JP6348458B2 - Vertical axis cross flow turbine generator - Google Patents

Vertical axis cross flow turbine generator Download PDF

Info

Publication number
JP6348458B2
JP6348458B2 JP2015128295A JP2015128295A JP6348458B2 JP 6348458 B2 JP6348458 B2 JP 6348458B2 JP 2015128295 A JP2015128295 A JP 2015128295A JP 2015128295 A JP2015128295 A JP 2015128295A JP 6348458 B2 JP6348458 B2 JP 6348458B2
Authority
JP
Japan
Prior art keywords
blade
blade portion
central axis
turbine generator
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015128295A
Other languages
Japanese (ja)
Other versions
JP2017008902A (en
Inventor
啓太 渡邉
啓太 渡邉
弘一 佐野
弘一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Plant Engineering Corp
Original Assignee
Mitsubishi Electric Plant Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Plant Engineering Corp filed Critical Mitsubishi Electric Plant Engineering Corp
Priority to JP2015128295A priority Critical patent/JP6348458B2/en
Publication of JP2017008902A publication Critical patent/JP2017008902A/en
Application granted granted Critical
Publication of JP6348458B2 publication Critical patent/JP6348458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

この発明は、縦軸クロスフロー水車発電機に関する。   The present invention relates to a vertical axis cross-flow turbine generator.

特許文献1には、水流によって回転させられる羽根車の運動エネルギを電気エネルギに変換して発電を行う横軸型のクロスフロー水車発電機が記載されている。ここで、特許文献1のクロスフロー水車発電機の羽根車は、各々同一の形状をなす複数の羽根を有している。なお、このクロスフロー水車発電機は、河川の段差がある場所に設置されることにより、その段差から流れ落ちる水の位置エネルギを利用して発電を行う。   Patent Document 1 describes a horizontal axis cross-flow turbine generator that generates electric power by converting kinetic energy of an impeller rotated by a water flow into electric energy. Here, the impeller of the crossflow turbine generator of Patent Document 1 has a plurality of blades each having the same shape. In addition, this crossflow turbine generator is installed in the place where there is a level difference of a river, and generates electricity using the potential energy of the water which flows down from the level difference.

一方、特許文献2には、回転翼の回転中心軸が水流に対して垂直になるように起立して配置される縦軸型のクロスフロー水車発電機が記載され、落差の少ない河川でも発電することができる。このクロスフロー水車発電機の回転翼も、各々同一の幅を有する短冊状の複数の羽根部を備えている。   On the other hand, Patent Document 2 describes a vertical flow type cross-flow turbine generator that is arranged upright so that the rotation center axis of a rotor blade is perpendicular to the water flow, and generates power even in a river with a small drop. be able to. The rotor blades of the crossflow turbine generator also have a plurality of strip-shaped blade portions each having the same width.

特開2014−125906号公報JP 2014-125906 A 特開2011−094486号公報JP 2011-094486 A

しかしながら、特許文献2に示すような縦軸型のクロスフロー水車発電機には、回転翼による流体エネルギの回収効率をさらに上げて、段差の少ない河川でも発電の効率を一層向上させたいという要請がある。   However, there is a demand for a vertical cross flow turbine generator as shown in Patent Document 2 to further improve the efficiency of power generation even in rivers with few steps by further improving the fluid energy recovery efficiency by the rotor blades. is there.

この発明は、このような問題を解決するためになされ、発電効率をより向上させることができる縦軸クロスフロー水車発電機を提供することを目的とする。   This invention is made in order to solve such a problem, and it aims at providing the vertical axis | shaft crossflow turbine generator which can improve electric power generation efficiency more.

上記の課題を解決するために、この発明に係る縦軸クロスフロー水車発電機は、河川床の上を流通する水流によって回転させられる回転翼と、回転翼に接続し、回転翼の回転による運動エネルギを電気エネルギに変換する発電機構とを備え、回転翼は、回転の中心軸が河川床に対して起立して設けられるように配置されるとともに、中心軸を中心として回転翼の周方向に1枚ずつ交互に配置される複数の第一羽根部と複数の第二羽根部とを有し、複数の第一羽根部及び複数の第二羽根部の各々は、中心軸の延長方向に対して垂直な方向に円弧形状の断面を有し、第二羽根部の断面の円弧に沿った第二の幅方向長さは、第一羽根部の断面の円弧に沿った第一の幅方向長さよりも大きく、第二羽根部の中心軸側の端部は、第一羽根部の中心軸側の端部よりも中心軸に近い位置に設けられる。 In order to solve the above-described problems, a vertical flow cross-flow turbine generator according to the present invention is connected to a rotor blade rotated by a water flow that circulates on a river bed, and a motion caused by rotation of the rotor blade is connected to the rotor blade. and a power generation mechanism that converts energy into electrical energy, rotating blades, together with the central axis of rotation is arranged to be provided upright with respect to the river bed, in the circumferential direction of the rotor blade about the central axis Each of the plurality of first blade portions and the plurality of second blade portions are alternately arranged one by one, and each of the plurality of first blade portions and the plurality of second blade portions is in an extending direction of the central axis. The second width direction length along the arc of the cross section of the second blade portion is the first width direction length along the arc of the cross section of the first blade portion. greater than of the ends of the central axis side of the second blade section, the central axis side of the first blade part It is provided at a position closer to the center axis than part.

また、この発明に係る縦軸クロスフロー水車発電機の回転翼の複数の第一羽根部及び複数の第二羽根部の径方向内側であって、中心軸の延長方向には、水流が流通する空間が形成されてもよい。   Further, the water flow circulates in the radial direction inside the plurality of first blade portions and the plurality of second blade portions of the rotor blade of the vertical flow crossflow turbine generator according to the present invention in the extending direction of the central shaft. A space may be formed.

また、第一羽根部の径方向外側の端部と、第二羽根部の径方向外側の端部とは、同一円周上に設けられてもよい。
さらにその上で、第二羽根部の第二の幅方向長さは、第一羽根部の第一の幅方向長さの5〜35%分、第一羽根部の第一の幅方向長さよりも大きくてもよい。
また、特に、第二羽根部の第二の幅方向長さは、第一羽根部の第一の幅方向長さの25%分、第一羽根部の第一の幅方向長さよりも大きくてもよい。
The radially outer end of the first blade portion and the radially outer end of the second blade portion may be provided on the same circumference.
Further thereon, a second widthwise length of the second blade portion is 5 to 35% of the first width direction length of the first blade portion, than the first length in the width direction of the first blade part May be larger.
In particular, the second width direction length of the second blade section 25% of the first width direction length of the first blade part, greater than the first length in the width direction of the first blade part Also good.

この発明に係る縦軸クロスフロー水車発電機によれば、発電効率をより向上させることができる。   According to the vertical cross flow turbine generator according to the present invention, the power generation efficiency can be further improved.

この発明の実施の形態1に係る縦軸クロスフロー水車発電機の使用状態を示す平面図である。It is a top view which shows the use condition of the vertical axis | shaft crossflow turbine generator which concerns on Embodiment 1 of this invention. 図1に示す縦軸クロスフロー水車発電機の外観形状を示す斜視図である。It is a perspective view which shows the external appearance shape of the vertical axis | shaft crossflow water turbine generator shown in FIG. 図1に示す縦軸クロスフロー水車発電機を図2に示す切断線III−IIIに沿って切断した断面図であり、当該縦軸クロスフロー水車発電機の内部構造を模試的に示す図である。It is sectional drawing which cut | disconnected the vertical axis | shaft crossflow turbine generator shown in FIG. 1 along the cutting line III-III shown in FIG. 2, and is a figure which shows typically the internal structure of the said vertical axis | shaft crossflow turbine generator. . 図3の断面図に示す縦軸クロスフロー水車発電機の回転翼の一部を拡大した図である。It is the figure which expanded a part of rotary blade of the vertical axis | shaft crossflow turbine generator shown in sectional drawing of FIG. 図1に示す縦軸クロスフロー水車の側面図であり、当該縦軸クロスフロー水車発電機の内部構造を模式的に破線で示す図である。It is a side view of the vertical axis | shaft crossflow water turbine shown in FIG. 1, and is a figure which shows the internal structure of the said vertical axis | shaft crossflow water turbine generator typically with a broken line. 従来の縦軸クロスフロー水車発電機に使用される回転翼を水流が流通する様子をシュミレーションし、その結果得られた水流の速度分布を濃淡によって示す図である。It is a figure which shows how a water flow distribute | circulates the rotary blade used for the conventional vertical axis | shaft crossflow water turbine generator, and shows the velocity distribution of the water flow obtained as a result by lightness and darkness. 図1に示す縦軸クロスフロー水車発電機に使用される回転翼を水流が流通する様子をシュミレーションし、その結果得られた水流の速度分布を濃淡によって示す図である。It is a figure which shows the speed distribution of the water flow obtained as a result by simulating the state that a water flow distribute | circulates the rotary blade used for the vertical axis | shaft crossflow turbine generator shown in FIG.

以下、この発明の実施の形態について添付図面に基づいて説明する。
図1に示すように、この実施の形態に係る縦軸クロスフロー水車発電機100は、河川や用水路等の水路Cの途中に設けられて使用される。すなわち、縦軸クロスフロー水車発電機100は、水路Cの河川床5の上に設けられる。ここで、水流は、河川床5の上を方向Dに沿って上流から下流に向かって流通する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, a vertical axis crossflow turbine generator 100 according to this embodiment is provided and used in the middle of a water channel C such as a river or a water channel. That is, the vertical cross flow turbine generator 100 is provided on the river bed 5 of the water channel C. Here, the water stream flows on the river bed 5 along the direction D from upstream to downstream.

水路Cには、水流の流通方向Dを横断して仕切り板4が固定して設けられる。そして、仕切り板4には縦軸クロスフロー水車発電機100が取り付けられている。ここで、縦軸クロスフロー水車発電機100は、後述する回転翼20、エネルギ回収プーリ40及び発電装置50を内部に収容する略箱形状のケーシング11と、ケーシング11に取り付けられる板状の取付枠13とを有している。すなわち、縦軸クロスフロー水車発電機100のケーシング11は取付枠13を介して仕切り板4に取り付けられる。さらに、取付枠13には、縦軸クロスフロー水車発電機100の上流側の開口である入側開口14が形成され、入側開口14はケーシング11の内部に連通する。また、ケーシング11には、縦軸クロスフロー水車発電機100の下流側の開口である出側開口15が形成されている。そしてさらに、仕切り板4には縦軸クロスフロー水車発電機100の入側開口14に合わせて仕切り板開口4aが形成されている。   A partition plate 4 is fixedly provided in the water channel C across the flow direction D of the water flow. A vertical axis cross-flow turbine generator 100 is attached to the partition plate 4. Here, the vertical flow cross-flow turbine generator 100 includes a substantially box-shaped casing 11 that accommodates a rotor blade 20, an energy recovery pulley 40, and a power generation device 50 described later, and a plate-shaped mounting frame that is attached to the casing 11. 13. That is, the casing 11 of the vertical cross flow turbine generator 100 is attached to the partition plate 4 via the attachment frame 13. Further, the attachment frame 13 is formed with an inlet opening 14 that is an upstream opening of the vertical flow crossflow turbine generator 100, and the inlet opening 14 communicates with the inside of the casing 11. Further, the casing 11 is formed with an outlet side opening 15 that is an opening on the downstream side of the vertical flow crossflow turbine generator 100. Further, a partition plate opening 4 a is formed in the partition plate 4 in accordance with the entrance opening 14 of the vertical axis crossflow turbine generator 100.

また図2に示すように、縦軸クロスフロー水車発電機100のケーシング11の上部には発電部2が設けられ、発電部2の下部には、回転翼20が収容されるとともに水流が流通する流路部3が設けられる。ケーシング11の内部の流路部3の出側開口15寄りの箇所には複数の羽根部21を有する略円筒形状の回転翼20が配置されている。回転翼20は水流によって回転方向Rに沿って回転させられる。   Further, as shown in FIG. 2, the power generation unit 2 is provided in the upper part of the casing 11 of the vertical cross flow turbine generator 100, and the rotor blade 20 is accommodated in the lower part of the power generation unit 2 and a water flow circulates. A flow path portion 3 is provided. A substantially cylindrical rotating blade 20 having a plurality of blade portions 21 is disposed at a location near the outlet opening 15 of the flow path portion 3 inside the casing 11. The rotary blade 20 is rotated along the rotation direction R by the water flow.

次に、縦軸クロスフロー水車発電機100の内部構造について、図3〜5を参照して説明する。
図3に示すようにケーシング11の流路部3の内部には、水流を入側開口14から回転翼20まで案内する導水板31,32が設けられている。導水板31は、水流が回転翼20の回転方向Rに対応する方向に流れるよう、回転翼20の側部に回りこむように湾曲して延びている。また、導水板32も、導水板31の側に湾曲するように延びる。従って、水路Cの上流から河川床5の上を方向Dに向かって流通してくる水は、仕切り板4の仕切り板開口4a及び取付枠13の入側開口14からケーシング11内部に流入した後、導水板31,32に案内されて回転翼20に向かって流通する(水流W1)。さらに、水流は回転翼20の内部を流通して(水流W2)、出側開口15から流出する(水流W3)。
Next, the internal structure of the vertical cross flow turbine generator 100 will be described with reference to FIGS.
As shown in FIG. 3, water guide plates 31 and 32 that guide the water flow from the inlet opening 14 to the rotary blade 20 are provided in the flow path portion 3 of the casing 11. The water guide plate 31 extends in a curved manner so as to wrap around the side of the rotary blade 20 so that the water flow flows in a direction corresponding to the rotation direction R of the rotary blade 20. Further, the water guide plate 32 also extends to bend toward the water guide plate 31. Therefore, after the water flowing in the direction D from the upstream of the water channel C in the direction D on the river bed 5 flows into the casing 11 from the partition plate opening 4a of the partition plate 4 and the entrance side opening 14 of the mounting frame 13. The water is guided by the water guide plates 31 and 32 and flows toward the rotary blade 20 (water flow W1). Furthermore, the water flow flows through the inside of the rotary blade 20 (water flow W2) and flows out from the outlet opening 15 (water flow W3).

また、図5に示すように、回転翼20の中心軸Aは河川床5に対して起立して設けられる。そして、図3に示すように、回転翼20は24枚の羽根部21を有しており、これらの羽根部21は中心軸Aを中心として回転翼の周方向に沿って略円筒形状に配置されている。さらに、24枚の羽根部21は、12枚の第一羽根部21aと、12枚の第二羽根部21bを含む。第一羽根部21a及び第二羽根部21bの各々は断面が円弧形状の細長い金属板である。それぞれの羽根部21は回転翼20の中心軸Aに平行に延びるとともに、円弧形状の凹部によって水の流れを受ける向きに配置され、全体で円筒形状をなすように配列されている。ここで、図4に示すように、第一羽根部21aの幅方向長さL1と第二羽根部21bの羽根方向長さL2とを比較すると、第二羽根部21bの羽根方向長さL2は第一羽根部21aの幅方向長さL1よりも大きい。なお具体的には、第二羽根部21bの幅方向長さL2は第一羽根部21aの幅方向長さL1の25%分大きい。すなわち、第二羽根部21bは、第一羽根部21aの幅方向長さL1の125%分の幅方向長さL2を有する。また、第一羽根部21aと第二羽根部21bとは、回転翼20の中心軸Aを中心として、各々交互になるように回転翼20の周方向に配置されている。さらに、第二羽根部21bの径方向内側の端部、すなわち中心軸A側の端部E2は、第一羽根部21aの中心軸A側の端部E1よりも中心軸Aに近い位置に設けられる。一方、第一羽根部21aの径方向外側の端部E1’と第二羽根部21bの径方向外側の端部E2’とは、回転翼20の外周に沿って同一円周上に揃えられて設けられている。また、第一羽根部21a及び第二羽根部21bの各々の上端は及び下端は、各々、一対の羽根取付板23a,23bに固定されている。
なお、羽根部21の幅方向長さとは、一枚の羽根部21を長手方向に対して垂直に切断した際の断面の円弧に沿った長さをいう。
Further, as shown in FIG. 5, the central axis A of the rotary blade 20 is provided upright with respect to the river bed 5. As shown in FIG. 3, the rotary blade 20 has 24 blade portions 21, and these blade portions 21 are arranged in a substantially cylindrical shape around the central axis A along the circumferential direction of the rotary blade. Has been. Further, the 24 blade portions 21 include 12 first blade portions 21a and 12 second blade portions 21b. Each of the 1st blade | wing part 21a and the 2nd blade | wing part 21b is an elongate metal plate with a circular cross section. Each blade portion 21 extends in parallel to the central axis A of the rotary blade 20 and is arranged in a direction to receive the flow of water by an arc-shaped concave portion, and is arranged so as to form a cylindrical shape as a whole. Here, as shown in FIG. 4, when comparing the width direction length L1 of the first blade portion 21a and the blade direction length L2 of the second blade portion 21b, the blade direction length L2 of the second blade portion 21b is It is larger than the length L1 in the width direction of the first blade portion 21a. Specifically, the width direction length L2 of the second blade portion 21b is 25% larger than the width direction length L1 of the first blade portion 21a. That is, the second blade portion 21b has a width direction length L2 corresponding to 125% of the width direction length L1 of the first blade portion 21a. Further, the first blade portion 21 a and the second blade portion 21 b are arranged in the circumferential direction of the rotary blade 20 so as to alternate with each other around the central axis A of the rotary blade 20. Further, the radially inner end of the second blade 21b, that is, the end E2 on the central axis A side, is provided at a position closer to the central axis A than the end E1 on the central axis A side of the first blade 21a. It is done. On the other hand, the radially outer end E1 ′ of the first blade portion 21a and the radially outer end E2 ′ of the second blade portion 21b are aligned on the same circumference along the outer periphery of the rotary blade 20. Is provided. The upper end and the lower end of each of the first blade portion 21a and the second blade portion 21b are fixed to a pair of blade attachment plates 23a and 23b, respectively.
In addition, the width direction length of the blade | wing part 21 means the length along the circular arc of the cross section when the one blade | wing part 21 is cut | disconnected perpendicularly | vertically with respect to a longitudinal direction.

また、図5に示すようにケーシング11の発電部2の内部には、回転翼20の上端の羽根取付板23aに接続される回転軸部41と、回転軸部41に取り付けられるエネルギ回収プーリ40とが設けられている。すなわち、エネルギ回収プーリ40は、羽根取付板23a及び回転軸部41を介して回転翼20に接続される。また、発電部2の内部には発電装置50も設けられており、発電装置50に取り付けられる発電装置プーリ50aとエネルギ回収プーリ40との間にはベルト45が架け渡される。また、回転軸部41の回転中心は回転翼20の中心軸Aと一致し、回転翼20が水流によって回転させられると回転軸部41及びエネルギ回収プーリ40も共に回転する。そして、ベルト45を介して発電装置50の発電装置プーリ50aもエネルギ回収プーリ40に同期して増速して回転させられ、発電装置50において発電が行われる。すなわち、エネルギ回収プーリ40、回転軸部41、ベルト45及び発電装置50は、回転翼20の回転による運動エネルギを電気エネルギに変換する発電機構を構成する。   Further, as shown in FIG. 5, in the power generation unit 2 of the casing 11, there are a rotating shaft portion 41 connected to the blade mounting plate 23 a at the upper end of the rotary blade 20, and an energy recovery pulley 40 attached to the rotating shaft portion 41. And are provided. That is, the energy recovery pulley 40 is connected to the rotary blade 20 via the blade mounting plate 23 a and the rotary shaft portion 41. A power generation device 50 is also provided inside the power generation unit 2, and a belt 45 is bridged between the power generation device pulley 50 a attached to the power generation device 50 and the energy recovery pulley 40. Further, the rotation center of the rotating shaft portion 41 coincides with the center axis A of the rotating blade 20, and when the rotating blade 20 is rotated by the water flow, the rotating shaft portion 41 and the energy recovery pulley 40 also rotate. Then, the power generation device pulley 50 a of the power generation device 50 is also rotated at an increased speed in synchronization with the energy recovery pulley 40 via the belt 45, and power generation is performed in the power generation device 50. That is, the energy recovery pulley 40, the rotating shaft portion 41, the belt 45, and the power generation device 50 constitute a power generation mechanism that converts kinetic energy generated by the rotation of the rotary blade 20 into electric energy.

また、回転翼20は上端において接続する回転軸部41を介して発電部2から吊り下げられるように支持されており、回転翼20の下端の羽根取付板23bとケーシング11の内部の下面との間には隙間が存在する。さらに、回転軸部41は回転翼20の上部に設けられるため、図3に示すように、回転翼20の内部において中心軸Aに該当する部分には回転軸部41に相当する構造はなく、水流の流通の障害となるものは設けられていない。すなわち、回転翼20の複数の第一羽根部21a及び第二羽根部21bの径方向内側、かつ中心軸Aの延長方向には、水流が障害なく流通することができる水流流通空間Xが形成される。   Further, the rotary blade 20 is supported so as to be suspended from the power generation unit 2 via the rotary shaft portion 41 connected at the upper end, and the blade mounting plate 23b at the lower end of the rotary blade 20 and the lower surface inside the casing 11 are supported. There is a gap between them. Furthermore, since the rotating shaft part 41 is provided in the upper part of the rotary blade 20, as shown in FIG. 3, there is no structure corresponding to the rotating shaft part 41 in the part corresponding to the central axis A in the rotary blade 20, There are no obstacles to water flow. That is, a water flow distribution space X in which a water flow can flow without obstacles is formed on the radially inner side of the plurality of first blade portions 21a and the second blade portions 21b of the rotary blade 20 and in the extending direction of the central axis A. The

次に、図6及び7を参照して、従来の縦軸クロスフロー水車発電機の例による回転翼120とこの実施形態に係る縦軸クロスフロー水車発電機100の回転翼20とを比較し、回転翼20を通過する水流の速度のシミュレーション結果について説明する。なお、図6及び図7において、回転翼120及び回転翼20はそれぞれ実験用のケーシング111に収納されている。そして、ケーシング111の内部には、縦軸クロスフロー水車発電機100の導水板31,32に対応する形状及び配置の導水板131,132が設けられ、導水板131,132によって水流は回転翼120又は回転翼20に案内される。
また、図6及び7は、図面中の濃淡が濃い程水流の速さが速い箇所を示し、薄い程水流の速さが遅い箇所を示している。
Next, referring to FIGS. 6 and 7, the rotary blade 120 according to the example of the conventional vertical crossflow turbine generator is compared with the rotary blade 20 of the vertical crossflow turbine generator 100 according to this embodiment, A simulation result of the speed of the water flow passing through the rotor blade 20 will be described. 6 and 7, the rotary blade 120 and the rotary blade 20 are housed in an experimental casing 111, respectively. The casing 111 is provided with water guide plates 131 and 132 having shapes and arrangements corresponding to the water guide plates 31 and 32 of the longitudinal cross-flow turbine generator 100, and the water flow is transferred to the rotor blade 120 by the water guide plates 131 and 132. Or it is guided to the rotary blade 20.
Moreover, FIG.6 and 7 has shown the location where the speed of a water flow is quick, so that the density in a drawing is dark, and the speed of a water flow is so slow that it is thin.

まず、図6の回転翼120は、全て同じ幅方向長さを有する24枚の羽根部121を有し、これらの羽根部121は回転翼120の周方向に並べられて設けられる。水流は上流から下流に向かって羽根部121の間を通り、回転翼120の径方向内側を流通した後、再び羽根部121の間を通って回転翼120の下流側Yに流出する。ここで、回転翼120の下流側Yに面する6枚の羽根部121を回転方向Rへ向かう順に121a〜121fとする。図6の濃淡分布を見ると、5枚の羽根部121a〜121eの各々の羽根部同士の間の途中までは濃淡が濃い箇所が延びているが、下流側Yに近づくにつれ濃淡が薄くなる。すなわち、水流は、羽根部121a〜121eの間では始めは比較的速い速さで流通しているものの下流側Yに放出されるまでに減速してしまうことが分かる。また、羽根部121eと121fとの間には、濃淡が濃い部分がほとんど見られない。   First, the rotor blade 120 of FIG. 6 has 24 blade portions 121 all having the same length in the width direction, and these blade portions 121 are arranged in the circumferential direction of the rotor blade 120. The water flow passes between the blade portions 121 from the upstream to the downstream, flows through the inside of the rotary blade 120 in the radial direction, and then flows between the blade portions 121 and flows out to the downstream Y of the rotary blade 120 again. Here, the six blade portions 121 facing the downstream side Y of the rotary blade 120 are assumed to be 121a to 121f in order in the rotational direction R. Looking at the density distribution in FIG. 6, a portion where the density is dark extends to the middle between the blade parts of the five blade parts 121 a to 121 e, but the density becomes lighter toward the downstream Y side. That is, it can be seen that the water flow is decelerated until it is discharged to the downstream side Y although it flows at a relatively high speed between the blade portions 121a to 121e. Further, a dark portion is hardly seen between the blade portions 121e and 121f.

一方、図7の回転翼20でも、水流は上流から下流に向かって複数の第一羽根部21aと複数の第二羽根部21bとの間を通り、回転翼120の径方向内側の水流流通空間Xを流通する。そして、再び水流は、交互に並んだ複数の第一羽根部21aと複数の第二羽根部21bとの間を通って回転翼20の下流側Zに流出する。ここで、回転翼20の下流側Zに面する3枚の第一羽根部21aを回転方向Rへ向かう順に21a1,21a2及び21a3とする。また、同様に回転翼20の下流側Zに面し、第一羽根部21a1〜21a3と交互に配列される3枚の第二羽根部21bを、回転方向Rへ向かう順にそれぞれ21b1,21b2及び21b3とする。そして図7の濃淡分布からは、水流は、それぞれ交互に配列される第一羽根部21a1〜21a3と第二羽根部21b1〜21b3との間を、比較的速い速度で流通していることが分かる。特に第一羽根部21a1と第二羽根部21b2との間、第二羽根部21b2と第一羽根部21a2との間、及び第一羽根部21a2と第二羽根部21b3との間では、水流は、図6の回転翼120の場合と比べてより速い速度を保ったまま流通する。さらに水流は、2枚の第一羽根部21a1,21b1及び2枚の第二羽根部21b2,21b3のそれぞれの凸状の面に沿ってより速い速度で流通している。従って、これにより、回転翼20の第一羽根部21a及び第二羽根部21bには、従来の回転翼120の羽根部121に比べて大きな揚力が作用する。   On the other hand, also in the rotor blade 20 of FIG. 7, the water flow passes between the plurality of first blade portions 21 a and the plurality of second blade portions 21 b from the upstream to the downstream, and the water flow distribution space on the radially inner side of the rotor blade 120. Distribute X. Then, the water flow again flows out to the downstream side Z of the rotary blade 20 through the space between the plurality of first blade portions 21a and the plurality of second blade portions 21b arranged alternately. Here, the three first blade portions 21a facing the downstream side Z of the rotary blade 20 are referred to as 21a1, 21a2, and 21a3 in order in the direction of rotation R. Similarly, three second blade portions 21b facing the downstream side Z of the rotary blade 20 and alternately arranged with the first blade portions 21a1 to 21a3 are respectively arranged in the order of the rotation direction R in the order of 21b1, 21b2, and 21b3. And From the light and shade distribution in FIG. 7, it can be seen that the water flows between the first blade portions 21a1 to 21a3 and the second blade portions 21b1 to 21b3, which are alternately arranged, at a relatively high speed. . In particular, between the first blade portion 21a1 and the second blade portion 21b2, between the second blade portion 21b2 and the first blade portion 21a2, and between the first blade portion 21a2 and the second blade portion 21b3, the water flow is As compared with the case of the rotor blade 120 of FIG. Furthermore, the water flow is circulated at a higher speed along the respective convex surfaces of the two first blade portions 21a1, 21b1 and the two second blade portions 21b2, 21b3. Accordingly, as a result, a higher lift acts on the first blade portion 21 a and the second blade portion 21 b of the rotor blade 20 than the blade portion 121 of the conventional rotor blade 120.

以上より、この実施の形態に係る縦軸クロスフロー水車発電機100では、複数の第一羽根部21aと複数の第二羽根部21bとが回転翼20の周方向に1枚ずつ交互に配置される。また、第二羽根部21bの中心軸A側の端部E2は、第一羽根部21aの中心軸A側の端部E1よりも径方向内側に設けられており、中心軸Aにより近い。さらに、第二羽根部21bの幅方向長さは第一羽根部21aの幅方向長さの25%分長い。そして、回転翼20がこのような形状をなすことにより、第一羽根部21a及び第二羽根部21bに作用する揚力が大きくなることが、シミュレーションによって確認されている。従って、水路Cを流通する所定の速度の水流に対する回転翼20の回転のトルクが大きくなるため、水流の運動エネルギの回収効率が上がり、発電装置50による発電効率が向上する。   As described above, in the vertical cross flow turbine generator 100 according to this embodiment, the plurality of first blade portions 21 a and the plurality of second blade portions 21 b are alternately arranged one by one in the circumferential direction of the rotary blade 20. The Further, the end E2 on the central axis A side of the second blade portion 21b is provided on the radially inner side with respect to the end E1 on the central axis A side of the first blade portion 21a, and is closer to the central axis A. Furthermore, the width direction length of the 2nd blade | wing part 21b is 25% longer than the width direction length of the 1st blade | wing part 21a. And it has been confirmed by simulation that the lift force acting on the first blade portion 21a and the second blade portion 21b is increased when the rotor blade 20 has such a shape. Therefore, since the rotation torque of the rotor blade 20 with respect to the water flow at a predetermined speed flowing through the water channel C is increased, the recovery efficiency of the kinetic energy of the water flow is increased, and the power generation efficiency by the power generation device 50 is improved.

また、回転翼20の複数の第一羽根部21a及び複数の第二羽根部21bの径方向内側であって中心軸Aの延長方向には、水流が障害なく流通することができる水流流通空間Xが形成される。すなわち、水流流通空間Xにおいて回転翼20の中心軸の部分には、軸部材等が存在しない。そのため、水流流通空間Xでは水がスムーズに流通することができ、水流の運動エネルギの回収効率がより向上する。   Further, the water flow distribution space X in which the water flow can circulate without hindrance in the extending direction of the central axis A inside the plurality of first blade portions 21a and the plurality of second blade portions 21b of the rotary blade 20 in the radial direction. Is formed. That is, there is no shaft member or the like in the central axis portion of the rotary blade 20 in the water flow space X. Therefore, the water can smoothly flow in the water flow space X, and the recovery efficiency of the kinetic energy of the water flow is further improved.

さらに、第一羽根部21aの径方向外側の端部E1’と、第二羽根部21bの径方向外側の端部E2’とは、回転翼20の外周に沿って同一円周上に設けられている。すなわち、第二羽根部21bの幅方向長さL2は第一羽根部21aの幅方向長さL1の25%分、回転翼20の径方向内側に向かって長い。そして、これによっても所定の速度の水流に対する回転翼20の回転のトルクがより大きくなり、回転翼20による水流の運動エネルギの回収効率が上がって、発電装置50による発電効率もより向上する。   Further, the radially outer end E1 ′ of the first blade portion 21a and the radially outer end E2 ′ of the second blade portion 21b are provided on the same circumference along the outer periphery of the rotor blade 20. ing. That is, the width direction length L2 of the second blade portion 21b is longer toward the radially inner side of the rotary blade 20 by 25% of the width direction length L1 of the first blade portion 21a. This also increases the rotation torque of the rotor blade 20 with respect to the water flow at a predetermined speed, increases the recovery efficiency of the kinetic energy of the water flow by the rotor blade 20, and further improves the power generation efficiency of the power generator 50.

なお、実施の形態において、第二羽根部21bの幅方向長さL2が、第一羽根部21aの幅方向長さL1の25%に限られず5〜35%の範囲内で、第一羽根部21aの幅方向長さL1よりも長ければ、回転翼20の発電効率は向上する。   In the embodiment, the width direction length L2 of the second blade portion 21b is not limited to 25% of the width direction length L1 of the first blade portion 21a, but is within a range of 5 to 35%. If it is longer than the width direction length L1 of 21a, the power generation efficiency of the rotary blade 20 is improved.

また、この実施の形態において、回転翼20の羽根部21の数は24枚に限定されない。
さらにまた、発電機構に使用されるプーリは、発電部2のエネルギ回収プーリ40及び発電装置プーリ50aのような一段式のものに限定されず、3個のプーリの間に2本のベルトが架け渡されて二段式として用いられていてもよい。また、発電機構は増速ギヤを有していてもよい。
Further, in this embodiment, the number of blade portions 21 of the rotary blade 20 is not limited to 24.
Furthermore, the pulley used in the power generation mechanism is not limited to the one-stage type such as the energy recovery pulley 40 and the power generation device pulley 50a of the power generation unit 2, and two belts are suspended between the three pulleys. It may be passed and used as a two-stage system. The power generation mechanism may have a speed increasing gear.

5 河川床、20 回転翼、21a 第一羽根部、21b 第二羽根部、40 エネルギ回収プーリ(発電機構)、41 回転軸部(発電機構)、45 ベルト(発電機構)、50 発電装置(発電機構)、100 縦軸クロスフロー水車発電機、A 中心軸、E1 第一羽根部の中心軸側の端部、E2 第二羽根部の中心軸側の端部、E1’ 第一羽根部の径方向外側の端部、E2’ 第二羽根部の径方向外側の端部、X 空間(水流流通空間)。   5 Riverbed, 20 rotor blades, 21a first blade portion, 21b second blade portion, 40 energy recovery pulley (power generation mechanism), 41 rotation shaft portion (power generation mechanism), 45 belt (power generation mechanism), 50 power generation device (power generation) Mechanism), 100 vertical axis cross-flow turbine generator, A central axis, E1 end of the first blade portion on the central axis side, E2 end portion of the second blade portion on the central axis side, E1 ′ diameter of the first blade portion The outer end in the direction, the outer end in the radial direction of the E2 ′ second blade, and the X space (water flow space).

Claims (5)

河川床の上を流通する水流によって回転させられる回転翼と、
前記回転翼に接続し、前記回転翼の回転による運動エネルギを電気エネルギに変換する発電機構とを備え、
前記回転翼は、
前記回転の中心軸が前記河川床に対して起立して設けられるように配置されるとともに、
前記中心軸を中心として前記回転翼の周方向に1枚ずつ交互に配置される複数の第一羽根部と複数の第二羽根部とを有し、
前記複数の第一羽根部及び前記複数の第二羽根部の各々は、前記中心軸の延長方向に対して垂直な方向に円弧形状の断面を有し、
前記第二羽根部の前記断面の円弧に沿った第二の幅方向長さは、前記第一羽根部の前記断面の円弧に沿った第一の幅方向長さよりも大きく、
前記第二羽根部の前記中心軸側の端部は、前記第一羽根部の前記中心軸側の端部よりも前記中心軸に近い位置に設けられる縦軸クロスフロー水車発電機。
A rotating wing that is rotated by a water stream that circulates over the riverbed;
A power generation mechanism that is connected to the rotor blades and converts kinetic energy generated by rotation of the rotor blades into electrical energy;
The rotor blade is
The central axis of rotation is arranged so as to stand up against the river bed,
Having a plurality of first blade portions and a plurality of second blade portions alternately arranged one by one in the circumferential direction of the rotor blade around the central axis,
Each of the plurality of first blade portions and the plurality of second blade portions has an arc-shaped cross section in a direction perpendicular to the extending direction of the central axis,
The second width direction length along the arc of the cross section of the second blade portion is greater than the first width direction length along the arc of the cross section of the first blade portion,
An end of the second blade portion on the central axis side is a vertical flow crossflow turbine generator provided at a position closer to the central axis than an end portion of the first blade portion on the central axis side.
前記回転翼の前記複数の第一羽根部及び前記複数の第二羽根部の径方向内側であって、前記中心軸の延長方向には、前記水流が流通する空間が形成される請求項1に記載の縦軸クロスフロー水車発電機。   The space in which the water flow circulates is formed in a radially inner side of the plurality of first blade portions and the plurality of second blade portions of the rotor blade and extending in the direction of the central axis. The vertical axis cross-flow turbine generator described. 前記第一羽根部の径方向外側の端部と、前記第二羽根部の径方向外側の端部とは、同一円周上に設けられる請求項1又は2に記載の縦軸クロスフロー水車発電機。   The longitudinal cross flow turbine power generation according to claim 1 or 2, wherein the radially outer end portion of the first blade portion and the radially outer end portion of the second blade portion are provided on the same circumference. Machine. 前記第二羽根部の前記第二の幅方向長さは、前記第一羽根部の前記第一の幅方向長さの5〜35%分、前記第一羽根部の前記第一の幅方向長さよりも大きい請求項3に記載の縦軸クロスフロー水車発電機。 Wherein the second width direction length of the second blade portion is 5 to 35% of the said first length in the width direction of the first blade portion, said first widthwise length of the first blade portion The vertical flow cross-flow water turbine generator of Claim 3 larger than this. 前記第二羽根部の前記第二の幅方向長さは、前記第一羽根部の前記第一の幅方向長さの25%分、前記第一羽根部の前記第一の幅方向長さよりも大きい請求項3に記載の縦軸クロスフロー水車発電機。 Wherein the second width direction length of the second blade portion, said 25% fraction of said first length in the width direction first blade portion, than the first width direction length of the first blade portion The vertical axis cross-flow water turbine generator according to claim 3.
JP2015128295A 2015-06-26 2015-06-26 Vertical axis cross flow turbine generator Active JP6348458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015128295A JP6348458B2 (en) 2015-06-26 2015-06-26 Vertical axis cross flow turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015128295A JP6348458B2 (en) 2015-06-26 2015-06-26 Vertical axis cross flow turbine generator

Publications (2)

Publication Number Publication Date
JP2017008902A JP2017008902A (en) 2017-01-12
JP6348458B2 true JP6348458B2 (en) 2018-06-27

Family

ID=57763472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015128295A Active JP6348458B2 (en) 2015-06-26 2015-06-26 Vertical axis cross flow turbine generator

Country Status (1)

Country Link
JP (1) JP6348458B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387289B (en) * 2017-09-07 2024-02-23 常州伟泰科技股份有限公司 Upper impact type waterwheel with double circular arc blades
CN107387290B (en) * 2017-09-13 2019-03-22 河海大学 A kind of crossflow turbine runner of deviated splitter vane
CN108105012A (en) * 2017-11-15 2018-06-01 广东白云学院 Utilize the water turbine equipment of river water nature flow electricity generation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139035A (en) * 2001-10-30 2003-05-14 Mitsubishi Heavy Ind Ltd Impeller for pump turbine
JP2011094486A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Plant Engineering Corp Fluid energy recovery device
GB2486912B (en) * 2010-12-30 2014-11-05 Cameron Int Corp Method and apparatus for energy generation

Also Published As

Publication number Publication date
JP2017008902A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
AU2008239143B2 (en) Hydraulic power generating apparatus
JP5220009B2 (en) Turbine with debris discharge chute
JP6348458B2 (en) Vertical axis cross flow turbine generator
JP5916863B2 (en) Power generator using running water
JPS6350549B2 (en)
JP6328252B2 (en) Revolving door type load adjusting device and ocean energy power generation device using the same
JP2013542376A (en) Turbine system and method
JP2012500940A (en) Turbine and rotor for turbine
KR20080039897A (en) Cycloidal turbine
JP5155990B2 (en) Fluid energy recovery device
KR101297386B1 (en) Power generating device using by water-flow
ES2565093T3 (en) Air cooling of a wind turbine generator
JP5683039B1 (en) Falling water turbine
KR101409717B1 (en) Wind power system
JP6873888B2 (en) Guide vanes and fluid machinery
JP2020153279A (en) Hydraulic generating equipment
JP2005105911A (en) Vertical shaft type wind power generation device
JP2016079892A (en) Cross-flow type power generator
KR100544083B1 (en) Rotor blade of a wind generator
JP2007032458A (en) Francis water turbine
KR102681798B1 (en) Cooling structure for wind power generator and wind power generator including the same
JP5833342B2 (en) Wave turbine
JP2005133698A (en) Francis turbine runner
JP7085406B2 (en) Hydraulic machine runner and hydraulic machine
KR20180024847A (en) Wind power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250