JP6350910B2 - Method for producing azidoamine derivative - Google Patents

Method for producing azidoamine derivative Download PDF

Info

Publication number
JP6350910B2
JP6350910B2 JP2014139180A JP2014139180A JP6350910B2 JP 6350910 B2 JP6350910 B2 JP 6350910B2 JP 2014139180 A JP2014139180 A JP 2014139180A JP 2014139180 A JP2014139180 A JP 2014139180A JP 6350910 B2 JP6350910 B2 JP 6350910B2
Authority
JP
Japan
Prior art keywords
azidoamine
derivative
solvent
toluene
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014139180A
Other languages
Japanese (ja)
Other versions
JP2016017038A (en
JP2016017038A5 (en
Inventor
義 檜山
義 檜山
志勇 楊
志勇 楊
誉 長山
誉 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Wako Pure Chemical Corp filed Critical Fujifilm Wako Pure Chemical Corp
Priority to JP2014139180A priority Critical patent/JP6350910B2/en
Publication of JP2016017038A publication Critical patent/JP2016017038A/en
Publication of JP2016017038A5 publication Critical patent/JP2016017038A5/ja
Application granted granted Critical
Publication of JP6350910B2 publication Critical patent/JP6350910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、医薬品等の中間体として有用なアジドアミン誘導体の製造方法に関する。   The present invention relates to a method for producing an azidoamine derivative useful as an intermediate for pharmaceuticals and the like.

アジドアミン誘導体は医薬品等の中間体として重要であり、これまでに様々な製造方法が開発されてきた。一例として4−アジドブチルアミンの場合では、原料の1,4−ジブロモブタンをジアジド化し、次いで還元反応を行う方法(非特許文献1〜2)が知られている。これらの方法では、還元反応終了後溶媒に塩化メチレンを用い、目的物の塩酸塩をフリー化して分液抽出を行い、次いで濃縮を行っている。しかし、塩化メチレンを用いた場合、(i)目的物が経時劣化を起こすこと、(ii)濃縮時に溶液が異常発熱し、その開始温度が約82℃と低く、安全性に問題があること、(iii)塩化メチレンは発がん性があり人体に対して好ましくないこと、等の問題があった。   Azidoamine derivatives are important as intermediates for pharmaceuticals and the like, and various production methods have been developed so far. As an example, in the case of 4-azidobutylamine, a method is known in which 1,4-dibromobutane as a raw material is diazide and then subjected to a reduction reaction (Non-Patent Documents 1 and 2). In these methods, after completion of the reduction reaction, methylene chloride is used as a solvent, the target hydrochloride is freed, liquid separation extraction is performed, and then concentration is performed. However, when methylene chloride is used, (i) the target product deteriorates with time, (ii) the solution heats up abnormally during concentration, its starting temperature is as low as about 82 ° C., and there is a problem with safety, (Iii) Methylene chloride has carcinogenicity and is unfavorable for the human body.

“Tetrahedron Letters”、vol.42、2001年、2709−2711頁“Tetrahedron Letters”, vol. 42, 2001, pages 2709-2711 “Polymer”、vol.47、2006年、742−750頁“Polymer”, vol. 47, 2006, pages 742-750

本発明の目的は、経時劣化や安全性等の問題点を克服し、工業的規模での量産が実施可能なアジドアミン誘導体の製造方法を提供することにある。   An object of the present invention is to provide a method for producing an azidoamine derivative that overcomes problems such as deterioration over time and safety and can be mass-produced on an industrial scale.

本発明者らは上記目的を達成すべく鋭意検討した結果、芳香族溶媒またはエーテル系溶媒を後処理時に用いることによって、目的物の経時劣化を抑制し、且つ濃縮時の発熱開始温度もより高温にシフトすることを見出し本発明を完成した。すなわち、本発明は以下によって達成される。
<1>
下記一般式(II)で表されるアジドアミン誘導体を得る工程、
得られた下記一般式(II)で表されるアジドアミン誘導体を、トルエン、キシレン、スチレン、ベンゼン、フェノール、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン及びジフェニルメタンから選ばれる少なくとも1種の芳香族系溶媒を用いて抽出する工程、
を含むアジドアミン誘導体の製造方法。

Figure 0006350910
式中、R1〜R4は各々同一でも異なってもよく、水素原子、アルキル基、アリール基、又はヘテロ環残基を表す。該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。nは1〜11の整数を表す。nが2以上である場合、複数のR3およびR4は各々同一でも異なっても良い。
<2>
前記芳香族系溶媒がトルエンである<1>に記載のアジドアミン誘導体の製造方法。
なお、本発明は上記<1>及び<2>に関するものであるが、以下その他の事項についても参考のため記載した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have used an aromatic solvent or an ether solvent at the time of post-treatment, thereby suppressing the deterioration of the object over time, and the heat generation starting temperature during concentration is higher. The present invention was completed. That is, the present invention is achieved by the following.
<1>
A step of obtaining an azidoamine derivative represented by the following general formula (II):
The obtained azidoamine derivative represented by the following general formula (II) is extracted using at least one aromatic solvent selected from toluene, xylene, styrene, benzene, phenol, ethylbenzene, diethylbenzene, isopropylbenzene and diphenylmethane. The process of
A process for producing an azidoamine derivative comprising:
Figure 0006350910
In the formula, R1 to R4 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue. The alkyl group, the aryl group, or the heterocyclic residue may further have a substituent. n represents an integer of 1 to 11. When n is 2 or more, the plurality of R3 and R4 may be the same or different.
<2>
The method for producing an azidoamine derivative according to <1>, wherein the aromatic solvent is toluene.
Although the present invention relates to the above <1> and <2>, other matters are also described below for reference.

[1]
下記一般式(II)で表されるアジドアミン誘導体を得る工程、
得られた下記一般式(II)で表されるアジドアミン誘導体を、芳香族系溶媒またはエーテル系溶媒を用いて抽出する工程、
を含むアジドアミン誘導体の製造方法。
[1]
A step of obtaining an azidoamine derivative represented by the following general formula (II):
A step of extracting the obtained azidoamine derivative represented by the following general formula (II) using an aromatic solvent or an ether solvent,
A process for producing an azidoamine derivative comprising:

Figure 0006350910
Figure 0006350910

式中、R1〜R4は各々同一でも異なってもよく、水素原子、アルキル基、アリール基、又はヘテロ環残基を表す。該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。
nは1〜11の整数を表す。nが2以上である場合、複数のR3およびR4は各々同一でも異なっても良い。
[2]
前記芳香族系溶媒がトルエンである[1]に記載のアジドアミン誘導体の製造方法。
[3]
前記エーテル系溶媒がジイソプロピルエーテルまたはtert−ブチルメチルエーテルである[1]に記載のアジドアミン誘導体の製造方法。
In the formula, R1 to R4 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue. The alkyl group, the aryl group, or the heterocyclic residue may further have a substituent.
n represents an integer of 1 to 11. When n is 2 or more, the plurality of R3 and R4 may be the same or different.
[2]
The method for producing an azidoamine derivative according to [1], wherein the aromatic solvent is toluene.
[3]
The method for producing an azidoamine derivative according to [1], wherein the ether solvent is diisopropyl ether or tert-butyl methyl ether.

本発明の製造方法によれば、医薬品、農薬、感光性材料、エレクトロニクス素材等の中間体として重要なアジドアミン誘導体を、工業的スケールで容易に生産可能である。   According to the production method of the present invention, an azidoamine derivative that is important as an intermediate for pharmaceuticals, agricultural chemicals, photosensitive materials, electronic materials and the like can be easily produced on an industrial scale.

図1は、実施例2、比較例1〜2の結果を示すグラフである。FIG. 1 is a graph showing the results of Example 2 and Comparative Examples 1-2.

以下に本発明について更に詳しく説明する。
本発明は、下記一般式(II)で表されるアジドアミン誘導体を得る工程、得られた下記一般式(II)で表されるアジドアミン誘導体を、芳香族系溶媒またはエーテル系溶媒を用いて抽出する工程、を含むアジドアミン誘導体の製造方法に関する。
下記一般式(II)で表されるアジドアミン誘導体を得る方法としては、特に限定されず、公知の方法を用いることができるが、好ましくは下記一般式(I)で表されるジアジド誘導体を還元して下記一般式(II)で表されるアジドアミン誘導体とする方法が挙げられる。
また、得られた下記一般式(II)で表されるアジドアミン誘導体を、芳香族系溶媒またはエーテル系溶媒を用いて抽出する工程の後に、濃縮を行うことが好ましい。濃縮の方法としては、特に限定されず、公知の方法を用いることができるが、たとえば、減圧蒸留などが好ましく挙げられる。
本発明で用いることができる原料の下記一般式(I)で表されるジアジド誘導体は、市販のジハロゲノアルカン化合物を公知の方法でジアジド化することにより調製することが可能である(例えば、実験化学講座(第4版)20巻、第8章、丸善刊 等)。
The present invention will be described in more detail below.
The present invention provides a step of obtaining an azidoamine derivative represented by the following general formula (II), and the obtained azidoamine derivative represented by the following general formula (II) is extracted using an aromatic solvent or an ether solvent. A process for producing an azidoamine derivative.
The method for obtaining the azidoamine derivative represented by the following general formula (II) is not particularly limited, and a known method can be used, but preferably the diazide derivative represented by the following general formula (I) is reduced. And a method for preparing an azidoamine derivative represented by the following general formula (II).
Moreover, it is preferable to perform concentration after the step of extracting the obtained azidoamine derivative represented by the following general formula (II) using an aromatic solvent or an ether solvent. The concentration method is not particularly limited, and a known method can be used. For example, vacuum distillation is preferable.
The diazide derivative represented by the following general formula (I), which can be used in the present invention, can be prepared by diaziding a commercially available dihalogenoalkane compound by a known method (for example, experimental Chemistry Course (4th edition) Volume 20, Chapter 8, Maruzen, etc.).

Figure 0006350910
Figure 0006350910

式中、R1〜R4は各々同一でも異なってもよく、水素原子、アルキル基、アリール基、又はヘテロ環残基を表し、該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。
nは1〜11の整数を表す。nが2以上である場合、複数のR3およびR4は各々同一でも異なっても良い。
In the formula, R1 to R4 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue, and the alkyl group, the aryl group, or the heterocyclic residue is further substituted. You may have.
n represents an integer of 1 to 11. When n is 2 or more, the plurality of R3 and R4 may be the same or different.

Figure 0006350910
Figure 0006350910

式中、R1〜R4は各々同一でも異なってもよく、水素原子、アルキル基、アリール基、又はヘテロ環残基を表し、該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。
nは1〜11の整数を表す。nが2以上である場合、複数のR3およびR4は各々同一でも異なっても良い。
In the formula, R1 to R4 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue, and the alkyl group, the aryl group, or the heterocyclic residue is further substituted. You may have.
n represents an integer of 1 to 11. When n is 2 or more, the plurality of R3 and R4 may be the same or different.

前記一般式(I)および(II)において、R1〜R4が表すアルキル基としては、直鎖、分岐、環状の何れでもよく、例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の炭素数1〜12の直鎖、分岐または環状のアルキル基が挙げられる。
R1〜R4が表すアリール基としては、フェニル、ナフチル等の6〜10員の単環式または二環式のアリール基が挙げられる。
R1〜R4が表すヘテロ環残基としては、例えばイミダゾリル、オキサゾリル、トリアゾリル、チアゾリル、1,3,4−チアジアゾリル、ピリジル、ピリミジル、ピラジル、フリル、チエニル、ベンゾチアゾリル、ベンゾオキサゾリル、キノリル等の窒素原子、酸素原子または硫黄原子を少なくとも1個以上含む5〜10員の単環式または二環式ヘテロ環残基が挙げられる。
R1〜R4は好ましくは、水素原子、炭素数1〜6のアルキル基、フェニル基であり、より好ましくは水素原子、炭素数1〜4のアルキル基であり、特に好ましくは水素原子である。
該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。更なる置換基は副反応を起こすもので無ければ特に制限されないが、例えばアルキル基、アリール基、ヘテロ環残基が挙げられる。
nは1〜11の整数を表す。好ましくは1〜7の整数であり、より好ましくは2〜5の整数であり、特に好ましくは3である。
In the general formulas (I) and (II), the alkyl group represented by R1 to R4 may be linear, branched, or cyclic. For example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, Examples thereof include linear, branched or cyclic alkyl groups having 1 to 12 carbon atoms such as nonyl, decyl, undecyl, dodecyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
Examples of the aryl group represented by R1 to R4 include 6 to 10-membered monocyclic or bicyclic aryl groups such as phenyl and naphthyl.
Examples of the heterocyclic residue represented by R1 to R4 include nitrogen such as imidazolyl, oxazolyl, triazolyl, thiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyrimidyl, pyrazyl, furyl, thienyl, benzothiazolyl, benzoxazolyl, and quinolyl. Examples thereof include a 5- to 10-membered monocyclic or bicyclic heterocyclic residue containing at least one atom, oxygen atom or sulfur atom.
R1 to R4 are preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and a phenyl group, more preferably a hydrogen atom and an alkyl group having 1 to 4 carbon atoms, and particularly preferably a hydrogen atom.
The alkyl group, the aryl group, or the heterocyclic residue may further have a substituent. The further substituent is not particularly limited as long as it does not cause a side reaction, and examples thereof include an alkyl group, an aryl group, and a heterocyclic residue.
n represents an integer of 1 to 11. Preferably it is an integer of 1-7, More preferably, it is an integer of 2-5, Most preferably, it is 3.

ジアジド誘導体の還元方法も公知の方法で行うことができる(例えば、実験化学講座(第4版)20巻、第6章、丸善刊 等)。
具体的には、白金、ラネーニッケル、パラジウム−炭素(Pd−C)、ルテニウム、Lindlar触媒等を用いる接触還元;トリフェニルホスフィン、ジボラン、スルフィド、水素化ホウ素ナトリウム等を用いる還元が挙げられる。還元方法は任意に選択することができるが、好ましくはトリフェニルホスフィンを用いる還元反応である。
トリフェニルホスフィンを用いる場合、その使用量はジアジド誘導体1molに対し、通常は0.9〜3.0mol、好ましくは1.0〜2.5mol、より好ましくは1.1〜2.0molである。
The reduction method of a diazide derivative can also be performed by a well-known method (For example, Experimental Chemistry Course (4th edition) Volume 20, Chapter 6, Maruzen publication etc.).
Specific examples include catalytic reduction using platinum, Raney nickel, palladium-carbon (Pd-C), ruthenium, Lindlar catalyst, and the like; reduction using triphenylphosphine, diborane, sulfide, sodium borohydride and the like. The reduction method can be arbitrarily selected, but is preferably a reduction reaction using triphenylphosphine.
When triphenylphosphine is used, the amount used is usually 0.9 to 3.0 mol, preferably 1.0 to 2.5 mol, and more preferably 1.1 to 2.0 mol with respect to 1 mol of the diazide derivative.

トリフェニルホスフィンによる還元反応では、有機溶媒と酸水溶液の二層系で行うことが好ましい。用いる有機溶媒は、基質を溶解し、非水溶性であって且つ反応を阻害するものでければ特に制限されない。具体的にはペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、2−メチルドデカン、4−エチルウンデカン、テトラデカン、ペンタデカン、3,3−ジメチルトリデカン、ヘキサデカン、ヘプタデカン、2−メチル−4−エチルテトラデカン等等の脂肪族系溶媒;トルエン、キシレン、スチレン、ベンゼン、フェノール、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、ジフェニルメタン等の芳香族系溶媒;ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジエチルエーテル、メチルシクロペンチルエーテル等のエーテル系溶媒;エチレングリコールジアセテート、エチレングリコールジステアレート、エチレングリコールジアクリレート、ジエチレングリコールジアセテート、ジエチレングリコールジアクリレート等のグリコール系溶剤;1,4−ジヒドロナフタレン、1,2,3,4−テトラヒドロナフタレン、9,10−ジヒドロアントラセン、9,10−ジヒドロフェナントレン、4,5,9,10−テトラヒドロピレン、1,2,3,6,7,8−ヘキサヒドロピレン、ドデカヒドロトリフェニレン等の水素化芳香族系溶媒が挙げられる。
これらの中でも好ましくは芳香族系溶媒、エーテル系溶媒であり、更に好ましくはトルエン、ジイソプロピルエーテル、tert−ブチルメチルエーテルである。
使用する溶媒の量は基質によって異なるが、通常ジアジド誘導体1gに対し4〜10ml、好ましくは5〜8mlである。
The reduction reaction with triphenylphosphine is preferably performed in a two-layer system of an organic solvent and an acid aqueous solution. The organic solvent to be used is not particularly limited as long as it dissolves the substrate, is insoluble in water, and inhibits the reaction. Specifically, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, 2-methyldodecane, 4-ethylundecane, tetradecane, pentadecane, 3,3-dimethyltridecane, hexadecane, heptadecane, 2- Aliphatic solvents such as methyl-4-ethyltetradecane; aromatic solvents such as toluene, xylene, styrene, benzene, phenol, ethylbenzene, diethylbenzene, isopropylbenzene, diphenylmethane; diisopropyl ether, tert-butyl methyl ether, diethyl ether Ether solvents such as methylcyclopentyl ether; ethylene glycol diacetate, ethylene glycol distearate, ethylene glycol diacrylate, diethylene glycol di Glycol solvents such as cetate and diethylene glycol diacrylate; 1,4-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene, 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 4,5,9,10 -Hydrogenated aromatic solvents such as tetrahydropyrene, 1,2,3,6,7,8-hexahydropyrene, dodecahydrotriphenylene and the like.
Among these, aromatic solvents and ether solvents are preferable, and toluene, diisopropyl ether, and tert-butyl methyl ether are more preferable.
The amount of the solvent to be used varies depending on the substrate, but is usually 4 to 10 ml, preferably 5 to 8 ml with respect to 1 g of the diazide derivative.

水溶液として用いる酸としては、付加塩を形成するものであれば特に制限はないが、好ましくは塩酸、硫酸、リン酸等の無機酸であり、より好ましくは塩酸、硫酸である。
用いる酸の量は、ジアジド誘導体に対し、通常0.9〜2.7モル当量、好ましくは1.0〜2.5モル当量、より好ましくは1.2〜2.0モル当量である。
この反応では、上記の酸の他に系内に適量の水を加える。加える水の量は用いる有機溶媒1mlに対し、0.1〜1.5ml、好ましくは0.2〜1.2ml、より好ましくは0.3〜1.0mlである。
反応温度は、通常0〜20℃の範囲であり、好ましくは5〜10℃である。これらの反応は通常24時間以内で終了し、多くの場合8〜20時間で原料の消失が確認される。
The acid used as the aqueous solution is not particularly limited as long as it forms an addition salt, but is preferably an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid, and more preferably hydrochloric acid or sulfuric acid.
The amount of the acid used is usually 0.9 to 2.7 molar equivalents, preferably 1.0 to 2.5 molar equivalents, more preferably 1.2 to 2.0 molar equivalents, relative to the diazide derivative.
In this reaction, an appropriate amount of water is added to the system in addition to the above acid. The amount of water to be added is 0.1 to 1.5 ml, preferably 0.2 to 1.2 ml, more preferably 0.3 to 1.0 ml with respect to 1 ml of the organic solvent used.
The reaction temperature is usually in the range of 0 to 20 ° C, preferably 5 to 10 ° C. These reactions are usually completed within 24 hours, and in many cases, disappearance of raw materials is confirmed in 8 to 20 hours.

還元反応終了後、得られた目的物は分液抽出、次いで濃縮の後処理を行うことが好ましい。この工程で用いる溶媒は前述した芳香族系溶媒またはエーテル系溶媒である。
芳香族系溶媒としては、トルエン、キシレン、スチレン、ベンゼン、フェノール、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、ジフェニルメタン等が挙げられ、トルエンが特に好ましい。
エーテル系溶媒としては、ジイソプロピルエーテル、tert−ブチルメチルエーテル、ジエチルエーテル、メチルシクロペンチルエーテル等が挙げられ、ジイソプロピルエーテル又はtert−ブチルメチルエーテルが特に好ましい。
還元反応時に用いる溶媒と後処理の溶媒は同一でも異なってもよいが、操作性およびコストの面から同一溶媒を用いるのが好ましい。
分液の回数は、通常2〜7回、好ましくは2〜5回である。1回の分液で用いる溶媒の量は、アジドアミン誘導体1gに対し1〜10ml、好ましくは2〜5mlである。
After completion of the reduction reaction, the obtained target product is preferably subjected to separation extraction and then concentration post-treatment. The solvent used in this step is the above-described aromatic solvent or ether solvent.
Examples of the aromatic solvent include toluene, xylene, styrene, benzene, phenol, ethylbenzene, diethylbenzene, isopropylbenzene, diphenylmethane and the like, and toluene is particularly preferable.
Examples of the ether solvent include diisopropyl ether, tert-butyl methyl ether, diethyl ether, methyl cyclopentyl ether, and the like, and diisopropyl ether or tert-butyl methyl ether is particularly preferable.
The solvent used in the reduction reaction and the post-treatment solvent may be the same or different, but the same solvent is preferably used in terms of operability and cost.
The number of times of liquid separation is usually 2 to 7 times, preferably 2 to 5 times. The amount of the solvent used in one liquid separation is 1 to 10 ml, preferably 2 to 5 ml per 1 g of the azidoamine derivative.

分液抽出した有機層は合わせて、減圧濃縮を行うことが好ましい。濃縮の際の減圧度は、通常1.0〜20pKa、好ましくは3.0〜7.0pKaである。また、濃縮の際の温度は通常0〜60℃、好ましくは5〜40℃である。   The separated organic layers are preferably combined and concentrated under reduced pressure. The degree of vacuum during concentration is usually 1.0 to 20 pKa, preferably 3.0 to 7.0 pKa. Moreover, the temperature in the case of concentration is 0-60 degreeC normally, Preferably it is 5-40 degreeC.

次に本発明を実施例を挙げて具体的に説明するが、本発明はこれらに限定されない。
目的物の反応追跡および収率はH−NMR(測定溶媒:DMSO)で、また不純物の有無については高速液体クロマトグラフィー(HPLC)を用い、ピーク面積の比率で含量を分析した。
HPLC測定条件は、カラム:ODS−80TS、溶離液:メタノール/水(V/V=7/3)、緩衝剤:酢酸0.1%、検出器:RI、流量:1.0ml/min、カラム温度:40℃で実施した。
なお、実施例3、6及び7は、それぞれ参考例3、6及び7と読み替えるものとする。

EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these.
The reaction tracking and yield of the target product were analyzed by H 1 -NMR (measuring solvent: DMSO), and the presence or absence of impurities was analyzed by high-performance liquid chromatography (HPLC), and the content was analyzed by the ratio of peak areas.
The HPLC measurement conditions were as follows: column: ODS-80TS, eluent: methanol / water (V / V = 7/3), buffer: 0.1% acetic acid, detector: RI, flow rate: 1.0 ml / min, column Temperature: carried out at 40 ° C.
In addition, Example 3, 6 and 7 shall be read as Reference Example 3, 6 and 7, respectively.

(実施例1 4−アジドブチルアミンの合成)
1,4−ジブロモブタン150.0g(694.7mmol)をジメチルホルムアミド150mlに溶解し、アジ化ナトリウム150.0g(2.31mol)を水450mlに溶解した水溶液をここに滴下し、内温80〜85℃で8時間攪拌した。反応終了後に内温を30℃に冷却し、水375mlとトルエン300mlを添加して、5分間攪拌した後分液した。水層をトルエン300mlで再度抽出し、得られた2つのトルエン層を合わせ、20%塩化ナトリウム水溶液343.7gで洗浄し、1,4−ジアジドブタンのトルエン溶液を得た。
Example 1 Synthesis of 4-azidobutylamine
An aqueous solution in which 150.0 g (694.7 mmol) of 1,4-dibromobutane was dissolved in 150 ml of dimethylformamide, and 150.0 g (2.31 mol) of sodium azide was dissolved in 450 ml of water was added dropwise thereto. Stir at 85 ° C. for 8 hours. After completion of the reaction, the internal temperature was cooled to 30 ° C., 375 ml of water and 300 ml of toluene were added, and the mixture was stirred for 5 minutes and then separated. The aqueous layer was extracted again with 300 ml of toluene, and the two obtained toluene layers were combined and washed with 343.7 g of a 20% aqueous sodium chloride solution to obtain a toluene solution of 1,4-diazidobutane.

次に、この1,4−ジアジドブタンのトルエン溶液全量を内温5〜10℃に冷却し、市販の塩酸107.0g(1.03mol)と水418mlを加え、次いで窒素雰囲気下でトリフェニルホスフィン199.5g(76.1mmol)とトルエン750mlを添加し、窒素雰囲気下のまま12時間反応(還元反応)した。反応液をろ過した後、分液し、得られた水層をトルエン300mlで2回洗浄した。次にこの水層を内温0〜5℃に冷却し、水酸化ナトリウム150.0g(266.6mmol)を水225mlに溶解した水溶液を滴下し、20分攪拌した。トルエン450mlを加えて抽出、分液し、得られた有機層を6.7kPa以上、内温35℃以下で減圧濃縮し、オイル状の目的物65.8gを得た。NMRによる換算収率は83%であった。   Next, the whole toluene solution of 1,4-diazidobutane is cooled to an internal temperature of 5 to 10 ° C., 107.0 g (1.03 mol) of commercially available hydrochloric acid and 418 ml of water are added, and then triphenylphosphine 199 is added under a nitrogen atmosphere. 0.5 g (76.1 mmol) and 750 ml of toluene were added and reacted (reduction reaction) for 12 hours in a nitrogen atmosphere. The reaction solution was filtered and then separated, and the resulting aqueous layer was washed twice with 300 ml of toluene. Next, this aqueous layer was cooled to an internal temperature of 0 to 5 ° C., an aqueous solution in which 150.0 g (266.6 mmol) of sodium hydroxide was dissolved in 225 ml of water was dropped, and the mixture was stirred for 20 minutes. Extraction and liquid separation were performed by adding 450 ml of toluene, and the obtained organic layer was concentrated under reduced pressure at 6.7 kPa or more and an internal temperature of 35 ° C. or less to obtain 65.8 g of an oily target product. The conversion yield by NMR was 83%.

(実施例2)
実施例1で得られたオイル状の目的物(減圧濃縮液)を室温で保管し、不純物の生成率を測定した。
(Example 2)
The oily target product (vacuum concentrate) obtained in Example 1 was stored at room temperature, and the impurity generation rate was measured.

(比較例1〜2 4−アジドブチルアミンの合成)
還元反応の反応溶媒及び還元反応後の抽出溶媒をトルエンからジクロロメタンに変更した他は実施例1と同じ方法で合成し、室温での保管(比較例1)および5℃以下の冷蔵保管(比較例2)を行い、実施例1と同様に不純物の生成率を測定した。
実施例2および比較例1〜2の結果を図1に示す。
(Comparative Examples 1-2 Synthesis of 4-azidobutylamine)
The synthesis was performed in the same manner as in Example 1 except that the reaction solvent for the reduction reaction and the extraction solvent after the reduction reaction were changed from toluene to dichloromethane, and storage at room temperature (Comparative Example 1) and refrigerated storage at 5 ° C. or lower (Comparative Example) 2), and the impurity generation rate was measured in the same manner as in Example 1.
The results of Example 2 and Comparative Examples 1 and 2 are shown in FIG.

図1に示す結果から、ジクロロメタンと比較して、トルエンは室温保存4週間目でもほとんど不純物が生じておらず、経時劣化抑制に効果があることは明らかである。   From the results shown in FIG. 1, it is clear that toluene has little impurities even after 4 weeks of storage at room temperature, and is effective in suppressing deterioration over time as compared with dichloromethane.

(実施例3)
還元反応の反応溶媒及び還元反応後の通出溶媒をトルエンからtert−ブチルメチルエーテル(MTBEと略す)に変更した他は実施例1と同じ方法で合成した。
(Example 3)
The synthesis was performed in the same manner as in Example 1 except that the reaction solvent for the reduction reaction and the outlet solvent after the reduction reaction were changed from toluene to tert-butyl methyl ether (abbreviated as MTBE).

(実施例4〜7、比較例3〜4)
実施例1、3および比較例1で得られた目的物を表1に示す濃度の溶液に調整し、示差走査熱量計(DSC)で発熱量および発熱温度を測定した。
DSC測定条件は、装置:エスアイアイ・ナノテクノロジー製DSC6200、温度プログラム:30〜400℃、容器:Auめっきで実施した。
表1にその結果を示す。
(Examples 4-7, Comparative Examples 3-4)
The objects obtained in Examples 1 and 3 and Comparative Example 1 were adjusted to solutions having the concentrations shown in Table 1, and the calorific value and exothermic temperature were measured with a differential scanning calorimeter (DSC).
The DSC measurement conditions were as follows: DSC6200 manufactured by SII Nano Technology, temperature program: 30 to 400 ° C., container: Au plating.
Table 1 shows the results.

Figure 0006350910
Figure 0006350910

MTBEはtert−ブチルメチルエーテルを表す。
通常の化合物の場合、溶液としての濃度が高いほど爆発性や発熱といった危険性は上昇する。しかし、本発明のアジドアミン誘導体の場合、ジクロロメタン溶液では濃度が低い状態の方がより低い温度で発熱が開始する。これは、濃縮開始前の過剰量のジクロロメタンとアジドアミン誘導体とが反応し、不純物が生成しているためと考えられる。
MTBE represents tert-butyl methyl ether.
In the case of a normal compound, the higher the concentration as a solution, the higher the risk of explosiveness and heat generation. However, in the case of the azidoamine derivative of the present invention, heat generation starts at a lower temperature when the concentration is lower in the dichloromethane solution. This is presumably because an excess amount of dichloromethane before the start of concentration and an azidoamine derivative reacted to generate impurities.

濃度が低い状態で発熱開始温度が下がり、発熱量が上昇していることから、濃縮途中はかなり危険な状態であり、このことからも本発明の方法が危険を回避することが可能であることは明らかである。
本発明は、経時劣化抑制に効果を発揮し、且つ安全性の高いアジドアミンの製造方法であり、工業的スケールでも問題なく目的物を合成可能な、きわめて実用的な製造方法である。
Since the heat generation start temperature decreases and the heat generation amount increases at a low concentration, it is a very dangerous state in the middle of concentration, and from this, the method of the present invention can avoid the danger. Is clear.
The present invention is a method for producing an azidoamine that exhibits an effect of suppressing deterioration over time and has high safety, and is an extremely practical production method capable of synthesizing a target product without any problem even on an industrial scale.

Claims (2)

下記一般式(II)で表されるアジドアミン誘導体を得る工程、
得られた下記一般式(II)で表されるアジドアミン誘導体を、トルエン、キシレン、スチレン、ベンゼン、フェノール、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン及びジフェニルメタンから選ばれる少なくとも1種の芳香族系溶媒を用いて抽出する工程、
を含むアジドアミン誘導体の製造方法。
Figure 0006350910
式中、R1〜R4は各々同一でも異なってもよく、水素原子、アルキル基、アリール基、又はヘテロ環残基を表す。該アルキル基、該アリール基、又は該ヘテロ環残基は更に置換基を有していても良い。nは1〜11の整数を表す。nが2以上である場合、複数のR3およびR4は各々同一でも異なっても良い。
A step of obtaining an azidoamine derivative represented by the following general formula (II):
The obtained azidoamine derivative represented by the following general formula (II) is extracted using at least one aromatic solvent selected from toluene, xylene, styrene, benzene, phenol, ethylbenzene, diethylbenzene, isopropylbenzene and diphenylmethane. The process of
A process for producing an azidoamine derivative comprising:
Figure 0006350910
In the formula, R1 to R4 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic residue. The alkyl group, the aryl group, or the heterocyclic residue may further have a substituent. n represents an integer of 1 to 11. When n is 2 or more, the plurality of R3 and R4 may be the same or different.
前記芳香族系溶媒がトルエンである請求項1に記載のアジドアミン誘導体の製造方法。   The method for producing an azidoamine derivative according to claim 1, wherein the aromatic solvent is toluene.
JP2014139180A 2014-07-04 2014-07-04 Method for producing azidoamine derivative Active JP6350910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139180A JP6350910B2 (en) 2014-07-04 2014-07-04 Method for producing azidoamine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139180A JP6350910B2 (en) 2014-07-04 2014-07-04 Method for producing azidoamine derivative

Publications (3)

Publication Number Publication Date
JP2016017038A JP2016017038A (en) 2016-02-01
JP2016017038A5 JP2016017038A5 (en) 2017-07-27
JP6350910B2 true JP6350910B2 (en) 2018-07-04

Family

ID=55232521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139180A Active JP6350910B2 (en) 2014-07-04 2014-07-04 Method for producing azidoamine derivative

Country Status (1)

Country Link
JP (1) JP6350910B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811930A (en) * 1981-07-15 1983-01-22 Hitachi Ltd Radiation sensitive composition and pattern forming method using it
FR2510560A1 (en) * 1981-07-29 1983-02-04 Synthelabo PROCESS FOR THE PREPARATION OF 4-AMINO BUTYRAMIDE
JP3489319B2 (en) * 1996-03-12 2004-01-19 住友化学工業株式会社 Carboxylic acid derivatives, their production and use
JP4173678B2 (en) * 2002-04-05 2008-10-29 高砂香料工業株式会社 Process for producing optically active 3-azidocarboxylic acid ester

Also Published As

Publication number Publication date
JP2016017038A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
CN103265420B (en) A kind of preparation method of aromatic diketone compound
JP6565685B2 (en) Method for producing cyclobutanetetracarboxylic acid derivative
Du et al. Intramolecular redox reaction for the synthesis of N-aryl pyrroles catalyzed by Lewis acids
Annen et al. Nitrosobenzene as a hydrogen acceptor in rhodium catalysed dehydrogenation reactions of alcohols: synthesis of aldehydes and azoxybenzenes
JP6350910B2 (en) Method for producing azidoamine derivative
JPWO2015108168A1 (en) Method for producing cyclobutanetetracarboxylic acid derivative
JP6651854B2 (en) Method for producing cyclobutanetetracarboxylic acid derivative
JP2015042621A (en) Method of producing vinylbenzyl(fluoroalkyl) ether
US9896408B2 (en) Method for producing azido-amine derivative
JP6427787B2 (en) Method for producing dehydrolinalyl acetate (II)
EP3165519A1 (en) Method for producing azido amine derivative
Sha et al. Catalytic intramolecular hydroamination of aminoallenes using titanium and tantalum complexes of sterically encumbered chiral sulfonamides
CN109415304B (en) Method for producing iron complex and method for producing ester compound using iron complex
KR101554539B1 (en) Development of Method for Amide Bond Formation via Metal-Free Aerobic Oxidative Amination of Aldehydes
JP3981588B2 (en) Method for producing adamantane polyols
CN108727345B (en) Preparation method of imidazole ring intermediate
CA3059585A1 (en) Process for the preparation of deuterated ethanol from d2o
JP2014169230A (en) Method for producing alkylene polyamine
JP7158717B2 (en) Electrophilic azidating or diazotizing agents
JPWO2011037073A1 (en) Method for producing trans cyclic polyphenol compound
JP5233675B2 (en) Process for producing optically active 2- (2&#39;-piperidinyl) acetate
JP6543824B2 (en) Process for producing dehydro linalyl acetate (I)
EP2708536A1 (en) 5-sec-butyl-2-(2,4-dimethyl-cyclohex-3-enyl)-5-methyl-[1,3]dioxane and process for making the same
JP6638934B2 (en) Method for producing furfural or furfural derivative
JP2016108252A (en) Method for producing 1-alkoxy-2-alkanol compound

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180522

R150 Certificate of patent or registration of utility model

Ref document number: 6350910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250