JP6351960B2 - Hydrophilic treatment agent - Google Patents

Hydrophilic treatment agent Download PDF

Info

Publication number
JP6351960B2
JP6351960B2 JP2013247535A JP2013247535A JP6351960B2 JP 6351960 B2 JP6351960 B2 JP 6351960B2 JP 2013247535 A JP2013247535 A JP 2013247535A JP 2013247535 A JP2013247535 A JP 2013247535A JP 6351960 B2 JP6351960 B2 JP 6351960B2
Authority
JP
Japan
Prior art keywords
polymer
carbon atoms
group
polymerization
block polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013247535A
Other languages
Japanese (ja)
Other versions
JP2015105313A (en
Inventor
紘和 圖司
紘和 圖司
正洋 藤岡
正洋 藤岡
由次 境原
由次 境原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2013247535A priority Critical patent/JP6351960B2/en
Publication of JP2015105313A publication Critical patent/JP2015105313A/en
Application granted granted Critical
Publication of JP6351960B2 publication Critical patent/JP6351960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、親水化処理剤及び親水化処理剤組成物に関する。   The present invention relates to a hydrophilic treatment agent and a hydrophilic treatment agent composition.

従来、固体表面に防汚性を付与する方法としては、撥水化処理と親水化処理の相異なる方法が知られている。
撥水化処理は、ガラス、金属、繊維等の固体表面に撥水性を持たせる表面処理を行い、水に含まれる汚れを付着させないようにする技術である。例えば、衣類を洗濯後、柔軟仕上げ剤で処理したり、スキーウェア等に撥水剤をスプレーして防水効果を持たせたり、自動車の塗装面をワックス掛けしたりすることが広く行われている。
しかしながら、撥水化処理では、表面を完全に撥水化させることは難しく、度重なる水との接触により、水に含まれる汚れが固体表面に蓄積するため、十分な防汚効果を発揮することが難しい。
Conventionally, as a method for imparting antifouling properties to a solid surface, different methods of water repellent treatment and hydrophilic treatment are known.
The water repellency treatment is a technique for applying a surface repellency to a solid surface of glass, metal, fiber, or the like so that dirt contained in water does not adhere. For example, after washing clothes, they are treated with a soft finish, sprayed with water repellent on skiwear, etc. to give a waterproof effect, and painted surfaces of automobiles are waxed. .
However, with water-repellent treatment, it is difficult to make the surface completely water-repellent, and due to repeated contact with water, dirt contained in the water accumulates on the solid surface, so it exhibits a sufficient antifouling effect Is difficult.

一方、固体表面の親水化処理、すなわち、固体表面の水に対する接触角を低下させ、固体表面を水に対して濡れ易くする処理をすると、当該処理後に固体表面に付着した汚れが洗浄時に落ち易くなったり、汚れの再汚染防止効果が期待できる他、ガラス・鏡等の防曇効果、帯電防止、熱交換器のアルミニウムフィンの着霜防止、浴槽及びトイレ表面等の防汚性付与等が期待できる。   On the other hand, when the surface of the solid surface is hydrophilized, that is, when the surface of the solid surface is decreased in contact angle with water, and the surface of the solid surface is easily wetted with water, dirt attached to the solid surface after the processing is easily removed during cleaning. Anti-fogging effect of glass and mirrors, anti-fogging effect, anti-frosting of aluminum fins of heat exchanger, anti-fouling property of bath and toilet surfaces, etc. it can.

固体表面の親水化処理剤及び方法としては、いくつかの提案がなされている。
例えば、特許文献1には、両性高分子電解質を含有する水性防汚組成物が開示されている。特許文献2には、界面活性剤及び特定のポリベタインを含有する洗浄用又は、すすぎ洗い用の組成物が開示されている。特許文献3には、特定のベタイン構造を有する重合性不飽和モノマーと特定の重合性不飽和モノマーとを共重合して得られるアクリル樹脂、親水性架橋重合体粒子及び架橋剤を含有する親水化処理剤組成物が開示されている。特許文献4には、両親媒性ブロックコポリマーを含む組成物を支持体に適用する段階を含み、両新媒性ブロオックコポリマーが特定の構造の親水性ブロックとエチレン性不飽和疎水性モノマーから形成される疎水性ブロックを含有する疎水性支持体の湿潤性/親水性を改良する方法が開示されている。
Several proposals have been made for a hydrophilic treatment agent and method for a solid surface.
For example, Patent Document 1 discloses an aqueous antifouling composition containing an amphoteric polymer electrolyte. Patent Document 2 discloses a cleaning or rinsing composition containing a surfactant and a specific polybetaine. Patent Document 3 discloses hydrophilization containing an acrylic resin obtained by copolymerizing a polymerizable unsaturated monomer having a specific betaine structure and a specific polymerizable unsaturated monomer, hydrophilic cross-linked polymer particles, and a cross-linking agent. A treating agent composition is disclosed. Patent Document 4 includes a step of applying a composition containing an amphiphilic block copolymer to a support, and both amphiphilic block copolymers are formed from a hydrophilic block having a specific structure and an ethylenically unsaturated hydrophobic monomer. Disclosed is a method for improving the wettability / hydrophilicity of a hydrophobic support containing a modified hydrophobic block.

特開2001−181601号公報JP 2001-181601 A 特表2006−514150号公報JP-T-2006-514150 特開2012−25820号公報JP 2012-25820 A 特表2009−545642号公報Special table 2009-545642

しかるに、親水化技術を応用した商品は意外なことに少なく、広く一般に普及しているとは言いがたい。これは十分満足できる効果を有する親水化剤がないことに起因している。
本発明は、優れた親水化能力を発揮する親水化処理剤及びそれを含有する親水化処理剤組成物を提供することを課題とする。
However, there are surprisingly few products that apply hydrophilization technology, and it cannot be said that they are widely spread. This is due to the absence of a hydrophilizing agent that has a sufficiently satisfactory effect.
This invention makes it a subject to provide the hydrophilic treatment agent which exhibits the outstanding hydrophilization capability, and the hydrophilic treatment agent composition containing it.

本発明は、疎水性不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−1と、スルホベタイン基を有する不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−2とを有し、重合体セグメントA−1の含有量が0.05質量%以上、75質量%以下であるブロック重合体A、からなる親水化処理剤に関する。
また、本発明は、上記本発明の親水化処理剤と水を含有する親水化処理剤組成物に関する。
The present invention includes an unsaturated monomer-derived polymer segment A-1 containing a repeating unit derived from a hydrophobic unsaturated monomer, and an unsaturated containing a repeating unit derived from an unsaturated monomer having a sulfobetaine group. A hydrophilization treatment agent comprising a block polymer A having a monomer segment-derived polymer segment A-2 and a content of the polymer segment A-1 of 0.05% by mass or more and 75% by mass or less. About.
Moreover, this invention relates to the hydrophilic treatment agent composition containing the hydrophilic treatment agent of the said invention and water.

本発明の親水化処理剤を含有する親水化処理剤組成物は親水化性能(以下、本発明の効果ともいう)に優れる。   The hydrophilic treatment composition containing the hydrophilic treatment agent of the present invention is excellent in hydrophilic performance (hereinafter also referred to as the effect of the present invention).

<親水化処理剤>
本発明の親水化処理剤は、特定のブロック重合体Aからなる。
ブロック重合体Aは、疎水性不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−1と、スルホベタイン基を有する不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−2とを有し、重合体セグメントA−1の含有量が0.05質量%以上、75質量%以下である。
<Hydrophilic treatment agent>
The hydrophilic treatment agent of the present invention comprises a specific block polymer A.
The block polymer A includes a polymer segment A-1 derived from an unsaturated monomer containing a repeating unit derived from a hydrophobic unsaturated monomer, and a repeating unit derived from an unsaturated monomer having a sulfobetaine group. It has polymer segment A-2 derived from an unsaturated monomer, and the content of polymer segment A-1 is 0.05% by mass or more and 75% by mass or less.

[重合体セグメントA−1]
(重合体セグメントA−1の含有量)
ブロック重合体A中の重合体セグメントA−1の含有量は、親水化処理剤の親水化性能を高める観点から、0.05質量%以上であり、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、より好ましくは1.0質量%以上、より好ましくは2.0質量%以上、より好ましくは2.5質量%以上であり、同様の観点から、75質量%以下であり、好ましくは60質量%以下、より好ましくは50質量%以下、より好ましくは40質量%以下、より好ましくは30質量%以下、より好ましくは20質量%以下、より好ましくは15質量%以下、より好ましくは11質量%以下、より好ましくは8質量%以下、より好ましくは5.0質量%以下、より好ましくは4.8質量%以下である。
[Polymer segment A-1]
(Content of polymer segment A-1)
The content of the polymer segment A-1 in the block polymer A is 0.05% by mass or more, preferably 0.1% by mass or more, more preferably, from the viewpoint of improving the hydrophilization performance of the hydrophilic treatment agent. Is 0.2% by mass or more, more preferably 1.0% by mass or more, more preferably 2.0% by mass or more, more preferably 2.5% by mass or more, and from the same viewpoint, 75% by mass or less. Yes, preferably 60% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, more preferably 30% by mass or less, more preferably 20% by mass or less, more preferably 15% by mass or less, more Preferably it is 11 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 5.0 mass% or less, More preferably, it is 4.8 mass% or less.

(重合体セグメントA−1の構成)
重合体セグメントA−1は疎水性不飽和単量体由来の繰返し単位を含む。疎水性不飽和単量体は、親水化処理剤の親水化性能を高める観点から、好ましくは20℃における水100gに対する溶解量が10g以下であり、より好ましくは1g以下であり、さらに好ましくは0.1g以下である。
(Configuration of polymer segment A-1)
Polymer segment A-1 contains a repeating unit derived from a hydrophobic unsaturated monomer. From the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent, the hydrophobic unsaturated monomer is preferably 10 g or less, more preferably 1 g or less, more preferably 0, at 20 ° C. with respect to 100 g of water. .1 g or less.

疎水性不飽和単量体由来の繰返し単位は、親水化処理剤の親水化性能を高める観点から、一般式(1)で表される構成単位が好ましい。   The repeating unit derived from the hydrophobic unsaturated monomer is preferably a structural unit represented by the general formula (1) from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent.

Figure 0006351960
Figure 0006351960

〔式中、
1〜R3:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
4:炭素数1以上、22以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
一般式(1)で表される構成単位は、下記一般式(1’)で表される不飽和単量体(以下、不飽和単量体aともいう)を重合することにより誘導される構成単位であり、一般式(1)及び一般式(1’)中におけるR1、R2、R3、R4及びY1は、すべて同義である。
[Where,
R 1 to R 3 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 4 : a hydrocarbon group having 1 to 22 carbon atoms Y 1 : O or NR 11 , R 11 is hydrogen An atom or a hydrocarbon group having 1 to 4 carbon atoms is shown. ]
The structural unit represented by the general formula (1) is a structure derived by polymerizing an unsaturated monomer represented by the following general formula (1 ′) (hereinafter also referred to as an unsaturated monomer a). R 1 , R 2 , R 3 , R 4 and Y 1 in the general formula (1) and general formula (1 ′) are all synonymous.

Figure 0006351960
Figure 0006351960

式(1)及び式(1’)において、不飽和単量体の入手性の観点、単量体の重合性の観点及び親水化処理剤の親水化性能を高める観点から、R1及びR2は水素原子が好ましい。R3は、同様の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。Y1は、同様の観点から、Oが好ましい。R4は、同様の観点から、炭素数1以上、18以下の炭化水素基が好ましく、炭素数1以上、12以下の炭化水素基がより好ましく、炭素数1以上、7以下の炭化水素基がより好ましい。R4の炭化水素基としては、アルキル基、アルケニル基、ベンジル基が挙げられる。R4としては、炭素数1以上、22以下の直鎖又は分岐鎖のアルキル基又はアルケニル基、ベンジル基が挙げられ、好ましくは炭素数1以上、12以下の直鎖又は分岐鎖のアルキル基又はアルケニル基、ベンジル基であり、より好ましくは炭素数1以上、6以下の直鎖又は分岐鎖のアルキル基、ベンジル基である。 In the formula (1) and the formula (1 ′), R 1 and R 2 from the viewpoint of availability of the unsaturated monomer, the polymerizability of the monomer, and the hydrophilization performance of the hydrophilizing agent. Is preferably a hydrogen atom. From the same viewpoint, R 3 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group. Y 1 is preferably O from the same viewpoint. From the same viewpoint, R 4 is preferably a hydrocarbon group having 1 to 18 carbon atoms, more preferably a hydrocarbon group having 1 to 12 carbon atoms, and a hydrocarbon group having 1 to 7 carbon atoms. More preferred. Examples of the hydrocarbon group for R 4 include an alkyl group, an alkenyl group, and a benzyl group. Examples of R 4 include a linear or branched alkyl group or alkenyl group having 1 to 22 carbon atoms, and a benzyl group, preferably a linear or branched alkyl group having 1 to 12 carbon atoms or An alkenyl group and a benzyl group, more preferably a linear or branched alkyl group having 1 to 6 carbon atoms and a benzyl group.

不飽和単量体aとしては、具体的に、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸−シクロヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベヘニル及び(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステルや、N−エチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミドが挙げられる。   Specific examples of the unsaturated monomer a include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, and (meth) acrylic acid. t-butyl, (meth) acrylic acid n-hexyl, (meth) acrylic acid-cyclohexyl, (meth) acrylic acid n-octyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid n-decyl, (meta ) (Meth) acrylate esters such as lauryl acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate and benzyl (meth) acrylate, N -Ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nt-butyl (meth) acrylamide N, N-diethyl (meth) include (meth) acrylamides such as acrylamide.

不飽和単量体aは、親水化処理剤の親水化性能を高める観点から、好ましくは(メタ)アクリル酸エステルであり、より好ましくは(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸ラウリル、及び(メタ)アクリル酸ベンジルから選ばれる1種又は2種以上であり、より好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、及び(メタ)アクリル酸n−ブチル、及び(メタ)アクリル酸ベンジルから選ばれる1種又は2種以上である。
なお、本明細書において、「(メタ)アクリル」とは、アクリル、メタクリル又はそれらの両方を意味する。
From the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent, the unsaturated monomer a is preferably a (meth) acrylate, more preferably methyl (meth) acrylate, ethyl (meth) acrylate, ( From n-butyl (meth) acrylate, iso-butyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, lauryl (meth) acrylate, and benzyl (meth) acrylate 1 or more selected, more preferably 1 selected from methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and benzyl (meth) acrylate It is a seed or two or more kinds.
In the present specification, “(meth) acryl” means acrylic, methacrylic, or both.

重合体セグメントA中には、本願の効果を損なわない範囲で、不飽和単量体a以外の単量体由来の構成単位を含有してもよい。不飽和単量体a以外の単量体としては、スルホベタイン基を有する不飽和単量体以外の不飽和単量体が好ましく、スチレン等の疎水性不飽和単量体がより好ましい。   In the polymer segment A, you may contain the structural unit derived from monomers other than the unsaturated monomer a in the range which does not impair the effect of this application. As the monomer other than the unsaturated monomer a, an unsaturated monomer other than the unsaturated monomer having a sulfobetaine group is preferable, and a hydrophobic unsaturated monomer such as styrene is more preferable.

重合体セグメントA−1を構成する不飽和単量体中の不飽和単量体aの含有量は、親水化処理剤の親水化性能を高める観点から、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、よりさらに好ましくは95質量%以上であり、よりさらに好ましくは実質的に100質量%であり、よりさらに好ましくは100質量%である。
なお、実質的に100質量%とは、本発明の重合体セグメントA−1中に不飽和単量体a由来の繰り返し単位以外の構成単位が不可避的に混入する場合を含む意味である。
The content of the unsaturated monomer a in the unsaturated monomer constituting the polymer segment A-1 is preferably 70% by mass or more from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent. Preferably it is 80% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more, still more preferably substantially 100% by weight, and even more preferably 100% by weight. It is.
In addition, substantially 100 mass% is the meaning including the case where structural units other than the repeating unit derived from the unsaturated monomer a are inevitably mixed in the polymer segment A-1 of this invention.

重合体セグメントA−1の重量平均分子量は、親水化処理剤の親水化性能を高める観点から、好ましくは1500以上、より好ましくは2000以上であり、配合性(配合物の粘度増加の抑制等)の観点から、好ましくは50000以下、より好ましくは10000以下、より好ましくは8000以下、より好ましくは6000以下である。この重量平均分子量は、実施例に記載の方法で測定することができる。   The weight average molecular weight of the polymer segment A-1 is preferably 1500 or more, more preferably 2000 or more, from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent, and compoundability (suppression of increase in viscosity of the blend, etc.). From this viewpoint, it is preferably 50000 or less, more preferably 10,000 or less, more preferably 8000 or less, and more preferably 6000 or less. This weight average molecular weight can be measured by the method described in Examples.

[重合体セグメントA−2]
(重合体セグメントA−2の構成)
重合体セグメントA−2はスルホベタイン基を有する不飽和単量体由来の繰返し単位を含む。スルホベタイン基を有する不飽和単量体由来の繰返し単位は、親水化処理剤の親水化性能を高める観点から、一般式(2)で表される構成単位が好ましい。
[Polymer segment A-2]
(Configuration of polymer segment A-2)
Polymer segment A-2 contains a repeating unit derived from an unsaturated monomer having a sulfobetaine group. The repeating unit derived from the unsaturated monomer having a sulfobetaine group is preferably a structural unit represented by the general formula (2) from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent.

Figure 0006351960
Figure 0006351960

〔式中、
5〜R7:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
8:炭素数1以上、4以下のアルキレン基
9、R10:同一又は異なって、炭素数1以上、4以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
2:水酸基を有してもよい炭素数2以上、4以下のアルキレン基
を示す。〕
[Where,
R 5 to R 7 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 8 : an alkylene group having 1 to 4 carbon atoms R 9 and R 10 : the same or different, and having 1 or more carbon atoms 4 or less hydrocarbon group X 1 : O or NR 11 , R 11 is a hydrogen atom or 1 or more carbon atoms, and 4 or less hydrocarbon group X 2 : 2 or more carbon atoms optionally having a hydroxyl group 4 The following alkylene groups are shown. ]

式(2)において、不飽和単量体の入手性の観点、単量体の重合性の観点及び親水化処理剤の親水化性能を高める観点から、R5及びR6は水素原子が好ましい。R7は、同様の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。X1は、同様の観点から、Oが好ましい。R8は、同様の観点から、炭素数2又は3のアルキレン基が好ましく、炭素数2のジメチレン基がより好ましい。R9、R10は、同様の観点から、メチル基、エチル基が好ましく、メチル基がより好ましい。X2は、親水化処理剤の親水化性能を高める観点及び4級化反応の容易性の観点から、水酸基を有してもよい炭素数3又は4のアルキレン基が好ましく、プロピレン基、ブチレン基、2−ヒドロキシプロピレン基がより好ましく、プロピレン基、2−ヒドロキシプロピレン基がより好ましい。 In formula (2), R 5 and R 6 are preferably hydrogen atoms from the viewpoint of availability of unsaturated monomers, from the viewpoint of polymerizability of the monomers, and from the viewpoint of enhancing the hydrophilization performance of the hydrophilic treatment agent. From the same viewpoint, R 7 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group. X 1 is preferably O from the same viewpoint. From the same viewpoint, R 8 is preferably an alkylene group having 2 or 3 carbon atoms, and more preferably a dimethylene group having 2 carbon atoms. From the same viewpoint, R 9 and R 10 are preferably a methyl group or an ethyl group, and more preferably a methyl group. X 2 is preferably an alkylene group having 3 or 4 carbon atoms which may have a hydroxyl group from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent and the ease of the quaternization reaction, and includes a propylene group and a butylene group. 2-hydroxypropylene group is more preferable, and propylene group and 2-hydroxypropylene group are more preferable.

重合体セグメントB中には、本願の効果を損なわない範囲で、スルホベタイン基を有する不飽和単量体以外の単量体由来の構成単位を含有してもよい。スルホベタイン基を有する不飽和単量体以外の単量体としては、不飽和単量体a以外の不飽和単量体が好ましく、(メタ)アクリル酸、ヒドロキシエチル(メタ)アクリレート、オキシエチレン鎖を有するアクリレート、アクリルアミド、ジメチルアクリルアミド等の親水性不飽和単量体がより好ましい。   The polymer segment B may contain a structural unit derived from a monomer other than the unsaturated monomer having a sulfobetaine group within a range not impairing the effects of the present application. As the monomer other than the unsaturated monomer having a sulfobetaine group, an unsaturated monomer other than the unsaturated monomer a is preferable, and (meth) acrylic acid, hydroxyethyl (meth) acrylate, oxyethylene chain More preferred are hydrophilic unsaturated monomers such as acrylate, acrylamide, and dimethylacrylamide.

重合体セグメントA−2中のスルホベタイン基を有する不飽和単量体由来の繰返し単位の含有量は、親水化処理剤の親水化性能を高める観点から、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、よりさらに好ましくは95質量%以上であり、よりさらに好ましくは実質的に100質量%であり、よりさらに好ましくは100質量%である。
なお、実質的に100質量%とは、本発明の重合体セグメントA−2中にスルホベタイン基を有する不飽和単量体由来の繰返し単位以外の構成単位が不可避的に混入する場合を含む意味である。
The content of the repeating unit derived from the unsaturated monomer having a sulfobetaine group in the polymer segment A-2 is preferably 70% by mass or more from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent. Preferably it is 80% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more, still more preferably substantially 100% by weight, and even more preferably 100% by weight. It is.
In addition, substantially 100 mass% means that the structural unit other than the repeating unit derived from the unsaturated monomer having a sulfobetaine group is inevitably mixed in the polymer segment A-2 of the present invention. It is.

[ブロック重合体A]
ブロック重合体Aの重量平均分子量は、親水化処理剤の親水化性能を高める観点から、好ましくは2500以上、より好ましくは3500以上、より好ましくは6000以上、より好ましくは10000以上、より好ましくは25000以上、より好ましくは50000以上であり、配合性の観点から、好ましくは500000以下、より好ましくは400000以下、より好ましくは300000以下、より好ましくは200000以下、より好ましくは150000以下である。この重量平均分子量は、実施例に記載の方法で測定することができる。
[Block polymer A]
The weight average molecular weight of the block polymer A is preferably 2500 or more, more preferably 3500 or more, more preferably 6000 or more, more preferably 10,000 or more, more preferably 25000, from the viewpoint of enhancing the hydrophilization performance of the hydrophilic treatment agent. From the viewpoint of compoundability, it is preferably 500000 or less, more preferably 400000 or less, more preferably 300000 or less, more preferably 200000 or less, and more preferably 150,000 or less. This weight average molecular weight can be measured by the method described in Examples.

ブロック重合体の構造としては、重合体セグメントAを「A」、重合体セグメントBを「B」で表すと、A−B、A−B−A、B−A−Bの構造、又はA−B−A−B−A−B・・・の繰り返し構造が挙げられ、製造容易性の観点から、A−Bのブロック体の構造が好ましい。   As the structure of the block polymer, when the polymer segment A is represented by “A” and the polymer segment B is represented by “B”, the structure of AB, ABA, BAB, or A- The repeating structure of B-A-B-A-B ... is mentioned, and from the viewpoint of manufacturability, the structure of the block of AB is preferable.

(ブロック重合体Aの製造方法)
本発明において使用されるブロック重合体Aの製造方法は、特に制限されず、公知の方法により製造することができるが、たとえば、モノマーをリビング重合で重合させ、ブロック重合体とすることができる。リビング重合としてはリビングラジカル重合、リビングアニオン重合、リビングカチオン重合等が挙げられるが、重合操作の簡便性の観点からリビングラジカル重合が好ましい。
リビングラジカル重合法としては、原子移動ラジカル重合(ATRP)法、ヨウ素移動ラジカル重合法、ニトロキシラジカルを用いる重合(NMP)法、可逆的付加開裂連鎖移動重合(RAFT)法、可逆連鎖移動触媒重合(RTCP)法、可逆的錯体形成媒介重合(RCMP)法等を用いることができ、触媒の入手性、重合制御の観点から、ATRP法、RAFT法、RTCP法、RCMP法が好ましい。
ATRP法については、Chemical Reviews,2001、101、2921−2990に記載されている。RAFT法については、文献Chemical Reviews,2009、109、5402−5436に記載されている。RTCP法については、特許文献WO2010/027093に記載されている。RCMP法については、特許文献WO2011/016166に記載されている。
(Method for producing block polymer A)
The production method of the block polymer A used in the present invention is not particularly limited and can be produced by a known method. For example, a monomer can be polymerized by living polymerization to obtain a block polymer. Examples of living polymerization include living radical polymerization, living anion polymerization, and living cation polymerization. Living radical polymerization is preferable from the viewpoint of simplicity of the polymerization operation.
Living radical polymerization methods include atom transfer radical polymerization (ATRP) method, iodine transfer radical polymerization method, polymerization using nitroxy radical (NMP) method, reversible addition-fragmentation chain transfer polymerization (RAFT) method, reversible chain transfer catalytic polymerization. (RTCP) method, reversible complex formation mediated polymerization (RCMP) method and the like can be used, and from the viewpoint of catalyst availability and polymerization control, ATRP method, RAFT method, RTCP method and RCMP method are preferable.
The ATRP method is described in Chemical Reviews, 2001, 101, 2921-2990. The RAFT method is described in the document Chemical Reviews, 2009, 109, 5402-5436. The RTCP method is described in Patent Document WO2010 / 027093. The RCMP method is described in Patent Document WO2011 / 016166.

2種類のブロックからなるブロック重合体の場合、例えば、第1のブロックを重合する工程と、第2のブロックを重合する工程とを包含する方法によりブロック重合体を得ることができる。より具体的には例えば、第1のブロックを重合した後、得られた第1のポリマーの存在下に、第2のブロックの重合を行うことにより、ブロック重合体を得ることができる。第1のポリマーは、単離精製した後に、第2のブロックの重合に供することもできるし、第1ポリマーを単離精製せず、第1のポリマーの重合の途中または完結時に、第1の重合に第2のモノマーを添加することにより、ブロックの重合を行うこともできる。単離精製は周知の方法、例えば重合溶液をポリマーの貧溶媒に添加してポリマーを析出させた後、ろ過、乾燥により行うことができる。   In the case of a block polymer comprising two types of blocks, for example, the block polymer can be obtained by a method including a step of polymerizing the first block and a step of polymerizing the second block. More specifically, for example, after polymerizing the first block, the block polymer can be obtained by polymerizing the second block in the presence of the obtained first polymer. The first polymer can be subjected to polymerization of the second block after being isolated and purified, or the first polymer is not isolated and purified, and the first polymer can be subjected to the first polymerization during or after the polymerization of the first polymer. The block can be polymerized by adding a second monomer to the polymerization. Isolation and purification can be performed by a well-known method, for example, by adding a polymerization solution to a polymer poor solvent to precipitate a polymer, followed by filtration and drying.

本発明のブロック重合体Aとしては、下記ブロック重合体A’を4級化する工程を有する製造方法により得られるブロック重合体が挙げられる。
ブロック重合体A’:重合体セグメントA−1と、重合体セグメントA−2の前駆重合体セグメントであってアミノ基を有する重合体セグメントとを有するブロック重合体
Examples of the block polymer A of the present invention include block polymers obtained by a production method having a step of quaternizing the following block polymer A ′.
Block polymer A ′: a block polymer having a polymer segment A-1 and a polymer segment having an amino group, which is a precursor polymer segment of the polymer segment A-2

本発明のブロック重合体の製造法としては、一般式(1)の繰り返し単位を含む重合体セグメントA−1を先に製造し、下記一般式(2−1)の繰り返し単位を含む重合体セグメント(重合体セグメントA−2の前駆重合体セグメント)を製造し、4級化する方法(製造方法(1))と、一般式(2−1)の繰り返し単位を含む重合体セグメント(重合体セグメントA−2の前駆重合体セグメント)を先に製造し、重合体セグメントA−1を製造し、4級化する方法(製造方法(2))が挙げられ、親水化処理剤の親水化性能を向上させる観点から、製造方法(1)が好ましい。   As a manufacturing method of the block polymer of this invention, polymer segment A-1 containing the repeating unit of general formula (1) is manufactured previously, and the polymer segment containing the repeating unit of the following general formula (2-1) (Precursor polymer segment of polymer segment A-2) and quaternization method (production method (1)), and polymer segment (polymer segment) containing the repeating unit of general formula (2-1) A-2 (precursor polymer segment) is produced first, polymer segment A-1 is produced and quaternized (production method (2)), and the hydrophilization performance of the hydrophilizing agent From the viewpoint of improvement, production method (1) is preferred.

Figure 0006351960
Figure 0006351960

〔式中、
5〜R7:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
8:炭素数1以上、4以下のアルキレン基
9、R10:同一又は異なって、炭素数1以上、4以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
[Where,
R 5 to R 7 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 8 : an alkylene group having 1 to 4 carbon atoms R 9 and R 10 : the same or different, and having 1 or more carbon atoms 4 or less hydrocarbon group X 1 : O or NR 11 , R 11 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. ]

製造方法(1)は、具体的には、下記工程1及び工程2を含む製造方法が挙げられる。従って、本発明のブロック重合体Aとしては、前記工程1及び工程2を含む製造方法により得られるブロック重合体が挙げられる。   Specifically, the manufacturing method (1) includes a manufacturing method including the following step 1 and step 2. Therefore, the block polymer A of the present invention includes a block polymer obtained by the production method including the steps 1 and 2.

工程1:下記一般式(1’)で表される不飽和単量体を重合、好ましくはリビング重合した後、下記一般式(2’)で表される不飽和単量体を重合、好ましくはリビング重合させてブロック重合体A’を得る工程。 Step 1: The unsaturated monomer represented by the following general formula (1 ′) is polymerized, preferably living polymerized, and then the unsaturated monomer represented by the following general formula (2 ′) is polymerized, preferably The process of carrying out living polymerization and obtaining block polymer A '.

Figure 0006351960
Figure 0006351960

〔式中、
1〜R3:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
4:炭素数1以上、22以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
[Where,
R 1 to R 3 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 4 : a hydrocarbon group having 1 to 22 carbon atoms Y 1 : O or NR 11 , R 11 is hydrogen An atom or a hydrocarbon group having 1 to 4 carbon atoms is shown. ]

Figure 0006351960
Figure 0006351960

〔式中、
5〜R7:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
8:炭素数1以上、4以下のアルキレン基
9、R10:同一又は異なって、炭素数1以上、4以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
[Where,
R 5 to R 7 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 8 : an alkylene group having 1 to 4 carbon atoms R 9 and R 10 : the same or different, and having 1 or more carbon atoms 4 or less hydrocarbon group X 1 : O or NR 11 , R 11 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. ]

工程2:ブロック重合体A’と、下記一般式(B1)で表される化合物又は下記一般式(B2)で表される化合物とを反応させて、ブロック重合体Aを得る工程。 Step 2: A step of obtaining block polymer A by reacting block polymer A 'with a compound represented by the following general formula (B1) or a compound represented by the following general formula (B2).

Figure 0006351960
Figure 0006351960

Z−X2−SO3M (B2)
(式中、ZはCl又はBr、好ましくはCl、X2は水酸基を有してもよい炭素数2以上、4以下のアルキレン基、好ましくは2−ヒドロキシプロピレン基、MはNa又はKを表す。)
Z-X 2 -SO 3 M ( B2)
(In the formula, Z is Cl or Br, preferably Cl, X 2 is an alkylene group having 2 to 4 carbon atoms which may have a hydroxyl group, preferably a 2-hydroxypropylene group, M represents Na or K. .)

式(2’)において、不飽和単量体の入手性の観点、単量体の重合性の観点及び親水化処理剤の親水化性能を高める観点から、R5及びR6は水素原子が好ましい。R7は、同様の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。X1は、同様の観点から、Oが好ましい。R8は、同様の観点から、炭素数2又は3のアルキレン基が好ましく、炭素数2のジメチレン基が好ましい。R9、R10は、同様の観点から、メチル基、エチル基が好ましく、メチル基がより好ましい。
一般式(2’)で表される不飽和単量体としては、具体的には、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミドが挙げられる。
In Formula (2 ′), R 5 and R 6 are preferably hydrogen atoms from the viewpoint of availability of unsaturated monomers, from the viewpoint of polymerizability of the monomers, and from the viewpoint of enhancing the hydrophilization performance of the hydrophilic treatment agent. . From the same viewpoint, R 7 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group. X 1 is preferably O from the same viewpoint. From the same viewpoint, R 8 is preferably an alkylene group having 2 or 3 carbon atoms, and more preferably a dimethylene group having 2 carbon atoms. From the same viewpoint, R 9 and R 10 are preferably a methyl group or an ethyl group, and more preferably a methyl group.
Specific examples of the unsaturated monomer represented by the general formula (2 ′) include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, N , N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide.

工程1では、公知の方法でブロック重合体A’を得ることができる。例えば、前記のリビング重合法を採用できる。
溶媒としては、単量体や重合体を溶解するものであれば、特に制限はない。溶媒は、単独で又は2種以上を組み合わせて用いることができる。具体的にはアニソール、エタノール等が挙げられる。
In step 1, block polymer A ′ can be obtained by a known method. For example, the living polymerization method can be employed.
The solvent is not particularly limited as long as it can dissolve monomers and polymers. A solvent can be used individually or in combination of 2 or more types. Specific examples include anisole and ethanol.

工程2は、ブロック重合体A’の側鎖のアミノ基と、一般式(B1)又は(B2)の4級化剤とを反応させてスルホベタイン基に変えてブロック重合体Aを得る工程である。
アミノ基を4級化剤と反応させてスルホベタイン基に変える製造方法は、公知の方法を用いることができ、例えば、特表2006−514150号公報に記載されている方法が挙げられる。
Step 2 is a step in which the side chain amino group of the block polymer A ′ is reacted with the quaternizing agent of the general formula (B1) or (B2) to obtain a block polymer A by changing to a sulfobetaine group. is there.
A known method can be used as a production method in which an amino group is reacted with a quaternizing agent to convert it into a sulfobetaine group, and examples thereof include a method described in JP-T-2006-514150.

4級化剤としては、反応性の観点から、1,3−プロパンスルトン、1,4−ブタンスルトン及び3−クロロ−2−ヒドロキシプロパンスルホン酸ナトリウムから選ばれる1種以上が好ましい。
溶媒としては、ブロック重合体A’を溶解するものであれば、特に制限はない。溶媒は、単独で又は2種以上を組み合わせて用いることができる。具体的には2,2,2-トリフルオロエタノール等が挙げられる。
The quaternizing agent is preferably at least one selected from 1,3-propane sultone, 1,4-butane sultone and sodium 3-chloro-2-hydroxypropane sulfonate from the viewpoint of reactivity.
The solvent is not particularly limited as long as it dissolves the block polymer A ′. A solvent can be used individually or in combination of 2 or more types. Specific examples include 2,2,2-trifluoroethanol.

<親水化処理剤組成物>
本発明の親水化処理剤組成物は、本発明の親水化処理剤及び水を含有する。親水化処理剤は1種又は2種以上を用いることができる。
親水化処理剤組成物中の親水化処理剤の含有量は、親水化処理剤組成物の親水化性能を高める観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、増粘により均一な処理が抑制され、親水化性能が低下するのを防止する観点から、好ましくは5質量%以下、好ましくは2.0質量%以下、より好ましくは1.0質量%以下である。
<Hydrophilic treatment agent composition>
The hydrophilic treatment agent composition of the present invention contains the hydrophilic treatment agent of the present invention and water. One or more hydrophilic treatment agents can be used.
The content of the hydrophilizing agent in the hydrophilizing agent composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of improving the hydrophilizing performance of the hydrophilizing agent composition. More preferably, the content is 0.2% by mass or more, and preferably 5% by mass or less, preferably 2.0% by mass from the viewpoint of preventing a uniform treatment by thickening and preventing the hydrophilization performance from deteriorating. Hereinafter, it is more preferably 1.0% by mass or less.

[界面活性剤]
本発明の親水化処理剤組成物は、親水化処理剤組成物の親水化性能を高める観点から、界面活性剤を含有することが好ましい。界面活性剤を用いることにより、親水化処理剤組成物が固体表面に濡れ広がりやすくなり、親水化性能が向上する。また、固体表面に汚れ物質、特に疎水性の高い例えば油性の汚れ物質が付着している場合には、界面活性剤を用いることにより、界面活性剤により疎水性の高い汚れ物質が除去され、固体表面の親水化性能が向上する。
親水化処理剤組成物中の界面活性剤の含有量は、親水化処理剤組成物の親水化性能を高める観点から、好ましくは0.01質量%以上、より好ましく0.03質量%以上、より好ましくは0.05質量%以上であり、ブロック重合体Aの固体表面への吸着が阻害され、親水化性能が低下するのを防止する観点から、好ましくは30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下である。さらに抑泡の観点から、好ましくは1質量%以下、より好ましくは0.5質量%未満、さらに好ましくは0.3質量%以下、よりさらに好ましくは0.1質量%以下である。
[Surfactant]
The hydrophilic treatment composition of the present invention preferably contains a surfactant from the viewpoint of enhancing the hydrophilic performance of the hydrophilic treatment composition. By using the surfactant, the hydrophilic treatment composition is easily wetted and spread on the solid surface, and the hydrophilic performance is improved. In addition, when a dirt substance, in particular, an oily dirt substance having a high hydrophobic property is attached to the solid surface, the surfactant is used to remove the highly hydrophobic dirt substance by the surfactant, Surface hydrophilization performance is improved.
The content of the surfactant in the hydrophilizing agent composition is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, from the viewpoint of enhancing the hydrophilization performance of the hydrophilizing agent composition. Preferably, the content is 0.05% by mass or more, and is preferably 30% by mass or less, preferably 20% by mass from the viewpoint of preventing the adsorption of the block polymer A to the solid surface and preventing the hydrophilization performance from being lowered. Hereinafter, it is more preferably 10% by mass or less. Further, from the viewpoint of foam suppression, it is preferably 1% by mass or less, more preferably less than 0.5% by mass, further preferably 0.3% by mass or less, and still more preferably 0.1% by mass or less.

用いられる界面活性剤としては、通常液体洗浄剤に用いられる界面活性剤であれば特に限定はない。界面活性剤としては陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤及び両性界面活性剤が挙げられる。
界面活性剤は、前述の観点から、疎水性部位としてアルキル基又はアルケニル基を有することが好ましく、その炭素数は、好ましくは8以上、より好ましくは炭素数10以上であり、その上限は、好ましくは20以下、より好ましくは16以下である。
The surfactant to be used is not particularly limited as long as it is a surfactant that is usually used for a liquid detergent. Surfactants include anionic surfactants, nonionic surfactants, cationic surfactants and amphoteric surfactants.
From the above viewpoint, the surfactant preferably has an alkyl group or an alkenyl group as a hydrophobic site, and the carbon number thereof is preferably 8 or more, more preferably 10 or more, and the upper limit is preferably Is 20 or less, more preferably 16 or less.

(陰イオン性界面活性剤)
陰イオン性界面活性剤としては、疎水性部位を有する硫酸エステル塩、スルホン酸塩、カルボン酸塩、リン酸エステル塩、及びアミノ酸塩から選ばれる1種又は2種以上が好ましい。
具体的には、アルキル硫酸塩、アルケニル硫酸塩、ポリオキシアルキレンアルキルエーテル硫酸塩、ポリオキシアルキレンアルケニルエーテル硫酸塩、ポリオキシアルキレンアルキルフェニルエーテル硫酸塩等の疎水性部位を有する硫酸エステル塩;スルホコハク酸アルキルエステル塩、ポリオキシアルキレンスルホコハク酸アルキルエステル塩、アルカンスルホン酸塩、内部オレフィンスルホン酸塩、アシルイセチオネート、アシルメチルタウレート等の疎水性部位を有するスルホン酸塩;炭素数8以上16以下の高級脂肪酸塩、ポリオキシアルキレンアルキルエーテル酢酸塩等の疎水性部位を有するカルボン酸塩;アルキルリン酸塩、ポリオキシアルキレンアルキルエーテルリン酸塩等の疎水性部位を有するリン酸エステル塩;アシルグルタミン酸塩、アラニン誘導体、グリシン誘導体、アルギニン誘導体等の疎水性部位を有するアミノ酸塩等が挙げられる。
(Anionic surfactant)
The anionic surfactant is preferably one or more selected from sulfate ester salts, sulfonate salts, carboxylate salts, phosphate ester salts, and amino acid salts having a hydrophobic site.
Specifically, sulfate esters having a hydrophobic site such as alkyl sulfates, alkenyl sulfates, polyoxyalkylene alkyl ether sulfates, polyoxyalkylene alkenyl ether sulfates, polyoxyalkylene alkyl phenyl ether sulfates; sulfosuccinic acid Alkyl ester salts, polyoxyalkylene sulfosuccinic acid alkyl ester salts, alkane sulfonates, internal olefin sulfonates, acyl isethionates, sulfonates having a hydrophobic site such as acyl methyl taurate; 8 to 16 carbon atoms Higher fatty acid salts, carboxylates having a hydrophobic site such as polyoxyalkylene alkyl ether acetates; phosphoric acid ester salts having a hydrophobic site such as alkyl phosphates, polyoxyalkylene alkyl ether phosphates; Glutamic acid salts, alanine derivatives, glycine derivatives, amino acid salts and the like having a hydrophobic moiety, such as arginine derivatives.

これらの陰イオン性界面活性剤の中では、親水化処理剤組成物の親水化性能を向上させる観点から、ラウリル硫酸ナトリウム等のアルキル硫酸塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム(ラウレス−2硫酸ナトリウム)等のポリオキシエチレンアルキルエーテル硫酸塩、ラウリン酸カリウム、ミリスチン酸ナトリウム等の高級脂肪酸塩、ポリオキシエチレンラウリルエーテル酢酸ナトリウム(ラウレス−4,5酢酸ナトリウム)等のポリオキシエチレンアルキルエーテル酢酸塩、ラウレス−2スルホコハク酸ナトリウム等のスルホコハク酸アルキルエステル塩、N−アシル−L−グルタミン酸ナトリウム(ココイルグルタミン酸ナトリウム)等のアシルグルタミン酸塩、アシルイセチオネート、及びアシルメチルタウレートから選ばれる1種又は2種以上が好ましく、ポリオキシエチレンアルキルエーテル硫酸塩及び高級脂肪酸塩から選ばれる1種または2種以上がより好ましい。   Among these anionic surfactants, alkyl sulfates such as sodium lauryl sulfate, sodium polyoxyethylene lauryl ether sulfate (sodium laureth-2 sulfate) are used from the viewpoint of improving the hydrophilic performance of the hydrophilic treatment composition. ) And the like, higher fatty acid salts such as potassium laurate and sodium myristate, polyoxyethylene alkyl ether acetates such as sodium polyoxyethylene lauryl acetate (sodium laureth-4,5 acetate), Is sulfosuccinic acid alkyl ester salt such as sodium laureth-2 sulfosuccinate, acyl glutamate such as sodium N-acyl-L-glutamate (sodium cocoyl glutamate), acyl isethionate, and acylmethyl taurate? One or more preferably chosen, one or more selected from polyoxyethylene alkyl ether sulfuric acid salts and higher fatty acid salts are more preferred.

(非イオン性界面活性剤)
非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型非イオン性界面活性剤と、ショ糖脂肪酸エステル、ポリグリセリンアルキルエーテル、ポリグリセリン脂肪酸エステル、アルキルグリコシド等の多価アルコール型非イオン性界面活性剤及び脂肪酸アルカノールアミド等が挙げられる。
これらの非イオン性界面活性剤の中では、親水化処理剤組成物の親水化性能を向上させる観点から、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン硬化ヒマシ油、脂肪酸アルカノールアミド、及びアルキルグリコシドから選ばれる1種又は2種以上が好ましく、ポリオキシエチレンアルキルエーテル及びアルキルグルコシドから選ばれる1種又は2種以上がより好ましい。
(Nonionic surfactant)
Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, Polyethylene glycol type nonionic surfactants such as oxyalkylene (hardened) castor oil and polyhydric alcohol type nonionic surfactants such as sucrose fatty acid ester, polyglycerin alkyl ether, polyglycerin fatty acid ester, alkylglycoside, and the like And fatty acid alkanolamides.
Among these nonionic surfactants, polyoxyalkylene alkyl ether, polyoxyethylene hydrogenated castor oil, fatty acid alkanolamide, and alkylglycoside are selected from the viewpoint of improving the hydrophilization performance of the hydrophilizing agent composition. 1 type or 2 types or more selected are preferable, and 1 type or 2 types or more selected from polyoxyethylene alkyl ether and alkyl glucoside are more preferable.

(両性界面活性剤)
両性界面活性剤としては、イミダゾリン系ベタイン、アルキルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロピルベタイン、スルホベタイン等のベタイン系界面活性剤、及びアルキルジメチルアミンオキサイド等のアミンオキサイド型界面活性剤等が挙げられる。
これらの両性界面活性剤の中では、親水化処理剤組成物の親水化性能を向上させる観点から、イミダゾリン系ベタイン、アルキルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロピルベタイン、及びアルキルヒドロキシスルホベタインから選ばれる1種又は2種以上が好ましく、ラウリン酸アミドプロピル−N,N−ジメチル−酢酸ベタイン等の脂肪酸アミドプロピルベタインがより好ましい。
(Amphoteric surfactant)
Examples of amphoteric surfactants include betaine surfactants such as imidazoline betaines, alkyldimethylaminoacetic acid betaines, fatty acid amidopropyl betaines, and sulfobetaines, and amine oxide surfactants such as alkyldimethylamine oxides.
Among these amphoteric surfactants, 1 is selected from imidazoline-based betaines, alkyldimethylaminoacetic acid betaines, fatty acid amidopropyl betaines, and alkylhydroxysulfobetaines from the viewpoint of improving the hydrophilization performance of the hydrophilizing composition. A seed | species or 2 or more types is preferable and fatty-acid amide propyl betaines, such as lauric acid amidopropyl-N, N- dimethyl-acetic acid betaine, are more preferable.

(陽イオン性界面活性剤)
陽イオン性界面活性剤としては、アミド基、エステル基又はエーテル基で分断されていてもよい炭素数12以上、28以下、好ましくは炭素数16以上、22以下の炭化水素基を有する第4級アンモニウム塩、ピリジニウム塩、又は3級アミンの鉱酸又は有機酸の塩が挙げられる。
具体的には、セチルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ベヘニルトリメチルアンモニウム塩、オクダデシロキシプロピルトリメチルアンモニウム塩等の長鎖アルキルトリメチルアンモニウム塩;ステアリルジメチルベンジルアンモニウム塩等の長鎖アルキルジメチルベンジルアンモニウム塩;ジステアリルジメチルアンモニウム塩、ジイソテトラデシルジメチルアンモニウム塩等のジ長鎖アルキルジメチルアンモニウム塩;ステアリルジメチルアミン、ベヘニルジメチルアミン、オクタデシロキシプロピルジメチルアミンの酸塩等のモノ長鎖アルキルジメチルアミン塩が挙げられる。
これらの陽イオン性界面活性剤の中では、親水化処理剤組成物の親水化性能を向上させる観点から、長鎖アルキルジメチルベンジルアンモニウム塩が好ましい。
(Cationic surfactant)
As the cationic surfactant, a quaternary having a hydrocarbon group having 12 to 28 carbon atoms, preferably 16 to 22 carbon atoms, which may be separated by an amide group, an ester group or an ether group. Examples thereof include ammonium salts, pyridinium salts, and salts of tertiary amine mineral acids or organic acids.
Specifically, long-chain alkyltrimethylammonium salts such as cetyltrimethylammonium salt, stearyltrimethylammonium salt, behenyltrimethylammonium salt, okdadecyloxypropyltrimethylammonium salt; long-chain alkyldimethylbenzylammonium salt such as stearyldimethylbenzylammonium salt Di-long chain alkyl dimethyl ammonium salts such as distearyl dimethyl ammonium salt and diisotetradecyl dimethyl ammonium salt; mono long chain alkyl dimethyl amine salts such as stearyl dimethylamine, behenyl dimethylamine and octadecyloxypropyl dimethylamine acid salts Is mentioned.
Among these cationic surfactants, a long-chain alkyldimethylbenzylammonium salt is preferable from the viewpoint of improving the hydrophilization performance of the hydrophilizing agent composition.

[その他の成分]
本発明の親水化処理剤組成物には、本発明の目的を阻害しない範囲で、シュウ酸、マレイン酸、クエン酸、アジピン酸、セバシン酸、リンゴ酸、エチレンジアミン四酢酸、ニトリロ三酢酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリ2−アクリルアミド−2−メチルプロパンスルホン酸、ポリp−スチレンスルホン酸等の多価カルボン酸;エチルアルコール、イソプロピルアルコール等の低級アルコール、ジエチレングリコールモノブチルエーテル等の溶剤;NaCl等の親水化処理剤の水への溶解性を向上させる塩;トルエンスルホン酸塩、キシレンスルホン酸塩、尿素等の可溶化剤;粘土鉱物、水溶性高分子化合物等の粘度調整剤(但し、ブロック重合体Aを除く);方解石、珪石、リン酸カルシウム、ゼオライト、炭酸カルシウム、ポリエチレン、ナイロン、ポリスチレン等の水不溶性研磨剤;グリセリン、ソルビトール等の保湿剤;カチオン化セルロース等の感触向上剤(但し、ブロック重合体Aを除く);炭酸ナトリウム、珪酸ナトリウム等のアルカリビルダー;酵素、色素、香料、防腐・防かび剤等を添加することができる。
[Other ingredients]
The hydrophilizing agent composition of the present invention includes oxalic acid, maleic acid, citric acid, adipic acid, sebacic acid, malic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, polyacrylic acid as long as the object of the present invention is not impaired. Polycarboxylic acid such as acid, polymethacrylic acid, polymaleic acid, poly-2-acrylamido-2-methylpropanesulfonic acid, poly-p-styrenesulfonic acid; lower alcohol such as ethyl alcohol and isopropyl alcohol; solvent such as diethylene glycol monobutyl ether A salt that improves the solubility of a hydrophilizing agent such as NaCl in water; a solubilizer such as toluene sulfonate, xylene sulfonate, or urea; a viscosity modifier such as clay mineral or water-soluble polymer compound ( Except for block polymer A); calcite, silica, calcium phosphate, zeolite, charcoal Water-insoluble abrasives such as calcium, polyethylene, nylon and polystyrene; Moisturizers such as glycerin and sorbitol; Touch improvers such as cationized cellulose (excluding block polymer A); Alkali builders such as sodium carbonate and sodium silicate Enzymes, pigments, fragrances, preservatives and fungicides can be added.

[親水化処理剤組成物の製造]
本発明の親水化処理剤組成物は、ブロック重合体A、水及び必要に応じて前述した界面活性剤や多価有機酸等のその他の成分を加えて、公知の方法により攪拌、混合することにより得ることができる。
親水化処理剤組成物は、固体表面の種類や処理目的に応じて、適宜組成割合を調整することができる。また、濃厚溶液を調製しておき、使用時に希釈して用いることもできる。
[Production of hydrophilizing agent composition]
The hydrophilic treatment agent composition of the present invention is agitated and mixed by a known method by adding the block polymer A, water and other components such as the surfactant and polyvalent organic acid as necessary. Can be obtained.
The composition ratio of the hydrophilizing agent composition can be appropriately adjusted according to the type of solid surface and the purpose of treatment. In addition, a concentrated solution can be prepared and diluted at the time of use.

得られる親水化処理剤組成物の20℃におけるpHは、取扱いの安全性、及び固体表面の損傷防止の観点から、好ましくは2以上、より好ましくは3以上、より好ましくは4以上であり、好ましくは11以下、より好ましくは10以下、より好ましくは8以下である。pH調節剤としては、塩酸、硫酸等の無機酸や、前述の有機酸等の酸剤;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等の無機アルカリ化合物、アンモニアやその誘導体、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アルカリ化合物等のアルカリ剤が挙げられる。また、酸剤とアルカリ剤を組み合わせて緩衝剤系として用いることもできる。   The pH at 20 ° C. of the obtained hydrophilizing agent composition is preferably 2 or more, more preferably 3 or more, more preferably 4 or more, from the viewpoint of handling safety and prevention of damage to the solid surface. Is 11 or less, more preferably 10 or less, more preferably 8 or less. Examples of pH regulators include inorganic acids such as hydrochloric acid and sulfuric acid, and acid agents such as the aforementioned organic acids; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate Inorganic alkali compounds such as ammonia and derivatives thereof, and alkali agents such as organic alkali compounds such as monoethanolamine, diethanolamine, and triethanolamine. Also, a combination of an acid agent and an alkali agent can be used as a buffer system.

<親水化処理方法>
本発明の固体表面の親水化処理方法は、固体表面を本発明の親水化処理剤組成物に接触させる。
ここで「固体表面」の「固体」とは、特に制限はなく、ガラス、陶器、磁器、琺瑯、タイル、セラミックス;アルミニウム、ステンレス、真鍮等の金属;ポリエチレン、ポリプロピレン、メラミン樹脂、ポリアミド樹脂、ABS樹脂、FRP等の合成樹脂;木綿、絹、羊毛等の天然繊維;ポリエステル、ナイロン、レーヨン等の合成繊維;毛髪、爪、歯等の固体を意味する。
本発明方法を適用しうる好適な固体表面としては、疎水性硬質表面、更にセラミックス、金属、合成樹脂から選ばれる1種又は2種以上の疎水性硬質表面が挙げられる。ここで、疎水性硬質表面とは、水に対する静止接触角が70°以上であることを意味し、親水性硬質表面とは70°未満であることを意味する。なお、静止接触角は、実施例に記載の方法で測定することができる。
また、親水化処理剤組成物は、取扱いの安定性の観点から、水溶液であることが好ましい。
<Hydrophilic treatment method>
In the method for hydrophilizing a solid surface of the present invention, the solid surface is brought into contact with the hydrophilizing composition of the present invention.
Here, the “solid” of the “solid surface” is not particularly limited, and glass, ceramic, porcelain, glazed, tile, ceramics; metals such as aluminum, stainless steel, brass; polyethylene, polypropylene, melamine resin, polyamide resin, ABS Synthetic resins such as resin and FRP; natural fibers such as cotton, silk and wool; synthetic fibers such as polyester, nylon and rayon; solids such as hair, nails and teeth.
Suitable solid surfaces to which the method of the present invention can be applied include a hydrophobic hard surface, and one or more hydrophobic hard surfaces selected from ceramics, metals, and synthetic resins. Here, the hydrophobic hard surface means that the static contact angle with respect to water is 70 ° or more, and the hydrophilic hard surface means less than 70 °. The static contact angle can be measured by the method described in the examples.
In addition, the hydrophilizing agent composition is preferably an aqueous solution from the viewpoint of handling stability.

固体表面と親水化処理剤組成物の接触方法は、特に限定されない。例えば、次の(i)〜(iii)の方法等が挙げられる。
(i)親水化処理剤組成物に固体を浸漬させる方法
(ii)親水化処理剤組成物を固体表面に噴霧又は塗布する方法
(iii)親水化処理剤組成物で常法に従い固体表面を洗浄する方法
固体表面を親水化処理剤組成物で親水化処理する温度は、親水化処理剤組成物の親水化性能を高める観点、処理方法の容易性の観点から、好ましくは5℃以上、より好ましくは10℃以上、より好ましくは15℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、より好ましくは30℃以下である。
前記(i)の方法において、浸漬する時間は、親水化処理剤組成物の親水化性能を高める観点及び経済性の観点から、好ましくは0.5分以上、より好ましくは1分以上であり、好ましくは60分以下、より好ましくは50分以下である。
前記(ii)の方法において、親水化処理剤組成物を固体表面に噴霧又は塗布する方法は、硬質表面の広さ(面積)等に応じて適宜選択できる。親水化処理剤組成物を固体表面にスプレー等で噴霧した後、乾燥する方法が好ましい。必要に応じて、噴霧した後、水ですすいでもよい。また、噴霧した後、スポンジ等を用いて薄く塗りのばしてもよい。
固体表面に噴霧又は塗布する親水化処理剤組成物の量は、例えば、ブロック重合体Aの含有量が0.5質量%の親水化処理剤組成物の場合、好ましくは10cm2あたり0.01mL以上0.1mL以下である。
前記(iii)の方法において、ブロック重合体A及び界面活性剤を含有する洗浄剤組成物の形態で使用し、固体表面と接触させることが好ましい。かかる洗浄剤組成物の形態とする場合、取扱いの安全性、及び固体表面の損傷防止の観点から、そのpHは4以上が好ましく、そして、10以下が好ましく、8以下がより好ましい。
界面活性剤としては、前述したものを使用することができる。
The method for contacting the solid surface with the hydrophilizing agent composition is not particularly limited. For example, the following methods (i) to (iii) may be mentioned.
(I) A method of immersing a solid in a hydrophilic treatment agent composition (ii) A method of spraying or applying a hydrophilic treatment agent composition to a solid surface (iii) A solid surface is washed with a hydrophilic treatment agent composition according to a conventional method The temperature at which the solid surface is hydrophilized with the hydrophilizing agent composition is preferably 5 ° C. or more, more preferably from the viewpoint of enhancing the hydrophilizing performance of the hydrophilizing agent composition and the ease of the treating method. Is 10 ° C or higher, more preferably 15 ° C or higher, preferably 50 ° C or lower, more preferably 40 ° C or lower, more preferably 30 ° C or lower.
In the method (i), the immersion time is preferably 0.5 minutes or more, more preferably 1 minute or more, from the viewpoint of enhancing the hydrophilization performance of the hydrophilic treatment composition and from the viewpoint of economy. Preferably it is 60 minutes or less, More preferably, it is 50 minutes or less.
In the method (ii), the method of spraying or applying the hydrophilizing agent composition onto the solid surface can be appropriately selected according to the width (area) of the hard surface. A method in which the hydrophilizing agent composition is sprayed on the solid surface by spraying and then dried is preferable. If necessary, rinse with water after spraying. Further, after spraying, it may be thinly applied using a sponge or the like.
The amount of the hydrophilizing agent composition sprayed or applied to the solid surface is, for example, 0.01 mL per 10 cm 2 in the case of a hydrophilizing agent composition in which the content of the block polymer A is 0.5% by mass. It is 0.1 mL or less.
In the method (iii), it is preferably used in the form of a cleaning composition containing the block polymer A and a surfactant and brought into contact with a solid surface. In the case of the form of such a cleaning composition, the pH is preferably 4 or more, preferably 10 or less, more preferably 8 or less, from the viewpoints of handling safety and prevention of damage to the solid surface.
As the surfactant, those described above can be used.

また、本発明の親水化処理剤組成物により親水化処理された固体表面の水に対する静止接触角が、好ましくは50°以下、より好ましくは40°以下、より好ましくは30°以下、より好ましくは25°以下である。
また、本発明の親水化処理剤組成物により親水化処理された固体表面は、親水化性能を高める観点から、均一に処理されていることが好ましい。表面処理の均一性は、処理後の固体表面を目視で観察することにより判断できる。
The static contact angle with respect to water of the solid surface hydrophilized by the hydrophilizing composition of the present invention is preferably 50 ° or less, more preferably 40 ° or less, more preferably 30 ° or less, more preferably It is 25 degrees or less.
Moreover, it is preferable that the solid surface hydrophilized by the hydrophilizing composition of the present invention is uniformly treated from the viewpoint of enhancing the hydrophilization performance. The uniformity of the surface treatment can be judged by visually observing the solid surface after the treatment.

以下の製造例、実施例及び比較例において、「%」は「質量%」を意味する。各種物性等の測定は以下の方法により行った。   In the following production examples, examples and comparative examples, “%” means “mass%”. Various physical properties and the like were measured by the following methods.

(1)重合体セグメントA−1の重量平均分子量
ゲル浸透クロマトグラフィー(ポリスチレン換算)で測定した。
カラム:K-804L(昭和電工(株)製)を2本直列に連結して使用した。
カラム温度:40℃
溶離液:1mmol/Lジメチルラウリルアミン/CHCl3(ジメチルラウリルアミン:ファーミンDM2098:花王(株)製)
流量:1.0ml/分
検出器:示差屈折率計
(1) It measured by the weight average molecular weight gel permeation chromatography (polystyrene conversion) of polymer segment A-1.
Two columns: K-804L (manufactured by Showa Denko KK) were used in series.
Column temperature: 40 ° C
Eluent: 1 mmol / L dimethyl lauryl amine / CHCl 3 (dimethyl lauryl amine: Farmin DM2098: manufactured by Kao Corporation)
Flow rate: 1.0 ml / min Detector: Differential refractometer

(2)ブロック重合体の重量平均分子量
SLS(静的光散乱法)による分子量測定を行った。重量平均分子量(Mw)は光散乱光度計「DLS−7000」(大塚電子(株)製)を用いて、下記の条件で静的光散乱を測定し、Zimm−plotを作製することで算出した。また、分子量の算出に必要な屈折率増分は、示差屈折率計「DRM3000」(大塚電子(株)製)を用いて測定した。
波長:632.8nm(ヘリウムーネオンレーザー)
散乱角:30°から150°まで10°おきに測定した。
平均温度:25°
溶媒:トリフルオロエタノール
(2) Weight average molecular weight of block polymer Molecular weight was measured by SLS (static light scattering method). The weight average molecular weight (Mw) was calculated by measuring the static light scattering under the following conditions using a light scattering photometer “DLS-7000” (manufactured by Otsuka Electronics Co., Ltd.) and preparing a Zimm-plot. . Further, the refractive index increment necessary for calculating the molecular weight was measured using a differential refractometer “DRM3000” (manufactured by Otsuka Electronics Co., Ltd.).
Wavelength: 632.8 nm (helium-neon laser)
Scattering angle: measured at intervals of 10 ° from 30 ° to 150 °.
Average temperature: 25 °
Solvent: trifluoroethanol

(3)ブロック重合体中の重合体セグメントA−1の含有量
前記(1)及び(2)で求めた重合体セグメントA−1の重量平均分子量、ブロック重合体の重量平均分子量を用いて、下記の式より求めた。
ブロック重合体中の重合体セグメントA−1の含有量(%)=重合体セグメントA−1の重量平均分子量/ブロック重合体の重量平均分子量×100
(3) Content of polymer segment A-1 in block polymer Using the weight average molecular weight of polymer segment A-1 determined in the above (1) and (2), the weight average molecular weight of the block polymer, It calculated | required from the following formula.
Content (%) of polymer segment A-1 in block polymer = weight average molecular weight of polymer segment A-1 / weight average molecular weight of block polymer × 100

製造例1(ポリマーA1の製造)
(工程1)
ナスフラスコにメタクリル酸メチル(和光純薬工業(株)製)30g、2−ブロモイソ酪酸エチル1.169g(東京化成工業(株)製)、4,4’−ジノニル−2,2’−ジピリジル(シグマアルドリッチ製)3.67g、アニソール45gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)(和光純薬工業(株)製)0.297g、塩化銅(II)(和光純薬工業(株)製)0.201gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。3時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、水200mL、メタノール600mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル(和光純薬工業(株)製)20g、上記で得られたポリマー固体0.85g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン(シグマアルドリッチ製)0.07g、アニソール8.6gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.028gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。14時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール(シグマアルドリッチ製) 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン(和光純薬工業(株)製)2.4gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA1の固体を得た。
Production Example 1 (Production of Polymer A1)
(Process 1)
In an eggplant flask, 30 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 1.169 g of ethyl 2-bromoisobutyrate (manufactured by Tokyo Chemical Industry Co., Ltd.), 4,4′-dinonyl-2,2′-dipyridyl ( 3.67 g (manufactured by Sigma Aldrich) and 45 g of anisole were added, stoppered with a three-way cock, and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip, 0.297 g of copper chloride (I) (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.201 g of copper chloride (II) (manufactured by Wako Pure Chemical Industries, Ltd.) are placed in another eggplant flask. After plugging with a cock and purging with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 3 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Subsequently, the polymerization solution was dropped while stirring a mixed solution of 200 mL of water and 600 mL of methanol to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, in an eggplant flask, 20 g of 2- (dimethylamino) ethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.85 g of the polymer solid obtained above, 1,1,4,7,10,10-hexamethyl A monomer solution was prepared by adding 0.07 g of triethylenetetramine (manufactured by Sigma Aldrich) and 8.6 g of anisole, stoppered with a three-way cock, and bubbling with nitrogen for 15 minutes. Next, a stirrer chip and 0.028 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 14 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
3 g of the polymer obtained in an eggplant flask and 12 g of 2,2,2-trifluoroethanol (manufactured by Sigma-Aldrich) were added to dissolve the polymer. 2.4 g of 1,3-propane sultone (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise while heating to 50 ° C. with a three-way cock. After reacting for 5 hours, the mixture was cooled, and while stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, and a solid of polymer A1 was obtained by filtration and drying.

製造例2(ポリマーA2の製造)
(工程1)
ナスフラスコにメタクリル酸メチル15g、2‐ブロモイソ酪酸エチル1.46g、4,4’‐ジノニル‐2,2’‐ジピリジル4.6g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.371g、塩化銅(II)0.252gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、ヘキサンを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル5g、上記で得られたポリマー固体0.636g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.11g、アニソール11.67gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0314gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。8時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.3gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA2の固体を得た。
Production Example 2 (Production of polymer A2)
(Process 1)
Place 15 g of methyl methacrylate, 1.46 g of ethyl 2-bromoisobutyrate, 4.6 g of 4,4'-dinonyl-2,2'-dipyridyl and 35 g of anisole in an eggplant flask, stopper with a three-way cock, and perform nitrogen bubbling for 15 minutes. A monomer solution was prepared. Next, a stirrer chip, 0.371 g of copper (I) chloride, and 0.252 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, the polymerization solution was dropped while stirring hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, in the eggplant flask, 5 g of 2- (dimethylamino) ethyl methacrylate, 0.636 g of the polymer solid obtained above, 0.11 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 11.67 g of anisole were added. Then, it was stoppered with a three-way cock and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip and 0.0314 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 8 hours, the polymerization solution was cooled with ice while being exposed to air, to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.3 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. The mixture was allowed to react for 5 hours and then cooled. While stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, and the polymer A2 solid was obtained by filtration and drying.

製造例3(ポリマーA3の製造)
(工程1)
ナスフラスコにメタクリル酸メチル15g、2‐ブロモイソ酪酸エチル1.46g、4,4’‐ジノニル‐2,2’‐ジピリジル4.6g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.371g、塩化銅(II)0.252gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、ヘキサンを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル5g、上記で得られたポリマー固体1.06g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.183g、アニソール11.67gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0524gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。3時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー2g、2,2,2-トリフルオロエタノール 8gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン1.5gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA3の固体を得た。
Production Example 3 (Production of polymer A3)
(Process 1)
Place 15 g of methyl methacrylate, 1.46 g of ethyl 2-bromoisobutyrate, 4.6 g of 4,4'-dinonyl-2,2'-dipyridyl and 35 g of anisole in an eggplant flask, stopper with a three-way cock, and perform nitrogen bubbling for 15 minutes. A monomer solution was prepared. Next, a stirrer chip, 0.371 g of copper (I) chloride, and 0.252 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, the polymerization solution was dropped while stirring hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, in the eggplant flask, 5 g of 2- (dimethylamino) ethyl methacrylate, 1.06 g of the polymer solid obtained above, 0.183 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine and 11.67 g of anisole were added. Then, it was stoppered with a three-way cock and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip and 0.0524 g of copper (I) chloride were put into another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 3 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 2 g of the polymer obtained and 8 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 1.5 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. The mixture was allowed to react for 5 hours and then cooled. While stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, and a solid of polymer A3 was obtained by filtration and drying.

製造例4(ポリマーA4の製造)
(工程1)
ナスフラスコにメタクリル酸メチル15g、2‐ブロモイソ酪酸エチル1.46g、4,4’‐ジノニル‐2,2’‐ジピリジル4.6g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.371g、塩化銅(II)0.252gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、ヘキサンを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル5g、上記で得られたポリマー固体2.12g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.37g、アニソール20.0gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.105g、塩化銅(II)0.0285gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。3.8時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー1.36g、2,2,2-トリフルオロエタノール 5.4gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン0.8gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA4の固体を得た。
Production Example 4 (Production of Polymer A4)
(Process 1)
Place 15 g of methyl methacrylate, 1.46 g of ethyl 2-bromoisobutyrate, 4.6 g of 4,4'-dinonyl-2,2'-dipyridyl and 35 g of anisole in an eggplant flask, stopper with a three-way cock, and perform nitrogen bubbling for 15 minutes. A monomer solution was prepared. Next, a stirrer chip, 0.371 g of copper (I) chloride, and 0.252 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, the polymerization solution was dropped while stirring hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, in the eggplant flask, 5 g of 2- (dimethylamino) ethyl methacrylate, 2.12 g of the polymer solid obtained above, 0.37 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine and 20.0 g of anisole were added. Then, it was stoppered with a three-way cock and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip, 0.105 g of copper (I) chloride and 0.0285 g of copper (II) chloride were placed in another eggplant flask, and the monomer solution was added after plugging with a three-way cock and replacing with nitrogen. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 3.8 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
1.36 g of the polymer obtained in an eggplant flask and 5.4 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was capped with a three-way cock, and 0.8 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and while stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, and a polymer A4 solid was obtained by filtration and drying.

製造例5(ポリマーA5の製造)
(工程1)
ナスフラスコにメタクリル酸メチル15g、2‐ブロモイソ酪酸エチル1.46g、4,4’‐ジノニル‐2,2’‐ジピリジル4.6g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.371g、塩化銅(II)0.252gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、ヘキサンを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル2g、上記で得られたポリマー固体1.6g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.274g、アニソール8gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0787g、塩化銅(II)0.0427gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。1.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー1.205g、2,2,2-トリフルオロエタノール 4.9gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン0.55gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA5の固体を得た。
Production Example 5 (Production of polymer A5)
(Process 1)
Place 15 g of methyl methacrylate, 1.46 g of ethyl 2-bromoisobutyrate, 4.6 g of 4,4'-dinonyl-2,2'-dipyridyl and 35 g of anisole in an eggplant flask, stopper with a three-way cock, and perform nitrogen bubbling for 15 minutes. A monomer solution was prepared. Next, a stirrer chip, 0.371 g of copper (I) chloride, and 0.252 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, the polymerization solution was dropped while stirring hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, add 2 g of 2- (dimethylamino) ethyl methacrylate, 1.6 g of the polymer solid obtained above, 0.274 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 8 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip, 0.0787 g of copper (I) chloride, and 0.0427 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 1.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 1.205 g of the obtained polymer and 4.9 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 0.55 g of 1,3 propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and while stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, followed by filtration and drying to obtain a solid of polymer A5.

製造例6(ポリマーA6の製造)
(工程1)
ナスフラスコにメタクリル酸メチル15g、2‐ブロモイソ酪酸エチル1.46g、4,4’‐ジノニル‐2,2’‐ジピリジル4.6g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.371g、塩化銅(II)0.252gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、ヘキサンを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル1.5g、上記で得られたポリマー固体1.6g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.292g、アニソール8.5gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0787g、塩化銅(II)0.0534gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。2時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー1.205g、2,2,2-トリフルオロエタノール 4.9gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン0.3gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながら、ポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーA6の固体を得た。
Production Example 6 (Production of polymer A6)
(Process 1)
Place 15 g of methyl methacrylate, 1.46 g of ethyl 2-bromoisobutyrate, 4.6 g of 4,4'-dinonyl-2,2'-dipyridyl and 35 g of anisole in an eggplant flask, stopper with a three-way cock, and perform nitrogen bubbling for 15 minutes. A monomer solution was prepared. Next, a stirrer chip, 0.371 g of copper (I) chloride, and 0.252 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, the polymerization solution was dropped while stirring hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, in the eggplant flask, 1.5 g of 2- (dimethylamino) ethyl methacrylate, 1.6 g of the polymer solid obtained above, 0.292 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, 8.5 g of anisole And stoppered with a three-way cock and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip, 0.0787 g of copper (I) chloride, and 0.0534 g of copper (II) chloride were put into another eggplant flask, and after replacing with nitrogen with a three-way cock, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 2 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 1.205 g of the obtained polymer and 4.9 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 0.3 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. The mixture was allowed to react for 5 hours and then cooled. While stirring 500 mL of methanol, the polymer solution was added dropwise to precipitate the polymer, and the polymer A6 solid was obtained by filtration and drying.

製造例7(ポリマーB1の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル(和光純薬工業(株)製)30g、2‐ブロモイソ酪酸エチル0.823g、4,4’‐ジノニル‐2,2’‐ジピリジル2.58g、アニソール45gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.209g、塩化銅(II)0.141gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。6時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル30g、上記で得られたポリマー固体2.83g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.146g、アニソール30gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0629gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。7.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン2Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.2gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB1の固体を得た。
Production Example 7 (Production of polymer B1)
(Process 1)
In an eggplant flask, put 30 g of n-butyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.823 g of ethyl 2-bromoisobutyrate, 2.58 g of 4,4'-dinonyl-2,2'-dipyridyl and 45 g of anisole. The monomer solution was prepared by stoppering with a cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip, 0.209 g of copper (I) chloride, and 0.141 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 6 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, add 30 g of 2- (dimethylamino) ethyl methacrylate, 2.83 g of the polymer solid obtained above, 0.146 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 30 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.0629 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and replaced with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 7.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 2 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.2 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer B1 was obtained by filtration and drying.

製造例8(ポリマーB2の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル15g、2‐ブロモイソ酪酸エチル1.03g、4,4’‐ジノニル‐2,2’‐ジピリジル3.23g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.261g、塩化銅(II)0.177gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。4時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル30g、上記で得られたポリマー固体0.174g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.0293g、アニソール12.9gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.0126gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。27時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン2Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 27gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.6gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB2の固体を得た。
Production Example 8 (Production of polymer B2)
(Process 1)
Put 15g of n-butyl methacrylate, 1.03g of ethyl 2-bromoisobutyrate, 3.23g of 4,4'-dinonyl-2,2'-dipyridyl and 35g of anisole into an eggplant flask, stopper with a three-way cock, and bubbling with nitrogen for 15 minutes To prepare a monomer solution. Next, a stirrer chip, 0.261 g of copper (I) chloride, and 0.177 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 4 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, in an eggplant flask was charged 30 g of 2- (dimethylamino) ethyl methacrylate, 0.174 g of the polymer solid obtained above, 0.0293 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 12.9 g of anisole. Then, it was stoppered with a three-way cock and nitrogen bubbling was performed for 15 minutes to prepare a monomer solution. Next, a stirrer chip and 0.0126 g of copper (I) chloride were put into another eggplant flask, and the inside was replaced with nitrogen with a three-way cock, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 27 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 2 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 27 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.6 g of 1,3 propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer B2 was obtained by filtration and drying.

製造例9(ポリマーB3の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル15g、2‐ブロモイソ酪酸エチル1.03g、4,4’‐ジノニル‐2,2’‐ジピリジル3.23g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.261g、塩化銅(II)0.177gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。4時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル30g、上記で得られたポリマー固体1.73g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.293g、アニソール70gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.126gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン2Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.5gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB3の固体を得た。
Production Example 9 (Production of polymer B3)
(Process 1)
Put 15g of n-butyl methacrylate, 1.03g of ethyl 2-bromoisobutyrate, 3.23g of 4,4'-dinonyl-2,2'-dipyridyl and 35g of anisole into an eggplant flask, stopper with a three-way cock, and bubbling with nitrogen for 15 minutes To prepare a monomer solution. Next, a stirrer chip, 0.261 g of copper (I) chloride, and 0.177 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 4 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, add 30 g of 2- (dimethylamino) ethyl methacrylate, 1.73 g of the polymer solid obtained above, 0.293 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 70 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.126 g of copper (I) chloride were placed in another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 5 hours, the polymerization solution was ice-cooled while exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 2 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.5 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer B3 was obtained by filtration and drying.

製造例10(ポリマーB4の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル15g、2‐ブロモイソ酪酸エチル1.03g、4,4’‐ジノニル‐2,2’‐ジピリジル3.23g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.261g、塩化銅(II)0.177gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。4時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル15g、上記で得られたポリマー固体1.74g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.293g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.063gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.3gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB4の固体を得た。
Production Example 10 (Production of polymer B4)
(Process 1)
Put 15g of n-butyl methacrylate, 1.03g of ethyl 2-bromoisobutyrate, 3.23g of 4,4'-dinonyl-2,2'-dipyridyl and 35g of anisole into an eggplant flask, stopper with a three-way cock, and bubbling with nitrogen for 15 minutes To prepare a monomer solution. Next, a stirrer chip, 0.261 g of copper (I) chloride, and 0.177 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 4 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, add 15 g of 2- (dimethylamino) ethyl methacrylate, 1.74 g of the polymer solid obtained above, 0.293 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 35 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.063 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.3 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer B4 was obtained by filtration and drying.

製造例11(ポリマーB5の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル15g、2‐ブロモイソ酪酸エチル1.03g、4,4’‐ジノニル‐2,2’‐ジピリジル3.23g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.261g、塩化銅(II)0.177gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。4時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル10g、上記で得られたポリマー固体2.32g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.39g、アニソール40gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.084gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。2.5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.0gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB5の固体を得た。
Production Example 11 (Production of polymer B5)
(Process 1)
Put 15g of n-butyl methacrylate, 1.03g of ethyl 2-bromoisobutyrate, 3.23g of 4,4'-dinonyl-2,2'-dipyridyl and 35g of anisole into an eggplant flask, stopper with a three-way cock, and bubbling with nitrogen for 15 minutes To prepare a monomer solution. Next, a stirrer chip, 0.261 g of copper (I) chloride, and 0.177 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 4 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, add 10 g of 2- (dimethylamino) ethyl methacrylate, 2.32 g of the polymer solid obtained above, 0.39 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 40 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.084 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 2.5 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 1 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock, and 2.0 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, followed by filtration and drying to obtain a solid of polymer B5.

製造例12(ポリマーB6の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル5.0g、ヨウ素(I2)(和光純薬工業(株)製)0.45g、2,2’-アゾビス(イソブチロニトリル)(和光純薬工業(株)製)0.58g、シクロヘキサジエン(和光純薬工業(株)製)0.035g、エタノール5.0g、スターラーチップを入れ、三方コックと還流管を取り付けた。15分間窒素バブリングを行なった後、80℃に加熱しメタクリル酸n-ブチルの重合を開始した。次に別のナスフラスコに、メタクリル酸2-(ジメチルアミノ)エチル49.8g、2,2’-アゾビス(イソブチロニトリル0.072g、エタノール49.8gを入れ、15分間窒素バブリングを行った。メタクリル酸n-ブチルの重合を開始してから4時間後に、上記のメタクリル酸2-(ジメチルアミノ)エチル溶液をメタクリル酸n-ブチル重合溶液に添加した。更に5時間反応させた後、重合溶液を氷冷し重合を終了した。ヘキサン5Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.5gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーB6の固体を得た。
Production Example 12 (Production of polymer B6)
(Process 1)
In an eggplant flask, n-butyl methacrylate 5.0 g, iodine (I2) (manufactured by Wako Pure Chemical Industries, Ltd.) 0.45 g, 2,2'-azobis (isobutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) 0.58 g, 0.035 g of cyclohexadiene (manufactured by Wako Pure Chemical Industries, Ltd.), 5.0 g of ethanol and a stirrer chip were placed, and a three-way cock and a reflux tube were attached. Nitrogen bubbling was performed for 15 minutes, and then the mixture was heated to 80 ° C. to initiate polymerization of n-butyl methacrylate. Next, 49.8 g of 2- (dimethylamino) ethyl methacrylate, 2,72'-azobis (0.072 g of isobutyronitrile, and 49.8 g of ethanol) were placed in another eggplant flask, and nitrogen bubbling was performed for 15 minutes. Four hours after the start of n-butyl polymerization, the above-mentioned 2- (dimethylamino) ethyl methacrylate solution was added to the n-butyl methacrylate polymerization solution, and the reaction was further continued for 5 hours. The polymer solution was dropped while stirring 5 L of hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.5 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was added dropwise with stirring of 500 mL of methanol to precipitate a polymer, followed by filtration and drying to obtain a solid of polymer B6.

製造例13(ポリマーC1の製造)
(工程1)
ナスフラスコにメタクリル酸ラウリル(和光純薬工業(株)製)15g、2‐ブロモイソ酪酸エチル0.575g、4,4’‐ジノニル‐2,2’‐ジピリジル1.81g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.146g、塩化銅(II)0.099gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。8時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、メタノール1500mLを撹拌しながら重合溶液を滴下し、ポリマーを析出させ、デカンテーション、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル10g、上記で得られたポリマー固体0.539g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.0488g、アニソール10gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.021gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。5.3時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、イオン交換水1Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.7gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーC1の固体を得た。
Production Example 13 (Production of polymer C1)
(Process 1)
Put 15g lauryl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.575g ethyl 2-bromoisobutyrate, 1.81g 4,4'-dinonyl-2,2'-dipyridyl and 35g anisole in an eggplant flask. The monomer solution was prepared by stoppering and nitrogen bubbling for 15 minutes. Next, a stirrer chip, 0.146 g of copper (I) chloride, and 0.099 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 8 hours, the polymerization solution was cooled with ice while being exposed to air, to complete the polymerization. Next, the polymerization solution was dropped while stirring 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by decantation and drying. Next, add 10 g of 2- (dimethylamino) ethyl methacrylate, 0.539 g of the polymer solid obtained above, 0.0488 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 10 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.021 g of copper (I) chloride were put into another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 5.3 hours, the polymerization solution was cooled with ice while being exposed to air to complete the polymerization. Next, after removing the copper complex by an activated alumina column treatment, a polymer solution was dropped while stirring 1 L of ion-exchanged water to precipitate a polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was capped with a three-way cock and 2.7 g of 1,3 propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer C1 was obtained by filtration and drying.

製造例14(ポリマーD1の製造)
(工程1)
ナスフラスコにメタクリル酸ベンジル(和光純薬工業(株)製)15g、2‐ブロモイソ酪酸エチル0.83g、4,4’‐ジノニル‐2,2’‐ジピリジル2.61g、アニソール35gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.211g、塩化銅(II)0.143gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、62℃に加熱し重合を行った。6時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、イオン交換水500mL、メタノール1500mLの混合液を撹拌しながら重合溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。次にナスフラスコにメタクリル酸2-(ジメチルアミノ)エチル30g、上記で得られたポリマー固体2.15g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.293g、アニソール70gを入れ、三方コックで栓をし、15分間窒素バブリングを行ない、モノマー溶液を調製した。次に、別のナスフラスコにスターラーチップ、塩化銅(I)0.126gを入れ、三方コックで栓をして窒素置換した後、モノマー溶液を添加した。10分間窒素バブリングを行った後、70℃に加熱し重合を行った。5時間反応させた後、重合溶液を空気にさらしながら氷冷し、重合を終了した。次いで、活性アルミナカラム処理により銅錯体を除去後、ヘキサン2Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12gを入れポリマーを溶解させた。三方コックで栓をして50℃に加熱しながら1,3プロパンスルトン2.5gを滴下した。5時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーD1の固体を得た。
Production Example 14 (Production of polymer D1)
(Process 1)
In a recovery flask, put 15 g of benzyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.83 g of ethyl 2-bromoisobutyrate, 2.61 g of 4,4'-dinonyl-2,2'-dipyridyl, and 35 g of anisole. The monomer solution was prepared by stoppering and nitrogen bubbling for 15 minutes. Next, a stirrer chip, 0.211 g of copper (I) chloride, and 0.143 g of copper (II) chloride were placed in another eggplant flask, and after plugging with a three-way cock and replacing with nitrogen, the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, and then polymerization was performed by heating to 62 ° C. After reacting for 6 hours, the polymerization solution was ice-cooled while being exposed to air to complete the polymerization. Next, a polymerization solution was dropped while stirring a mixed solution of 500 mL of ion-exchanged water and 1500 mL of methanol to precipitate a polymer, and a polymer solid was obtained by filtration and drying. Next, add 30 g of 2- (dimethylamino) ethyl methacrylate, 2.15 g of the polymer solid obtained above, 0.293 g of 1,1,4,7,10,10-hexamethyltriethylenetetramine, and 70 g of anisole to the eggplant flask. The monomer solution was prepared by stoppering with a three-way cock and performing nitrogen bubbling for 15 minutes. Next, a stirrer chip and 0.126 g of copper (I) chloride were placed in another eggplant flask, and the mixture was stoppered with a three-way cock and purged with nitrogen, and then the monomer solution was added. Nitrogen bubbling was performed for 10 minutes, followed by polymerization by heating to 70 ° C. After reacting for 5 hours, the polymerization solution was ice-cooled while exposed to air to complete the polymerization. Next, after removing the copper complex by activated alumina column treatment, the polymer solution was dropped while stirring 2 L of hexane to precipitate the polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
In a recovery flask, 3 g of the polymer obtained and 12 g of 2,2,2-trifluoroethanol were added to dissolve the polymer. The flask was stoppered with a three-way cock and 2.5 g of 1,3-propane sultone was added dropwise while heating to 50 ° C. After reacting for 5 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, and a solid of polymer D1 was obtained by filtration and drying.

製造例15(ポリマーE1の製造)
(工程1)
ナスフラスコにメタクリル酸n-ブチル5.0g、ヨウ素(I2)0.45g、2,2’-アゾビス(イソブチロニトリル)0.58g、シクロヘキサジエン0.035g、エタノール5.0g、スターラーチップを入れ、三方コックと還流管を取り付けた。15分間窒素バブリングを行なった後、80℃に加熱しメタクリル酸n-ブチルの重合を開始した。次に別のナスフラスコに、メタクリル酸2-(ジメチルアミノ)エチル49.8g、2,2’-アゾビス(イソブチロニトリル0.072g、エタノール49.8gを入れ、15分間窒素バブリングを行った。メタクリル酸n-ブチルの重合を開始してから4時間後に、上記のメタクリル酸2-(ジメチルアミノ)エチル溶液をメタクリル酸n-ブチル重合溶液に添加した。更に5時間反応させた後、重合溶液を氷冷し重合を終了した。ヘキサン5Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマー固体を得た。
(工程2)
ナスフラスコに得られたポリマー3g、2,2,2-トリフルオロエタノール 12g、イオン交換水6g、3-クロロ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウム(シグマアルドリッチ製)4.2gを入れた。三方コックで栓をして80℃に加熱した。24時間反応させた後冷却し、メタノール500mLを撹拌しながらポリマー溶液を滴下してポリマーを析出させ、ろ過、乾燥によりポリマーE1の固体を得た。
Production Example 15 (Production of polymer E1)
(Process 1)
In a recovery flask, place 5.0 g of n-butyl methacrylate, 0.45 g of iodine (I2), 0.58 g of 2,2'-azobis (isobutyronitrile), 0.035 g of cyclohexadiene, 5.0 g of ethanol, and a stirrer chip. A reflux tube was attached. Nitrogen bubbling was performed for 15 minutes, and then the mixture was heated to 80 ° C. to initiate polymerization of n-butyl methacrylate. Next, 49.8 g of 2- (dimethylamino) ethyl methacrylate, 2,72'-azobis (0.072 g of isobutyronitrile, and 49.8 g of ethanol) were placed in another eggplant flask, and nitrogen bubbling was performed for 15 minutes. Four hours after the start of n-butyl polymerization, the above-mentioned 2- (dimethylamino) ethyl methacrylate solution was added to the n-butyl methacrylate polymerization solution, and the reaction was further continued for 5 hours. The polymer solution was dropped while stirring 5 L of hexane to precipitate a polymer, and a polymer solid was obtained by filtration and drying.
(Process 2)
The eggplant flask was charged with 3 g of the obtained polymer, 12 g of 2,2,2-trifluoroethanol, 6 g of ion-exchanged water, and 4.2 g of sodium 3-chloro-2-hydroxy-1-propanesulfonate (manufactured by Sigma-Aldrich). It was plugged with a three-way cock and heated to 80 ° C. After reacting for 24 hours, the mixture was cooled, and a polymer solution was dropped while stirring 500 mL of methanol to precipitate a polymer, followed by filtration and drying to obtain a solid of polymer E1.

製造例16(ポリマーF1の製造)
冷却還流管、滴下ロート、温度計、窒素導入管及び撹拌装置を取り付けたセパラブルフラスコに、ジメチルアミノエチルメタクリレート49g、t-ブチルメタクリレート(和光純薬工業(株)製)1.9g、2,2’-アゾビス(2-メチルブチロニトリル)(和光純薬工業(株)製)0.31g、エタノール100gを仕込み、窒素を吹き込みながら80℃で4時間反応を行った。得られた重合反応液にエタノール/水(=50/50質量比)70gに3-クロロ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウム67.5gを溶解した液を加えて、十分に撹拌した後、80℃に加熱した。24時間反応させた後冷却し、ろ過して沈殿物を除き、乾燥によりポリマーF1の固体を得た。
Production Example 16 (Production of polymer F1)
In a separable flask equipped with a cooling reflux tube, a dropping funnel, a thermometer, a nitrogen introduction tube and a stirring device, dimethylaminoethyl methacrylate 49 g, t-butyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 1.9 g, 2,2 0.31 g of '-azobis (2-methylbutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) and 100 g of ethanol were charged, and the reaction was performed at 80 ° C. for 4 hours while blowing nitrogen. After adding a solution obtained by dissolving 67.5 g of sodium 3-chloro-2-hydroxy-1-propanesulfonate in 70 g of ethanol / water (= 50/50 mass ratio) to the obtained polymerization reaction solution, and sufficiently stirring, Heated to 80 ° C. After reacting for 24 hours, the mixture was cooled, filtered to remove the precipitate, and dried to obtain a solid of polymer F1.

製造例17(ポリマーF2の製造)
冷却還流管、温度計、窒素導入管及び撹拌装置を取り付けたセパラブルフラスコに、N,N-ジメチル-N-(3-スルホナトプロピル)-2-(メタクリロイルオキシ)エタン-1-アミニウム(シグマアルドリッチ製)28.39g、メタクリル酸n-ブチル1.61g、トリフルオロエタノール67.48gを入れ、均一に混合し窒素雰囲気下で30分間攪拌した。この溶液を約70℃まで昇温した後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業(株)製)0.28g、トリフルオロエタノール2.52gを加え、6時間保持して重合を行った。次いで、メタノール4Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマーF2の固体を得た。
Production Example 17 (Production of polymer F2)
A separable flask equipped with a cooling reflux tube, a thermometer, a nitrogen introduction tube and a stirrer was charged with N, N-dimethyl-N- (3-sulfonatopropyl) -2- (methacryloyloxy) ethane-1-aminium (Sigma). 28.39 g (manufactured by Aldrich), 1.61 g of n-butyl methacrylate, and 67.48 g of trifluoroethanol were mixed and mixed uniformly and stirred for 30 minutes in a nitrogen atmosphere. After the temperature of this solution was raised to about 70 ° C., 0.28 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) and 2.52 g of trifluoroethanol were added for 6 hours. The polymerization was carried out while holding. Next, the polymer solution was dropped while stirring 4 L of methanol to precipitate a polymer, and a solid of polymer F2 was obtained by filtration and drying.

製造例18(ポリマーF3の製造)
冷却還流管、温度計、窒素導入管及び撹拌装置を取り付けたセパラブルフラスコに、N,N−ジメチル−N−(3−スルホナトプロピル)−2−(メタクリロイルオキシ)エタン−1−アミニウム24.63g、メタクリル酸n−ブチル5.37g、トリフルオロエタノール67.18gを入れ、均一に混合し窒素雰囲気下で30分間攪拌した。この溶液を約70℃まで昇温した後、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.31g、トリフルオロエタノール2.82gを加え、6時間保持して重合を行った。次いで、メタノール4Lを撹拌しながらポリマー溶液を滴下し、ポリマーを析出させ、ろ過、乾燥によりポリマーF3の固体を得た。
Production Example 18 (Production of polymer F3)
In a separable flask equipped with a cooling reflux tube, a thermometer, a nitrogen introduction tube and a stirrer, 24.63 g of N, N-dimethyl-N- (3-sulfonatopropyl) -2- (methacryloyloxy) ethane-1-aminium Then, 5.37 g of n-butyl methacrylate and 67.18 g of trifluoroethanol were added, mixed uniformly, and stirred for 30 minutes under a nitrogen atmosphere. After the temperature of this solution was raised to about 70 ° C., 0.32 g of 2,2′-azobis (2,4-dimethylvaleronitrile) and 2.82 g of trifluoroethanol were added, and polymerization was carried out by maintaining for 6 hours. Next, the polymer solution was dropped while stirring 4 L of methanol to precipitate a polymer, and a solid of polymer F3 was obtained by filtration and drying.

得られたポリマーA1〜A6、ポリマーB1〜B6、ポリマーC1、ポリマーD1、ポリマーE1及びポリマーF1〜F3の重合体セグメントA−1の重量平均分子量及び含有量、並びにブロック重合体Aの重量平均分子量を表1に示す。   Weight average molecular weight and content of polymer segment A-1 of obtained polymers A1 to A6, polymers B1 to B6, polymer C1, polymer D1, polymer E1, and polymers F1 to F3, and block polymer A Is shown in Table 1.

Figure 0006351960
Figure 0006351960

*1 ポリマー中の一般式(1)で表される構成単位の含有量 * 1 Content of the structural unit represented by general formula (1) in the polymer

実施例1〜15、比較例1〜3
上記製造例で得られたポリマーを用いて、表2の組成になるように親水化処理剤組成物を調製し、実施例1〜15及び比較例2、3の親水化処理剤組成物を得た。比較例1は水以外何も配合しなかった。なお、水はイオン交換水を用いた。
実施例1〜15の親水化処理剤組成物、比較例1の水、比較例2及び3の親水化処理剤組成物を用いて、以下の評価を用いた。
Examples 1-15, Comparative Examples 1-3
Using the polymers obtained in the above production examples, the hydrophilic treatment agent compositions were prepared so as to have the compositions shown in Table 2, and the hydrophilic treatment agent compositions of Examples 1 to 15 and Comparative Examples 2 and 3 were obtained. It was. In Comparative Example 1, nothing other than water was blended. In addition, ion-exchange water was used for water.
The following evaluation was used using the hydrophilic treatment agent compositions of Examples 1 to 15, water of Comparative Example 1, and the hydrophilic treatment agent compositions of Comparative Examples 2 and 3.

[試験方法(親水表面化の評価)]
予め清浄にしたテストピース「塩化ビニルテストピース」((株)エンジニアリングテストサービス製、材質:硬質ポリ塩化ビニル、25mm×75mm)を水平に固定し、親水化処理剤組成物1mLを滴下して5分間静置した後、イオン交換水約200mLで軽くすすいで風乾した。
このテストピースの処理部分表面のイオン交換水に対する静止接触角を、自動接触角計「DM−500」(協和界面科学株式会社製)を用いて、添加量10μL、添加6秒後の条件にて測定した。
測定は、2枚のテストピースを用いて、1枚のテストピース当たり5回行い、10回の測定値の平均値を用いた。
接触角が小さいほど、親水化性能に優れる。結果を表2に示す。
[Test method (evaluation of hydrophilic surface)]
A test piece “vinyl chloride test piece” (manufactured by Engineering Test Service Co., Ltd., material: hard polyvinyl chloride, 25 mm × 75 mm), which has been cleaned in advance, is fixed horizontally, and 1 mL of a hydrophilizing agent composition is added dropwise to 5 After leaving still for a minute, it rinsed lightly with about 200 mL of ion-exchange water, and air-dried.
Using the automatic contact angle meter “DM-500” (manufactured by Kyowa Interface Science Co., Ltd.), the amount of 10 μL added and the condition 6 seconds after the addition were used for the static contact angle with respect to ion-exchanged water on the surface of the treated part of this test piece It was measured.
The measurement was performed 5 times per test piece using 2 test pieces, and the average value of 10 measurements was used.
The smaller the contact angle, the better the hydrophilization performance. The results are shown in Table 2.

Figure 0006351960
Figure 0006351960

*1 ポリマー中の一般式(1)で表される構成単位の含有量
表中、単量体の記号は以下の意味である(以下同様)。
・SBMA:N−(3−スルホプロピル)−N−メタクリロキシエチル−N、N−ジメチルアンモニウムベタイン
・SB(OH)MA:N−(3−スルホ−2−ヒドロキシプロピル)−N−メタクリロキシエチル−N、N−ジメチルアンモニウムベタイン
・MMA:メタクリル酸メチル
・BMA:メタクリル酸n-ブチル
・LMA:メタクリル酸ラウリル
・BzMA:メタクリル酸ベンジル
・tBMA:t-ブチルメタクリレート
* 1 Content of the structural unit represented by the general formula (1) in the polymer In the table, the symbol of the monomer has the following meaning (the same applies hereinafter).
SBMA: N- (3-sulfopropyl) -N-methacryloxyethyl-N, N-dimethylammonium betaine SB (OH) MA: N- (3-sulfo-2-hydroxypropyl) -N-methacryloxyethyl -N, N-dimethylammonium betaine-MMA: methyl methacrylate-BMA: n-butyl methacrylate-LMA: lauryl methacrylate-BzMA: benzyl methacrylate-tBMA: t-butyl methacrylate

表2から明らかなように、実施例1〜15の親水化処理剤組成物は、比較例2及び3の親水化処理剤組成物に比べて、接触角を下げることができ、表面の親水化性能に優れている。   As is clear from Table 2, the hydrophilic treatment compositions of Examples 1 to 15 can lower the contact angle and make the surface hydrophilic as compared with the hydrophilic treatment compositions of Comparative Examples 2 and 3. Excellent performance.

実施例16〜27、比較例4〜6
上記製造例で得られたポリマーを用いて、表3の組成になるように親水化処理剤組成物を調製し、実施例16〜27、比較例4〜6の親水化処理剤組成物を得た。
親水化処理剤組成物の調製に用いた界面活性剤、溶剤は、以下のものである。
界面活性剤:炭素数12〜16の直鎖アルキル基、エチレンオキサイド平均付加モル数4.0のポリオキシエチレンアルキルエーテル硫酸ナトリウム塩
溶剤:ジエチレングリコールモノブチルエーテル
Examples 16 to 27, Comparative Examples 4 to 6
Using the polymers obtained in the above production examples, a hydrophilic treatment agent composition was prepared so as to have the composition shown in Table 3, and the hydrophilic treatment agent compositions of Examples 16 to 27 and Comparative Examples 4 to 6 were obtained. It was.
The surfactants and solvents used for the preparation of the hydrophilic treatment composition are as follows.
Surfactant: C12-16 straight chain alkyl group, ethylene oxide average addition mole number 4.0 polyoxyethylene alkyl ether sulfate sodium salt Solvent: Diethylene glycol monobutyl ether

実施例16〜27、比較例4〜6の親水化処理剤組成物を用いて、実施例1と同様に親水表面化の試験を行った。結果を表3に示す。   Using the hydrophilic treatment agent compositions of Examples 16 to 27 and Comparative Examples 4 to 6, a hydrophilic surface formation test was conducted in the same manner as in Example 1. The results are shown in Table 3.

Figure 0006351960
Figure 0006351960

*1 ポリマー中の一般式(1)で表される構成単位の含有量 * 1 Content of the structural unit represented by general formula (1) in the polymer

表3から明らかなように、実施例16〜27の親水化処理剤組成物は、比較例4〜6の親水化処理剤組成物に比べて、接触角を下げることができ、表面の親水化性能に優れている。   As is clear from Table 3, the hydrophilic treatment compositions of Examples 16 to 27 can reduce the contact angle and make the surface hydrophilic, compared with the hydrophilic treatment compositions of Comparative Examples 4 to 6. Excellent performance.

実施例28、比較例7、8
ポリマーB3、ポリマーF3を用いて、表4の組成になるように親水化処理剤組成物を調製し、実施例28及び比較例8の親水化処理剤組成物を得た。
親水化処理剤組成物の調製に用いた界面活性剤、溶剤は、実施例16と同じものである。
Example 28, Comparative Examples 7 and 8
Using the polymer B3 and the polymer F3, a hydrophilic treatment composition was prepared so as to have the composition shown in Table 4, and the hydrophilic treatment compositions of Example 28 and Comparative Example 8 were obtained.
The surfactant and solvent used for the preparation of the hydrophilic treatment composition are the same as those in Example 16.

実施例28、比較例7及び比較例8の親水化処理剤を用いて、ガラス基板使用時のみポリマー溶液を2mL滴下した以外は、上記と同様に親水表面化の試験を行った。 試験に用いた基板は以下のとおりである。
ステンレス:「ステンレステストピース」((株)エンジニアリングテストサービス製、材質:JIS G 4305 SUS304、25mm×75mm)
ガラス:「ガラステストピース」(あけぼの商会、材質:ガラス板(四辺角削り加工)、60mm×60mm)
PMMA:「PMMAテストピース」((株)エンジニアリングテストサービス製、材質:ポリメタクリル酸メチル、25mm×75mm)
PET:「PETテストピース」((株)エンジニアリングテストサービス製、材質:ポリエチレンテレフタレート、25mm×75mm)
FRP:「FRPテストピース」((株)エンジニアリングテストサービス製、材質:繊維強化プラスチック、25mm×75mm)
塩化ビニル:「塩化ビニルテストピース」((株)エンジニアリングテストサービス製、材質:硬質ポリ塩化ビニル、25mm×75mm)
結果を表4に示す。
Using the hydrophilic treatment agents of Example 28, Comparative Example 7 and Comparative Example 8, a hydrophilic surface formation test was conducted in the same manner as described above except that 2 mL of the polymer solution was dropped only when the glass substrate was used. The substrate used for the test is as follows.
Stainless steel: "Stainless steel test piece" (manufactured by Engineering Test Service Co., Ltd., material: JIS G 4305 SUS304, 25 mm x 75 mm)
Glass: “Glass test piece” (Akebono Shokai, Material: Glass plate (square cutting), 60 mm x 60 mm)
PMMA: “PMMA test piece” (manufactured by Engineering Test Service Co., Ltd., material: polymethyl methacrylate, 25 mm × 75 mm)
PET: “PET test piece” (manufactured by Engineering Test Service, material: polyethylene terephthalate, 25 mm × 75 mm)
FRP: “FRP test piece” (manufactured by Engineering Test Service Co., Ltd., material: fiber reinforced plastic, 25 mm × 75 mm)
Vinyl chloride: “vinyl chloride test piece” (manufactured by Engineering Test Service Co., Ltd., material: rigid polyvinyl chloride, 25 mm × 75 mm)
The results are shown in Table 4.

Figure 0006351960
Figure 0006351960

*1 ポリマー中の一般式(1)で表される構成単位の含有量 * 1 Content of the structural unit represented by general formula (1) in the polymer

表4から明らかなように、実施例28の親水化処理剤組成物は、比較例7及び比較例8の親水化処理剤組成物に比べて、接触角を下げることができ、親水化性能に優れている。   As is clear from Table 4, the hydrophilization treatment composition of Example 28 can lower the contact angle compared to the hydrophilization treatment composition of Comparative Example 7 and Comparative Example 8, and the hydrophilization performance. Are better.

Claims (8)

疎水性不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−1と、スルホベタイン基を有する不飽和単量体由来の繰返し単位を含む不飽和単量体由来の重合体セグメントA−2とを有し、重合体セグメントA−1の含有量が0.05質量%以上、30質量%以下であるブロック重合体A、からなる親水化処理剤。 Polymer segment A-1 derived from unsaturated monomer containing repeating unit derived from hydrophobic unsaturated monomer, and derived from unsaturated monomer containing repeating unit derived from unsaturated monomer having sulfobetaine group Polymer segment A-2, and the content of polymer segment A-1 is 0.05% by mass or more and 30 % by mass or less, and a hydrophilizing treatment agent. ブロック重合体Aにおける疎水性不飽和単量体由来の繰返し単位が、一般式(1)で表される構成単位である、請求項1に記載の親水化処理剤。
Figure 0006351960

〔式中、
1〜R3:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
4:炭素数1以上、22以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
The hydrophilic treatment agent according to claim 1, wherein the repeating unit derived from the hydrophobic unsaturated monomer in the block polymer A is a structural unit represented by the general formula (1).
Figure 0006351960

[Where,
R 1 to R 3 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 4 : a hydrocarbon group having 1 to 22 carbon atoms Y 1 : O or NR 11 , R 11 is hydrogen An atom or a hydrocarbon group having 1 to 4 carbon atoms is shown. ]
ブロック重合体Aにおけるスルホベタイン基を有する不飽和単量体由来の繰返し単位が、一般式(2)で表される構成単位である、請求項1又は2に記載の親水化処理剤。
Figure 0006351960

〔式中、
5〜R7:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
8:炭素数1以上、4以下のアルキレン基
9、R10:同一又は異なって、炭素数1以上、4以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
2:水酸基を有してもよい炭素数2以上、4以下のアルキレン基
を示す。〕
The hydrophilic treatment agent according to claim 1 or 2, wherein the repeating unit derived from the unsaturated monomer having a sulfobetaine group in the block polymer A is a structural unit represented by the general formula (2).
Figure 0006351960

[Where,
R 5 to R 7 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 8 : an alkylene group having 1 to 4 carbon atoms R 9 and R 10 : the same or different, and having 1 or more carbon atoms 4 or less hydrocarbon group X 1 : O or NR 11 , R 11 is a hydrogen atom or 1 or more carbon atoms, and 4 or less hydrocarbon group X 2 : 2 or more carbon atoms optionally having a hydroxyl group 4 The following alkylene groups are shown. ]
ブロック重合体Aの重量平均分子量が2500以上、500000以下である、請求項1〜3のいずれか1項に記載の親水化処理剤。   The hydrophilic treatment agent according to any one of claims 1 to 3, wherein the block polymer A has a weight average molecular weight of 2500 or more and 500,000 or less. ブロック重合体Aが、下記ブロック重合体A’を4級化する工程を有する製造方法により得られるブロック重合体である、請求項1〜4のいずれか1項に記載の親水化処理剤。
ブロック重合体A’:重合体セグメントA−1と、重合体セグメントA−2の前駆重合体セグメントであってアミノ基を有する重合体セグメントとを有するブロック重合体
The hydrophilic treatment agent according to any one of claims 1 to 4, wherein the block polymer A is a block polymer obtained by a production method including a step of quaternizing the following block polymer A '.
Block polymer A ′: a block polymer having a polymer segment A-1 and a polymer segment having an amino group, which is a precursor polymer segment of the polymer segment A-2
ブロック重合体Aが、下記工程1及び工程2を含む製造方法により得られるブロック重合体である、請求項1〜4のいずれか1項に記載の親水化処理剤。
工程1:下記一般式(1’)で表される不飽和単量体を重合した後、下記一般式(2’)で表される不飽和単量体を重合させてブロック重合体A’を得る工程。
Figure 0006351960


〔式中、
1〜R3:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
4:炭素数1以上、22以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
Figure 0006351960


〔式中、
5〜R7:同一又は異なって、水素原子又は炭素数1もしくは2のアルキル基
8:炭素数1以上、4以下のアルキレン基
9、R10:同一又は異なって、炭素数1以上、4以下の炭化水素基
1:O又はNR11であり、R11は水素原子又は炭素数1以上、4以下の炭化水素基
を示す。〕
工程2:ブロック重合体A’と、下記一般式(B1)で表される化合物又は下記一般式(B2)で表される化合物とを反応させて、ブロック重合体Aを得る工程。
Figure 0006351960


Z−X2−SO3M (B2)
(式中、ZはCl又はBr、X2は水酸基を有してもよい炭素数2以上、4以下のアルキレン基、MはNa又はKを表す。)
The hydrophilization treatment agent according to any one of claims 1 to 4, wherein the block polymer A is a block polymer obtained by a production method including the following step 1 and step 2.
Step 1: After the unsaturated monomer represented by the following general formula (1 ′) is polymerized, the unsaturated monomer represented by the following general formula (2 ′) is polymerized to form a block polymer A ′. Obtaining step.
Figure 0006351960


[Where,
R 1 to R 3 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 4 : a hydrocarbon group having 1 to 22 carbon atoms Y 1 : O or NR 11 , R 11 is hydrogen An atom or a hydrocarbon group having 1 to 4 carbon atoms is shown. ]
Figure 0006351960


[Where,
R 5 to R 7 : the same or different, a hydrogen atom or an alkyl group having 1 or 2 carbon atoms R 8 : an alkylene group having 1 to 4 carbon atoms R 9 and R 10 : the same or different, and having 1 or more carbon atoms 4 or less hydrocarbon group X 1 : O or NR 11 , R 11 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. ]
Step 2: A step of obtaining block polymer A by reacting block polymer A ′ with a compound represented by the following general formula (B1) or a compound represented by the following general formula (B2).
Figure 0006351960


Z-X 2 -SO 3 M ( B2)
(In the formula, Z represents Cl or Br, X 2 represents an alkylene group having 2 to 4 carbon atoms which may have a hydroxyl group, and M represents Na or K.)
請求項1〜6のいずれか1項に記載の親水化処理剤と水を含有する親水化処理剤組成物。   The hydrophilization treatment agent composition containing the hydrophilization treatment agent and water of any one of Claims 1-6. 更に界面活性剤を含有する、請求項7に記載の親水化処理剤組成物。   Furthermore, the hydrophilic treatment agent composition of Claim 7 containing surfactant.
JP2013247535A 2013-11-29 2013-11-29 Hydrophilic treatment agent Active JP6351960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247535A JP6351960B2 (en) 2013-11-29 2013-11-29 Hydrophilic treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247535A JP6351960B2 (en) 2013-11-29 2013-11-29 Hydrophilic treatment agent

Publications (2)

Publication Number Publication Date
JP2015105313A JP2015105313A (en) 2015-06-08
JP6351960B2 true JP6351960B2 (en) 2018-07-04

Family

ID=53435652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247535A Active JP6351960B2 (en) 2013-11-29 2013-11-29 Hydrophilic treatment agent

Country Status (1)

Country Link
JP (1) JP6351960B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231364B2 (en) * 2013-11-29 2017-11-15 花王株式会社 Hard surface treatment composition
JP6525559B2 (en) * 2013-11-29 2019-06-05 花王株式会社 Hard surface treatment composition
JP6193102B2 (en) * 2013-11-29 2017-09-06 花王株式会社 Liquid surface treatment composition for hard surface
JP6401582B2 (en) * 2014-11-20 2018-10-10 花王株式会社 Hydrophilic treatment agent
JP6401597B2 (en) * 2014-12-11 2018-10-10 花王株式会社 Hydrophilic treatment agent
JP6504922B2 (en) * 2015-05-28 2019-04-24 花王株式会社 Hard surface cleaning composition
JP6560560B2 (en) * 2015-08-13 2019-08-14 国立大学法人 東京大学 Contamination resistant surface modifier and surface treatment method
KR102105119B1 (en) * 2016-03-03 2020-04-27 주식회사 엘지화학 Hydrophilic coating composition
JP6815092B2 (en) * 2016-04-12 2021-01-20 花王株式会社 Surface treatment agent
JP2018095775A (en) * 2016-12-15 2018-06-21 花王株式会社 Production method of polymer
KR20180076552A (en) 2016-12-28 2018-07-06 주식회사 엘지화학 Hydrophilic coating composition
WO2018155578A1 (en) * 2017-02-27 2018-08-30 リンテック株式会社 Hydrophilic composition and hydrophilic structure
JP6873556B2 (en) * 2017-05-26 2021-05-19 花王株式会社 Goods for hard surface modification
JP6458112B1 (en) * 2017-10-11 2019-01-23 学校法人福岡大学 Composition for surface modification, modified object and method for producing the same
JP6953290B2 (en) * 2017-11-22 2021-10-27 花王株式会社 Hydrophilization treatment agent composition
CN111356750A (en) * 2017-11-22 2020-06-30 花王株式会社 Hydrophilizing agent
JP7042063B2 (en) * 2017-11-22 2022-03-25 花王株式会社 Hydrophilization treatment agent
WO2020105678A1 (en) 2018-11-22 2020-05-28 花王株式会社 Hydrophilization treatment agent composition
EP3926020A4 (en) 2019-02-13 2022-12-28 Kao Corporation Hydrophilizing agent composition
EP3997137A4 (en) * 2019-07-09 2023-03-08 Rhodia Operations Methods for resisting frost on a substrate, compositions, and copolymers useful therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024393A2 (en) * 2005-08-25 2007-03-01 University Of Washington Super-low fouling sulfobetaine and carboxybetaine materials and related methods
EP2225331B1 (en) * 2007-11-19 2016-01-06 University of Washington Marine coatings
JP5690671B2 (en) * 2010-06-30 2015-03-25 富士フイルム株式会社 NOVEL POLYMERIZABLE COMPOSITION, POLYMERIZABLE COMPOUND USED FOR THE SAME, IMAGE-FORMING MATERIAL USING NOVEL POLYMERIZABLE COMPOSITION, AND lithographic printing plate precursor

Also Published As

Publication number Publication date
JP2015105313A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6351960B2 (en) Hydrophilic treatment agent
JP6254835B2 (en) Method for producing copolymer
JP6401597B2 (en) Hydrophilic treatment agent
JP5756080B2 (en) Quick-drying amphoteric polymers for cleaning compositions
JP6815092B2 (en) Surface treatment agent
JP5072299B2 (en) Amphoteric polymers and their use
JP7042063B2 (en) Hydrophilization treatment agent
JP4630289B2 (en) Polymer for surface treatment
JP6227872B2 (en) Hydrophilization treatment agent and hydrophilization treatment method
JP6401582B2 (en) Hydrophilic treatment agent
JP6231364B2 (en) Hard surface treatment composition
CN109890918B (en) Hydrophilic coating composition
CN111356750A (en) Hydrophilizing agent
JP6363785B2 (en) Liquid detergent composition
JP2001181601A (en) Antifouling composition
WO2017074974A1 (en) Liquid detergent composition
JP2002105433A (en) Fluorine-containing, surface-treatment agent
WO2017074973A1 (en) Liquid detergent composition
JP2007308555A (en) Cleanser composition for hard surface
JP6504922B2 (en) Hard surface cleaning composition
JP6212370B2 (en) Hydrophilic treatment agent
JP2017510694A (en) Liquid detergent composition
JP2015105314A (en) Hydrophilization treatment agent
JP4275412B2 (en) Surface modifier for hard surfaces
JP2022161628A (en) surface treatment composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R151 Written notification of patent or utility model registration

Ref document number: 6351960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250