JP6351928B2 - Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method - Google Patents

Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method Download PDF

Info

Publication number
JP6351928B2
JP6351928B2 JP2013042440A JP2013042440A JP6351928B2 JP 6351928 B2 JP6351928 B2 JP 6351928B2 JP 2013042440 A JP2013042440 A JP 2013042440A JP 2013042440 A JP2013042440 A JP 2013042440A JP 6351928 B2 JP6351928 B2 JP 6351928B2
Authority
JP
Japan
Prior art keywords
soil
pathogen
farmland
deterrent
psv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013042440A
Other languages
Japanese (ja)
Other versions
JP2014168435A (en
Inventor
雄三 紀岡
雄三 紀岡
野口 勝憲
勝憲 野口
Original Assignee
片倉コープアグリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 片倉コープアグリ株式会社 filed Critical 片倉コープアグリ株式会社
Priority to JP2013042440A priority Critical patent/JP6351928B2/en
Publication of JP2014168435A publication Critical patent/JP2014168435A/en
Application granted granted Critical
Publication of JP6351928B2 publication Critical patent/JP6351928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、農地及び農地に使用する資材の植物病原菌に対する病原抑止力を評価する方法及び同方法を用いた農業に関する。 The present invention relates to agriculture using the methods and the method for evaluating the pathogenicity deterrent against plant pathogens materials used in the agricultural and farmland.

農作物の生産現場では作物の病害が重大な被害をもたらし、作物生産の主要な阻害要因となっている。
病害抑止対策を施すに当たり、まず生産現場の土壌理化学性、生物性の調査を行い土壌診断する。次に、病害抑止効果を有する資材を投入して栽培を行う。
土壌の理化学性については、土壌・作物毎に基準値が設定されており、土壌診断は容易である。しかし、土壌の生物性に関しては、微生物の計数は寒天培地を用いた希釈平板法による菌数の測定、最近では分子生物学的手法が用いられるようになってきたが、統一された基準がなく診断者の判断に委ねられている。
In crop production sites, crop diseases cause serious damage and are a major impediment to crop production.
When taking measures to control disease, first, soil physicochemical properties and biological properties are investigated at the production site to diagnose the soil. Next, cultivation is performed by introducing a material having a disease prevention effect.
Regarding the physicochemical properties of soil, standard values are set for each soil and crop, and soil diagnosis is easy. However, with regard to the biological properties of soil, the count of microorganisms has been measured by the dilution plate method using an agar medium, and recently a molecular biological method has been used, but there is no uniform standard. It is left to the judgment of the diagnostician.

一方、農地に投入する資材の病害抑止効果の評価は、病害抑止物質の有無、病害抑止微生物の有無などによって評価するが、病害抑止物質の検出および測定は煩雑であり、病害抑止微生物の有無についても微生物の分離・同定など時間を要する。
生産現場では病害抑止効果を迅速に診断することが必要であるが、上述の通りその評価には時間を要し、診断基準も画一的ではなかった。
On the other hand, the evaluation of the disease control effect of materials input to farmland is based on the presence or absence of disease control substances and the presence or absence of disease control microorganisms, but the detection and measurement of disease control substances is complicated. However, it takes time to separate and identify microorganisms.
Although it is necessary to quickly diagnose the disease suppression effect at the production site, as described above, the evaluation takes time, and the diagnostic criteria are not uniform.

農地および農地に投入する資材の病害抑止効果を植物病原菌の生育を観察することにより簡易に判定することができる。この判定を基に、病原抑止力の高い資材を施用することにより、病害対策を迅速に行う農作物栽培システムを提案することにある。   It is possible to easily determine the disease control effect of agricultural land and materials input to the agricultural land by observing the growth of phytopathogenic fungi. Based on this determination, an object is to propose a crop cultivation system that can quickly take measures against diseases by applying materials with high pathogen deterrence.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、農地と農地に使用する資材の評価を特定の病原菌を用いて寒天培地上で行うものであり、簡易な方法で土壌や資材の病害抑止効果を確認することができ、あらゆる土壌および資材に適用できる方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have performed evaluation of agricultural land and materials used for the agricultural land on an agar medium using a specific pathogen, The disease prevention effect of the material can be confirmed, and a method applicable to all soils and materials has been found, and the present invention has been completed.

すなわち、本発明は、(1)農地あるいは農地に使用する資材の植物病原菌に対する病原抑止力を評価する方法、(2)(1)記載の病原抑止力評価方法を用いた農作物栽培システムに関する。 That is, the present invention provides (1) a method of evaluating the pathogenicity deterrent against plant pathogens materials used in the agricultural or agricultural land, to crop cultivation system with (2) (1) pathogen deterrent evaluation method according.

本発明は、寒天培地上で土壌あるいは堆肥、土壌改良材などあらゆる資材の病原抑止力を測定することができ、農地の病害発生の危険度を推定できるとともに、病原抑止力の高い資材を選定して農地に処理することにより、病害の発生を軽減し、農作物の収量を高めることが可能となる作物栽培システムを構築することにより、農産物生産に寄与することができる。   The present invention can measure the pathogen deterrence of all materials such as soil, compost, and soil improver on an agar medium, can estimate the risk of disease occurrence in farmland, and select a material with high pathogen deterrence. By treating the farmland, it is possible to contribute to the production of agricultural products by constructing a crop cultivation system that can reduce the occurrence of diseases and increase the yield of crops.

農作物栽培システムの概略図を示す。A schematic diagram of a crop cultivation system is shown. 病原抑止力の調査方法を示す。The method of investigating the pathogenic deterrent is shown メロンつる割れ病菌に対する牛ふん堆肥の病原抑止効果を示す。The pathogen control effect of cattle manure compost against melon vine cracking fungus is shown. トマト萎凋病菌に対する微生物資材の病原抑止効果を示す。It shows the pathogenic effect of microbial materials against tomato wilt fungus.

本発明の病原抑止力の評価方法は、土壌あるいは有機物、無機物、肥料、土壌改良材など農地に使用する資材を滅菌水で希釈し、その希釈液をシャーレ中に固化したYPMG寒天培地(酵母エキス0.3g、ペプトン0.5g、肉エキス0.3g、グルコース1.0g、寒天15g、蒸留水1.0リットル、pH7.0)に塗布する。次に、あらかじめポテトデキストロース寒天培地(ポテト浸出液 1リットル、グルコース 20g、寒天15.0g)で培養しておいたメロンつる割れ病菌(Fusarium oxysporum f.sp.melonis)などの植物病原菌の切片を中央に置き、30℃7日間培養する。培養後、放射状に伸長した病原菌の菌糸の最も長く伸びた部分(最大伸長域)と最も伸びていない部分(最少伸長域)の長さを測定する。本測定時の比較対照は試料希釈液の代わりに滅菌水を用いて同様な処理を行うものとする。測定した菌糸伸長から計算式を用いて病原抑止力(PSV)を算出する。 The method for evaluating the pathogen deterrence of the present invention is based on the YPMG agar medium (yeast extract) obtained by diluting soil or organic materials, inorganic substances, fertilizers, soil improvement materials, etc., used in agricultural land with sterilized water and solidifying the diluted solution in a petri dish. 0.3g, 0.5g peptone, 0.3g meat extract, 1.0g glucose, 15g agar, 1.0 liter distilled water, pH 7.0). Next, place a section of phytopathogenic fungi such as melon dwarf fungus (Fusarium oxysporum f.sp.melonis) previously cultured in potato dextrose agar medium (1 liter of potato exudate, glucose 20 g, agar 15.0 g). Incubate at 30 ° C for 7 days. After the culture, the length of the longest extending portion (maximum extension region) and the least extending portion (minimum extension region) of the radially expanded hyphae is measured. As a comparative control at the time of this measurement, the same treatment is performed using sterilized water instead of the sample diluent. The pathogenic deterrent (PSV) is calculated from the measured hyphal elongation using a calculation formula.

なお、病原抑止力とは、測定する資材の希釈液に含まれている成分や微生物等が、寒天培地上で同時に培養した植物病原菌の菌糸伸長を抑制する程度を式1により数値化したものであり、資材の病原菌に対する抑制効果を示す。 In addition, the pathogen deterrent is a value obtained by quantifying the degree to which components, microorganisms, etc. contained in the diluted solution of the material to be measured suppress hyphal elongation of phytopathogenic fungi that are simultaneously cultured on an agar medium using Equation 1. Yes, it shows the inhibitory effect on the pathogen of the material.

測定する試料については、土壌、有機物、無機物あるいは固体、液体のいずれについても可能であるが、一般的には栽培土壌、栽培土壌に処理する資材および植物に直接処理する資材を用いる。
例えば、土壌では、水田土壌、畑作土壌、果樹園土壌、茶園土壌などがあげられる。無機物では、硫酸アンモニウム、硝酸アンモニウム、尿素、リン酸アンモニウム、過リン酸石灰、硫酸カリウム、塩化カリウム、珪酸カリウム、炭酸石灰、硫酸石灰、硫酸マグネシウムなどの無機質肥料があげられる。有機物では、なたね油かす、だいず油かす、ひまし油かす、米ぬかなどの植物性有機質肥料、魚粕、骨粉、毛粉、皮粉、カニガラなどの動物性有機質肥料、食品汚泥、牛ふん堆肥、豚ぷん堆肥、鶏ふん堆肥、稲わら堆肥、おがくず堆肥などの有機物があげられる。液体では、糖蜜発酵液、コーンスティープリカー、アルコール発酵液、甜菜糖発酵液、木酢液、家畜尿などがあげられる。
The sample to be measured can be soil, organic matter, inorganic matter, solid, or liquid. Generally, cultivated soil, materials treated for cultivated soil, and materials treated directly for plants are used.
For example, the soil includes paddy field soil, upland cropping soil, orchard soil, tea garden soil, and the like. Examples of inorganic substances include inorganic fertilizers such as ammonium sulfate, ammonium nitrate, urea, ammonium phosphate, lime superphosphate, potassium sulfate, potassium chloride, potassium silicate, lime carbonate, lime sulfate, and magnesium sulfate. In organic matter, plant organic fertilizers such as rapeseed oil cake, rice seed oil cake, castor oil cake, rice bran, etc., animal organic fertilizers such as fish carp , bone meal, hair meal, skin powder, crab , food sludge, cow manure compost, and pork manure Organic matter such as chicken manure compost, rice straw compost, and sawdust compost. Examples of the liquid include molasses fermented liquid, corn steep liquor, alcohol fermented liquid, beet sugar fermented liquid, wood vinegar liquid, and livestock urine.

使用する植物病原菌については、糸状菌、細菌、放線菌、酵母であればいずれについても可能である。
例えば、Fusarium oxysporum
f.sp.melonis、Fusarium oxysporum
f.sp.lycopersici、Pythium aphanidermatum、Corticium
rolfsii、Helicobasidium mompa、Verticillium dahliae、Rosellinia necatrix、Rhizoctonia solani、Sclerotinia sclerotiorum、Ralstonia solanacearum、Erwinia aroideae、Streptomyces acidiscabies、Streptomyces scabies、Acetpbacter aceti、Acaromyces ingoldiiなどがあげられるが、好ましくはFusarium oxysporum
f.sp.melonisおよびFusarium oxysporum
f.sp.lycopersiciなどFusarium oxysporum属菌を用いる。
Any plant pathogenic bacteria can be used as long as they are filamentous fungi, bacteria, actinomycetes, and yeast.
For example, Fusarium oxysporum
f.sp.melonis, Fusarium oxysporum
f.sp.lycopersici, Pythium aphanidermatum, Corticium
rolfsii, Helicobasidium mompa, Verticillium dahliae, Rosellinia necatrix, Rhizoctonia solani, Sclerotinia sclerotiorum, Ralstonia solanacearum, Erwinia aroideae, Streptomyces acidiscabies, Streptomyces scabies, Acetpbacter aceti
f.sp.melonis and Fusarium oxysporum
Use Fusarium oxysporum genus such as f.sp.lycopersici.

使用する培地については、試料に含まれている微生物および植物病原菌が生育する培地であればいずれについても可能である。
例えば、YPMG寒天培地、普通寒天培地、PD寒天培地、YG寒天培地、SCD寒天培地、酵母エキス‐麦芽エキス寒天培地、YM寒天培地、麦芽寒天培地、サブロー寒天培地、などがあげられるが、好ましくはYPMG寒天培地あるいは普通寒天培地を用いる。
As for the medium to be used, any medium can be used as long as the microorganism and the phytopathogenic fungi contained in the sample grow.
For example, YPMG agar medium, ordinary agar medium, PD agar medium, YG agar medium, SCD agar medium, yeast extract-malt extract agar medium, YM agar medium, malt agar medium, Sabouraud agar medium, etc., preferably Use YPMG agar or normal agar.

試料を滅菌水で適時希釈して用い、希釈濃度については特に制限はないが、好ましくは液体試料の場合は原液、10倍希釈液、100倍希釈液、1,000倍希釈液、10,000倍希釈液、100,000希釈液、1,000,000倍希釈液を用いる。固体試料の場合は10倍希釈液、100倍希釈液、1,000倍希釈液、10,000倍希釈液、100,000希釈液、1,000,000倍希釈液を用いる。   The sample is diluted with sterilized water in a timely manner, and there is no particular limitation on the concentration of dilution. Preferably, in the case of a liquid sample, the stock solution, 10-fold dilution, 100-fold dilution, 1,000-fold dilution, 10,000-fold dilution Use 100,000 dilution and 1,000,000 times dilution. For solid samples, use a 10-fold diluted solution, a 100-fold diluted solution, a 1,000-fold diluted solution, a 10,000-fold diluted solution, a 100,000-diluted solution, or a 1,000,000-fold diluted solution.

培養温度については、試料中の微生物および植物病原菌が生育する温度であればいずれの温度でも可能であるが、好ましくは20〜30℃で行う。   The culture temperature can be any temperature as long as microorganisms and phytopathogenic fungi in the sample grow, but it is preferably 20 to 30 ° C.

本発明の評価方法を用い算出された病原抑止力(PSV)をもって、農地あるいは農地に投入する資材の病害抑止効果を判定することができる。病原抑止力(PSV)の判断基準としては、栽培する作物にもよるが、60が判断目安となる。すなわち、PSVが60を超えると病害発生率が低下し、60以下になると病害発生率は高くなる傾向にある。病害発生が見られていない農地においても、病原抑止力(PSV)が高い土壌で収量が高くなる傾向にある。   Based on the pathogenic deterrent (PSV) calculated using the evaluation method of the present invention, it is possible to determine the disease deterrent effect of the farmland or the material to be input to the farmland. The criteria for determining pathogenic deterrent (PSV) is 60, although it depends on the cultivated crop. That is, when PSV exceeds 60, the disease incidence decreases, and when it is 60 or less, the disease incidence tends to increase. Even in farmland where no disease has been observed, the yield tends to be high in soil with high pathogenicity control (PSV).

また、本発明の評価方法を用い、農地あるいは農地に投入する資材の病害抑止効果を判定し、一定の病害抑止力を持った資材を用いて農作物の栽培を行えば、病害は軽減され、収量の減少も抑えられることから計画的かつ安定的な生産を可能とする。   In addition, using the evaluation method of the present invention, determining the disease prevention effect of farmland or materials input to the farmland, and cultivating crops using materials having a certain disease prevention power, the disease is reduced, yield This makes it possible to achieve planned and stable production.

以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.

実施例1
(試験方法)
牛ふん堆肥10gを90ml滅菌水の入った滅菌ビンに入れ、30分間振とうした。次に、この振とう液を9mlの滅菌水をいれた試験管に1ml加えて10倍希釈液を作成した。同様な操作を行い100倍希釈液、1,000倍希釈液、10,000倍希釈液、100,000希釈液、1,000,000倍希釈液を作成した。この希釈液をYPMG寒天培地(酵母エキス0.3g、ペプトン0.5g、肉エキス0.3g、グルコース1.0g、寒天 15g、蒸留水1.0リットル、pH7.0)10mlを固化した9cmシャーレに1mlを塗布した。
これらのシャーレの中央にあらかじめポテトデキストロース寒天培地(ポテト浸出液 1リットル、グルコース20g、寒天15.0g)に培養しておいたメロンつる割れ病菌(Fusarium oxysporum f.sp.melonis)の一辺5mmの正方形切片を置いて、30℃で7日間培養した。
培養終了後、メロンつる割れ病菌の菌糸伸長を測定した。測定は最も菌糸が伸長した部分と最も伸長していない部分の長さを測定して計算式により病原抑止力を評価した。
対照として、滅菌水1mlを塗布したシャーレのメロンつる割れ病菌の菌糸の伸長を測定した。
Example 1
(Test method)
10 g of cattle manure compost was placed in a sterile bottle containing 90 ml of sterile water and shaken for 30 minutes. Next, 1 ml of this shaking solution was added to a test tube containing 9 ml of sterile water to prepare a 10-fold diluted solution. The same operation was performed to prepare a 100-fold dilution solution, a 1,000-fold dilution solution, a 10,000-fold dilution solution, a 100,000-dilution solution, and a 1,000,000-fold dilution solution. The dilution YPMG agar (yeast extract 0.3 g, peptone 0.5g, meat extract 0.3 g, glucose 1.0 g, agar 15 g, distilled water 1.0 l, pH 7.0) was applied to 1ml in 9cm petri dish and solidified to 10 ml.
In the center of these petri dishes, a square section of 5 mm on each side of melon dwarf fungus (Fusarium oxysporum f. Sp. Melonis) cultured in potato dextrose agar medium (1 liter of potato exudate, glucose 20 g, agar 15.0 g) And incubated for 7 days at 30 ° C.
After completion of the culture, hyphal elongation of melon vine cracking fungus was measured. The measurement was performed by measuring the length of the part where the mycelium was most elongated and the part where the mycelium was not elongated the most, and evaluated the pathogen deterrence by a calculation formula.
As a control, the elongation of hyphae of melon vine cracking fungus in petri dishes coated with 1 ml of sterilized water was measured.

(結果の概要)
牛ふん堆肥は対照に比べ1,000倍希釈までのメロンつる割れ病菌の伸長を著しく抑止しており、PSVは64.7であり、判断基準の60を超えており、農地への使用により病害抑制効果が期待できる。
(Summary of results)
Beef manure compost significantly suppresses the growth of melon vine cracking fungus up to 1,000 times dilution compared to the control, PSV is 64.7, exceeds the criterion of 60, and can be expected to suppress disease by using on farmland .

実施例2
微生物資材10gを90ml滅菌水の入った滅菌ビンに入れ、30分間振とうした。次に、この振とう液を9mlの滅菌水を入れた試験管に1ml加えて10倍希釈液を作成した。以下の操作は実施例1と同様であるが、病原菌はトマト萎凋病菌(Fusarium oxysporum
f.sp.lycopersici)を用いた。
(結果の概要)
10000倍希釈液まではトマト萎凋病菌の伸長を著しく抑制し、1000000倍希釈液においても相対伸長は対照の半分程度であった。PSVは74.4で十分な病害抑止効果が期待できる。
Example 2
10 g of microbial material was placed in a sterile bottle containing 90 ml of sterile water and shaken for 30 minutes. Next, 1 ml of this shaking solution was added to a test tube containing 9 ml of sterile water to prepare a 10-fold diluted solution. The following operations are the same as in Example 1, except that the pathogen is Fusarium oxysporum
f.sp.lycopersici) was used.
(Summary of results)
Up to a 10,000-fold dilution, the growth of tomato wilt disease was remarkably suppressed, and the relative elongation was about half that of the control in the 1,000,000-fold dilution. PSV can be expected to have a sufficient disease control effect at 74.4.

実施例3
(試験方法)
鹿沼土・ピートモス混合培土を12cmポリポットへ400g充填し、あらかじめ育苗したトマト苗を鉢上げし、ビニール温室内で育苗を行った。
圃場へは有機質肥料(6-6-6)をN-P2O5-K2O=25-25-25kg/10aとなるように畝全面に施用し、微生物資材を100kg/10aとなるように定植1日前に施用した。試験はそれぞれの区にトマトを20株植えて実施した。
(栽培概要)
播種後、7日後に鉢上げ、38日後資材処理、39日後定植、128日後収穫
(結果の概要)
圃場調査の結果を表3に示す。収量は微生物資材区で高く、発病は少なかった。病原抑止力の高い微生物資材(PSV 74.4)を施用することにより、播種後93日後圃場調査で病原抑止力は無処理区の52.1から61.6に高まり、発病株は減少し、防除価は50であった。その後も病原抑止力(PSV)は微生物資材区で高く推移し、防除価も高いことから、病害抑止効果を病原抑止力から推察することが可能であった。
Example 3
(Test method)
Kanuma soil and peat moss mixed soil were filled in 400g into a 12cm polypot, and the tomato seedlings that had been grown in advance were potted and grown in a vinyl greenhouse.
Apply organic fertilizer (6-6-6) to the field so that NP 2 O 5 -K 2 O = 25-25-25kg / 10a, and plant microbial materials to 100kg / 10a. Applied one day ago. The test was carried out by planting 20 tomato plants in each section.
(Cultivation overview)
After sowing, planting 7 days later, material treatment 38 days later, planting 39 days later, harvesting 128 days later (summary of results)
Table 3 shows the results of the field survey. The yield was high in the microbial material area, and the incidence was low. By applying microbial material (PSV 74.4) with high pathogen deterrence, the pathogen deterrent increased from 52.1 to 61.6 in the untreated area 93 days after sowing, and the pathogenic strain decreased and the control value was 50. It was. Since then, the pathogenic deterrent (PSV) has remained high in the microbial material area and the control value is high, so it was possible to infer the disease deterrent effect from the pathogenic deterrent.

実施例4
(試験方法)
圃場調査の結果を表4に示す。関東ローム圃場に無機肥料(硫安、過リン酸石灰、塩化カリ)、なたね油粕、混合有機肥料(なたね油粕、魚粕、蒸製骨粉を等量混合した肥料)をN-P2O5-K2O=15-15-20kg/10aとなるように施用した区を設けた。なお、なたね油粕区および混合有機肥料区は窒素成分を15kg/10aとなるように合わせ、不足分は過リン酸石灰および塩化カリで補った。そこへダイコンを播種し、それぞれの区の40株について圃場調査を実施した。
(栽培概要)
播種22日前に施肥、播種86日後収穫
(結果の概要)
収量は混合有機区>なたね油粕区>無機肥料区の順であった。いずれの区とも土壌の病原抑止力が60以上であり、病害発生は見られなかった。このように、病害発生が見られていない場合でも、数値が高い区の方が収量は高くなる傾向が見られており、病原抑止力から作物生産性を推測する事ができる。
Example 4
(Test method)
Table 4 shows the results of the field survey. NP 2 O 5 -K 2 O = inorganic fertilizer (ammonium sulfate, superphosphate lime, potassium chloride), rapeseed oil cake, mixed organic fertilizer (fertilizer mixed with equal amounts of rapeseed oil cake, fish cake, steamed bone meal) in Kanto Loam Field The area was set to 15-15-20kg / 10a. In addition, in the rapeseed oil lees and mixed organic fertilizers, the nitrogen content was adjusted to 15 kg / 10a, and the deficiency was supplemented with superphosphate lime and potassium chloride. Radish was sown there and field surveys were conducted on 40 strains in each section.
(Cultivation overview)
Fertilization 22 days before sowing, harvest 86 days after sowing (summary of results)
Yields were in the order of mixed organic zone> rapeseed oil lees zone> inorganic fertilizer zone. In all wards, the soil pathogenicity was over 60, and no disease was observed. In this way, even when no disease is observed, the higher the numerical value, the higher the yield tends to be seen, and the crop productivity can be estimated from the pathogenic deterrent.

本発明は、寒天培地上で土壌あるいは堆肥、土壌改良材などあらゆる資材の病原抑止力を測定することができ、農地の病害発生の危険度を推定できるとともに、病原抑止力の高い資材を選定して農地に処理することにより、病害の発生を軽減し、農作物の収量を高めることが可能となる作物栽培システムを構築することにより、農産物生産に寄与することができる。
The present invention can measure the pathogen deterrence of all materials such as soil, compost, and soil improver on an agar medium, can estimate the risk of disease occurrence in farmland, and select a material with high pathogen deterrence. By treating the farmland, it is possible to contribute to the production of agricultural products by constructing a crop cultivation system that can reduce the occurrence of diseases and increase the yield of crops.

Claims (11)

微生物が含まれる農地土壌あるいは農地に使用する資材の作物病原菌に対する病原抑止力(PSV)を評価する方法であって;
1)農地土壌あるいは農地に使用する資材を滅菌水で希釈して、希釈液を調製し、
2)前記希釈液を塗布した固化培地上で、菌糸伸長する糸状菌又は細菌である作物病原菌を培養し、
3)伸長した菌糸の最も長く伸びた部分(最大伸長(nmax))と最も伸びていない部分(最少伸長(nmin))の長さを測定し、
測定した最大伸長(nmax)と最小伸長(nmin)から以下の式により算出される平均伸長(n ):

に基づき、病原抑止力を評価する方法。
The materials used in the agricultural soil or land include microorganisms, a method of assessing pathogen deterrent against crop pathogens and (PSV);
1) Dilute farmland soil or materials used for farmland with sterilized water to prepare a diluted solution,
2) Cultivate crop pathogenic fungi that are filamentous fungi or bacteria that expand mycelia on the solidified medium coated with the diluent,
3) Measure the length of the longest stretched portion (maximum stretch (n max )) and the least stretched portion (minimum stretch (n min ))
Average elongation (n x ) calculated from the measured maximum elongation (n max ) and minimum elongation (n min ) by the following formula :

Based on the above, a method for evaluating pathogen deterrence.
前記希釈液が、農地土壌あるいは農地に使用する資材の10倍希釈液、100倍希釈液、1,000倍希釈液、10,000倍希釈液、100,000希釈液又は1,000,000倍希釈液である、請求項1に記載の方法。   The diluted solution is a 10-fold diluted solution, a 100-fold diluted solution, a 1000-fold diluted solution, a 10,000-fold diluted solution, a 100,000-fold diluted solution, or a 1,000,000-fold diluted material used for farmland soil or farmland. The method of claim 1, which is a diluent. 前記希釈液の代わりに滅菌水を用いて測定される、作物病原菌の最大伸長(nmax)と最小伸長(nmin)を比較対照として用いる、請求項2に記載の方法。 The method according to claim 2, wherein the maximum elongation (n max ) and the minimum elongation (n min ) of the crop pathogen, measured using sterilized water instead of the diluent, are used as comparative controls. 病原抑止力(PSV)が以下の計算式で算出される、請求項3に記載の方法:

The method according to claim 3, wherein the pathogenic deterrent (PSV) is calculated by the following formula:

.
農地土壌が水田土壌、畑作土壌、果樹園土壌又は茶園土壌である、請求項1〜4のいずれか一項に記載の方法。   The method as described in any one of Claims 1-4 whose farmland soil is a paddy field soil, field crop soil, orchard soil, or tea garden soil. 微生物が含まれる農地に使用する資材が、
1)なたね油かす、だいず油かす、ひまし油かす及び米ぬかから選択される植物性有機質肥料;
2)魚粕、骨粉、毛粉、皮粉及び皮粉から選択される動物性有機質肥料;
3)食品汚泥、牛ふん堆肥、豚ぷん堆肥、鶏ふん堆肥、稲わら堆肥及びおがくず堆肥から選択される有機物;或いは
4)糖蜜発酵液、コーンスティープリカー、アルコール発酵液、甜菜糖発酵液、木酢液及び家畜尿から選択される液体
のいずれかを含む、
請求項1〜4のいずれか一項に記載の方法。
Materials used for agricultural land containing microorganisms
1) Vegetable organic fertilizer selected from rapeseed oil cake, rice oil cake, castor oil cake and rice bran;
2) Animal organic fertilizer selected from fish salmon, bone meal, hair meal, skin meal and skin meal;
3) Organic matter selected from food sludge, beef manure compost, pork manure compost, chicken manure compost, rice straw compost and sawdust compost; or
4) including any one of liquid selected from molasses fermentation liquid, corn steep liquor, alcohol fermentation liquid, beet sugar fermentation liquid, wood vinegar liquid and livestock urine,
The method as described in any one of Claims 1-4.
作物病原菌が、Fusarium属菌である、請求項1〜6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein the crop pathogen is a Fusarium genus. Fusarium属菌がメロンつる割れ病菌(Fusarium oxysporum f.sp.melonis)である、請求項7に記載の方法。   The method according to claim 7, wherein the Fusarium genus fungus is Fusarium oxysporum f. Sp. Melonis. Fusarium属菌がトマト萎凋病菌(Fusarium oxysporum f.sp.lycopersici)である、請求項7に記載の方法。   The method according to claim 7, wherein the Fusarium genus is Fusarium oxysporum f. Sp. Lycopersici. 作物病原菌が、Pythium aphanidermatum、Corticium rolfsii、Helicobasidium mompa、Verticillium dahliae、Rosellinia necatrix、Rhizoc tonia solani、Sclerotinia sclerotiorum、Ralstonia solanacearum、Erwinia aroideae、Streptomyces acidiscabies、Streptomyces scabies、Acetpbacter aceti又はAcaromyces ingoldiiである、請求項1〜6のいずれか一項に記載の方法。   Crop pathogen is Pythium aphanidermatum, Corticium rolfsii, Helicobasidium mompa, Verticillium dahliae, Rosellinia necatrix, Rhizoc tonia solani, Sclerotinia sclerotiorum, Ralstonia solanacearum, Erwinia aroideae, Streptomyces acidiscabies, Streptomyces scabies, Acetpbacter aceti or Acaromyces ingoldii, claim 1 7. The method according to any one of 6. 請求項4記載の病原抑止力評価方法を用いた、病害の発生を軽減し、農作物の収量を高めることが可能となる農地構築方法であって;
1)農地から採取した微生物が含まれる土壌の病原抑止力(PSV)を測定計算し、
2) 微生物が含まれる農地に使用する資材の病原抑止力(PSV)を測定計算して、上記土壌より病原抑止力(PSV)の高い資材を選定し、
3)農地土壌の病原抑止力(PSV)が、1)で測定計算された病原抑止力(PSV)より高い病原抑止力(PSV)になるように、選定された資材を農地に施用する方法。
A method for constructing farmland that uses the pathogen deterrent evaluation method according to claim 4 to reduce the occurrence of diseases and increase the yield of crops;
1) Measure and calculate the pathogenic deterrent (PSV) of soil containing microorganisms collected from farmland,
2) Measure and calculate the pathogenic deterrent (PSV) of materials used in agricultural land containing microorganisms, and select materials with higher pathogenic deterrent (PSV) than the above soil,
3) A method of applying the selected material to the farmland so that the pathogen deterrent (PSV) of the farmland soil is higher than the pathogen deterrent (PSV) measured and calculated in 1).
JP2013042440A 2013-03-04 2013-03-04 Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method Active JP6351928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042440A JP6351928B2 (en) 2013-03-04 2013-03-04 Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042440A JP6351928B2 (en) 2013-03-04 2013-03-04 Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method

Publications (2)

Publication Number Publication Date
JP2014168435A JP2014168435A (en) 2014-09-18
JP6351928B2 true JP6351928B2 (en) 2018-07-04

Family

ID=51691377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042440A Active JP6351928B2 (en) 2013-03-04 2013-03-04 Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method

Country Status (1)

Country Link
JP (1) JP6351928B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668512A (en) * 1985-03-20 1987-05-26 The United States Of America As Represented By The Secretary Of Agriculture Preparation of pellets containing fungi and nutrient for control of soilborne plant pathogens
JP3051920B1 (en) * 1998-11-25 2000-06-12 農林水産省農業環境技術研究所長 Method for evaluating soil disease control
WO2005104853A1 (en) * 2004-04-28 2005-11-10 Japan Science And Technology Agency Microbial pesticide inhibiting the outbreak of plant disease damage
JP4769921B2 (en) * 2005-04-25 2011-09-07 丸善製薬株式会社 Plant disease control agent and pesticide
JP2007252250A (en) * 2006-03-22 2007-10-04 Eisai Seikaken Kk Method for diagnosing soil and method for proposing countermeasure for preventing soil disease injury
JP5502354B2 (en) * 2008-03-28 2014-05-28 石原産業株式会社 Agricultural / horticultural fungicide composition and method for controlling plant diseases
JP2010126524A (en) * 2008-12-01 2010-06-10 Maruzen Pharmaceut Co Ltd Plant disease control agent of vegetable origin

Also Published As

Publication number Publication date
JP2014168435A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
Singh et al. Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane
Watson et al. Soil amendments influence Pratylenchus penetrans populations, beneficial rhizosphere microorganisms, and growth of newly planted sweet cherry
CN103146586A (en) Trichoderma harzianum strain for controlling plant fungus diseases and application thereof
CN113822592B (en) Farmland soil obstacle factor diagnosis and soil health cultivation method
Abdel-Monaim et al. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato
Kim et al. Effect of the microalga Chlorella fusca CHK0059 on strawberry PGPR and biological control of Fusarium wilt disease in non-pesticide hydroponic strawberry cultivation
Berezin et al. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia
Nahar et al. Use of Tricho-compost and Tricho-leachate for management of soil-borne pathogens and production of healthy cabbage seedlings.
Rochjatun et al. Control of" damping off" disease caused by Sclerotium rolfsii Sacc. using Actinomycetes and Vam Fungi on soybean in the dry land based on microorganism diversity of rhizosphere zone
Sibagatullin et al. Results of practical use of fertilizers from chicken manure in winter wheat cultivation
Zhang et al. Effects of straw return and fertilisation on root growth and nutrient utilisation efficiency of cotton in an arid area
JP6351928B2 (en) Evaluation method of pathogen deterrence of agricultural land and materials used in agricultural land, and crop cultivation system using the same method
Vázquez et al. Persistence, survival, vertical dispersion, and horizontal spread of the biocontrol agent, Penicillium oxalicum strain 212, in different soil types
JP2019165676A (en) Plant disease control agent and method of controlling plant disease
RU2624032C1 (en) Strains of bacillus cereus 875 ts microorganism as tools for plant productivity improvement
AU2022222914A9 (en) Methods for carbon capture and increasing yield of crop plants
Belyuchenko Micromycete composition in pure and combined crops in cultivated land
RU2616284C1 (en) Microbiological preparation for increasing crop yields
JP2013103870A (en) Method for sterilizing organic fertilizer
KR20060092564A (en) Turfgrass growth promoter comprising rhizopus oligosporus and methods of promoting growth of turfgrass by using it
RU2640286C1 (en) Fibre flax growing method
JP2009292741A (en) Soil-borne disease control microorganism material and method for soil-borne disease control
Cranmer Vertical distribution of Plasmodiophora brassicae resting spores in soil and the effect of weather conditions on clubroot development
RU2428009C1 (en) Method of increasing cucumber yield in static greenhouse
Egle et al. Energy use of sugarcane (Saccharum officinarum L.) grown in various nutrient supply options

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6351928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250