前記<5>に記載の異方性導電フィルムである。
<7> 導電性粒子の平均粒子径が、2μm〜40μmである前記<1>から<6>のいずれかに記載の異方性導電フィルムである。
<8> 下記の測定温度範囲、昇温速度、及び降温速度での示差走査熱量測定において、昇温時の吸熱ピーク温度(P1)と、降温時の発熱ピーク温度(P2)との差(P1−P2)が、11.0℃以上である前記<1>から<7>のいずれかに記載の異方性導電フィルムである。
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
<9> 下記の測定温度範囲、昇温速度、及び降温速度での示差走査熱量測定において、昇温時の吸熱量が、1.0J/g〜12J/gであり、降温時の発熱量が、1.0J/g〜6.0J/gである前記<1>から<8>のいずれかに記載の異方性導電フィルムである。
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
<10> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、
前記第2の電子部品の端子上に前記<1>から<9>のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法である。
<11> 端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムとを有し、
前記異方性導電フィルムが、前記<1>から<9>のいずれかに記載の異方性導電フィルムであることを特徴とする接合体である。
Means for solving the problems are as follows. That is,
<1> An anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component,
Containing a crystalline resin, an amorphous resin, and conductive particles;
The anisotropic conductive film is characterized in that the crystalline resin contains a crystalline resin having the same bond characterizing the resin as the bond characterizing the resin of the amorphous resin.
<2> In the differential scanning calorimetry in the following measurement temperature range, temperature increase rate, and temperature decrease rate, the absolute value (ΔT1) of the difference between the melting start temperature at the time of temperature increase and the endothermic peak temperature, and the crystal at the time of temperature decrease The anisotropic conductive film according to <1>, wherein an absolute value (ΔT2) of a difference between the crystallization start temperature and the exothermic peak temperature satisfies the following expression ΔT1> ΔT2.
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C./min Temperature decrease rate: 20 ° C./min <3> Mass ratio of crystalline resin to amorphous resin (crystalline resin: amorphous resin) is 25:75 to 75:25 The anisotropic conductive film according to any one of <1> to <2>.
<4> The crystalline resin contains a crystalline polyester resin,
The anisotropic conductive film according to any one of <1> to <3>, wherein the amorphous resin contains an amorphous polyester resin.
<5> The anisotropic conductive film according to any one of <1> to <4>, further containing an elastomer.
<6> The mass ratio (X: Y) of the sum (X) of the content of the crystalline resin and the content of the amorphous resin and the content (Y) of the elastomer is 160: 40 to 60: 140. It is an anisotropic conductive film as described in said <5>.
<7> The anisotropic conductive film according to any one of <1> to <6>, wherein the conductive particles have an average particle diameter of 2 μm to 40 μm.
<8> In the differential scanning calorimetry at the following measurement temperature range, temperature increase rate, and temperature decrease rate, the difference between the endothermic peak temperature (P1) at the time of temperature increase and the exothermic peak temperature (P2) at the time of temperature decrease (P1) -P2) is the anisotropic conductive film according to any one of <1> to <7>, in which 11.0 ° C. or higher.
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C./min Temperature decrease rate: 20 ° C./min <9> In the differential scanning calorimetry in the following measurement temperature range, temperature increase rate, and temperature decrease rate, the endotherm during temperature increase is 1.0 J The anisotropic conductive film according to any one of <1> to <8>, wherein the amount of heat generated when the temperature is lowered is 1.0 J / g to 6.0 J / g. .
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C./min Temperature decrease rate: 20 ° C./min <10> A connection method for anisotropically connecting the terminal of the first electronic component and the terminal of the second electronic component,
A first disposing step of disposing the anisotropic conductive film according to any one of <1> to <9> on a terminal of the second electronic component;
A second disposing step of disposing the first electronic component on the anisotropic conductive film such that a terminal of the first electronic component is in contact with the anisotropic conductive film;
And a heating and pressing step of heating and pressing the first electronic component with a heating and pressing member.
<11> A first electronic component having a terminal, a second electronic component having a terminal, and the first electronic component interposed between the first electronic component and the second electronic component. An anisotropic conductive film for electrically connecting the terminal and the terminal of the second electronic component;
The anisotropic conductive film is the anisotropic conductive film according to any one of <1> to <9>.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能な異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することができる。   According to the present invention, the conventional problems can be solved, the object can be achieved, and anisotropy capable of connection at low temperature, low pressure, and short time while maintaining sufficient connection resistance. A conductive film, a connection method using the anisotropic conductive film, and a joined body using the anisotropic conductive film can be provided.

図1は、実施例6で得られた異方性導電フィルムのDSCチャート(昇温時)である。1 is a DSC chart (at elevated temperature) of the anisotropic conductive film obtained in Example 6. FIG. 図2は、実施例6で得られた異方性導電フィルムのDSCチャート(降温時)である。FIG. 2 is a DSC chart (during cooling) of the anisotropic conductive film obtained in Example 6. 図3は、比較例2で得られた異方性導電フィルムのDSCチャート(昇温時)である。3 is a DSC chart (at elevated temperature) of the anisotropic conductive film obtained in Comparative Example 2. FIG. 図4は、比較例2で得られた異方性導電フィルムのDSCチャート(降温時)である。FIG. 4 is a DSC chart (at the time of cooling) of the anisotropic conductive film obtained in Comparative Example 2.

(異方性導電フィルム)
本発明の異方性導電フィルムは、結晶性樹脂と、非晶性樹脂と、導電性粒子とを少なくとも含有し、好ましくはエラストマーを含有し、更に必要に応じて、その他の成分を含有する。
前記異方性導電フィルムは、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムである。
(Anisotropic conductive film)
The anisotropic conductive film of the present invention contains at least a crystalline resin, an amorphous resin, and conductive particles, preferably contains an elastomer, and further contains other components as necessary.
The anisotropic conductive film is an anisotropic conductive film that anisotropically connects the terminals of the first electronic component and the terminals of the second electronic component.

<結晶性樹脂、及び非晶性樹脂>
前記結晶性樹脂としては、前記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂(以下、「前記非晶性樹脂と同種の結晶性樹脂」と称することがある。)を含有する限り、特に制限はなく、目的に応じて適宜選択することができる。
<Crystalline resin and amorphous resin>
As the crystalline resin, the crystalline resin having the same bond characterizing the resin as that of the amorphous resin (hereinafter referred to as “crystalline resin of the same kind as the amorphous resin”). As long as it is contained), it can be appropriately selected depending on the purpose.

前記結晶性樹脂が、前記非晶性樹脂と同種の結晶性樹脂を含有しない場合は、平滑性のある異方性導電フィルムが得られず、その結果、接続抵抗が不十分となる。
一方、前記結晶性樹脂が、前記非晶性樹脂と同種の結晶性樹脂を含有することにより、前記結晶性樹脂と前記非晶性樹脂とを混合して前記結晶性樹脂が溶媒に溶解しやすい状態を作製できるため、前記結晶性樹脂がほぼ均一に含有された異方性導電フィルムを得ることができる。
そして、得られる異方性導電フィルムは、低温、低圧力、及び短時間での接続を可能にする。これは、得られる異方性導電フィルムを加熱して軟化した後に、加熱状態が解かれて常温に戻る際に、前記結晶性樹脂に由来して速やかに凝固するためと考えられる。
When the crystalline resin does not contain the same kind of crystalline resin as the amorphous resin, a smooth anisotropic conductive film cannot be obtained, and as a result, the connection resistance becomes insufficient.
On the other hand, when the crystalline resin contains the same kind of crystalline resin as the amorphous resin, the crystalline resin and the amorphous resin are mixed and the crystalline resin is easily dissolved in a solvent. Since the state can be produced, an anisotropic conductive film containing the crystalline resin almost uniformly can be obtained.
And the anisotropic conductive film obtained enables the connection in low temperature, a low pressure, and a short time. This is considered to be because the anisotropic conductive film obtained is softened by heating, and then quickly solidifies due to the crystalline resin when the heating state is released and the temperature returns to room temperature.

ここで、前記樹脂を特徴づける結合とは、その樹脂を重合により合成する際に形成される結合を意味する。例えば、ポリエステル樹脂においては、その樹脂を重合により合成する際に形成されるエステル結合を指し、ポリウレタン樹脂においては、その樹脂を重合により合成する際に形成されるウレタン結合を指し、ポリオレフィン樹脂については、その樹脂を重合により合成する際に形成される炭素−炭素結合を指す。前記樹脂を特徴づける結合とは、言い換えれば、その樹脂の主たる結合ということもできる。
そのため、前記非晶性樹脂と、前記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂との組合せとしては、例えば、非晶性ポリエステル樹脂と結晶性ポリエステル樹脂との組合せ、非晶性ポリオレフィン樹脂と結晶性ポリオレフィン樹脂との組合せ、非晶性ポリウレタン樹脂と結晶性ポリウレタン樹脂との組合せなどが挙げられる。
Here, the bond characterizing the resin means a bond formed when the resin is synthesized by polymerization. For example, in a polyester resin, it refers to an ester bond formed when the resin is synthesized by polymerization. In a polyurethane resin, it refers to a urethane bond that is formed when the resin is synthesized by polymerization. , And refers to a carbon-carbon bond formed when the resin is synthesized by polymerization. In other words, the bond characterizing the resin can be the main bond of the resin.
Therefore, the combination of the amorphous resin and the crystalline resin having the same bond characterizing the resin as the amorphous resin has, for example, an amorphous polyester resin and a crystalline resin A combination with a polyester resin, a combination of an amorphous polyolefin resin and a crystalline polyolefin resin, a combination of an amorphous polyurethane resin and a crystalline polyurethane resin, and the like can be mentioned.

前記結晶性樹脂は、前記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂以外の結晶性樹脂を含有していてもよい。
前記非晶性樹脂と、前記結晶性樹脂との組合せとしては、例えば、非晶性ポリエステル樹脂と、結晶性ポリエステル樹脂及び結晶性ポリオレフィン樹脂を含有する結晶性樹脂との組合せなどが挙げられる。
The crystalline resin may contain a crystalline resin other than the crystalline resin having the same bond characterizing the resin as the bond characterizing the resin of the amorphous resin.
Examples of the combination of the amorphous resin and the crystalline resin include a combination of an amorphous polyester resin and a crystalline resin containing a crystalline polyester resin and a crystalline polyolefin resin.

ここで、前記結晶性樹脂とは、結晶領域を有する樹脂をいい、前記結晶性樹脂かどうかは、例えば、示差走査熱量分析において、昇温過程で吸熱ピークが観察されることにより確認できる。
前記結晶性樹脂は、結晶領域を有する樹脂の混合物であってもよい。
Here, the crystalline resin refers to a resin having a crystalline region, and whether or not the crystalline resin is the crystalline resin can be confirmed, for example, by observing an endothermic peak in a temperature rising process in differential scanning calorimetry.
The crystalline resin may be a mixture of resins having a crystalline region.

前記結晶性樹脂と前記非晶性樹脂との質量比(結晶性樹脂:非晶性樹脂)としては、特に制限はなく、目的に応じて適宜選択することができるが、15:85〜85:15が好ましく、25:75〜75:25がより好ましい。   The mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is not particularly limited and may be appropriately selected depending on the intended purpose, but is 15:85 to 85: 15 is preferable, and 25:75 to 75:25 is more preferable.

<導電性粒子>
前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
<Conductive particles>
There is no restriction | limiting in particular as said electroconductive particle, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned.

前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル、コバルト、銀、銅、金、パラジウム、半田などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ニッケル、銀、銅が好ましい。これらの金属粒子は、表面酸化を防ぐ目的で、その表面に金、パラジウムを施していてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
There is no restriction | limiting in particular as said metal particle, According to the objective, it can select suitably, For example, nickel, cobalt, silver, copper, gold | metal | money, palladium, solder etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, nickel, silver, and copper are preferable. These metal particles may be provided with gold or palladium on the surface for the purpose of preventing surface oxidation. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface.

前記金属被覆樹脂粒子としては、樹脂粒子の表面を金属で被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子の表面をニッケル、銀、半田、銅、金、及びパラジウムの少なくともいずれかの金属で被覆した粒子などが挙げられる。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。低抵抗を考慮した接続の場合、樹脂粒子の表面を銀で被覆した粒子が好ましい。
前記樹脂粒子への金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン−シリカ複合樹脂などが挙げられる。
The metal-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with metal, and can be appropriately selected according to the purpose. For example, the surface of the resin particles is nickel, silver, solder , Particles coated with at least one of copper, gold, and palladium. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface. In the case of connection considering low resistance, particles in which the surface of resin particles is coated with silver are preferable.
There is no restriction | limiting in particular as the coating method of the metal to the said resin particle, According to the objective, it can select suitably, For example, an electroless-plating method, sputtering method, etc. are mentioned.
There is no restriction | limiting in particular as a material of the said resin particle, According to the objective, it can select suitably, For example, a styrene- divinylbenzene copolymer, a benzoguanamine resin, a crosslinked polystyrene resin, an acrylic resin, a styrene-silica composite resin etc. Is mentioned.

前記導電性粒子は、異方性導電接続の際に、導電性を有していればよい。例えば、金属粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際に前記粒子が変形し、前記金属粒子が露出するものであれば、前記導電性粒子である。   The conductive particles only need to have conductivity during anisotropic conductive connection. For example, even if the surface of the metal particle is an insulating film, the conductive particle may be used as long as the particle is deformed during the anisotropic conductive connection and the metal particle is exposed.

前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、2μm〜40μmが好ましく、5μm〜30μmがより好ましく、10μm〜25μmが更により好ましく、10μm〜20μmが特に好ましい。
前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
There is no restriction | limiting in particular as an average particle diameter of the said electroconductive particle, Although it can select suitably according to the objective, 2 micrometers-40 micrometers are preferable, 5 micrometers-30 micrometers are more preferable, 10 micrometers-25 micrometers are still more preferable, 10 micrometers ˜20 μm is particularly preferred.
The average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily.
The particle diameter can be measured, for example, by observation with a scanning electron microscope.

前記導電性粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。   There is no restriction | limiting in particular as content of the said electroconductive particle, According to the objective, it can select suitably.

<エラストマー>
前記エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリウレタン樹脂(ポリウレタン系エラストマー)、アクリルゴム、シリコーンゴム、ブタジエンゴムなどが挙げられる。
<Elastomer>
There is no restriction | limiting in particular as said elastomer, According to the objective, it can select suitably, For example, a polyurethane resin (polyurethane-type elastomer), an acrylic rubber, a silicone rubber, a butadiene rubber etc. are mentioned.

前記エラストマーは、ゴム状の弾力性を有する点で、前記結晶性樹脂、及び前記非晶性樹脂とは異なる。   The elastomer is different from the crystalline resin and the amorphous resin in that it has rubber-like elasticity.

前記結晶性樹脂の含有量及び前記非晶性樹脂の含有量の和(X)と、前記エラストマーの含有量(Y)との質量比(X:Y)としては、特に制限はなく、目的に応じて適宜選択することができるが、160:40〜60:140が好ましい。   The mass ratio (X: Y) of the content of the crystalline resin and the content of the amorphous resin (X) and the content of the elastomer (Y) (X: Y) is not particularly limited. Although it can select suitably according to it, 160: 40-60: 140 is preferable.

前記エラストマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。   There is no restriction | limiting in particular as content of the said elastomer, According to the objective, it can select suitably.

<第1の電子部品及び第2の電子部品>
前記第1の電子部品及び前記第2の電子部品としては、前記異方性導電フィルムを用いた異方性導電接続の対象となる、端子を有する電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板、フレキシブル基板、リジッド基板、IC(Integrated Circuit)チップ、TAB(Tape Automated Bonding)、液晶パネルなどが挙げられる。前記ガラス基板としては、例えば、Al配線形成ガラス基板、ITO配線形成ガラス基板などが挙げられる。前記ICチップとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
<First electronic component and second electronic component>
The first electronic component and the second electronic component are not particularly limited as long as they are electronic components having terminals, which are targets for anisotropic conductive connection using the anisotropic conductive film. For example, a glass substrate, a flexible substrate, a rigid substrate, an IC (Integrated Circuit) chip, a TAB (Tape Automated Bonding), a liquid crystal panel, and the like can be given. As said glass substrate, Al wiring formation glass substrate, ITO wiring formation glass substrate, etc. are mentioned, for example. Examples of the IC chip include a liquid crystal screen control IC chip in a flat panel display (FPD).

前記異方性導電フィルムは、下記の測定条件A(測定温度範囲、昇温速度、及び降温速度)での示差走査熱量測定において、昇温時の溶融開始温度と吸熱ピーク温度との差の絶対値(ΔT1)と、降温時の結晶化開始温度と発熱ピーク温度との差の絶対値(ΔT2)とが、次式ΔT1>ΔT2を満たすことが好ましい。
〔測定条件A〕
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
In the differential scanning calorimetry under the following measurement condition A (measurement temperature range, temperature increase rate, and temperature decrease rate), the anisotropic conductive film is the absolute difference between the melting start temperature at the time of temperature increase and the endothermic peak temperature. It is preferable that the value (ΔT1) and the absolute value (ΔT2) of the difference between the crystallization start temperature and the exothermic peak temperature at the time of temperature fall satisfy the following expression ΔT1> ΔT2.
[Measurement condition A]
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C / min Temperature decrease rate: 20 ° C / min

前記式ΔT1>ΔT2を満たすことは、前記結晶性樹脂の結晶化が速やかに起こることを意味する。
前記式ΔT1>ΔT2を満たすことにより、前記異方性導電フィルムを加熱して軟化した後に、加熱状態が解かれて常温に戻る際に、前記結晶性樹脂に由来する凝固がより速やかに起こるようになる。その結果、低温、低圧力、及び短時間での接続をより確実に実現でき、前記接続においても接続抵抗に優れた異方性導電フィルムが得られる。
Satisfying the formula ΔT1> ΔT2 means that the crystalline resin is rapidly crystallized.
By satisfying the equation ΔT1> ΔT2, the solidification derived from the crystalline resin occurs more quickly when the anisotropic conductive film is heated and softened and then the heating state is released and the temperature returns to room temperature. become. As a result, a low temperature, low pressure, and short-time connection can be realized more reliably, and an anisotropic conductive film excellent in connection resistance can be obtained even in the connection.

前記ΔT1と前記ΔT2との差(ΔT1−ΔT2)としては、15℃以上がより好ましく、18℃〜50℃が特に好ましい。   The difference (ΔT1−ΔT2) between ΔT1 and ΔT2 is more preferably 15 ° C. or more, and particularly preferably 18 ° C. to 50 ° C.

前記測定条件Aでの示差走査熱量測定における吸熱ピーク温度(P1)としては、特に制限はなく、目的に応じて適宜選択することができるが、70℃〜115℃が好ましく、100℃〜115℃がより好ましく、105℃〜110℃が特に好ましい。   There is no restriction | limiting in particular as endothermic peak temperature (P1) in the differential scanning calorimetry in the said measurement conditions A, Although it can select suitably according to the objective, 70 to 115 degreeC is preferable, and 100 to 115 degreeC is preferable. Is more preferable, and 105 ° C to 110 ° C is particularly preferable.

前記測定条件Aでの示差走査熱量測定における発熱ピーク温度(P2)としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃〜105℃が好ましく、85℃〜105℃がより好ましく、90℃〜100℃が特に好ましい。   There is no restriction | limiting in particular as exothermic peak temperature (P2) in the differential scanning calorimetry in the said measurement conditions A, Although it can select suitably according to the objective, 60 to 105 degreeC is preferable and 85 to 105 degreeC is preferable. Is more preferable, and 90 to 100 ° C. is particularly preferable.

前記異方性導電フィルムは、前記測定条件Aでの示差走査熱量測定において、昇温時の吸熱ピーク温度(P1)と、降温時の発熱ピーク温度(P2)との差(P1−P2)が、11.0℃以上が好ましく、11.0℃〜14.0℃がより好ましい。   In the differential scanning calorimetry under the measurement condition A, the anisotropic conductive film has a difference (P1−P2) between an endothermic peak temperature (P1) at the time of temperature increase and an exothermic peak temperature (P2) at the time of temperature decrease. 11.0 degreeC or more is preferable and 11.0 to 14.0 degreeC is more preferable.

前記異方性導電フィルムは、前記測定条件Aでの示差走査熱量測定において、昇温時の吸熱量が、1.0J/g〜12J/gであり、降温時の発熱量が、1.0J/g〜6.0J/gであることが好ましい。
昇温時に吸熱現象が観察されることは、結晶性樹脂成分の結晶状態が解かれて溶融することを意味する。そして、前記吸熱量が、1.0J/g〜12J/gであると、前記異方性導電フィルムは、異方性導電接続において前記導電性粒子を潰す際に潰し易い溶融状態になる。前記吸熱量が、1.0J/g未満であると、異方性導電接続において前記導電性粒子が潰し難いために導通不良を起こすことがある。前記吸熱量が、12J/gを超えると、前記異方性導電フィルムの溶融時の粘度変化が大きいため、前記異方性導電フィルムの圧着部の気泡が多くなり接続外観が損なわれ、場合によっては気泡過多により接続信頼性が劣ることがある。
一方、降温時に発熱現象が観察されることは、結晶性樹脂成分の溶融状態が結晶化により急速に固化することを意味する。そして、前記発熱量は、結晶化で固化する度合いを示す。前記発熱量が、1.0J/g未満であると、環境試験で接続抵抗が上昇し、接続信頼性が劣ることがある。前記発熱量が、6.0J/gを超えると、室温で前記異方性導電フィルム自体が硬くなり過ぎることにより、前記異方性導電フィルムを貼り付ける時の仮接着性などの使い勝手が劣ったり、ピール強度の低下を招くことがある。
In the differential scanning calorimetry under the measurement condition A, the anisotropic conductive film has an endothermic amount of 1.0 J / g to 12 J / g at the time of temperature rise, and a calorific value at the time of the temperature drop of 1.0 J / g. / G to 6.0 J / g is preferable.
The observation of the endothermic phenomenon at the time of temperature rise means that the crystalline state of the crystalline resin component is solved and melted. And when the said endothermic quantity is 1.0 J / g-12 J / g, the said anisotropic conductive film will be in the molten state which is easy to be crushed when crushing the said electroconductive particle in anisotropic conductive connection. When the endothermic amount is less than 1.0 J / g, the conductive particles may not be crushed in the anisotropic conductive connection, which may cause poor conduction. If the endothermic amount exceeds 12 J / g, the change in viscosity at the time of melting of the anisotropic conductive film is large. May have poor connection reliability due to excessive bubbles.
On the other hand, the observation of an exothermic phenomenon when the temperature is lowered means that the crystalline resin component is rapidly solidified by crystallization. The calorific value indicates the degree of solidification by crystallization. When the calorific value is less than 1.0 J / g, connection resistance increases in an environmental test, and connection reliability may be inferior. When the calorific value exceeds 6.0 J / g, the anisotropic conductive film itself becomes too hard at room temperature, resulting in poor usability such as temporary adhesion when the anisotropic conductive film is attached. , Peel strength may be reduced.

前記異方性導電フィルムは、硬化剤を含有せず、加熱により樹脂が架橋しない。そのため、低温、かつ短時間の接続に使用する異方性導電フィルムであっても、長期保存を可能にする。   The anisotropic conductive film does not contain a curing agent, and the resin is not crosslinked by heating. Therefore, even if it is an anisotropic conductive film used for a low-temperature and short-time connection, long-term storage is enabled.

前記異方性導電フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm〜100μmが好ましく、10μm〜60μmがより好ましく、20μm〜50μmが特に好ましい。   There is no restriction | limiting in particular as average thickness of the said anisotropic conductive film, Although it can select suitably according to the objective, 5 micrometers-100 micrometers are preferable, 10 micrometers-60 micrometers are more preferable, and 20 micrometers-50 micrometers are especially preferable.

前記異方性導電フィルムの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記結晶性樹脂と前記非晶性樹脂とを溶剤に溶解させて混合ワニスを得た後に、前記混合ワニスに必要に応じて前記エラストマーを混合し、更に前記導電性粒子を混合して得た異方性導電組成物を、剥離処理したポリエチレンテレフタレート(PET)フィルム上に塗布する方法などが挙げられる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as a manufacturing method of the said anisotropic conductive film, According to the objective, it can select suitably, For example, melt | dissolve the said crystalline resin and the said amorphous resin in a solvent, and mix varnish After obtaining, the anisotropic conductive composition obtained by mixing the elastomer as necessary with the mixed varnish and further mixing the conductive particles is applied onto a peeled polyethylene terephthalate (PET) film. The method etc. are mentioned.
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably.

(接続方法)
本発明の接続方法は、第1の配置工程と、第2の配置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記接続方法は、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる方法である。
(Connection method)
The connection method of the present invention includes at least a first arrangement step, a second arrangement step, and a heating and pressing step, and further includes other steps as necessary.
The connection method is a method in which the terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductively connected.

前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said 1st electronic component and said 2nd electronic component, According to the objective, it can select suitably, For example, the said illustrated by description of the said anisotropic conductive film of this invention The first electronic component and the second electronic component can be cited respectively.

<第1の配置工程>
前記第1の配置工程としては、前記第2の電子部品の端子上に本発明の前記異方性導電フィルムを配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<First arrangement step>
The first arrangement step is not particularly limited as long as it is a step of arranging the anisotropic conductive film of the present invention on the terminal of the second electronic component, and can be appropriately selected according to the purpose. it can.

<第2の配置工程>
前記第2の配置工程としては、前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Second arrangement step>
The second placement step is a step of placing the first electronic component on the anisotropic conductive film so that a terminal of the first electronic component is in contact with the anisotropic conductive film. There is no particular limitation, and it can be appropriately selected according to the purpose.

<加熱押圧工程>
前記加熱押圧工程としては、前記第1の電子部品を加熱押圧部材により加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、100℃〜140℃が好ましい。
前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5MPa〜10MPaが好ましい。
前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5秒間〜10秒間が好ましい。
<Heat pressing process>
The heating and pressing step is not particularly limited as long as it is a step of heating and pressing the first electronic component with a heating and pressing member, and can be appropriately selected according to the purpose.
Examples of the heating and pressing member include a pressing member having a heating mechanism. Examples of the pressing member having the heating mechanism include a heat tool.
There is no restriction | limiting in particular as temperature of the said heating, Although it can select suitably according to the objective, 100 to 140 degreeC is preferable.
There is no restriction | limiting in particular as the pressure of the said press, Although it can select suitably according to the objective, 0.5 Mpa-10 Mpa are preferable.
There is no restriction | limiting in particular as time of the said heating and a press, Although it can select suitably according to the objective, 0.5 second-10 second are preferable.

(接合体)
本発明の接合体は、第1の電子部品と、第2の電子部品と、異方性導電フィルムとを少なくとも有し、更に必要に応じて、その他の部材を有する。
(Joint)
The joined body of the present invention includes at least a first electronic component, a second electronic component, and an anisotropic conductive film, and further includes other members as necessary.

前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said 1st electronic component and said 2nd electronic component, According to the objective, it can select suitably, For example, the said illustrated by description of the said anisotropic conductive film of this invention The first electronic component and the second electronic component can be cited respectively.

前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
前記異方性導電フィルムは、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続している。
The anisotropic conductive film is the anisotropic conductive film of the present invention.
The anisotropic conductive film is interposed between the first electronic component and the second electronic component to electrically connect the terminal of the first electronic component and the terminal of the second electronic component. Connected.

前記接合体は、例えば、本発明の前記接続方法により製造できる。   The joined body can be manufactured, for example, by the connection method of the present invention.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<異方性導電フィルムの作製>
結晶性樹脂であるアロンメルトPES−111EE(東亜合成株式会社製、結晶性ポリエステル樹脂を主成分とする結晶性樹脂)25質量部、非晶性樹脂であるエリーテルUE3500(ユニチカ株式会社製、非晶性ポリエステル樹脂)75質量部、及び混合溶剤(トルエン:メチルエチルケトン=1:1(質量比))400質量部を混合及び撹拌し、混合ワニスを得た。
続いて、得られた混合ワニスに、固形分量で100質量部に相当する量のニッポランN−5196(日本ポリウレタン工業株式会社製、ポリカーボネート骨格のポリウレタン系エラストマー、固形分30質量%)を混合した。
続いて、平均粒子径20μmの球状Agめっき樹脂粒子(下記の製造方法で得られた導電性粒子)7質量部を更に加えて、異方性導電組成物を得た。
得られた異方性導電組成物を、50μm厚みのPET(ポリエチレンテレフタレート)フィルム上に乾燥後の平均厚みが35μmとなるように塗布し、80℃で10分間乾燥させ、異方性導電フィルムを作製した。
Example 1
<Preparation of anisotropic conductive film>
25 parts by mass of Aronmelt PES-111EE (made by Toa Gosei Co., Ltd., crystalline resin mainly composed of crystalline polyester resin) which is a crystalline resin, Eritel UE3500 (made by Unitika Ltd., amorphous) which is an amorphous resin 75 parts by mass of a polyester resin and 400 parts by mass of a mixed solvent (toluene: methyl ethyl ketone = 1: 1 (mass ratio)) were mixed and stirred to obtain a mixed varnish.
Subsequently, Nipponran N-5196 (manufactured by Nippon Polyurethane Industry Co., Ltd., polyurethane elastomer with a polycarbonate skeleton, solid content of 30% by mass) in an amount corresponding to 100 parts by mass in solid content was mixed with the obtained mixed varnish.
Subsequently, 7 parts by mass of spherical Ag plated resin particles having an average particle diameter of 20 μm (conductive particles obtained by the following production method) were further added to obtain an anisotropic conductive composition.
The obtained anisotropic conductive composition was applied onto a 50 μm-thick PET (polyethylene terephthalate) film so that the average thickness after drying was 35 μm, and dried at 80 ° C. for 10 minutes. Produced.

−導電性粒子の製造−
−−ジビニルベンゼン系樹脂粒子の製造−−
ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕することにより、ジビニルベンゼン系樹脂粒子を得た。
−−樹脂粒子の銀めっき−−
銀塩として硝酸銀4.25gを純水625mLに室温で溶解した溶液に、還元剤としてベンズイミダゾール15gを加えて溶解し、当初生成した沈殿が完全に溶解したのを確認した後、錯化剤としてコハク酸イミド5g、及びクエン酸1水和物3gを溶解し、その後、結晶調整剤としてグリオキシル酸13gを投入し完全溶解させ無電解銀メッキ液を調製した。
次に、上記で得られた前記ジビニルベンゼン系樹脂粒子を前記無電解銀メッキ液に投入し、この液を攪拌しながら加熱して温度を50℃に保った。その後、ブフナー漏斗で濾別して粒子を分離し真空乾燥機で80℃2時間乾燥し、平均粒子径20μmの球状Agめっき樹脂粒子(導電性粒子)を得た。
-Production of conductive particles-
--- Production of divinylbenzene resin particles--
Benzyl peroxide was added as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate was adjusted, and the mixture was heated with uniform stirring at high speed to obtain a fine particle dispersion by conducting a polymerization reaction. . The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles. Further, the block body was pulverized to obtain divinylbenzene resin particles.
--Silver plating of resin particles--
A solution obtained by dissolving 4.25 g of silver nitrate as a silver salt in 625 mL of pure water at room temperature was dissolved by adding 15 g of benzimidazole as a reducing agent, and after confirming that the initially formed precipitate was completely dissolved, 5 g of succinimide and 3 g of citric acid monohydrate were dissolved, and then 13 g of glyoxylic acid as a crystal adjusting agent was added and completely dissolved to prepare an electroless silver plating solution.
Next, the divinylbenzene resin particles obtained above were put into the electroless silver plating solution, and this solution was heated while stirring to keep the temperature at 50 ° C. Thereafter, the particles were separated by filtration with a Buchner funnel and dried in a vacuum dryer at 80 ° C. for 2 hours to obtain spherical Ag plated resin particles (conductive particles) having an average particle diameter of 20 μm.

<示差走査熱量測定(DSC測定)>
以下の条件でDSC測定を行い、昇温時における溶融開始温度、吸熱ピーク温度、及び吸熱量、並びに降温時における結晶化開始温度、発熱ピーク温度、及び発熱量を求めた。結果を表1−1に示す。
測定装置:Q100、ティー・エイ・インスツルメント社製
測定試料:5mg
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
<Differential scanning calorimetry (DSC measurement)>
DSC measurement was performed under the following conditions to determine a melting start temperature, an endothermic peak temperature, and an endothermic amount at the time of temperature increase, and a crystallization start temperature, an exothermic peak temperature, and an exothermic amount at the time of temperature decrease. The results are shown in Table 1-1.
Measuring device: Q100, manufactured by TA Instruments Inc. Measuring sample: 5 mg
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C / min Temperature decrease rate: 20 ° C / min

<接合体の製造、及び接合体の評価>
以下の方法により接合体を製造し、以下に示す評価を行った。結果を表1−1に示す。
第2の電子部品として、プリント配線板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、銅パターン厚み35μm、ニッケル/金めっき処理、基材厚み1.0mm〕を用いた。
第1の電子部品として、フレキシブルプリント基板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、ポリイミド厚み25μm、銅パターン厚み12μm、ニッケル/金めっき処理〕を用いた。
前記第2の電子部品の端子上に、上記で得られた異方性導電フィルム(フィルム幅2.0mm)を配置した。続いて、前記異方性導電フィルム上に、前記第1の電子部品を配置した。続いて、緩衝材(シリコーンラバー、厚み0.2mm)を介して、加熱ツール(幅2.0mm)により120℃、2MPa、3秒間の条件で、前記第1の電子部品を加熱及び押圧し、接合体を得た。
<Manufacture of joined body and evaluation of joined body>
The joined body was manufactured by the following method and evaluated as follows. The results are shown in Table 1-1.
A printed wiring board [0.4 mm pitch (line / space = 0.2 / 0.2), copper pattern thickness 35 μm, nickel / gold plating treatment, substrate thickness 1.0 mm] was used as the second electronic component. .
A flexible printed circuit board (0.4 mm pitch (line / space = 0.2 / 0.2), polyimide thickness 25 μm, copper pattern thickness 12 μm, nickel / gold plating treatment) was used as the first electronic component.
The anisotropic conductive film (film width 2.0 mm) obtained above was disposed on the terminal of the second electronic component. Subsequently, the first electronic component was disposed on the anisotropic conductive film. Subsequently, the first electronic component is heated and pressed under the conditions of 120 ° C., 2 MPa, 3 seconds with a heating tool (width 2.0 mm) through a buffer material (silicone rubber, thickness 0.2 mm), A joined body was obtained.

<<導通抵抗値(接続抵抗)>>
得られた接合体の初期抵抗値、及び高温高湿試験(60℃95%RH環境下で500時間放置)後の抵抗値を以下の方法で測定し、評価を行った。
デジタルマルチメーター(品番:デジタルマルチメーター34401A、アジレント社製)を用いて4端子法にて電流1mAを流したときの抵抗値を測定した。30チャンネルについて抵抗値を測定し、最大の抵抗値を以下の評価基準で評価した。結果を表1−1に示す。
〔評価基準〕
○:抵抗値が0.11Ω未満
△:抵抗値が0.11Ω以上0.15未満
×:抵抗値が0.15Ω以上
<< Conduction resistance value (connection resistance) >>
The initial resistance value of the obtained bonded body and the resistance value after a high-temperature and high-humidity test (left at 60 ° C. and 95% RH for 500 hours) were measured and evaluated by the following methods.
Using a digital multimeter (product number: digital multimeter 34401A, manufactured by Agilent), the resistance value was measured when a current of 1 mA was passed by the four-terminal method. The resistance value was measured for 30 channels, and the maximum resistance value was evaluated according to the following evaluation criteria. The results are shown in Table 1-1.
〔Evaluation criteria〕
○: Resistance value is less than 0.11Ω Δ: Resistance value is 0.11Ω or more and less than 0.15 ×: Resistance value is 0.15Ω or more

<<ピール強度>>
フレキシブルプリント基板をプリント配線板から90°方向で剥離する90°剥離試験(JIS K6854−1)を行った。剥離試験には、1cm幅にカットした試験片を用いた。ピール強度を測定し以下の評価基準で評価した。結果を表1−1に示す。
〔評価基準〕
○:8.0N/cm以上
△:6.0N/cm以上8.0N/cm未満
×:6.0N/cm未満
<< Peel Strength >>
A 90 ° peel test (JIS K6854-1) was conducted to peel the flexible printed circuit board from the printed wiring board in the 90 ° direction. A test piece cut to a width of 1 cm was used for the peel test. The peel strength was measured and evaluated according to the following evaluation criteria. The results are shown in Table 1-1.
〔Evaluation criteria〕
○: 8.0 N / cm or more Δ: 6.0 N / cm or more and less than 8.0 N / cm ×: less than 6.0 N / cm

(実施例2〜6、比較例1〜2)
実施例1において、結晶性樹脂、非晶性樹脂、及びエラストマーの配合を表1−1に記載の配合に変えた以外は、実施例1と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−1に示す。
(Examples 2-6, Comparative Examples 1-2)
In Example 1, except that the blending of the crystalline resin, the amorphous resin, and the elastomer was changed to the blending shown in Table 1-1, the anisotropic conductive film and the joined body were obtained in the same manner as in Example 1. Produced.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-1.

実施例6で得られた異方性導電フィルムのDSC測定結果を図1及び図2に示す。図1は、昇温時のDSCチャートである。図2は、降温時のDSCチャートである。図1のDSCチャートでは、77.0℃に溶融開始温度が観察され、107.5℃に吸熱ピークが観察された。また、吸熱ピーク面積から計算した吸熱量は7.3J/gであった。図2のDSCチャートでは、99.3℃に結晶化開始温度が観察され、95.3℃に発熱ピークが観察された。また、発熱ピーク面積から計算した発熱量は、3.7J/gであった。   The DSC measurement result of the anisotropic conductive film obtained in Example 6 is shown in FIG.1 and FIG.2. FIG. 1 is a DSC chart at the time of temperature rise. FIG. 2 is a DSC chart when the temperature is lowered. In the DSC chart of FIG. 1, a melting start temperature was observed at 77.0 ° C., and an endothermic peak was observed at 107.5 ° C. The endothermic amount calculated from the endothermic peak area was 7.3 J / g. In the DSC chart of FIG. 2, a crystallization start temperature was observed at 99.3 ° C., and an exothermic peak was observed at 95.3 ° C. The calorific value calculated from the exothermic peak area was 3.7 J / g.

比較例2で得られた異方性導電フィルムのDSC測定結果を図3及び図4に示す。図3は、昇温時のDSCチャートである。図4は、降温時のDSCチャートである。図3のDSCチャートでは、吸熱ピークは観察されなかった。図4のDSCチャートでは、発熱ピークは観察されなかった。   The DSC measurement results of the anisotropic conductive film obtained in Comparative Example 2 are shown in FIGS. FIG. 3 is a DSC chart at the time of temperature rise. FIG. 4 is a DSC chart when the temperature is lowered. In the DSC chart of FIG. 3, no endothermic peak was observed. In the DSC chart of FIG. 4, no exothermic peak was observed.

(実施例7〜10)
実施例1において、結晶性樹脂、非晶性樹脂、及びエラストマーの配合を表1−2に記載の配合に変えた以外は、実施例1と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−2に示す。
(Examples 7 to 10)
In Example 1, the anisotropic conductive film and the joined body were prepared in the same manner as in Example 1 except that the blending of the crystalline resin, the amorphous resin, and the elastomer was changed to the blending shown in Table 1-2. Produced.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-2.

(実施例11)
実施例5において、結晶性樹脂をバイロンGA−6400(東洋紡株式会社製、結晶性ポリエステル樹脂)に代え、非晶性樹脂をエリーテルUE3600(ユニチカ株式会社製、非晶性ポリエステル樹脂)に代えた以外は、実施例5と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−2に示す。
(Example 11)
In Example 5, the crystalline resin was replaced with Byron GA-6400 (Toyobo Co., Ltd., crystalline polyester resin), and the amorphous resin was replaced with Elitel UE3600 (Unitika Ltd., amorphous polyester resin). Produced an anisotropic conductive film and a joined body in the same manner as in Example 5.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-2.

(実施例12)
実施例5において、エラストマーをテイサンレジンSG−80H(ナガセケムテックス株式会社製、アクリルゴム系エラストマー)に代えた以外は、実施例5と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−2に示す。
(Example 12)
In Example 5, an anisotropic conductive film and a joined body were produced in the same manner as in Example 5 except that the elastomer was changed to Teisan Resin SG-80H (manufactured by Nagase ChemteX Corporation, acrylic rubber-based elastomer). .
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-2.

(実施例13)
実施例6において、導電性粒子を平均粒子径10μmの球状Agめっき樹脂粒子に代えた以外は、実施例6と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−2に示す。
(Example 13)
In Example 6, an anisotropic conductive film and a joined body were produced in the same manner as in Example 6 except that the conductive particles were replaced with spherical Ag plated resin particles having an average particle diameter of 10 μm.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-2.

(比較例3)
実施例5において、非晶性樹脂(非晶性ポリエステル樹脂)をYP−50(新日鐵化学株式会社製、非晶性フェノキシ樹脂)に代えた以外は、実施例5と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−3に示す。
(Comparative Example 3)
In Example 5, except that the amorphous resin (amorphous polyester resin) was replaced with YP-50 (Nippon Steel Chemical Co., Ltd., amorphous phenoxy resin), the same procedure as in Example 5 was performed. An anisotropic conductive film and a joined body were produced.
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-3.

(比較例4〜5)
実施例1において、結晶性樹脂、及び非晶性樹脂の配合を表1−3に記載の配合に変えた以外は、実施例1と同様にして、異方性導電フィルム及び接合体を作製した。
得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1−3に示す。
(Comparative Examples 4-5)
In Example 1, the anisotropic conductive film and the joined body were produced in the same manner as in Example 1 except that the blending of the crystalline resin and the amorphous resin was changed to the blending shown in Table 1-3. .
Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate | zygote. The results are shown in Table 1-3.


表1−1〜表1−3における各組成の配合量(含有量と同じ)の単位は質量部である。
表1−1〜表1−3におけるΔT1は、示差走査熱量測定における昇温時の溶融開始温度と吸熱ピーク温度との差の絶対値であり、ΔT2は、示差走査熱量測定における降温時の結晶化開始温度と発熱ピーク温度との差の絶対値である。

The unit of the blending amount (same as the content) of each composition in Table 1-1 to Table 1-3 is part by mass.
ΔT1 in Table 1-1 to Table 1-3 is an absolute value of the difference between the melting start temperature and the endothermic peak temperature at the time of temperature increase in differential scanning calorimetry, and ΔT2 is the crystal at the time of temperature decrease in differential scanning calorimetry. It is the absolute value of the difference between the crystallization start temperature and the exothermic peak temperature.

実施例1〜13から、本発明の異方性導電フィルムが、十分な接続抵抗を維持しつつ、低温(120℃)、低圧力(2MPa)、及び短時間(3秒間)での接続が可能であることが確認できた。また、ピール強度についても優れていることが確認できた。
実施例1〜3及び実施例9〜10の結果から、結晶性樹脂と非晶性樹脂との質量比(結晶性樹脂:非晶性樹脂)が、25:75〜75:25であると、導通抵抗値及びピール強度の接続特性がより優れることが確認できた。
実施例4〜6、及び8の結果から、結晶性樹脂の含有量及び非晶性樹脂の含有量の和(X)と、エラストマーの含有量(Y)との質量比(X:Y)が、160:40〜60:140であると、高温高湿試験後でも接続抵抗値がより優れることが確認できた。
比較例1は、非晶性樹脂を含まないために、平滑な異方性導電フィルムが得られず、その結果、高温高湿試験後の導通抵抗値が不十分となった。
比較例2及び5は、結晶性樹脂を含まないために、異方性導電フィルムの凝集力が低く、その結果、高温高湿試験後の導通抵抗値が不十分となった。
比較例3は、結晶性樹脂と非晶性樹脂との種類が異なる(樹脂を特徴づける結合が異なる)ために、平滑な異方性導電フィルムが得られず、その結果、高温高湿試験後の導通抵抗値が不十分となった。
比較例4は、非晶性樹脂を含まないために、平滑な異方性導電フィルムが得られず、その結果、高温高湿試験後の導通抵抗値が不十分となった。また、結晶性樹脂の含有量が多く、エラストマーに均一に分散していない為、局所的に硬い部分が生じたことで、ピール強度が不十分となった。
From Examples 1 to 13, the anisotropic conductive film of the present invention can be connected at low temperature (120 ° C.), low pressure (2 MPa), and short time (3 seconds) while maintaining sufficient connection resistance. It was confirmed that. Moreover, it has confirmed that it was excellent also about the peel strength.
From the results of Examples 1 to 3 and Examples 9 to 10, the mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is 25:75 to 75:25. It was confirmed that the connection characteristics of the conduction resistance value and peel strength were more excellent.
From the results of Examples 4 to 6, and 8, the mass ratio (X: Y) of the content of the crystalline resin and the content of the amorphous resin (X) and the content (Y) of the elastomer is 160: 40 to 60: 140, it was confirmed that the connection resistance value was more excellent even after the high temperature and high humidity test.
Since Comparative Example 1 did not contain an amorphous resin, a smooth anisotropic conductive film could not be obtained, and as a result, the conduction resistance value after the high temperature and high humidity test became insufficient.
Since Comparative Examples 2 and 5 did not contain a crystalline resin, the cohesive force of the anisotropic conductive film was low, and as a result, the conduction resistance value after the high temperature and high humidity test was insufficient.
In Comparative Example 3, since the types of the crystalline resin and the amorphous resin are different (bonds characterizing the resin are different), a smooth anisotropic conductive film cannot be obtained. As a result, after the high temperature and high humidity test The conduction resistance value was insufficient.
Since Comparative Example 4 did not contain an amorphous resin, a smooth anisotropic conductive film could not be obtained, and as a result, the conduction resistance value after the high-temperature and high-humidity test became insufficient. Moreover, since there was much content of crystalline resin and it was not disperse | distributing uniformly to an elastomer, the peel strength became inadequate by having produced the hard part locally.

本発明の異方性導電フィルムは、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能であるため、基板の端子と電子部品の端子とを異方性導電接続させて接合体を製造する際の接続材料として好適に用いることができる。
Since the anisotropic conductive film of the present invention can be connected at low temperature, low pressure and in a short time while maintaining sufficient connection resistance, the terminal of the substrate and the terminal of the electronic component are anisotropically conductive. It can use suitably as a connection material at the time of manufacturing by joining.

Claims (10)

第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
結晶性樹脂と、非晶性樹脂と、導電性粒子と、エラストマー(ただし、前記エラストマーは、前記結晶性樹脂及び前記非晶性樹脂とは異なる。)とを含有し、
前記結晶性樹脂が、前記非晶性樹脂が有する樹脂を特徴づける結合と同じ、樹脂を特徴づける結合を有する結晶性樹脂を含有し、
下記の測定温度範囲、昇温速度、及び降温速度での示差走査熱量測定において、昇温時の吸熱ピーク温度(P1)が70℃〜115℃であり、
降温時に発熱ピークを示すことを特徴とする異方性導電フィルム。
測定温度範囲:30℃〜250℃
昇温速度:10℃/分間
降温速度:20℃/分間
An anisotropic conductive film for anisotropic conductive connection between a terminal of a first electronic component and a terminal of a second electronic component,
A crystalline resin, an amorphous resin, conductive particles, and an elastomer (however, the elastomer is different from the crystalline resin and the amorphous resin ) ;
The crystalline resin contains a crystalline resin having the same bond characterizing the resin as the bond characterizing the resin of the amorphous resin;
In the differential scanning calorimetry at the following measurement temperature range, temperature increase rate, and temperature decrease rate, the endothermic peak temperature (P1) at the time of temperature increase is 70 ° C. to 115 ° C.,
An anisotropic conductive film characterized by exhibiting an exothermic peak when the temperature falls.
Measurement temperature range: 30 ° C to 250 ° C
Temperature increase rate: 10 ° C / min Temperature decrease rate: 20 ° C / min
結晶性樹脂と非晶性樹脂との質量比(結晶性樹脂:非晶性樹脂)が、25:75〜75:25である請求項1に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein a mass ratio of the crystalline resin to the amorphous resin (crystalline resin: amorphous resin) is 25:75 to 75:25. 結晶性樹脂が、結晶性ポリエステル樹脂を含有し、
非晶性樹脂が、非晶性ポリエステル樹脂を含有する請求項1から2のいずれかに記載の異方性導電フィルム。
The crystalline resin contains a crystalline polyester resin,
The anisotropic conductive film according to claim 1, wherein the amorphous resin contains an amorphous polyester resin.
結晶性樹脂の含有量及び非晶性樹脂の含有量の和(X)と、エラストマーの含有量(Y)との質量比(X:Y)が、160:40〜60:140である請求項3に記載の異方性導電フィルム。The mass ratio (X: Y) of the sum (X) of the content of the crystalline resin and the content of the amorphous resin (X) and the content (Y) of the elastomer is 160: 40 to 60: 140. 3. An anisotropic conductive film according to 3. 導電性粒子の平均粒子径が、2μm〜40μmである請求項1から4のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the conductive particles have an average particle size of 2 μm to 40 μm. 硬化剤を含有しない請求項1から5のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, which does not contain a curing agent. 加熱により結晶性樹脂および非晶性樹脂が架橋しない請求項1から6のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the crystalline resin and the amorphous resin are not crosslinked by heating. 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、A method of connecting anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component,
前記第2の電子部品の端子上に請求項1から7のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、A first disposing step of disposing the anisotropic conductive film according to any one of claims 1 to 7 on a terminal of the second electronic component;
前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、A second disposing step of disposing the first electronic component on the anisotropic conductive film such that a terminal of the first electronic component is in contact with the anisotropic conductive film;
前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法。And a heating and pressing step of heating and pressing the first electronic component with a heating and pressing member.
端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムとを有し、A first electronic component having a terminal; a second electronic component having a terminal; the terminal of the first electronic component interposed between the first electronic component and the second electronic component; An anisotropic conductive film that electrically connects the terminals of the second electronic component;
前記異方性導電フィルムが、請求項1から7のいずれかに記載の異方性導電フィルムであることを特徴とする接合体。The said anisotropic conductive film is an anisotropic conductive film in any one of Claim 1 to 7, The joined body characterized by the above-mentioned.
端子を有する第1の電子部品と端子を有する第2の電子部品との間に請求項1から7のいずれかに記載の異方性導電フィルムを介在させて、前記第1の電子部品側から加熱押圧させる接続工程を含む、接合体の製造方法。From the first electronic component side, the anisotropic conductive film according to any one of claims 1 to 7 is interposed between the first electronic component having a terminal and the second electronic component having a terminal. The manufacturing method of a joined body including the connection process made to heat-press.
JP2016128386A 2016-06-29 2016-06-29 Anisotropic conductive film, connection method, joined body, and production method of joined body Active JP6352979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128386A JP6352979B2 (en) 2016-06-29 2016-06-29 Anisotropic conductive film, connection method, joined body, and production method of joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128386A JP6352979B2 (en) 2016-06-29 2016-06-29 Anisotropic conductive film, connection method, joined body, and production method of joined body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012203978A Division JP5964187B2 (en) 2012-09-18 2012-09-18 Anisotropic conductive film, connection method, and joined body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018109192A Division JP6532575B2 (en) 2018-06-07 2018-06-07 Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body

Publications (2)

Publication Number Publication Date
JP2016201365A JP2016201365A (en) 2016-12-01
JP6352979B2 true JP6352979B2 (en) 2018-07-04

Family

ID=57422653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128386A Active JP6352979B2 (en) 2016-06-29 2016-06-29 Anisotropic conductive film, connection method, joined body, and production method of joined body

Country Status (1)

Country Link
JP (1) JP6352979B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673116B2 (en) * 2004-11-01 2011-04-20 タツタ電線株式会社 Anisotropic conductive adhesive and electronic device formed using the same
KR100622598B1 (en) * 2004-12-08 2006-09-19 엘에스전선 주식회사 Anisotropic conductive adhesive having ptc characteristic
CN101802118B (en) * 2007-09-19 2014-05-28 日立化成株式会社 Adhesive composition and bonded body
JP5498407B2 (en) * 2011-01-25 2014-05-21 積水化学工業株式会社 Method for manufacturing connection structure

Also Published As

Publication number Publication date
JP2016201365A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5964187B2 (en) Anisotropic conductive film, connection method, and joined body
JP4556936B2 (en) Adhesive for electrode connection
JPWO2008111615A1 (en) Anisotropic conductive material
TWI503394B (en) Anisotropic conductive film, joined structure, and method for producing joined structure
KR20140064651A (en) Anisotropic conductive film, connecting method, and joined structure
KR101906025B1 (en) Anisotropic conductive film, connection method, and joined body
JP6532575B2 (en) Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body
JP6352979B2 (en) Anisotropic conductive film, connection method, joined body, and production method of joined body
JP2006199833A (en) Anisotropic conductive adhesive
JP6271048B2 (en) Anisotropic conductive film, connection method, and joined body
JP2001164210A (en) Anisotropic conductive film and electronic equipment using the same
JP6285191B2 (en) Anisotropic conductive film, method for producing the same, connection method and joined body
JP2017111978A (en) Anisotropic conductive film, connection method, and joined body
JP6542927B2 (en) Anisotropic conductive film, connection method and joined body
JPH0329209A (en) Anisotropically conductive film
JP6307308B2 (en) Manufacturing method of connection structure and circuit connection material
TW202104497A (en) Isotropically electroconductive pressure-sensitive adhesive sheet
JP2003272445A (en) Conductive particle and connection member using the conductive particle
JP2013151706A (en) Adhesive for connecting electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250