JP6351355B2 - Seismic isolation method for existing buildings - Google Patents

Seismic isolation method for existing buildings Download PDF

Info

Publication number
JP6351355B2
JP6351355B2 JP2014095152A JP2014095152A JP6351355B2 JP 6351355 B2 JP6351355 B2 JP 6351355B2 JP 2014095152 A JP2014095152 A JP 2014095152A JP 2014095152 A JP2014095152 A JP 2014095152A JP 6351355 B2 JP6351355 B2 JP 6351355B2
Authority
JP
Japan
Prior art keywords
seismic isolation
axial force
pillar
isolation device
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014095152A
Other languages
Japanese (ja)
Other versions
JP2015212474A (en
Inventor
努 小室
努 小室
真一 竹崎
真一 竹崎
聡 安田
聡 安田
太 井之上
太 井之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014095152A priority Critical patent/JP6351355B2/en
Publication of JP2015212474A publication Critical patent/JP2015212474A/en
Application granted granted Critical
Publication of JP6351355B2 publication Critical patent/JP6351355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、既存建物の柱に免震装置を介装することによって耐震性能を向上させるための既存建物の免震化工法に関するものである。   The present invention relates to a seismic isolation method for an existing building for improving seismic performance by installing a seismic isolation device in a pillar of the existing building.

近年、想定される大地震の被害を低減化させるために、免震化対策が講じられていない鉄筋コンクリート(RC)造等の各種の既存建物に対して、免震装置を特定の階に設置することにより、建物全体あるいはその一部を免震建物する対策が進められている。   In recent years, seismic isolation devices have been installed on specific floors for various existing buildings such as reinforced concrete (RC) structures that have not undergone seismic isolation measures in order to reduce the damage caused by large earthquakes. Therefore, measures are being taken to seismically isolate the entire building or part of it.

このような既存建物の免震化に際しては、上記特定の階の柱に免震装置を新たに挿入することによってなされるために、上記柱を一旦切断する必要がある。
図10および図11は、先に本出願人が下記特許文献1、2等において提案したこの種の免震化工法を示すものである。
When such an existing building is subjected to seismic isolation, it is necessary to cut the column once since it is made by newly inserting a seismic isolation device into the column on the specific floor.
10 and 11 show this type of seismic isolation method proposed previously by the present applicant in the following Patent Documents 1 and 2 and the like.

この免震化工法においては、先ず柱30の免震装置を介装すべき範囲の上下部外周に、四角柱状の増し打ちコンクリート31を打設し、これら上下の増し打ちコンクリート31の3面間に支持材32を渡すとともに、他の1面に定着板33を配設し、これら支持材32間および支持板32と定着板33間にPC鋼棒34を通してプレストレスを導入したうえで、両端をナットによって固定することにより、支持材33の上下端部を増し打ちコンクリート31に圧接させる。   In this seismic isolation method, first, square pillar-shaped reinforced concrete 31 is placed on the upper and lower outer peripheries of the range where the seismic isolation device for the column 30 is to be interposed, and between the three upper and lower reinforced concrete 31 surfaces. In addition, a fixing plate 33 is disposed on the other surface, and a prestress is introduced between the support material 32 and between the support plate 32 and the fixing plate 33 through a PC steel rod 34, and then both ends. Is fixed with a nut, and the upper and lower ends of the support member 33 are increased and pressed against the cast concrete 31.

以上により、柱30に作用する軸力を増し打ちコンクリート31を介して支持材32によって仮支持させた後に、上記1面に形成された開口部S側から柱30の免震装置を挿入すべき部位を切断する。次いで、切断された柱30の対向面に、それぞれ免震装置の上下部取付台を構築し、開口部S側から上下部取付台間に免震装置を挿入して据え付けた後に、PC鋼棒34を抜出して支持材32および定着板33を取り外すことにより、上記既存の柱30に対する免震化が完了する。   As described above, after the axial force acting on the column 30 is increased and temporarily supported by the support material 32 via the cast concrete 31, the seismic isolation device for the column 30 should be inserted from the opening S side formed on the one surface. Cut the site. Next, the upper and lower mounting bases of the seismic isolation device are respectively constructed on the opposite surfaces of the cut pillars 30, and the seismic isolation device is inserted and installed between the upper and lower mounting bases from the opening S side. By pulling out 34 and removing the support member 32 and the fixing plate 33, the seismic isolation for the existing pillar 30 is completed.

特開2001−49873号公報JP 2001-49873 A 特開2000−257273号公報JP 2000-257273 A

ところで、上記従来の既存建物の免震化工法においては、柱30の3面において支持部材32により柱30の荷重を支持し、他の1面に形成した開口部S側から柱30の切断、上下部取付台の構築および免震装置の挿入等の作業を行っている。このため、作業空間が狭隘になるとともに、柱30の切断および切断部位の搬出や、取付台および免震装置の搬入をいずれも上記1面側から行う必要があるために、作業が困難であるという問題点があった。   By the way, in the conventional seismic isolation method of the existing building, the load of the pillar 30 is supported by the support member 32 on the three faces of the pillar 30, and the pillar 30 is cut from the opening S side formed on the other face. Work such as construction of upper and lower mounting bases and insertion of seismic isolation devices. For this reason, the work space is narrowed, and it is necessary to perform the cutting of the pillar 30 and the removal of the cut portion, and the installation of the mounting base and the seismic isolation device from the one surface side. There was a problem.

また、柱30の3面に仮設した支持部材32によって荷重を支持し、開口部Sを形成した他の1面においては上記荷重の支持が無いために、支持バランスが悪く、特に柱30による支持荷重が大きい場合には、柱30に傾きが生じるおそれがあった。そこで、これに対応すべく支持部材32の本数を増加させると、これらを増し打ちコンクリート31に圧接させるためのPC鋼棒34の本数が多くなり、作業に要する手間とコストが増大してしまうという問題点もあった。   Further, since the load is supported by the support members 32 temporarily provided on the three surfaces of the column 30 and the load is not supported on the other surface where the opening S is formed, the support balance is poor. When the load is large, the pillar 30 may be inclined. Therefore, if the number of support members 32 is increased to cope with this, the number of PC steel bars 34 for increasing the number of PC members 34 and press-contacting them to the concrete 31 increases, and the labor and cost required for the work increase. There was also a problem.

さらに、増し打ちコンクリート31に支持部材32を圧接させるために、PC鋼棒34を用いているために、増し打ちコンクリート31内に鉄筋を避けて貫通孔を設けることが難しいとともに、PC鋼棒34に張力を付与するためのジャッキ類が必要となるために、工事が大掛かりなものになるという問題点もあった。   Further, since the PC steel bar 34 is used to press-contact the support member 32 against the additional cast concrete 31, it is difficult to avoid a reinforcing bar in the increased cast concrete 31 and provide a PC steel bar 34. There is also a problem that construction work becomes large because jacks for applying tension to the arm are required.

本発明は、上記事情に鑑みてなされたものであり、作業性に優れ、しかも工期の短縮化とコストの低減化を図ることが可能になる既存建物の免震化工法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a seismic isolation method for an existing building that is excellent in workability and can shorten the work period and reduce the cost. It is what.

上記課題を解決するため、請求項1に記載の発明は、既存建物の柱に免震装置を介装するための工法であって、上記柱の上記免震装置を挿入すべき範囲の上下部の外周を増し打ちするための配筋および型枠を施工するとともに、上記柱の対向する2面に、上記上下部に跨って配置される軸力移行鋼板を設け、次いで上記型枠内にコンクリートを打設することにより上記上下部に補強部を形成した後に、連結手段により上記軸力移行鋼板の上記上下部分を上記補強部に固定し、次いで上記柱の上記免震装置を介装すべき範囲を切断し、当該切断部位に上記免震装置を挿入した後に、上記軸力移行鋼板を撤去することを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is a construction method for installing a seismic isolation device in a pillar of an existing building, and an upper and lower portion of the column in which the seismic isolation device is to be inserted In addition to constructing reinforcement and formwork for increasing the outer perimeter of the steel, axial force transition steel plates arranged across the upper and lower parts are provided on the two opposing surfaces of the column, and then concrete is placed in the formwork. The upper and lower portions of the axial force transition steel sheet should be fixed to the reinforcing portion by connecting means, and then the seismic isolation device for the column should be interposed. The axial force transition steel plate is removed after cutting the range and inserting the seismic isolation device into the cutting site.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記軸力移行鋼板は、少なくとも上記型枠の一部を構成するとともに、当該部分の内側面に、凸が形成されていることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the axial force transition steel sheet constitutes at least a part of the formwork, and a convex is formed on the inner surface of the part. It is characterized by that.

請求項1〜のいずれかに記載の発明によれば、柱の対向する2面に軸力移行鋼板を設けているために、これと隣接する2面に開口部が形成されている。このため、柱の切断や切断部位の搬出および免震装置の搬入や取り付け作業を、上記開口部が形成されている上記2面から行うことができ、作業性に優れる。 According to the invention described in any one of claims 1 and 2 , since the axial force transition steel plates are provided on the two opposite surfaces of the pillar, the opening is formed on the two surfaces adjacent thereto. For this reason, cutting of a pillar, carrying out of a cutting part, carrying in and attachment work of a seismic isolation device can be performed from said 2 side in which the above-mentioned opening is formed, and it is excellent in workability.

また、柱の荷重を、当該柱の対向する2面に固定した軸力移行鋼板によって支持しているために、安定的に上記荷重を仮支持しておくことができる。   Moreover, since the load of the column is supported by the axial force transition steel plates fixed to the two opposing surfaces of the column, the load can be temporarily supported stably.

この際に、請求項2に記載の発明においては、上下部分がそれぞれ増し打ちコンクリートの型枠の一部を構成する軸力移行鋼板の型枠構成部分の内側面に、凸部を形成しているために、増し打ちコンクリート打設後の一体性を高めて、荷重支持の安定性を高めることができる。   In this case, in the invention described in claim 2, the upper and lower portions are respectively increased, and a convex portion is formed on the inner surface of the mold component part of the axial force transition steel plate that constitutes a part of the cast concrete mold. Therefore, it is possible to increase the integrity after placing the cast-in-place concrete and enhance the stability of the load support.

この結果、従来のように高価なPC鋼棒や大掛かりなジャッキ等を用いることなく、軽量小型なトルクレンチ等によって軸力移行鋼板を増し打ちコンクリートの補強部に強固に固定することができ、よって工事上の手間やコストを大幅に削減することができる。   As a result, without using an expensive PC steel bar or a large jack as in the prior art, it is possible to increase the axial force transition steel plate with a lightweight small torque wrench or the like and firmly fix it to the reinforced portion of the concrete. It is possible to greatly reduce the labor and cost in construction.

本発明の一実施形態を説明するための図で、(a)は柱の上下部に後施工アンカーを設置した状態を示す横断面図、(b)は正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for describing one Embodiment of this invention, (a) is a cross-sectional view which shows the state which installed the post-construction anchor in the upper and lower parts of a pillar, (b) is a front view. 図1の柱の上下部に所定の配筋を行った状態を示すもので、(a)は横断面図、(b)は正面図である。FIG. 2 shows a state in which predetermined bar arrangement is performed on the upper and lower parts of the column in FIG. 図2の柱の上下部に連結手段および型枠を設置した状態を示すもので、(a)は横断面図、(b)は正面図である。FIGS. 3A and 3B show a state in which connecting means and a mold are installed on the upper and lower portions of the column in FIG. 2, and FIG. 増し打ちコンクリートを打設した後の状態を示す要部の横断面図である。It is a cross-sectional view of an essential part showing a state after the additional cast concrete is placed. 図4の連結手段を示すもので、(a)は分解図、(b)は組立図である。4 shows the connecting means of FIG. 4, wherein (a) is an exploded view and (b) is an assembly view. FIG. 図5の連結手段の作用を示すための図である。It is a figure for demonstrating the effect | action of the connection means of FIG. 柱の荷重を軸力移行鋼板に支持させた後に柱の一部を切断除去する状態を示すもので、(a)は正面図、(b)は側面図である。The state which cuts and removes a part of pillar after supporting the load of a pillar on an axial force transfer steel plate is shown, (a) is a front view, (b) is a side view. 図7の柱の切断部分に免震装置を設置した状態を示す側面図である。It is a side view which shows the state which installed the seismic isolation apparatus in the cut part of the pillar of FIG. 図8の軸力移行鋼板を撤去した完成状態を示す正面図である。It is a front view which shows the completion state which removed the axial force transfer steel plate of FIG. 従来の免震化工法において柱の荷重を仮支持した状態を示す正面図である。It is a front view which shows the state which supported the load of the column temporarily in the conventional seismic isolation method. 図10の要部の横断面図である。It is a cross-sectional view of the main part of FIG.

以下、図1〜図9に基づいて、本発明に係る既存建物の免震化工法の一実施形態について説明する。
この免震化工法は、図1に示すように、既存建物における断面方形状の柱1に免震装置を介装するための工法であり、先ず図中点線で示す柱1の免震装置を挿入すべき範囲Hを残した上下部1a、1bに増し打ちコンクリートを打設して補強部を形成するために、その外周表面に、目荒らし処理を施すとともに、後施工アンカー2を設置する。
Hereinafter, based on FIGS. 1-9, one Embodiment of the seismic isolation method of the existing building which concerns on this invention is described.
As shown in FIG. 1, this seismic isolation method is a method for interposing a seismic isolation device on a column 1 having a square cross section in an existing building. First, the seismic isolation device of the column 1 indicated by a dotted line in the figure is used. In order to form a reinforcing portion by placing additional cast concrete on the upper and lower portions 1a and 1b leaving the range H to be inserted, a roughening treatment is performed on the outer peripheral surface, and a post-construction anchor 2 is installed.

次いで、上記上下部1a、1bの周囲に、上記補強部用の軸方向主筋3aおよびフープ筋3bを設置した後に、図3に示すように、柱1の対向する2面に、全面にわたって上記範囲Hを跨ぐ軸力移行鋼板4を配設し、その上下部分4a、4bを柱1の上下部1a、1bに打設するコンクリートの型枠の一部として設置する。また、上下部1a、1bの他の外周には、在来型枠5a、5bを設置する。これにより、軸力移行鋼板4が配置されていない2面に、柱1が露出する開口部Sが形成される。   Next, after the axial main reinforcement 3a and the hoop reinforcement 3b for the reinforcing part are installed around the upper and lower parts 1a and 1b, as shown in FIG. An axial force transition steel plate 4 straddling H is disposed, and its upper and lower portions 4a, 4b are installed as a part of a concrete formwork to be placed on the upper and lower portions 1a, 1b of the pillar 1. Further, conventional molds 5a and 5b are installed on the other outer circumferences of the upper and lower parts 1a and 1b. Thereby, the opening part S which the pillar 1 exposes is formed in two surfaces where the axial force transfer steel plate 4 is not arrange | positioned.

ここで、上記軸力移行鋼板4は、例えば縞鋼板によって製作されたもので、その内面側には図4〜図6に示すように、凸部13が形成されている。また、外面には、座屈補強用のリブ4dが上下方向の全長にわたって接合されている。なお、本実施形態においては、6本のリブ14が水平方向にほぼ等間隔をおいて並列的に設けられている。   Here, the said axial force transfer steel plate 4 is manufactured by the striped steel plate, for example, and as shown in FIGS. 4-6, the convex part 13 is formed in the inner surface side. Further, a rib 4d for buckling reinforcement is joined to the outer surface over the entire length in the vertical direction. In the present embodiment, six ribs 14 are provided in parallel in the horizontal direction at substantially equal intervals.

そして、上記型枠を施工する際に、予め上下部分(以下、型枠ともいう。)4a、4b内に、図3(a)に示すように、軸力移行鋼板4を後述する増し打ちコンクリートによって形成された補強部に圧接させるための連結手段(図4および図5参照。)を組み込んでおく。   And when constructing the said formwork, as shown to Fig.3 (a) in the up-and-down part (henceforth formwork) 4a and 4b beforehand, as shown in FIG. The connection means (refer FIG. 4 and FIG. 5) for making it press-contact with the reinforcement part formed by is assembled.

この連結手段は、軸力移行鋼板4の上下部分4a、4bに各々形成された複数(図では縦2×横5)の孔から、それぞれワッシャ6aを介して型枠4a、4b内に挿入された高力ボルト(ボルト部材)6と、型枠4a、4b内に配置されて一端部側から高力ボルト6が螺合される袋ナット7と、この袋ナット7の他端部に螺合されるアンカーボルト(アンカー部材)8と、袋ナット7の一端部側に形成されたフランジ7aに接合されたリング状の弾性体9とを備えたものである。   The connecting means is inserted into the mold frames 4a and 4b through washers 6a from a plurality of (vertical 2 × horizontal 5 in the figure) holes respectively formed in the upper and lower portions 4a and 4b of the axial force transition steel plate 4. A high-strength bolt (bolt member) 6, a cap nut 7 that is disposed in the mold frames 4 a and 4 b and is screwed into the high-strength bolt 6 from one end side, and is screwed into the other end portion of the cap nut 7. Provided with an anchor bolt (anchor member) 8 and a ring-shaped elastic body 9 joined to a flange 7 a formed on one end of the cap nut 7.

そして、後述する増し打ちコンクリートの割れ防止用として、各々の袋ナット7の外周に、スパイラル補強筋10aを配筋するとともに、袋ナット7の先端部に、水平方向に両端定着板付補強筋10bを配筋する。
以上の型枠および配筋の施工が完了した後に、図4に示すように、型枠4a、4b、5a、5b内に増し打ちコンクリート11を打設し、所定期間養生させて硬化させることにより柱1と一体化した補強部12を形成する。
In order to prevent cracking of the reinforced concrete, which will be described later, spiral reinforcing bars 10a are arranged on the outer periphery of each cap nut 7, and reinforcing bars 10b with fixing plates at both ends are horizontally provided at the end of the cap nut 7. Arrange the bars.
After completion of the above-mentioned formwork and bar arrangement construction, as shown in FIG. 4, by placing an additional cast concrete 11 in the formwork 4a, 4b, 5a, 5b, curing it for a predetermined period, and hardening it. A reinforcing portion 12 integrated with the pillar 1 is formed.

このようにして、柱1の免震装置を介装すべき範囲Hの上下部1a、1bに補強部12を増築した後に、図6に示すように、高力ボルト6を締め付ける。すると、袋ナット7はアンカーボルト8によって軸方向の移動が阻止されているために、高力ボルト6および袋ナット7に引張力が加わり、その反力によって弾性部材9が圧縮して軸力移行鋼板4の上下部分4a、4bが補強部12に圧接される。   Thus, after extending the reinforcement part 12 in the upper-lower part 1a, 1b of the range H which should interpose the seismic isolation apparatus of the pillar 1, as shown in FIG. 6, the high strength volt | bolt 6 is tightened. Then, since the cap nut 7 is prevented from moving in the axial direction by the anchor bolt 8, a tensile force is applied to the high strength bolt 6 and the cap nut 7, and the elastic member 9 is compressed by the reaction force to shift the axial force. The upper and lower portions 4 a and 4 b of the steel plate 4 are pressed against the reinforcing portion 12.

この時に、上下部分4a、4bの補強部12との対向面には、凸部13が形成されているために、上下部分4a、4bの補強部12との間に大きな摩擦力が生じて、軸力移行鋼板4が補強部12に強固に固定される。   At this time, because the convex portion 13 is formed on the surface of the upper and lower portions 4a and 4b facing the reinforcing portion 12, a large frictional force is generated between the upper and lower portions 4a and 4b and the reinforcing portion 12, The axial force transition steel plate 4 is firmly fixed to the reinforcing portion 12.

そこで次に、図7に示すように、柱1を間に挟んだ2つの開口部Sから、上記範囲Hの柱1を切断して撤去する。これにより、柱1の荷重は軸力移行鋼板4によって支持される。この状態で、図8に示すように、切断された柱1の対向面に、それぞれ免震装置の上下部取付台15、16を構築し、開口部S側から上下部取付台15、16間に免震装置17を挿入して据え付ける。   Then, as shown in FIG. 7, the column 1 in the range H is cut and removed from the two openings S sandwiching the column 1 therebetween. Thereby, the load of the pillar 1 is supported by the axial force transition steel plate 4. In this state, as shown in FIG. 8, the upper and lower mounting bases 15 and 16 of the seismic isolation device are respectively constructed on the opposite surfaces of the cut pillar 1, and the upper and lower mounting bases 15 and 16 are formed from the opening S side. The seismic isolation device 17 is inserted into and installed.

そして、図9に示すように、高力ボルト6を取り外して軸力移行鋼板4を取り外し、さらに上下部取付台15、16に耐火処理等を施すことにより、上記既存の柱1に対する免震化が完了する。   Then, as shown in FIG. 9, the high-strength bolt 6 is removed, the axial force transition steel plate 4 is removed, and the upper and lower mounting bases 15 and 16 are subjected to a fireproofing process, thereby making the existing pillar 1 seismic isolation. Is completed.

以上説明したように、上記構成からなる既存建物の免震化工法によれば、柱1の対向する2面に、上下部分4a、4bがそれぞれ増し打ちコンクリート11の型枠の一部を構成する軸力移行鋼板4を設けている結果、これと隣接する2面には開口部Sが形成されている。このため、図7および図8に示すように、柱1の切断や切断部位18の搬出、上下部取付台15、16の設置、および免震装置17の搬入や取り付け作業を、上記2面の開口部S側から行うことができ、作業性に優れる。   As described above, according to the seismic isolation method for an existing building having the above-described structure, the upper and lower portions 4a and 4b are respectively added to the two opposing surfaces of the pillar 1 and constitute a part of the formwork of the cast concrete 11. As a result of the provision of the axial force transition steel plate 4, openings S are formed on the two surfaces adjacent thereto. For this reason, as shown in FIG. 7 and FIG. 8, the cutting of the pillar 1 and the removal of the cut portion 18, the installation of the upper and lower mounting bases 15 and 16, and the installation and installation of the seismic isolation device 17 It can be performed from the opening S side, and is excellent in workability.

また、柱1の荷重を、対向する2面に固定した軸力移行鋼板4によって支持しているために、支持力に偏りを生じることなく、仮支持しておくことができるとともに、軸力移行鋼板4の補強部12との当接面に凸部13を形成して一体性を高め、荷重支持の安定性を高めることができる。   Moreover, since the load of the pillar 1 is supported by the axial force transition steel plate 4 fixed to the two opposing surfaces, the support force can be temporarily supported without causing a bias, and the axial force transition can be performed. The convex part 13 can be formed in the contact surface with the reinforcement part 12 of the steel plate 4, and integrity can be improved and the stability of load support can be improved.

さらに、軸力移行鋼板4の上下部分4a、4bを、補強部12内に埋設したアンカーボルト8付の袋ナット7と、軸力移行鋼板4から袋ナット7に螺合された高力ボルト6と、軸力移行鋼板4と袋ナット7との間に配置した弾性部材9と用い、補強部12を形成した後に、高力ボルト6を締め込むことにより補強部12に圧接・固定しているために、従来のように高価なPC鋼棒や大掛かりなジャッキ等を用いることなく、軽量小型なトルクレンチ等によって上記固定を行うことができ、よって工事上の手間やコストを大幅に削減することができる。   Further, the upper and lower portions 4a and 4b of the axial force transition steel plate 4 are cap nuts 7 with anchor bolts 8 embedded in the reinforcing portion 12, and the high strength bolt 6 screwed from the axial force transition steel plate 4 to the bag nut 7 And the elastic member 9 disposed between the axial force transition steel plate 4 and the cap nut 7, and after forming the reinforcing portion 12, the high strength bolt 6 is tightened to press and fix the reinforcing portion 12. Therefore, the above-mentioned fixing can be performed with a light and small torque wrench etc. without using an expensive PC steel bar or a large jack as in the prior art, thereby greatly reducing the labor and cost in construction. Can do.

なお、上記実施形態においては、袋ナット7と一体化されたアンカー部材として、袋ナット7に螺合されたアンカーボルト8を用いた場合ついてのみ説明しがた、本発明は、これに限定されるものではなく、上記袋ナット7の先端開口を塞ぐとともに、当該袋ナット7の外周面にアンカーを接合する等の様々な形態を採用することが可能である。   In the above embodiment, the anchor bolt 8 screwed into the cap nut 7 is used as the anchor member integrated with the cap nut 7, but the present invention is limited to this. Instead of this, various forms such as closing the tip opening of the cap nut 7 and joining an anchor to the outer peripheral surface of the cap nut 7 can be adopted.

1 柱
1a、1b 柱の上下部
4 軸力移行鋼板
4a、4b 上下部分(型枠)
6 高力ボルト
7 袋ナット
8 アンカーボルト(アンカー部材)
9 弾性部材
11 増し打ちコンクリート
12 補強部
13 凸部
17 免震装置
H 免震装置を介装する範囲
S 開口部
1 pillar 1a, 1b top and bottom of pillar 4 axial force transfer steel plate 4a, 4b top and bottom part (formwork)
6 High strength bolt 7 Cap nut 8 Anchor bolt (anchor member)
DESCRIPTION OF SYMBOLS 9 Elastic member 11 Reinforced concrete 12 Reinforcement part 13 Convex part 17 Seismic isolation device H Range which installs a seismic isolation device S Opening part

Claims (2)

既存建物の柱に免震装置を介装するための工法であって、
上記柱の上記免震装置を挿入すべき範囲の上下部の外周を増し打ちするための配筋および型枠を施工するとともに、上記柱の対向する2面に、上記上下部に跨って配置される軸力移行鋼板を設け、次いで上記型枠内にコンクリートを打設することにより上記上下部に補強部を形成した後に、連結手段により上記軸力移行鋼板の上記上下部分を上記補強部に固定し、次いで上記柱の上記免震装置を介装すべき範囲を切断し、当該切断部位に上記免震装置を挿入した後に、上記軸力移行鋼板を撤去することを特徴とする既存建物の免震化工法。
A method for installing seismic isolation devices on pillars of existing buildings,
In addition to constructing reinforcement and formwork for increasing the outer circumference of the upper and lower parts of the column in the range where the seismic isolation device should be inserted, it is arranged on the two opposing surfaces of the column across the upper and lower parts After forming a reinforcing part on the upper and lower parts by placing concrete in the formwork, and then fixing the upper and lower parts of the axial force transferring steel sheet to the reinforcing part by connecting means Then, after cutting the range of the pillar to be installed with the seismic isolation device, inserting the seismic isolation device into the cut site, and then removing the axial force transition steel plate, Seismic construction method.
上記軸力移行鋼板は、少なくとも上記型枠の一部を構成するとともに、当該部分の内側面に、凸が形成されていることを特徴とする請求項1に記載の既存建物の免震化工法。   2. The seismic isolation method for an existing building according to claim 1, wherein the axial force transition steel sheet constitutes at least a part of the formwork, and a convex is formed on an inner surface of the part. 3. .
JP2014095152A 2014-05-02 2014-05-02 Seismic isolation method for existing buildings Active JP6351355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095152A JP6351355B2 (en) 2014-05-02 2014-05-02 Seismic isolation method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095152A JP6351355B2 (en) 2014-05-02 2014-05-02 Seismic isolation method for existing buildings

Publications (2)

Publication Number Publication Date
JP2015212474A JP2015212474A (en) 2015-11-26
JP6351355B2 true JP6351355B2 (en) 2018-07-04

Family

ID=54696867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095152A Active JP6351355B2 (en) 2014-05-02 2014-05-02 Seismic isolation method for existing buildings

Country Status (1)

Country Link
JP (1) JP6351355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891942B1 (en) * 2018-01-16 2018-08-27 송병표 Earthquake reinforcement method of existing structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189906A (en) * 1985-02-19 1986-08-23 関口 勲 Formwork for concrete
JPH11280266A (en) * 1998-03-31 1999-10-12 Taisei Corp Construction method for base isolation of existing building
JP5944732B2 (en) * 2012-04-25 2016-07-05 株式会社竹中工務店 Installation method of elastic bearing

Also Published As

Publication number Publication date
JP2015212474A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
KR102274029B1 (en) Method for reinforcing the Earthquake of a concrete columns
KR101758493B1 (en) Precast permanent form and construction method for the same
JP6022631B1 (en) Seismic isolation device replacement method and seismic isolation structure
JP5944732B2 (en) Installation method of elastic bearing
KR101355926B1 (en) Reusable waffle type slab form assembly
JP6567355B2 (en) Joint structure of prestressed concrete structure
JP6351355B2 (en) Seismic isolation method for existing buildings
KR101428539B1 (en) Reformed concrete filled tube column structure
JP6802646B2 (en) Wall body, wall body construction method and formwork combined wall member
JP7266470B2 (en) Column base joint structure
JP2016037761A (en) Temporary support structure for base-isolating work, and base-isolating method for existing building
JP4658005B2 (en) Seismic isolation method for existing buildings
JP6717782B2 (en) Reinforcement method for existing footing
JP2006200361A (en) Base isolating method for existing building
KR101375486B1 (en) Connecting assembly for precast concrete column and beam
JP5439016B2 (en) Buried formwork
JP7126828B2 (en) Exposed column base structure
JP2009174188A (en) Partition wall, partition wall construction method, and wall block
JP6441689B2 (en) How to install seismic isolation structures
JP2019002140A (en) Steel form for constructing base mortar and construction method of base mortar using the same
JP3551816B2 (en) Seismic isolation method for existing buildings
JP6511727B2 (en) Seismic isolation building and replacement method of seismic isolation device
JP2011021379A (en) Reinforcing method for existing building and reinforcing structure
JP6114071B2 (en) Seismic isolation method for existing buildings and temporary structure under construction
JP2021110208A (en) Reinforcement method of existing wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150