JP6350459B2 - Refrigerant passage connecting member - Google Patents

Refrigerant passage connecting member Download PDF

Info

Publication number
JP6350459B2
JP6350459B2 JP2015174862A JP2015174862A JP6350459B2 JP 6350459 B2 JP6350459 B2 JP 6350459B2 JP 2015174862 A JP2015174862 A JP 2015174862A JP 2015174862 A JP2015174862 A JP 2015174862A JP 6350459 B2 JP6350459 B2 JP 6350459B2
Authority
JP
Japan
Prior art keywords
case
refrigerant
refrigerant passage
pipe
connecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015174862A
Other languages
Japanese (ja)
Other versions
JP2017051062A (en
Inventor
啓太郎 石川
啓太郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015174862A priority Critical patent/JP6350459B2/en
Publication of JP2017051062A publication Critical patent/JP2017051062A/en
Application granted granted Critical
Publication of JP6350459B2 publication Critical patent/JP6350459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本開示は、冷却器から延びる第1冷媒通路に接続されると共に、第2冷媒通路に連通する連結管が接続される冷媒通路の連結部材に関する。   The present disclosure relates to a connecting member of a refrigerant passage connected to a first refrigerant passage extending from a cooler and connected to a connecting pipe communicating with a second refrigerant passage.

従来、車両に搭載されるインバータとして、それぞれスイッチング素子(半導体素子)を収容した複数のパワーカードと一体化された積層冷却ユニットを収容する第1筐体と、冷媒通路(第2冷媒通路)および当該冷媒通路に連通する開口(第2開口)とを有し、第1筐体の底面に固定される第2筐体とを含むものが知られている(例えば、特許文献1参照)。このインバータの第1筐体に形成された貫通孔には、第1連結管(ブッシュ)が挿通され、第1連結管は、積層冷却器から延びる剛体のチューブ(第1冷媒通路)に軸シール部材を介して接続される。また、第1連結管のフランジと第1筐体との間には、面シール部材が配置され、第1連結管のフランジは、第1筐体にボルトにより固定される。また、第1筐体には、第1連結管の貫通孔(冷媒流通孔)のチューブとは反対側の端部により開口(第1開口)が画成される。更に、ブッシュにより画成される第1筐体の開口(第1開口)には、第2筐体にボルトにより固定されるU字状の第2連結管の一端が軸シール部材を介して接続され、第2筐体の開口(第2開口)には、第2連結管の他端が面シール部材を介して接続される。そして、積層冷却器の冷媒入口には、第1筐体の外部に配置された冷媒ポンプから冷却媒体が供給される。積層冷却器を流通する冷却媒体は、パワーカードから熱を奪って昇温すると共に、上記チューブ、第1および第2連結管を介して第2筐体の冷媒通路に流入する。第2筐体の冷媒通路を流通する冷却媒体は、第1筐体から熱を奪って昇温し、第2筐体の外部に配置されたラジエータに流入する。   Conventionally, as an inverter mounted on a vehicle, a first housing that houses a laminated cooling unit integrated with a plurality of power cards each containing a switching element (semiconductor element), a refrigerant passage (second refrigerant passage), and An apparatus including an opening (second opening) communicating with the refrigerant passage and including a second casing fixed to the bottom surface of the first casing is known (see, for example, Patent Document 1). A first connecting pipe (bush) is inserted through the through hole formed in the first casing of the inverter, and the first connecting pipe is shaft-sealed to a rigid tube (first refrigerant passage) extending from the stacked cooler. It is connected via a member. A face seal member is disposed between the flange of the first connecting pipe and the first casing, and the flange of the first connecting pipe is fixed to the first casing with a bolt. In addition, an opening (first opening) is defined in the first housing by an end portion of the first connecting pipe opposite to the tube of the through hole (refrigerant circulation hole). Further, one end of a U-shaped second connecting pipe fixed to the second casing by a bolt is connected to the opening (first opening) of the first casing defined by the bush via a shaft seal member. Then, the other end of the second connecting pipe is connected to the opening (second opening) of the second housing via a face seal member. And a cooling medium is supplied to the refrigerant | coolant inlet_port | entrance of a laminated cooler from the refrigerant | coolant pump arrange | positioned outside the 1st housing | casing. The cooling medium flowing through the stacked cooler takes heat from the power card and raises the temperature, and flows into the refrigerant passage of the second housing through the tube and the first and second connecting pipes. The cooling medium flowing through the refrigerant passage of the second casing takes up heat from the first casing and rises in temperature, and flows into a radiator disposed outside the second casing.

特開2014−102017号公報JP 2014-102017 A

上記従来のインバータでは、第1連結管の外径が第1筐体の貫通孔の内径よりも寸法誤差と同程度の距離Saだけ小さく定められており、第1連結管は、当該貫通孔の開口面内方向に距離Saだけ移動することができる。しかしながら、冷却器側のチューブが第1筐体の貫通孔に対して傾いている場合、当該チューブの傾きを寸法誤差と同程度の距離Saによって吸収するのは困難である。このため、このような場合には、第1連結管に対してチューブを差し込みながら荷重を加えてチューブの傾きを矯正しなければならず、Oリングといった軸シール部材の潰し代が周方向においてバラついてしまう。更に、軸シール部材の潰し代の周方向におけるバラつきが生じてしまうと、第1連結管のチューブに対する押し込み荷重を大きくせざるを得ないので、当該押し込み荷重により積層冷却器が第1連結管の押し込み方向に変形してしまうおそれがある。また、上述のような第1連結管を第1筐体に対して精度よく位置決めするために、第1連結管に位置決めピンを設けると共に第1筐体に位置決めピンと係合する孔部を設けることも考えられる。しかしながら、このような構成を採用した場合、第1連結管の大型化や筐体の肉厚の増加、チューブの軸長の増加等を招いてしまうと共に、位置決めピンを孔部に嵌め込むために第1連結管を回転させた際に軸シール部材が捩れてしまうおそれがある。   In the conventional inverter, the outer diameter of the first connecting pipe is determined to be smaller than the inner diameter of the through hole of the first housing by a distance Sa that is about the same as the dimensional error, and the first connecting pipe is connected to the through hole. The distance Sa can be moved in the direction in the opening plane. However, if the tube on the cooler side is inclined with respect to the through hole of the first housing, it is difficult to absorb the inclination of the tube by a distance Sa that is about the same as the dimensional error. For this reason, in such a case, it is necessary to correct the inclination of the tube by applying a load while inserting the tube into the first connecting pipe, and the crushing margin of the shaft seal member such as an O-ring varies in the circumferential direction. I'll follow you. Furthermore, if the shaft seal member has a variation in the circumferential direction of the crushing margin, the pushing load on the tube of the first connecting pipe must be increased. There is a risk of deformation in the pushing direction. In addition, in order to accurately position the first connecting pipe as described above with respect to the first housing, a positioning pin is provided in the first connecting pipe and a hole that engages with the positioning pin is provided in the first housing. Is also possible. However, when such a configuration is adopted, the first connecting pipe is enlarged, the thickness of the housing is increased, the axial length of the tube is increased, and the positioning pin is fitted into the hole. When the first connecting pipe is rotated, the shaft seal member may be twisted.

そこで、本開示の発明は、冷却器から延びる第1冷媒通路との間に介設される軸シール部材の潰し代を均一化すると共に、ケースに対して容易に位置決めすることができる冷媒通路の連結部材の提供を主目的とする。   Therefore, the invention of the present disclosure makes uniform the crushing margin of the shaft seal member interposed between the first refrigerant passage extending from the cooler and makes it possible to easily position the refrigerant passage with respect to the case. The main purpose is to provide a connecting member.

本開示の冷媒通路の連結部材は、冷却器を収容するケースに固定されるフランジ部と、前記フランジ部から延出された筒状部と、前記フランジ部および前記筒状部を貫通する冷媒流通孔とを有し、前記冷却器から延びる第1冷媒通路に接続されると共に、第2冷媒通路に連通する連結管が接続される冷媒通路の連結部材において、前記筒状部は、外周面の少なくとも一部が前記ケースに形成された貫通孔の内周面に接するように形成された根元部と、前記根元部よりも細く、前記ケースの前記貫通孔に挿通されて軸シール部材を介して前記第1冷媒通路に接続される先端部と、前記根元部と前記先端部とを繋ぐ傾斜面を有する中間部とを含むものである。   The connecting member of the refrigerant passage according to the present disclosure includes a flange portion fixed to a case that houses a cooler, a cylindrical portion that extends from the flange portion, and a refrigerant flow that passes through the flange portion and the cylindrical portion. In the connecting member of the refrigerant passage having a hole and connected to the first refrigerant passage extending from the cooler and connected to the connecting pipe communicating with the second refrigerant passage, the cylindrical portion is formed on the outer peripheral surface. A root portion formed so that at least a part thereof is in contact with an inner peripheral surface of a through hole formed in the case, and is thinner than the root portion, and is inserted into the through hole of the case via a shaft seal member. A tip portion connected to the first refrigerant passage and an intermediate portion having an inclined surface connecting the root portion and the tip portion are included.

この連結部材をケースに装着するに際しては、筒状部の先端部をケースの貫通孔に挿通し、軸シール部材を介して第1冷媒通路に接続する。この際、筒状部の先端部が根元部よりも細いことから、当該先端部(および中間部)の外周面と貫通孔の内周面との間隔は充分に確保される。従って、連結部材と第1冷媒通路とを接続する際に、連結部材および第1冷媒通路のケースの貫通孔の径方向における移動が許容されるので、連結部材と第1冷媒通路とにより押し潰される軸シール部材の反力により両者を調心すると共に、軸シール部材の潰し代を周方向の全体において概ね均一にすることが可能となる。そして、軸シール部材の潰し代を周方向の全体において概ね均一にすることで、連結部材の第1冷媒通路に対する押し込み荷重を小さくすることができるので、当該押し込み荷重により冷却器が連結部材の押し込み方向に変形するのを抑制することが可能となる。更に、連結部材が冷却器側に押し込まれ、筒状部の根元部の少なくとも一部がケースの貫通孔の内周面に接すると、連結部材の全体がケースに対して位置決めされることになる。これにより、連結部材に位置決めピン等を別途設けると共に、ケースに当該位置決めピンと係合する孔部を設けることなく、連結部材をケースに対して容易に位置決めすることができる。この結果、連結部材と冷却器から延びる第1冷媒通路との間に介設される軸シール部材の潰し代を均一化すると共に、当該連結部材をケースに対して容易に位置決めすることが可能となる。   When the connecting member is attached to the case, the distal end portion of the tubular portion is inserted into the through hole of the case and connected to the first refrigerant passage via the shaft seal member. At this time, since the distal end portion of the cylindrical portion is thinner than the root portion, a sufficient distance is ensured between the outer peripheral surface of the distal end portion (and the intermediate portion) and the inner peripheral surface of the through hole. Accordingly, when the connecting member and the first refrigerant passage are connected, the connecting member and the first refrigerant passage are allowed to move in the radial direction of the through hole of the case, and thus are crushed by the connecting member and the first refrigerant passage. It is possible to align both by the reaction force of the shaft seal member, and to make the crushing margin of the shaft seal member substantially uniform in the entire circumferential direction. And since the pushing load with respect to the 1st refrigerant path of a connecting member can be made small by making uniform the crushing margin of a shaft seal member in the whole circumferential direction, the cooler pushes in a connecting member with the said pushing load. It is possible to suppress deformation in the direction. Further, when the connecting member is pushed into the cooler side and at least a part of the base portion of the cylindrical portion is in contact with the inner peripheral surface of the through hole of the case, the entire connecting member is positioned with respect to the case. . Thereby, while providing a positioning pin etc. separately in a connection member, a connection member can be easily positioned with respect to a case, without providing the hole part engaged with the said positioning pin in a case. As a result, the crushing margin of the shaft seal member interposed between the connecting member and the first refrigerant passage extending from the cooler can be made uniform, and the connecting member can be easily positioned with respect to the case. Become.

また、前記先端部の軸長は、前記根元部の軸長よりも長くてもよい。これにより、筒状部の軸方向における先端部と第1冷媒通路との重なり長さを充分に確保して、根元部により連結部材をケースに対して位置決めする際に、連結部材と第1冷媒通路との位置関係のズレ(第1冷媒通路に対する連結部材の曲り)を良好に抑制することが可能となる。   Moreover, the axial length of the said front-end | tip part may be longer than the axial length of the said base part. Thereby, when the overlapping length of the front-end | tip part and 1st refrigerant path in the axial direction of a cylindrical part is fully ensured, and positioning a connection member with respect to a case by a root part, a connection member and a 1st refrigerant | coolant Deviation in the positional relationship with the passage (bending of the connecting member with respect to the first refrigerant passage) can be satisfactorily suppressed.

更に、前記フランジ部および前記筒状部は、樹脂製であってもよい。これにより、ケース外に露出する連結部材の水分等に対する耐久性を向上させると共に、当該連結部材を軽量化することが可能となる。   Furthermore, the flange part and the cylindrical part may be made of resin. As a result, the durability of the connecting member exposed to the outside of the case with respect to moisture and the like can be improved, and the connecting member can be reduced in weight.

また、前記フランジ部と前記ケースとの間には、面シール部材が配置されてもよく、前記フランジ部は、それぞれ前記ケースに締結される複数の締結部を有してもよい。これにより、フランジ部をケースに対して傾かないように押し付けて当該フランジ部とケースとの間の面シール部材のシール性を良好に確保し、連結部材のフランジ部とケースとの隙間を介した流体の流通を良好に規制することが可能となる。   A face seal member may be disposed between the flange portion and the case, and the flange portion may include a plurality of fastening portions fastened to the case. Accordingly, the flange portion is pressed against the case so as not to be inclined, and the sealing performance of the surface seal member between the flange portion and the case is ensured, and the gap between the flange portion of the connecting member and the case is interposed. It becomes possible to regulate the flow of the fluid satisfactorily.

更に、前記冷却器は、電動機を駆動するインバータに含まれる電子部品を冷却してもよく、前記第2冷媒通路は、前記ケースに形成されてもよい。これにより、インバータを冷却器および第2冷媒通路を流通する冷却媒体の双方により冷却することが可能となる。   Furthermore, the cooler may cool electronic components included in an inverter that drives an electric motor, and the second refrigerant passage may be formed in the case. As a result, the inverter can be cooled by both the cooler and the cooling medium flowing through the second refrigerant passage.

本開示の冷媒通路の連結部材を含む電力制御装置を示す概略構成図である。It is a schematic structure figure showing an electric power control device containing a connection member of a refrigerant passage of this indication. 図1に示す電力制御装置の要部拡大断面図である。It is a principal part expanded sectional view of the electric power control apparatus shown in FIG. 本開示の連結部材の正面図および側面図である。It is the front view and side view of the connection member of this indication. 本開示の連結部材に連結される連結管の正面図および側面図である。It is the front view and side view of a connection pipe connected with the connection member of this indication. 本開示の連結部材のケースに対する組付手順を示す断面図である。It is sectional drawing which shows the assembly | attachment procedure with respect to the case of the connection member of this indication. 本開示の連結部材のケースに対する組付手順を示す断面図である。It is sectional drawing which shows the assembly | attachment procedure with respect to the case of the connection member of this indication. 図1に示す電力制御装置の要部拡大図である。It is a principal part enlarged view of the electric power control apparatus shown in FIG.

次に、図面を参照しながら本開示の発明を実施するための形態について説明する。   Next, embodiments for carrying out the invention of the present disclosure will be described with reference to the drawings.

図1は、本開示の冷媒通路の連結部材を含む電力制御装置(以下、「PCU」という)1を示す概略構成図であり、図2は、PCU1の要部拡大断面図である。図1および図2に示すPCU1は、図示しないハイブリッド自動車や電気自動車に搭載される同期発電電動機(交流電動機)を駆動するためのものであり、例えば車両の前部に設けられたコンパートメント内にエンジンおよび/または電動機と共に配置される。PCU1は、例えばリチウムイオン二次電池あるいはニッケル水素二次電池である図示しないバッテリからの電力を昇圧する電圧変換モジュール(昇圧コンバータ)や、コンデンサモジュール、電動機を駆動するインバータと、これらの電圧変換モジュールやコンデンサモジュール、インバータ等を収容するケース2とを含む。   FIG. 1 is a schematic configuration diagram illustrating a power control device (hereinafter referred to as “PCU”) 1 including a refrigerant passage connecting member according to the present disclosure, and FIG. 2 is an enlarged cross-sectional view of a main part of the PCU 1. The PCU 1 shown in FIGS. 1 and 2 is for driving a synchronous generator motor (AC motor) mounted on a hybrid vehicle or an electric vehicle (not shown). For example, an engine is installed in a compartment provided at the front of the vehicle. And / or arranged with an electric motor. The PCU 1 includes a voltage conversion module (boost converter) that boosts power from a battery (not shown) such as a lithium ion secondary battery or a nickel hydride secondary battery, a capacitor module, an inverter that drives an electric motor, and these voltage conversion modules. And a case 2 that houses a capacitor module, an inverter, and the like.

ケース2は、図1および図2に示すように、PCU1の車載時に上側に位置する第1ケース21と、PCU1の車載時に下側に位置する第2ケース22とを含む。本実施形態において、第1および第2ケース21,22は、例えばアルミニウム合金等の金属を鋳造することにより形成されている。第1ケース21は、電圧変換モジュールやコンデンサモジュール、インバータ等に加えて、インバータや電圧変換モジュールに含まれる電子部品としての複数の半導体モジュールMを冷却するための積層冷却器3を収容する。第2ケース22は、第1ケース21の下部に固定され、その内部には、第1および第2ケース21,22の接合面に沿ってU字状に延びる冷媒通路23が形成されている。なお、図1には、説明をわかりやすくするために、冷媒通路23を図中上下方向に沿ってU字状に延びるものとして示す。   As shown in FIGS. 1 and 2, the case 2 includes a first case 21 located on the upper side when the PCU 1 is mounted and a second case 22 positioned on the lower side when the PCU 1 is mounted. In the present embodiment, the first and second cases 21 and 22 are formed by casting a metal such as an aluminum alloy. The first case 21 houses the stacked cooler 3 for cooling a plurality of semiconductor modules M as electronic components included in the inverter and the voltage conversion module, in addition to the voltage conversion module, the capacitor module, the inverter, and the like. The second case 22 is fixed to a lower portion of the first case 21, and a refrigerant passage 23 extending in a U shape along the joining surface of the first and second cases 21 and 22 is formed therein. In FIG. 1, for ease of explanation, the refrigerant passage 23 is shown as extending in a U shape along the vertical direction in the drawing.

積層冷却器3は、図1および図2に示すように、高い熱伝導性を有する銅やアルミニウム合金といった金属により中空かつ扁平に形成された複数の冷却器30を含む。複数の冷却器30は、インバータや電圧変換モジュールを構成する複数の半導体モジュールMと交互に並ぶように配設(積層)される。すなわち、1つの半導体モジュールMに対しては、当該半導体モジュールMの表面または裏面に当接するように2つの冷却器30が配設される。また、各冷却器30の幅方向における両端部には、貫通孔が形成されている。各冷却器30の幅方向における一側の貫通孔は、隣り合う冷却器30の幅方向における一側の貫通孔に連通管30pを介して接続され、各冷却器30の幅方向における他側の貫通孔は、隣り合う冷却器30の他側の貫通孔に連通管30pを介して接続される。   As shown in FIGS. 1 and 2, the stacked cooler 3 includes a plurality of coolers 30 that are formed hollow and flat with a metal such as copper or aluminum alloy having high thermal conductivity. The plurality of coolers 30 are arranged (laminated) so as to be alternately arranged with a plurality of semiconductor modules M constituting the inverter and the voltage conversion module. That is, with respect to one semiconductor module M, two coolers 30 are disposed so as to contact the front surface or the back surface of the semiconductor module M. Further, through holes are formed at both end portions in the width direction of each cooler 30. A through hole on one side in the width direction of each cooler 30 is connected to a through hole on one side in the width direction of adjacent coolers 30 via a communication pipe 30p, and on the other side in the width direction of each cooler 30. The through hole is connected to the through hole on the other side of the adjacent cooler 30 via the communication pipe 30p.

更に、図2において最も左側に位置する冷却器30には、図示しない冷媒流入管と、第1ケース21内に配置される管状の第1冷媒通路としての冷媒流出管31とが接続される。本実施形態において、冷媒流入管および冷媒流出管31は、冷却器30と同一の材料によって形成されている。また、積層冷却器3、冷媒流入管および冷媒流出管31は、PCU1の車載時における上下方向に全体として若干移動可能となるように第1ケース21内に取り付けられる。積層冷却器3(冷却器30)に接続される冷媒流入管には、図示しない配管等を介して冷媒ポンプ32の吐出口が接続される。また、冷媒流出管31は、図1および図2に示すように、第1ケース21に装着される第1連結管(連結部材としてのブッシュ)4と、当該第1連結管4に接続される第2連結管(連結部材)5とを介して第2ケース22に形成された冷媒通路(第2冷媒通路)23の一端に接続される。そして、冷媒通路23の一端は、第2ケース22の側壁部に形成された第2開口22o(図2参照)に連通し、冷媒通路23の他端は、図示しない配管を介してラジエータ33の冷媒入口に連通する。ラジエータ33の冷媒出口は、図示しない配管を介してリザーバタンク34に接続される。   Furthermore, a refrigerant inflow pipe (not shown) and a refrigerant outflow pipe 31 as a tubular first refrigerant passage disposed in the first case 21 are connected to the cooler 30 located on the leftmost side in FIG. In the present embodiment, the refrigerant inflow pipe and the refrigerant outflow pipe 31 are formed of the same material as the cooler 30. The laminated cooler 3, the refrigerant inflow pipe, and the refrigerant outflow pipe 31 are attached in the first case 21 so as to be slightly movable as a whole in the vertical direction when the PCU 1 is mounted on the vehicle. A discharge port of the refrigerant pump 32 is connected to the refrigerant inflow pipe connected to the stacked cooler 3 (cooler 30) via a pipe (not shown). Further, as shown in FIGS. 1 and 2, the refrigerant outflow pipe 31 is connected to a first connection pipe (bush as a connection member) 4 attached to the first case 21 and the first connection pipe 4. It is connected to one end of a refrigerant passage (second refrigerant passage) 23 formed in the second case 22 via a second connection pipe (connection member) 5. One end of the refrigerant passage 23 communicates with a second opening 22o (see FIG. 2) formed in the side wall portion of the second case 22, and the other end of the refrigerant passage 23 is connected to the radiator 33 via a pipe (not shown). It communicates with the refrigerant inlet. The refrigerant outlet of the radiator 33 is connected to the reservoir tank 34 via a pipe (not shown).

冷媒ポンプ32は、例えばエチレングリコール系の不凍液が混入されたLLC(ロングライフクーラント)といった冷却媒体をリザーバタンク34から吸入して上記冷媒流入管に圧送する。冷媒流入管を介してそれに最も近接する冷却器30に供給された冷却媒体は、隣り合う冷却器30内に順次流入し、各冷却器30内を流通する冷却媒体は、当該冷却器30に当接する半導体モジュールM等から熱を奪って昇温する。各冷却器30から流出する冷却媒体は、冷媒流出管31に流入し、第1および第2連結管4,5を介して第2ケース22の冷媒通路23に流入する。冷媒通路23を流通する冷却媒体は、第1ケース21側の熱を奪って昇温した後、ラジエータ33に流入し、ラジエータ33で冷却された冷却媒体は、リザーバタンク34へと戻される。これにより、複数の冷却器30内に冷却媒体を循環供給して各冷却器30により複数の半導体モジュールM等を冷却すると共に、第2ケース22の冷媒通路23を流通する冷却媒体により、第1ケース21の底部を介して当該第1ケース21内に収容された例えば電圧変換モジュールのリアクトルやコンデンサモジュール等を冷却することが可能となる。   The refrigerant pump 32 sucks a cooling medium such as an LLC (long life coolant) mixed with an ethylene glycol antifreeze from the reservoir tank 34 and pumps it to the refrigerant inflow pipe. The cooling medium supplied to the cooler 30 closest to it via the refrigerant inflow pipe sequentially flows into the adjacent coolers 30, and the cooling medium flowing through each cooler 30 hits the cooler 30. The temperature is increased by removing heat from the semiconductor module M or the like in contact therewith. The cooling medium flowing out from each cooler 30 flows into the refrigerant outflow pipe 31 and flows into the refrigerant passage 23 of the second case 22 via the first and second connecting pipes 4 and 5. The cooling medium flowing through the refrigerant passage 23 takes the heat on the first case 21 side and rises in temperature, and then flows into the radiator 33, and the cooling medium cooled by the radiator 33 is returned to the reservoir tank 34. Accordingly, the cooling medium is circulated and supplied into the plurality of coolers 30 to cool the plurality of semiconductor modules M and the like by the respective coolers 30, and the cooling medium flowing through the refrigerant passage 23 of the second case 22 is used to For example, a reactor of the voltage conversion module, a capacitor module, or the like housed in the first case 21 can be cooled via the bottom of the case 21.

図2および図3に示すように、第1連結管4は、積層冷却器3を収容する第1ケース21に固定されるフランジ部40と、フランジ部40から延出された円筒状の筒状部41と、フランジ部40および筒状部41を貫通する冷媒流通孔42とを有する。本実施形態において、第1連結管4は、樹脂製であり、フランジ部40および筒状部41は、樹脂により一体に成形される。ただし、第1連結管4は、例えば金属により形成されてもよく、ケース2と同一の材料により形成されてもよい。   As shown in FIGS. 2 and 3, the first connecting pipe 4 includes a flange portion 40 that is fixed to the first case 21 that houses the stacked cooler 3, and a cylindrical tube that extends from the flange portion 40. A portion 41 and a coolant circulation hole 42 penetrating the flange portion 40 and the tubular portion 41. In the present embodiment, the first connecting pipe 4 is made of resin, and the flange portion 40 and the cylindrical portion 41 are integrally formed of resin. However, the 1st connection pipe 4 may be formed, for example with a metal, and may be formed with the same material as the case 2. FIG.

フランジ部40の筒状部41側の端面(内面)には、面シール部材としてのOリング45が配置される環状のシールリング溝40gが筒状部41を包囲するように形成されている。なお、本明細書において、「面シール部材」とは、それぞれ流体の流通路(孔)を有する2つの部材の端面の間に配置されて当該2つの部材同士の隙間を封止するシール部材をいう。また、フランジ部40には、シールリング溝40gを介して当該シールリング溝40gの径方向に対向するように2つの締結部40c(図3参照)が形成されている。各締結部40cは、ボルト孔を有し、当該ボルト孔に挿通されると共に第1ケース21に形成されたネジ孔に螺合される図示しないボルトを介して当該第1ケース21に締結される。更に、図3に示すように、フランジ部40の図中下部には、図中下方に向かうにつれてフランジ部40の筒状部41から離間するように傾斜した傾斜面40sを有するテーパ部40tが形成されている。   On the end surface (inner surface) of the flange portion 40 on the tubular portion 41 side, an annular seal ring groove 40g in which an O-ring 45 as a surface seal member is disposed is formed so as to surround the tubular portion 41. In this specification, the “face seal member” is a seal member that is disposed between the end faces of two members each having a fluid flow passage (hole) and seals a gap between the two members. Say. Further, two fastening portions 40c (see FIG. 3) are formed in the flange portion 40 so as to face each other in the radial direction of the seal ring groove 40g via the seal ring groove 40g. Each fastening portion 40 c has a bolt hole, and is fastened to the first case 21 via a bolt (not shown) that is inserted into the bolt hole and screwed into a screw hole formed in the first case 21. . Further, as shown in FIG. 3, a tapered portion 40t having an inclined surface 40s inclined so as to be separated from the tubular portion 41 of the flange portion 40 as it goes downward in the drawing is formed in the lower portion of the flange portion 40 in the drawing. Has been.

第1連結管4の筒状部41は、フランジ部40側の根元部41r(図3参照)と、第1ケース21に形成された貫通孔(円孔)21hに挿通されて冷媒流出管31に接続される先端部41tと、根元部41rと先端部41tとを繋ぐ傾斜面41s(図2および図3参照)を有する中間部41mとを含む。筒状部41の根元部41rは、当該筒状部41の径方向に沿って部分的に拡径されており、冷媒流通孔42を介して径方向に対向する一対の拡径部41e(図3参照)を有する。本実施形態において、各拡径部41eの外周面は、第1ケース21の貫通孔21hの内周面に接触可能となるように、例えば、当該貫通孔21hの内径よりも僅かに小さい曲率半径を有する円柱面状に形成されている。また、根元部41rの2つの拡径部41eを繋ぐ部分の外周面は、例えば、拡径部41eの曲率半径よりも小さい短径を有する楕円柱面状に形成されている。   The tubular portion 41 of the first connecting pipe 4 is inserted into a root portion 41r (see FIG. 3) on the flange portion 40 side and a through hole (circular hole) 21h formed in the first case 21, and the refrigerant outflow pipe 31 is inserted. And a middle part 41m having an inclined surface 41s (see FIGS. 2 and 3) connecting the base part 41r and the tip part 41t. The root portion 41r of the cylindrical portion 41 is partially enlarged in diameter along the radial direction of the cylindrical portion 41, and a pair of enlarged diameter portions 41e (see FIG. 3). In the present embodiment, for example, the radius of curvature is slightly smaller than the inner diameter of the through hole 21h so that the outer peripheral surface of each enlarged diameter portion 41e can contact the inner peripheral surface of the through hole 21h of the first case 21. It is formed in the cylindrical surface shape which has. Moreover, the outer peripheral surface of the part which connects the two enlarged diameter parts 41e of the base part 41r is formed in the elliptical columnar surface shape which has a short diameter smaller than the curvature radius of the enlarged diameter part 41e, for example.

図2に示すように、筒状部41の先端部41tは、根元部41rすなわち第1ケース21の貫通孔21hの内径よりも細く形成されている。従って、中間部41mも根元部41rとの境界を除いて当該根元部41rよりも細くなる。また、先端部41tの内周面には、軸シール部材としてのOリング46が配置される環状のシールリング溝41gが形成されている。なお、本明細書において、「軸シール部材」とは、管材の外周面と当該管材を包囲する部材(他の管材あるいは孔を有する部材)の内周面との間に配置されて管材と当該管材を包囲する部材との隙間を封止するシール部材をいう。更に、先端部41tの軸長Ltは、根元部41rの軸長Lr(および中間部41mの軸長)よりも長く定められている(図3参照)。また、図2に示すように、先端部41t側の冷媒流通孔42の内径は、上記冷媒流出管31の外径よりも僅かに大きく定められており、冷媒流通孔42のフランジ部40側の端部は、その内径が先端部41t側の内径よりも大きくなるように拡径されている。   As shown in FIG. 2, the tip portion 41 t of the tubular portion 41 is formed to be narrower than the root portion 41 r, that is, the inner diameter of the through hole 21 h of the first case 21. Accordingly, the intermediate portion 41m is also thinner than the root portion 41r except for the boundary with the root portion 41r. Further, an annular seal ring groove 41g in which an O-ring 46 as a shaft seal member is disposed is formed on the inner peripheral surface of the tip portion 41t. In the present specification, the “shaft seal member” means a pipe member and the pipe member disposed between the outer peripheral surface of the pipe member and the inner peripheral surface of a member (other pipe member or member having a hole) surrounding the pipe member. A seal member that seals a gap with a member that surrounds the tube material. Furthermore, the axial length Lt of the tip portion 41t is determined to be longer than the axial length Lr of the root portion 41r (and the axial length of the intermediate portion 41m) (see FIG. 3). Further, as shown in FIG. 2, the inner diameter of the refrigerant flow hole 42 on the tip end 41 t side is set to be slightly larger than the outer diameter of the refrigerant outflow pipe 31. The end portion is expanded so that the inner diameter is larger than the inner diameter on the tip end portion 41t side.

第2連結管5は、本体50と、当該本体50に接合されるカバー部材59とを含む。本体50およびカバー部材59は、何れも樹脂製(本実施形態では、第1連結管4を構成する樹脂と同一の樹脂製)である。ただし、第2連結管5は、例えば金属により形成されてもよく、ケース2と同一の材料により形成されてもよい。図2および図4に示すように、本体50は、短尺円筒状の第1端部51と、当該第1端部51と概ね平行に延在する短尺円筒状の第2端部52と、第1および第2端部51,52に連通する開口部50oとを有する。カバー部材59は、図2に示すように、開口部50oを塞ぐように本体50の当該開口部50oを画成する壁部の端面に溶着され、本体50とカバー部材59とにより第1および第2端部51,52を連通させる連通部53が形成される。これにより、U字状の第2連結管5を樹脂により容易に構成することが可能となる。   The second connecting pipe 5 includes a main body 50 and a cover member 59 joined to the main body 50. The main body 50 and the cover member 59 are both made of resin (in the present embodiment, the same resin as the resin constituting the first connecting pipe 4). However, the 2nd connecting pipe 5 may be formed, for example with a metal, and may be formed with the same material as the case 2. FIG. As shown in FIGS. 2 and 4, the main body 50 includes a short cylindrical first end 51, a short cylindrical second end 52 extending substantially parallel to the first end 51, And an opening 50 o communicating with the first and second ends 51, 52. As shown in FIG. 2, the cover member 59 is welded to the end surface of the wall portion defining the opening 50 o of the main body 50 so as to close the opening 50 o, and the first and first cover members 59 are covered by the main body 50 and the cover member 59. A communication portion 53 that connects the two end portions 51 and 52 is formed. Thereby, it becomes possible to comprise the U-shaped 2nd connection pipe 5 easily with resin.

第1端部51の外径は、冷媒流通孔42のフランジ部40側の端部の内径よりも僅かに小さく定められている。また、第1端部51の先端部は、図2に示すように、縮径されており、縮径された第1端部51の先端部には、軸シール部材としてのOリング47が装着される。更に、第2端部52の端面には、面シール部材としてのOリング48が配置される環状のシールリング溝(シール支持部)52gが第2端部52の開口を包囲するように形成されている。加えて、第2端部52の外周面の図4における上部には、図4に示すように、当該第2端部52の周方向に延びる水分受容溝52rが形成されている。   The outer diameter of the first end portion 51 is set to be slightly smaller than the inner diameter of the end portion of the refrigerant flow hole 42 on the flange portion 40 side. Further, as shown in FIG. 2, the distal end portion of the first end portion 51 is reduced in diameter, and an O-ring 47 as a shaft seal member is attached to the distal end portion of the reduced first end portion 51. Is done. Further, an annular seal ring groove (seal support portion) 52g in which an O-ring 48 as a face seal member is disposed is formed on the end surface of the second end portion 52 so as to surround the opening of the second end portion 52. ing. In addition, as shown in FIG. 4, a moisture receiving groove 52 r extending in the circumferential direction of the second end 52 is formed in the upper part of the outer peripheral surface of the second end 52 in FIG. 4.

また、第2連結管5の本体50は、1つの第1締結部54と、2つの第2締結部55とを有する。図4に示すように、第1締結部54は、第1端部51よりも第2端部52から図4における上下方向に離間するように形成され、第1端部51を基準として第2端部52の反対側に位置する。第1締結部54は、ボルト孔54hを有し、当該ボルト孔54hに挿通されると共に第1ケース21に形成されたネジ孔に螺合される図示しないボルトを介して当該第1ケース21に締結される。2つの第2締結部55は、第2端部52の周囲に当該第2端部52を介して径方向に対向するように本体50に形成される。各第2締結部55は、ボルト孔55hを有し、当該ボルト孔55hに挿通されると共に第2ケース22に形成されたネジ孔に螺合される図示しないボルトを介して当該第2ケース22に締結される。   The main body 50 of the second connecting pipe 5 has one first fastening portion 54 and two second fastening portions 55. As shown in FIG. 4, the first fastening portion 54 is formed so as to be separated from the second end portion 52 in the up-down direction in FIG. 4 rather than the first end portion 51, and the second end portion is based on the first end portion 51. Located on the opposite side of the end 52. The first fastening portion 54 has a bolt hole 54 h, and is inserted into the first case 21 through a bolt (not shown) that is inserted into the bolt hole 54 h and screwed into a screw hole formed in the first case 21. It is concluded. The two second fastening portions 55 are formed in the main body 50 so as to oppose each other in the radial direction around the second end portion 52 via the second end portion 52. Each of the second fastening portions 55 has a bolt hole 55h, and is inserted through the bolt hole 55h and screwed into a screw hole formed in the second case 22, via the bolt (not shown). To be concluded.

更に、第1および第2締結部54,55は、図4に示すように、第1締結部54の締結点すなわちボルト孔54hの中心と、2つの第2締結部55の締結点すなわちボルト孔55hの中心を結ぶ直線との間隔を“Lc”とし、第1端部51すなわちOリング47の中心と、第2端部52すなわちOリング48の中心との間隔を“Ls”としたときに、Lc>Lsを満たすように形成されている。また、本実施形態の第2連結管5では、図4に示すように、本体50の第1端部51と第1締結部54との間、すなわち開口部50oを画成する本体50の壁部の外側に位置するA部が肉薄かつ細幅に形成されている。   Further, as shown in FIG. 4, the first and second fastening portions 54 and 55 include a fastening point of the first fastening portion 54, that is, the center of the bolt hole 54 h, and a fastening point of the two second fastening portions 55, that is, the bolt holes. When the distance from the straight line connecting the centers of 55 h is “Lc” and the distance between the first end 51, that is, the center of the O-ring 47, and the second end 52, that is, the center of the O-ring 48 is “Ls”. , Lc> Ls. Moreover, in the 2nd connection pipe 5 of this embodiment, as shown in FIG. 4, between the 1st end part 51 and the 1st fastening part 54 of the main body 50, ie, the wall of the main body 50 which defines the opening part 50o. A portion located outside the portion is formed thin and narrow.

次に、第1および第2連結管4,5のケース2に対する組付手順について説明する。   Next, the assembly procedure for the case 2 of the first and second connecting pipes 4 and 5 will be described.

上述のように構成される第1連結管4をケース2の第1ケース21に装着するに際しては、第1連結管4の根元部41rの拡径部41eが例えばPCU1の車載時における上下方向と概ね直交する方向に延在する状態で、第1連結管4の筒状部41の先端部41tを第1ケース21の貫通孔21hに挿通し、積層冷却器3の冷媒流出管31を第1連結管4の先端部41tおよびOリング46内に差し込んでいく。この際、筒状部41の先端部41tや中間部41mが根元部41rよりも細いことから、図5に示すように、先端部41tの外周面や中間部41mの傾斜面41sと貫通孔21hの内周面との間隔は充分に確保される。従って、第1連結管4と冷媒流出管31とを接続する際に、冷媒流出管31がPCU1の車載時における上下方向に若干傾いていたとしても、第1連結管4および冷媒流出管31の貫通孔21hの径方向における移動が許容されるので、第1連結管4(先端部41t)と冷媒流出管31とにより押し潰されるOリング46の反力により両者を調心すると共に、Oリング46の潰し代を周方向の全体において概ね均一にすることが可能となる。そして、Oリング46の潰し代を周方向の全体において概ね均一にすることで、第1連結管4の冷媒流出管31に対する押し込み荷重を小さくすることができるので、当該押し込み荷重により積層冷却器3の複数の冷却器30が第1連結管4の押し込み方向に変形するのを抑制することが可能となる。   When the first connecting pipe 4 configured as described above is attached to the first case 21 of the case 2, the enlarged diameter portion 41 e of the base portion 41 r of the first connecting pipe 4 is, for example, the vertical direction when the PCU 1 is mounted on the vehicle. The tip 41t of the cylindrical portion 41 of the first connecting pipe 4 is inserted into the through hole 21h of the first case 21 in a state extending in a substantially orthogonal direction, and the refrigerant outflow pipe 31 of the stacked cooler 3 is passed through the first It is inserted into the tip 41t of the connecting tube 4 and the O-ring 46. At this time, since the tip part 41t and the intermediate part 41m of the cylindrical part 41 are thinner than the root part 41r, as shown in FIG. 5, the outer peripheral surface of the tip part 41t, the inclined surface 41s of the intermediate part 41m and the through hole 21h. A sufficient distance from the inner peripheral surface is ensured. Therefore, when connecting the first connecting pipe 4 and the refrigerant outflow pipe 31, even if the refrigerant outflow pipe 31 is slightly inclined in the vertical direction when the PCU 1 is mounted, the first connecting pipe 4 and the refrigerant outflow pipe 31 Since the movement in the radial direction of the through hole 21h is allowed, both are aligned by the reaction force of the O-ring 46 that is crushed by the first connecting pipe 4 (tip portion 41t) and the refrigerant outflow pipe 31, and the O-ring The crushing allowance of 46 can be made substantially uniform in the entire circumferential direction. And since the pushing load with respect to the refrigerant | coolant outflow pipe | tube 31 of the 1st connection pipe | tube 4 can be made small by making the crushing margin of the O-ring 46 substantially uniform in the whole circumferential direction, the lamination | stacking cooler 3 is reduced by the said pushing load. It is possible to suppress the plurality of coolers 30 from being deformed in the pushing direction of the first connecting pipe 4.

冷媒流出管31の傾きを矯正しつつ第1連結管4を積層冷却器3側に押し込んでいくのに伴って、図6に示すように、筒状部41の根元部41rの拡径部41eが貫通孔21hの内周面に接すると、第1連結管4の全体が第1ケース21に対して位置決めされることになる。これにより、第1連結管4に位置決めピン等を別途設けると共に、第1ケース21に当該位置決めピンと係合する孔部を設けることなく、第1連結管4を第1ケース21に対して容易に位置決めすることができる。また、先端部41tの軸長Ltを根元部41rの軸長Lrよりも長くすることで、筒状部41の軸方向における先端部41tと冷媒流出管31との重なり長さを充分に確保して、根元部41rの拡径部41eにより第1連結管4を第1ケース21に対して位置決めする際に、第1連結管4と冷媒流出管31との位置関係のズレ(冷媒流出管31に対する第1連結管4の曲り)を良好に抑制することが可能となる。更に、冷媒流出管31が傾いていたとしても、先端部41tと根元部41rとの間の中間部41mの傾斜面41sが貫通孔21hの縁部に当たることで、根元部41rの拡径部41eを貫通孔21hの内周面にスムースに当接させることができる。加えて、第1連結管4では、根元部41rの拡径部41e以外の部分が第1ケース21の貫通孔21hよりも縮径されているので、拡径部41eが貫通孔21hに嵌まり込む際に、根元部41rすなわち第1連結管4の貫通孔21hに対する若干の移動を許容して冷媒流出管31の上記上下方向の傾きを吸収することが可能となる。この結果、第1連結管4と積層冷却器3から延びる冷媒流出管31との間に介設されるOリング46(軸シール部材)の潰し代を均一化すると共に、当該第1連結管4を第1ケース21に対して容易に位置決めすることができる。   As the first connecting pipe 4 is pushed into the laminated cooler 3 while correcting the inclination of the refrigerant outflow pipe 31, as shown in FIG. 6, the diameter-expanded portion 41e of the root portion 41r of the tubular portion 41 is obtained. Is in contact with the inner peripheral surface of the through hole 21h, the entire first connecting pipe 4 is positioned with respect to the first case 21. Thereby, while providing the positioning pin etc. in the 1st connection pipe 4 separately, without providing the hole which engages with the said positioning pin in the 1st case 21, the 1st connection pipe 4 is easily with respect to the 1st case 21. Can be positioned. Further, by making the axial length Lt of the tip portion 41t longer than the axial length Lr of the root portion 41r, a sufficient overlap length between the tip portion 41t and the refrigerant outflow pipe 31 in the axial direction of the tubular portion 41 is ensured. When the first connecting pipe 4 is positioned with respect to the first case 21 by the enlarged diameter portion 41e of the root portion 41r, the positional relationship between the first connecting pipe 4 and the refrigerant outflow pipe 31 (refrigerant outflow pipe 31). It is possible to satisfactorily suppress the bending of the first connecting pipe 4 with respect to. Furthermore, even if the refrigerant outflow pipe 31 is inclined, the inclined surface 41s of the intermediate portion 41m between the tip portion 41t and the root portion 41r hits the edge of the through hole 21h, so that the diameter-expanded portion 41e of the root portion 41r. Can be smoothly brought into contact with the inner peripheral surface of the through-hole 21h. In addition, in the first connecting pipe 4, since the portion other than the enlarged diameter portion 41e of the base portion 41r is reduced in diameter than the through hole 21h of the first case 21, the enlarged diameter portion 41e is fitted into the through hole 21h. It is possible to absorb the inclination of the refrigerant outflow pipe 31 in the vertical direction by allowing a slight movement of the root portion 41r, that is, the through hole 21h of the first connecting pipe 4 when the refrigerant is inserted. As a result, the crushing allowance of the O-ring 46 (shaft seal member) interposed between the first connecting pipe 4 and the refrigerant outflow pipe 31 extending from the stacked cooler 3 is made uniform, and the first connecting pipe 4 Can be easily positioned with respect to the first case 21.

根元部41rにより第1連結管4が第1ケース21に対して位置決めされた後、必要に応じて、第1連結管4を多少回転させてフランジ部40の2つの締結部40cの位置を調整し、各締結部40cのボルト孔にボルトを挿通すると共に各ボルトを第1ケース21のネジ孔に螺合して第1連結管4を第1ケース21に固定(締結)する。これにより、第1ケース21には、第1連結管4の冷媒流通孔42の冷媒流出管31とは反対側の端部(主に拡径された部分)によって、第2ケース22の第2開口22oからPCU1の車載時における上下方向(一方向)に間隔をおいて第1開口21oが画成されることになる。また、第1連結管4では、シールリング溝40gを介して対向するように2つの締結部40cがフランジ部40に設けられることから、当該フランジ部40を第1ケース21に対して傾かないように押し付けることができる。従って、フランジ部40と第1ケース21との間のOリング45(面シール部材)のシール性を良好に確保して、第1連結管4と第1ケース21との隙間を介した流体すなわち外部からの水分や内部からの冷却媒体等の流通を規制することが可能となる。   After the first connecting pipe 4 is positioned with respect to the first case 21 by the root portion 41r, the first connecting pipe 4 is slightly rotated as necessary to adjust the positions of the two fastening portions 40c of the flange portion 40. Then, the bolts are inserted into the bolt holes of the fastening portions 40 c and the bolts are screwed into the screw holes of the first case 21 to fix (fasten) the first connecting pipe 4 to the first case 21. As a result, the second case 22 has a second end portion (mainly a diameter-enlarged portion) on the first case 21, which is opposite to the refrigerant outflow pipe 31 of the refrigerant flow hole 42 of the first connection pipe 4. The first opening 21o is defined from the opening 22o at an interval in the vertical direction (one direction) when the PCU 1 is mounted on the vehicle. Moreover, in the 1st connection pipe 4, since the two fastening parts 40c are provided in the flange part 40 so that it may oppose via the seal ring groove 40g, the said flange part 40 does not incline with respect to the 1st case 21. Can be pressed against. Therefore, the O-ring 45 (face seal member) between the flange portion 40 and the first case 21 has a good sealing property, and the fluid through the gap between the first connecting pipe 4 and the first case 21, that is, It becomes possible to regulate the distribution of moisture from the outside and a cooling medium from the inside.

第1連結管4が第1ケース21に装着された後、第2連結管5の第1端部51を第1ケース21の第1開口21o(第1連結管4の冷媒流通孔42の端部)に差し込むと共に、第2端部52の端面を第2開口22oの周囲の第2ケース22の表面に当接させる。更に、第2連結管5の1つの第1締結部54のボルト孔54hと、2つの第2締結部55のボルト孔55hとにボルトを挿通すると共に、各ボルトを第1および第2ケース21,22の対応するネジ孔に螺合し、第2連結管5をケース2に固定(締結)する。これにより、第1端部51が軸シール部材としてのOリング47を介して冷媒流出管31に連通する第1開口21oすなわち第1連結管4に接続されると共に、第2端部52が面シール部材としてのOリング48を介して冷媒通路23に連通する第2開口22oに接続される。   After the first connecting pipe 4 is attached to the first case 21, the first end 51 of the second connecting pipe 5 is connected to the first opening 21 o of the first case 21 (the end of the refrigerant flow hole 42 of the first connecting pipe 4. And the end surface of the second end portion 52 is brought into contact with the surface of the second case 22 around the second opening 22o. Further, the bolts are inserted into the bolt holes 54h of one first fastening portion 54 of the second connecting pipe 5 and the bolt holes 55h of two second fastening portions 55, and each bolt is connected to the first and second cases 21. , 22 and the second connecting pipe 5 is fixed (fastened) to the case 2. Thus, the first end 51 is connected to the first opening 21o communicating with the refrigerant outflow pipe 31 via the O-ring 47 as a shaft seal member, that is, the first connecting pipe 4, and the second end 52 is a surface. It is connected to the second opening 22o communicating with the refrigerant passage 23 through an O-ring 48 as a seal member.

本実施形態では、第1端部51の先端部(縮径された部分)の外周面と、第1開口21oの内周面との間に軸シール部材としてのOリング47が配置され、当該Oリング47により第1および第2連結管4,5間の隙間が封止される。従って、第1端部51側の第1締結部54を1つにしても(第1締結部54を複数設けなくても)、Oリング47のシール性を良好に確保することができる。また、第2連結管5には、シールリング溝52gを介して対向するように2つの第2締結部55が設けられることから、第2端部52を第2ケース22に対して傾かないように押し付けることができる。従って、第2端部52の端面と第2ケース22との間のOリング48(面シール部材)のシール性を良好に確保することが可能となる。   In the present embodiment, an O-ring 47 as a shaft seal member is disposed between the outer peripheral surface of the tip end portion (the reduced diameter portion) of the first end portion 51 and the inner peripheral surface of the first opening 21o. A gap between the first and second connecting pipes 4 and 5 is sealed by the O-ring 47. Therefore, even if the number of the first fastening portions 54 on the first end portion 51 side is one (even if a plurality of first fastening portions 54 are not provided), the sealing performance of the O-ring 47 can be ensured satisfactorily. Further, since the second connecting pipe 5 is provided with two second fastening portions 55 so as to face each other through the seal ring groove 52g, the second end portion 52 is not inclined with respect to the second case 22. Can be pressed against. Accordingly, it is possible to satisfactorily ensure the sealing performance of the O-ring 48 (surface seal member) between the end surface of the second end portion 52 and the second case 22.

さて、上述のように構成されるPCU1では、金属製のケース2と樹脂製の第2連結管5とで線膨張係数(熱膨張係数)が異なることから、PCU1の周囲温度に応じたケース2(第1および第2ケース21,22)の膨縮量と、周囲温度に応じた第2連結管5の膨縮量とが異なることになる。このため、PCU1では、それぞれ第1または第2ケース21,22に追従する第1および第2締結部54,55により、第1締結部54と2つの第2締結部55との間の部分の変形が制限されることになる。これを踏まえて、第2連結管5では、第2締結部55が第2端部52の周辺に形成されるのに対して、図2に示すように、第1締結部54が第1端部51よりも2つの第2端部から一方向すなわちPCU1の車載時における上下方向に離間するように形成される。   Now, in the PCU 1 configured as described above, since the linear expansion coefficient (thermal expansion coefficient) differs between the metal case 2 and the resin-made second connecting pipe 5, the case 2 corresponding to the ambient temperature of the PCU 1 is used. The expansion / contraction amount of the (first and second cases 21 and 22) and the expansion / contraction amount of the second connecting pipe 5 according to the ambient temperature are different. For this reason, in the PCU 1, the first and second fastening portions 54 and 55 that follow the first or second cases 21 and 22, respectively, have a portion between the first fastening portion 54 and the two second fastening portions 55. Deformation will be limited. Based on this, in the second connecting pipe 5, the second fastening portion 55 is formed around the second end portion 52, whereas, as shown in FIG. It is formed so as to be spaced apart from the two second ends of the part 51 in one direction, that is, in the vertical direction when the PCU 1 is mounted.

これにより、第1締結部54の締結点と第2締結部55の締結点との当該上下方向に沿った間隔Lcすなわち周囲温度に応じた第2連結管5の変形が許容される範囲を拡げることが可能となる。従って、第2連結管5の変形が制限されることで本体50とカバー部材59との溶着部の応力が高まるのを良好に抑制することができる。この結果、ケース2に締結される第1および第2締結部54,55を有する第2連結管5の耐久性をより向上させることが可能となる。更に、第2連結管5では、本体50の第1端部51と第1締結部54との間に位置するA部が肉薄かつ細幅に形成される。これにより、周囲温度に応じた第2連結管5の変形を肉薄かつ細幅の変形吸収部としてのA部で良好に吸収することができる。この結果、本体50とカバー部材59との溶着部の応力が高まるのを極めて良好に抑制して、第2連結管5の耐久性をより向上させることが可能となる。   Thereby, the range where the deformation | transformation of the 2nd connecting pipe 5 according to the space | interval Lc along the said up-down direction of the fastening point of the 1st fastening part 54 and the fastening point of the 2nd fastening part 55, ie, ambient temperature, is accept | permitted. It becomes possible. Therefore, it is possible to satisfactorily suppress an increase in stress at the welded portion between the main body 50 and the cover member 59 by restricting the deformation of the second connecting pipe 5. As a result, the durability of the second connecting pipe 5 having the first and second fastening portions 54 and 55 fastened to the case 2 can be further improved. Furthermore, in the 2nd connection pipe 5, the A part located between the 1st end part 51 of the main body 50 and the 1st fastening part 54 is formed thinly and narrowly. Thereby, the deformation | transformation of the 2nd connecting pipe 5 according to ambient temperature can be favorably absorbed by A part as a thin and thin deformation | transformation absorption part. As a result, it is possible to suppress the increase in stress at the welded portion between the main body 50 and the cover member 59 very well, and to further improve the durability of the second connecting pipe 5.

また、PCU1を搭載した車両の走行に際して、PCU1が配置されるコンパートメント内には、砂、泥等を含む水分や、路面の氷雪を溶かすために撒かれた塩が溶融した水分等が車輪より掻き上げられて入り込むことがある。そして、PCU1の周辺に入り込んだ水分が第1連結管4や第1および第2ケース21,22の表面を伝って第2開口22o側のOリング48(面シール部材)の周辺に達し、そこで滞留してしまうと、当該Oリング48の周辺で第2ケース22が腐食され、第2ケース22の肉やせによりOリング48のシール性が損なわれてしまうおそれがある。このため、PCU1の第1連結管4には、図7に示すように、第2端部52すなわちOリング48の上方に位置すると共に下方に向かうにつれて第2ケース22の表面から離間するように傾斜した傾斜面40sを有するテーパ部40tが設けられている。   Further, when the vehicle equipped with the PCU 1 travels, the compartment in which the PCU 1 is disposed is scraped from the wheels by water containing sand, mud, etc., or water melted by salt that has been sown to melt the snow and ice on the road surface. It may be raised and get in. Then, moisture that has entered the periphery of the PCU 1 travels along the surfaces of the first connecting pipe 4 and the first and second cases 21 and 22 to reach the periphery of the O-ring 48 (face seal member) on the second opening 22o side. If it stays, the second case 22 is corroded around the O-ring 48, and the thinness of the second case 22 may damage the sealing performance of the O-ring 48. For this reason, as shown in FIG. 7, the first connecting pipe 4 of the PCU 1 is located above the second end 52, that is, the O-ring 48, and away from the surface of the second case 22 as it goes downward. A tapered portion 40t having an inclined surface 40s is provided.

これにより、第1連結管4の周辺の水分がフランジ部40の表面を伝って流下したとしても、流下した水分は、テーパ部40tの存在により、第2ケース22の表面(図7におけるX部)に達することなく、フランジ部40の縁部から下方へと滴下する。従って、フランジ部40の表面を流下する水分が第2ケース22の表面を伝って第2開口22oやOリング48に向けて流れるのを抑制することが可能となる。これにより、砂や泥、塩分等を含む水分が第2開口22o側のOリング48の周辺に流入しないようにして、第2ケース22がOリング48の周辺で水分によるダメージを受けてしまうのを良好に抑制することができる。この結果、第1連結管4の下方に配置されると共に第2連結管5が接続される第2開口22oの周辺における第2ケース22の耐久性を向上させて、当該第2ケース22と第2連結管5との間に配置されるOリング48(面シール部材)のシール性を良好に確保することが可能となる。   Thereby, even if the water | moisture content of the circumference | surroundings of the 1st connecting pipe 4 flows down along the surface of the flange part 40, the water | moisture content which flowed down is the surface (X part in FIG. 7) by presence of the taper part 40t. ) And drops downward from the edge of the flange 40. Therefore, it is possible to suppress the water flowing down the surface of the flange portion 40 from flowing toward the second opening 22o and the O-ring 48 along the surface of the second case 22. This prevents moisture containing sand, mud, salt, etc. from flowing into the periphery of the O-ring 48 on the second opening 22 o side, and the second case 22 is damaged by moisture around the O-ring 48. Can be suppressed satisfactorily. As a result, the durability of the second case 22 in the vicinity of the second opening 22o that is disposed below the first connecting pipe 4 and to which the second connecting pipe 5 is connected is improved. It becomes possible to ensure a good sealing property of the O-ring 48 (face seal member) disposed between the two connecting pipes 5.

また、第2端部52の外周面の上部には、図4および図7に示すように、周方向に延びる水分受容溝52rが形成されている。これにより、上方、すなわち第1連結管4側から流下する水分を第2端部52の水分受容溝52rに集めると共に、第2端部52の外周面を伝わせて下方へと流下させることができる。この結果、砂や泥、塩分等を含む水分が第2開口22o側のOリング48の周辺に流入するのをより一層良好に抑制することが可能となる。   Further, as shown in FIGS. 4 and 7, a moisture receiving groove 52 r extending in the circumferential direction is formed in the upper part of the outer peripheral surface of the second end portion 52. Thereby, the water flowing down from the upper side, that is, the first connecting pipe 4 side is collected in the moisture receiving groove 52r of the second end 52, and is allowed to flow downward along the outer peripheral surface of the second end 52. it can. As a result, it becomes possible to more effectively suppress the water containing sand, mud, salt and the like from flowing into the vicinity of the O-ring 48 on the second opening 22o side.

以上説明したように、PCU1の冷媒通路の連結部材である第1連結管4は、積層冷却器3から延びる冷媒流出管31(第1冷媒通路)に接続されると共に、冷媒通路23(第2冷媒通路)に連通する第2連結管5が接続されるものである。かかる第1連結管4は、積層冷却器3を収容する第1ケース21に固定されるフランジ部40と、フランジ部40から延出された筒状部41と、フランジ部40および筒状部41を貫通する冷媒流通孔42とを有する。そして、筒状部41は、外周面の少なくとも一部すなわち拡径部41eが第1ケース21に形成された貫通孔21hの内周面に接するように形成された根元部41rと、根元部41rよりも細く、第1ケース21の貫通孔21hに挿通されて軸シール部材としてのOリング46を介して冷媒流出管31に接続される先端部41tと、根元部41rと先端部41tとを繋ぐ傾斜面41sを有する中間部41mとを含む。   As described above, the first connecting pipe 4 that is the connecting member of the refrigerant passage of the PCU 1 is connected to the refrigerant outflow pipe 31 (first refrigerant passage) extending from the stacked cooler 3 and the refrigerant passage 23 (second refrigerant passage 2). The second connecting pipe 5 communicating with the refrigerant passage) is connected. The first connecting pipe 4 includes a flange portion 40 that is fixed to the first case 21 that houses the laminated cooler 3, a cylindrical portion 41 that extends from the flange portion 40, and the flange portion 40 and the cylindrical portion 41. And a coolant circulation hole 42 penetrating through the same. The cylindrical portion 41 includes a root portion 41r formed so that at least a part of the outer peripheral surface, that is, the enlarged diameter portion 41e is in contact with the inner peripheral surface of the through hole 21h formed in the first case 21, and a root portion 41r. The tip 41t, which is inserted into the through hole 21h of the first case 21 and connected to the refrigerant outlet pipe 31 via the O-ring 46 serving as a shaft seal member, is connected to the base 41r and the tip 41t. An intermediate portion 41m having an inclined surface 41s.

これにより、第1連結管4と冷媒流出管31とを接続する際に、第1連結管4および冷媒流出管31の貫通孔21hの径方向における移動が許容されるので、第1連結管4と冷媒流出管31とにより押し潰されるOリング46の反力により両者を調心すると共に、Oリング46の潰し代を周方向の全体において概ね均一にすることが可能となる。また、Oリング46の潰し代を周方向の全体において概ね均一にすることで、第1連結管4の冷媒流出管31に対する押し込み荷重を小さくすることができるので、当該押し込み荷重により積層冷却器3が第1連結管4の押し込み方向に変形するのを抑制することが可能となる。更に、筒状部41の根元部41rの拡径部41eが貫通孔21hの内周面に接すると、第1連結管4の全体が第1ケースに対して位置決めされることになる。これにより、第1連結管4に位置決めピン等を別途設けると共に、第1ケース21に当該位置決めピンと係合する孔部を設けることなく、第1連結管4を第1ケース21に対して容易に位置決めすることができる。この結果、第1連結管4と積層冷却器3から延びる冷媒流出管31との間に介設されるOリング46の潰し代を均一化すると共に、当該第1連結管4を第1ケース21に対して容易に位置決めすることが可能となる。なお、上記実施形態において、筒状部41の根元部41rは、冷媒流通孔42を介して対向する一対の拡径部41eを有するが、これに限られるものではない。すなわち、根元部41rは、その外周面の全体が貫通孔21hの内周面に接するように形成されてもよい。   Thereby, when connecting the 1st connection pipe 4 and the refrigerant | coolant outflow pipe 31, the movement in the radial direction of the through-hole 21h of the 1st connection pipe 4 and the refrigerant | coolant outflow pipe 31 is accept | permitted, Therefore The 1st connection pipe 4 And the reaction force of the O-ring 46 that is crushed by the refrigerant outflow pipe 31, both can be aligned, and the crushing margin of the O-ring 46 can be made substantially uniform in the entire circumferential direction. Moreover, since the pushing load with respect to the refrigerant | coolant outflow pipe | tube 31 of the 1st connection pipe | tube 4 can be made small by making the crushing margin of the O-ring 46 substantially uniform in the whole circumferential direction, the lamination | stacking cooler 3 can be reduced with the said pushing load. Can be prevented from being deformed in the pushing direction of the first connecting pipe 4. Further, when the enlarged diameter portion 41e of the root portion 41r of the tubular portion 41 is in contact with the inner peripheral surface of the through hole 21h, the entire first connecting pipe 4 is positioned with respect to the first case. Thereby, while providing the positioning pin etc. in the 1st connection pipe 4 separately, without providing the hole which engages with the said positioning pin in the 1st case 21, the 1st connection pipe 4 is easily with respect to the 1st case 21. Can be positioned. As a result, the crushing allowance of the O-ring 46 interposed between the first connecting pipe 4 and the refrigerant outflow pipe 31 extending from the stacked cooler 3 is made uniform, and the first connecting pipe 4 is connected to the first case 21. It becomes possible to position with respect to easily. In addition, in the said embodiment, although the root part 41r of the cylindrical part 41 has a pair of enlarged diameter part 41e which opposes via the refrigerant | coolant circulation hole 42, it is not restricted to this. That is, the root portion 41r may be formed such that the entire outer peripheral surface thereof is in contact with the inner peripheral surface of the through hole 21h.

また、上記実施形態において、先端部41tの軸長Ltは、根元部41rの軸長Lrよりも長く定められる。これにより、筒状部41の軸方向における先端部41tと冷媒流出管31との重なり長さを充分に確保して、根元部41rの拡径部41eにより第1連結管4を第1ケース21に対して位置決めする際に、第1連結管4と冷媒流出管31との位置関係のズレ(冷媒流出管31に対する第1連結管4の曲り)を良好に抑制することが可能となる。   In the above embodiment, the axial length Lt of the tip portion 41t is determined to be longer than the axial length Lr of the root portion 41r. Thereby, the overlap length of the front-end | tip part 41t and the refrigerant | coolant outflow pipe | tube 31 in the axial direction of the cylindrical part 41 is ensured enough, and the 1st connection pipe 4 is connected to the 1st case 21 by the enlarged diameter part 41e of the root part 41r. When positioning with respect to the refrigerant, the positional relationship between the first connecting pipe 4 and the refrigerant outflow pipe 31 (the bending of the first connecting pipe 4 with respect to the refrigerant outflow pipe 31) can be satisfactorily suppressed.

更に、上記実施形態のように、フランジ部40および筒状部41すなわち第1連結管4を樹脂により形成すれば、第1ケース21(ケース2)外に露出する第1連結管4の水分等に対する耐久性を向上させると共に、当該第1連結管4を軽量化することが可能となる。また、上記実施形態において、第1連結管4のフランジ部40と第1ケース21との間には、面シール部材としてのOリング45が配置され、フランジ部40には、それぞれ第1ケース21に締結される2つの締結部40cが設けられる。これにより、フランジ部40を第1ケース21に対して傾かないように押し付けて当該フランジ部40と第1ケース21との間のOリング45のシール性を良好に確保し、第1連結管4のフランジ部40と第1ケース21との隙間を介した流体の流通を良好に規制することが可能となる。ただし、締結部40cは、フランジ部40に1つのみ設けられてもよく、シールリング溝40gの周囲に3つ以上設けられてもよい。   Furthermore, if the flange part 40 and the cylindrical part 41, ie, the 1st connection pipe 4, are formed with resin like the above-mentioned embodiment, the moisture etc. of the 1st connection pipe 4 exposed outside the 1st case 21 (case 2) etc. As a result, the first connecting pipe 4 can be reduced in weight. Moreover, in the said embodiment, O-ring 45 as a surface seal member is arrange | positioned between the flange part 40 of the 1st connection pipe 4, and the 1st case 21, and the 1st case 21 is each set to the flange part 40, respectively. Two fastening portions 40c fastened to are provided. As a result, the flange portion 40 is pressed against the first case 21 so as not to incline, thereby ensuring a good sealing property of the O-ring 45 between the flange portion 40 and the first case 21, and the first connecting pipe 4. It is possible to satisfactorily regulate the fluid flow through the gap between the flange portion 40 and the first case 21. However, only one fastening portion 40c may be provided on the flange portion 40, or three or more fastening portions 40c may be provided around the seal ring groove 40g.

また、上記実施形態において、積層冷却器3は、電動機を駆動するインバータに含まれる電子部品としての半導体モジュールMを冷却し、冷媒通路23は、第2ケース22に形成される。これにより、インバータを積層冷却器3および冷媒通路23を流通する冷却媒体の双方により冷却することが可能となる。ただし、第1連結管4は、冷媒通路に接続されると共に他の冷媒通路に連通する第2連結管5が接続されるものであればよく、その適用対象は、上述のようなPCU1に限られるものではない。すなわち、第1連結管4は、例えば車載バッテリを冷却するための2つの冷媒通路を連結するのに用いられてもよい。更に、第1および第2連結管4,5と共に用いられる軸シール部材および面シール部材は、上述のようなOリングに限られるものではなく、例えばDリングといったシール部材であってもよい。   In the above embodiment, the stacked cooler 3 cools the semiconductor module M as an electronic component included in the inverter that drives the electric motor, and the refrigerant passage 23 is formed in the second case 22. As a result, the inverter can be cooled by both the stacked cooler 3 and the cooling medium flowing through the refrigerant passage 23. However, the 1st connection pipe 4 should just be connected to the refrigerant path and the 2nd connection pipe 5 connected to other refrigerant paths, and the applicable object is restricted to the above-mentioned PCU1. It is not something that can be done. That is, the 1st connection pipe 4 may be used, for example to connect two refrigerant passages for cooling an in-vehicle battery. Furthermore, the shaft seal member and the face seal member used together with the first and second connecting pipes 4 and 5 are not limited to the O-ring as described above, and may be a seal member such as a D ring.

そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで課題を解決するための手段の欄に記載された発明の具体的な一形態に過ぎず、課題を解決するための手段の欄に記載された発明の要素を限定するものではない。   And the invention of this indication is not limited to the above-mentioned embodiment at all, and it cannot be overemphasized that various changes can be made within the range of the extension of this indication. Furthermore, the mode for carrying out the invention described above is merely a specific embodiment of the invention described in the column for solving the problem, and is described in the column for means for solving the problem. It is not intended to limit the elements of the invention.

本開示の発明は、冷媒通路の連結部材の製造分野等において利用可能である。   The invention of the present disclosure can be used in the field of manufacturing the connecting member of the refrigerant passage.

1 PCU、2 ケース、3 積層冷却器、4 第1連結管、5 第2連結管、21 第1ケース、21h 貫通孔、21o 第1開口、22 第2ケース、22o 第2開口、23 冷媒通路、30 冷却器、30p 連通管、31 冷媒流出管、32 冷媒ポンプ、33 ラジエータ、34 リザーバタンク、40 フランジ部、40c 締結部、40g シールリング溝、40s 傾斜面、40t テーパ部、41 筒状部、41e 拡径部、41g シールリング溝、41m 中間部、41r 根元部、41s 傾斜面、41t 先端部、42 冷媒流通孔、45,46,47,48 Oリング、50 本体、50o 開口部、51 第1端部、52 第2端部、52g シールリング溝、52r 水分受容溝、53 連通部、54 第1締結部、54h ボルト孔、55 第2締結部、55h ボルト孔、59 カバー部材、M 半導体モジュール。   1 PCU, 2 case, 3 stacked cooler, 4 first connecting pipe, 5 second connecting pipe, 21 first case, 21h through hole, 21o first opening, 22 second case, 22o second opening, 23 refrigerant passage , 30 Cooler, 30p Communication pipe, 31 Refrigerant outflow pipe, 32 Refrigerant pump, 33 Radiator, 34 Reservoir tank, 40 Flange part, 40c Fastening part, 40g Seal ring groove, 40s Inclined surface, 40t Taper part, 41 Cylindrical part 41e Expanded diameter part, 41g Seal ring groove, 41m Intermediate part, 41r Root part, 41s Inclined surface, 41t Tip part, 42 Refrigerant flow hole, 45, 46, 47, 48 O-ring, 50 body, 50o opening part, 51 First end, 52 Second end, 52g Seal ring groove, 52r Moisture receiving groove, 53 communication portion, 54 First fastening portion, 54h Vol Hole, 55 the second engagement portion, 55h bolt hole, 59 cover member, M semiconductor module.

Claims (5)

冷却器を収容するケースに固定されるフランジ部と、前記フランジ部から延出された筒状部と、前記フランジ部および前記筒状部を貫通する冷媒流通孔とを有し、前記冷却器から延びる第1冷媒通路に接続されると共に、第2冷媒通路に連通する連結管が接続される冷媒通路の連結部材において、
前記筒状部は、
外周面の少なくとも一部が前記ケースに形成された貫通孔の内周面に接するように形成された根元部と、
前記根元部よりも細く、前記ケースの前記貫通孔に挿通されて軸シール部材を介して前記第1冷媒通路に接続される先端部と、
前記根元部と前記先端部とを繋ぐ傾斜面を有する中間部とを含む冷媒通路の連結部材。
A flange portion fixed to a case housing the cooler; a cylindrical portion extending from the flange portion; and a refrigerant circulation hole penetrating the flange portion and the cylindrical portion; from the cooler In the connecting member of the refrigerant passage connected to the extending first refrigerant passage and connected to the connecting pipe communicating with the second refrigerant passage,
The cylindrical part is
A root portion formed so that at least a part of the outer peripheral surface is in contact with the inner peripheral surface of the through hole formed in the case;
A tip part that is narrower than the root part and is inserted into the through hole of the case and connected to the first refrigerant passage via a shaft seal member;
A refrigerant passage coupling member including an intermediate portion having an inclined surface connecting the root portion and the tip portion.
請求項1に記載の冷媒通路の連結部材において、前記先端部の軸長は、前記根元部の軸長よりも長い冷媒通路の連結部材。   The refrigerant path connecting member according to claim 1, wherein an axial length of the tip portion is longer than an axial length of the root portion. 請求項1または2に記載の冷媒通路の連結部材において、前記フランジ部および前記筒状部は、樹脂製である冷媒通路の連結部材。   The refrigerant passage coupling member according to claim 1 or 2, wherein the flange portion and the tubular portion are made of resin. 請求項1から3の何れか一項に記載の冷媒通路の連結部材において、
前記フランジ部と前記ケースとの間には、面シール部材が配置され、前記フランジ部は、それぞれ前記ケースに締結される複数の締結部を有する冷媒通路の連結部材。
In the connection member of the refrigerant passage according to any one of claims 1 to 3,
A face seal member is disposed between the flange portion and the case, and the flange portion is a refrigerant passage connecting member having a plurality of fastening portions fastened to the case.
請求項1から4の何れか一項に記載の冷媒通路の連結部材において、
前記冷却器は、電動機を駆動するインバータに含まれる電子部品を冷却し、前記第2冷媒通路は、前記ケースに形成されている冷媒通路の連結部材。
In the connection member of the refrigerant passage according to any one of claims 1 to 4,
The said cooler cools the electronic component contained in the inverter which drives an electric motor, and the said 2nd refrigerant path is a connection member of the refrigerant path currently formed in the said case.
JP2015174862A 2015-09-04 2015-09-04 Refrigerant passage connecting member Active JP6350459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174862A JP6350459B2 (en) 2015-09-04 2015-09-04 Refrigerant passage connecting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174862A JP6350459B2 (en) 2015-09-04 2015-09-04 Refrigerant passage connecting member

Publications (2)

Publication Number Publication Date
JP2017051062A JP2017051062A (en) 2017-03-09
JP6350459B2 true JP6350459B2 (en) 2018-07-04

Family

ID=58280536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174862A Active JP6350459B2 (en) 2015-09-04 2015-09-04 Refrigerant passage connecting member

Country Status (1)

Country Link
JP (1) JP6350459B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062077A (en) * 2017-09-26 2019-04-18 株式会社デンソー Cooling device
JP6859918B2 (en) * 2017-10-17 2021-04-14 株式会社デンソー Power converter
JP7052447B2 (en) * 2018-03-16 2022-04-12 富士電機株式会社 Power converter
JP6981447B2 (en) * 2019-04-26 2021-12-15 株式会社デンソー Power converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283781A (en) * 2005-03-31 2006-10-19 Denso Corp Connection device
JP5989515B2 (en) * 2012-11-19 2016-09-07 トヨタ自動車株式会社 Inverter with integrated cooler
JP5880491B2 (en) * 2013-07-01 2016-03-09 トヨタ自動車株式会社 Inverter case
JP2015048914A (en) * 2013-09-03 2015-03-16 光陽産業株式会社 Joint for refrigerant piping
JP6064843B2 (en) * 2013-09-05 2017-01-25 株式会社デンソー Power converter
JP2015216294A (en) * 2014-05-13 2015-12-03 トヨタ自動車株式会社 Electronic apparatus

Also Published As

Publication number Publication date
JP2017051062A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6384434B2 (en) Refrigerant passage connecting member
JP6296027B2 (en) Refrigerant passage connection structure
JP6350459B2 (en) Refrigerant passage connecting member
US9565792B2 (en) Connection structure and inverter
US9894812B2 (en) Inverter case
US9587769B2 (en) Connecting structure for refrigerant pipe and inverter including connecting structure
US11870048B2 (en) Thermal systems for battery electric vehicles
CN106132750A (en) Refrigerating module
CN111094887A (en) Heat exchanger, in particular for the thermal conditioning of batteries, and corresponding production method
KR20160045007A (en) Device for heat transfer
JP5976235B1 (en) Power converter
CN102801249B (en) Integrated end cover type motor air cooler
US11402157B2 (en) Lattice boiler evaporator
KR101890199B1 (en) Device for heat transfer
JP6331870B2 (en) Stacked cooler
JP2005315467A (en) Heat exchanger
JP6327081B2 (en) COOLER MODULE AND METHOD FOR MANUFACTURING COOLER MODULE
JP2015207611A (en) Electronic device
CN218299943U (en) Water cooling plate assembly and vehicle with same
EP4198432A1 (en) A heat exchanger of an electric module
US11300369B2 (en) Water cooling apparatus and water cooling type power module assembly including the same
CN219312503U (en) Vehicle, and thermal management module and thermal management system for vehicle
EP4258417B1 (en) Liquid cooling system, battery casing and battery pack
KR20120111981A (en) Heat exchanger
JP6455417B2 (en) Stacked cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R151 Written notification of patent or utility model registration

Ref document number: 6350459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250