JP6347037B1 - Body instrument - Google Patents
Body instrument Download PDFInfo
- Publication number
- JP6347037B1 JP6347037B1 JP2017103122A JP2017103122A JP6347037B1 JP 6347037 B1 JP6347037 B1 JP 6347037B1 JP 2017103122 A JP2017103122 A JP 2017103122A JP 2017103122 A JP2017103122 A JP 2017103122A JP 6347037 B1 JP6347037 B1 JP 6347037B1
- Authority
- JP
- Japan
- Prior art keywords
- sound
- mass
- hardness
- instrument
- cymbal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007769 metal material Substances 0.000 claims abstract description 9
- 230000000392 somatic effect Effects 0.000 claims abstract description 7
- 230000002238 attenuated effect Effects 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 11
- 238000005482 strain hardening Methods 0.000 abstract description 10
- 230000000052 comparative effect Effects 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 229910000765 intermetallic Inorganic materials 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910052718 tin Inorganic materials 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 229910000906 Bronze Inorganic materials 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000009527 percussion Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910017755 Cu-Sn Inorganic materials 0.000 description 3
- 229910017927 Cu—Sn Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910000912 Bell metal Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020991 Sn-Zr Inorganic materials 0.000 description 1
- 229910009085 Sn—Zr Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Golf Clubs (AREA)
Abstract
【課題】本発明は、演奏音の減衰特性を調整して音響特性を調整することができる体鳴楽器を提供することを目的とするものである。【解決手段】本発明に係る体鳴楽器であるシンバルM2は、金属材料を成形加工して形成されており、カップ部C2に対して冷間加工を行ってボウ部B2よりも硬度を高めるように処理されている。カップ部C2をボウ部B2よりも高硬度にすることで、カップ部C2においてボウ部B2の打撃による振動がボウ部B2よりも速く減衰するようになり、演奏音の減衰特性を変化させて様々な音響特性を実現することができる。【選択図】図1An object of the present invention is to provide a somatic instrument that can adjust the sound characteristic by adjusting the attenuation characteristic of a performance sound. A cymbal M2 which is a body sound instrument according to the present invention is formed by molding a metal material, and a cold working is performed on a cup portion C2 so that the hardness is higher than that of a bow portion B2. Has been processed. By making the cup part C2 harder than the bow part B2, vibrations caused by striking the bow part B2 in the cup part C2 are attenuated faster than in the bow part B2, and various performance sound attenuation characteristics are changed. Sound characteristics can be realized. [Selection] Figure 1
Description
この発明は、金属材料を成形加工して形成された体鳴楽器に硬度の高い弱音部を形成することで、弱音部において打撃部の打撃による振動が打撃部よりも速く減衰する音響特性を備えるようにした体鳴楽器に関するものである。 The present invention has an acoustic characteristic in which vibration caused by striking of the striking portion is attenuated faster than the striking portion in the weak sound portion by forming a weak sound portion having high hardness in a body sound instrument formed by molding a metal material. This is related to the somatic instrument.
銅(Cu)及びスズ(Sn)を主成分とするCu−Sn系銅合金は青銅として知られており、特にSn濃度が20質量%を超えるものは古来よりベルメタルと称され、体鳴楽器の素材として用いられてきている。伝統的な体鳴楽器としてはシンバルやチャーチベルがあり、古くから銀(Ag)や鉄(Fe)を含有させることで音質の向上が図られている。これまで、体鳴楽器の品質を改善しかつ異なる響きを得ようとする場合には、主に成形加工の過程や形状の改善で検討がなされてきたものの、素材自体の大きな改善は無く、Sn18質量%以上でかつ体鳴楽器への加工に適した素材は開発されてこなかった。 Cu-Sn based copper alloys mainly composed of copper (Cu) and tin (Sn) are known as bronze, and those with Sn concentrations exceeding 20% by mass have been called bell metal since ancient times. It has been used as a material. There are cymbals and church bells as traditional somatic instruments, and the sound quality has been improved by incorporating silver (Ag) and iron (Fe) for a long time. Up to now, when trying to improve the quality of a body sound instrument and obtain a different sound, although examinations have been made mainly by improving the molding process and shape, there has been no significant improvement in the material itself, and Sn18 No material has been developed that is more than mass% and that is suitable for processing into body instruments.
本発明者らは、Cu−Sn合金材料を素材として用いた体鳴楽器の開発を進め、Sn濃度を高めて高音質を保ちつつ、加工性の改善及び割れ対策を行うため、ジルコニウム(Zr)、チタン(Ti)、Fe、リン(P)等の第3元素、第4元素を添加することで、高音質で結晶粒が微細な楽器用青銅合金を提案している(特許文献1、非特許文献1参照)。 In order to improve workability and prevent cracking while increasing the Sn concentration and maintaining high sound quality, the inventors have developed zirconium (Zr). Bronze alloys for musical instruments with high sound quality and fine crystal grains have been proposed by adding third and fourth elements such as titanium (Ti), Fe, and phosphorus (P) (Patent Document 1, Non-Patent Document 1, Patent Document 1).
上述した従来技術で説明したように、シンバル等の体鳴楽器に用いる素材の開発は進められてきているが、成形加工された体鳴楽器の音響特性に関しては、演奏するジャンル(クラシック、ジャズ等)で求められる音質に応じてハンマリング等の鍛造加工により音響特性を微調整することが行われている。こうした音響特性の微調整は、演奏者の要望や作業者の経験知に基づいて体鳴楽器を個別にハンマリングしながら実際に発音させて主観的に確認しているのが実状であり、成形加工後の体鳴楽器に対して音響特性を客観的に調整することは行われていなかった。 As explained in the above-mentioned prior art, development of materials used for body instruments such as cymbals has been underway, but regarding the acoustic characteristics of molded body instruments, genres to play (classic, jazz, etc.) The acoustic characteristics are finely adjusted by a forging process such as hammering according to the sound quality required in (1). These acoustic characteristics are finely adjusted based on the player's request and the experience of the operator. There has been no objective adjustment of the acoustic characteristics of the sonar instrument after processing.
そこで、本発明は、演奏音の減衰特性を調整して音響特性を調整することができる体鳴楽器を提供することを目的とするものである。 Accordingly, an object of the present invention is to provide a somatic instrument that can adjust the sound characteristic by adjusting the attenuation characteristic of the performance sound.
本発明に係る体鳴楽器は、金属材料を成形加工してなるとともに打撃することで演奏音を発音する体鳴楽器であって、打撃部に連接して当該打撃部よりもビッカース硬度の高い弱音部が形成されており、前記弱音部において前記打撃部の打撃による振動が前記打撃部よりも速く減衰するようになり、前記金属材料は、Sn:15質量%〜26質量%、Zr:0.0005質量%〜0.25質量%を含有し、さらに、V、Mo、Mg、Cr、Ni、Co、Nb、Hf、Taの1種又は2種以上を総量で0.005質量%〜1質量%を含有し、残りがCu及び不可避不純物からなる成分組成を有する合金材料である。 The body sound instrument according to the present invention is a body sound instrument that is formed by processing a metal material and generates a performance sound by striking, and is a weak sound having a Vickers hardness higher than that of the percussion part connected to the percussion part. Part is formed, and the vibration caused by the hitting of the hitting part is attenuated faster than the hitting part in the weak sounding part, and the metal material is Sn: 15% by mass to 26% by mass, Zr: 0. 0005 mass% to 0.25 mass%, and further, 0.005 mass% to 1 mass in total of one or more of V, Mo, Mg, Cr, Ni, Co, Nb, Hf, Ta Is an alloy material having a component composition consisting of Cu and inevitable impurities.
本発明に係る体鳴楽器は、上記のような構成を有することで、打撃部より硬度の高い弱音部を形成しているので、打撃部の領域と弱音部の領域とを画定する境界位置を調整することで減衰特性を調整でき、求められる音質に応じて音響特性を調整することが可能となる。 Since the body sound instrument according to the present invention has the above-described configuration and forms a weak sound portion having a hardness higher than that of the striking portion, the boundary position that defines the striking portion region and the weak sound portion region is defined. By adjusting, the attenuation characteristic can be adjusted, and the acoustic characteristic can be adjusted according to the required sound quality.
本発明について、以下に詳述する。本発明に係る体鳴楽器は、金属材料を成形加工して形成されており、打撃することで演奏音を発音するもので、打撃する部位である打撃部に連接して打撃部よりも硬度の高い弱音部を形成している。以下の説明では、体鳴楽器としてシンバルを例に説明する。 The present invention is described in detail below. The body sound musical instrument according to the present invention is formed by molding a metal material and produces a performance sound by striking, and is connected to the striking part which is the part to be struck and has a hardness higher than that of the striking part. A high low-pitched sound is formed. In the following description, a cymbal will be described as an example of the somatic instrument.
図1は、2種類のシンバルM1及びM2に関する外観斜視図である。いずれのシンバルも同じ円形のサイズで同一形状に形成されており、中心にシンバルをスタンド等に取り付ける取付孔が穿設されている。シンバルは、取付孔を中心として中心部分にカップ部が盛り上がるようにドーム状に形成されており、カップ部の周囲にボウ(bow)部が連接されて形成されている。図1(a)に示すシンバルM1は従来のシンバルで全体の硬度がほぼ均一に形成されており、カップ部C1及びボウ部B1はほぼ同じ硬度に設定されている。これに対して、図1(b)に示すシンバルM2は本発明に係る体鳴楽器でカップ部C2がボウ部B2よりも高い硬度に設定されているとする。シンバルM1は、打撃により全体が同じように振動するのに対し、シンバルM2は、高硬度のカップ部C2が弱音部となり、ボウ部B2が打撃部となるため、カップ部C2及びボウ部B2の境界が弱音部及び打撃部の境界位置となっており、この境界位置で打撃による振動が異なるようになる。 FIG. 1 is an external perspective view of two types of cymbals M1 and M2. All cymbals have the same circular size and the same shape, and a mounting hole for attaching the cymbal to a stand or the like is formed in the center. The cymbal is formed in a dome shape so that the cup portion swells in the central portion with the mounting hole as the center, and is formed by connecting a bow portion around the cup portion. The cymbal M1 shown in FIG. 1A is a conventional cymbal, and the overall hardness is substantially uniform, and the cup part C1 and the bow part B1 are set to substantially the same hardness. On the other hand, it is assumed that the cymbal M2 shown in FIG. 1B is a body instrument according to the present invention, and the cup portion C2 is set to a hardness higher than that of the bow portion B2. The cymbal M1 vibrates in the same manner as a result of striking, whereas the cymbal M2 has a high hardness cup portion C2 as a weak sound portion and a bow portion B2 as a striking portion, so that the cup portion C2 and the bow portion B2 The boundary is a boundary position between the weak sound portion and the hitting portion, and vibration due to hitting is different at this boundary position.
図2は、図1に示すシンバルの打撃による振動特性に関する振動モード解析結果を示す等高線図である。図2では、振動モード解析を有限要素法を用いて行い、シンバルの各点における変位の大きさを等高線で示している。図2(a)はシンバルM1に関する解析結果であり、取付孔及びエッジに境界条件を設定している。これに対して、図2(b)はシンバルM2に関する解析結果であり、取付孔及びエッジの他にカップ部C2及びボウ部B2の境界に硬度の違いによる境界条件を設定している。図2(a)に示す解析結果では、打撃後0.15秒から0.33秒にかけてカップ部C1が変位することでシンバルM1全体が変位していることがわかる。これに対して、図2(b)に示す解析結果では、打撃後0.15秒から0.33秒にかけてカップ部C2の変位がほとんどなく、リング状のボウ部B2が振動する節直径の振動モードが支配的となるため、発音に寄与しない振動モードとなり、図2(a)に示す解析結果に比べて打撃音の減衰が速くなっている。 FIG. 2 is a contour diagram showing a vibration mode analysis result regarding vibration characteristics due to the cymbal strike shown in FIG. In FIG. 2, the vibration mode analysis is performed using the finite element method, and the magnitude of displacement at each point of the cymbal is indicated by contour lines. FIG. 2A shows the analysis result relating to the cymbal M1, in which boundary conditions are set for the mounting hole and the edge. On the other hand, FIG. 2B shows an analysis result regarding the cymbal M2, and in addition to the mounting hole and the edge, a boundary condition based on a difference in hardness is set at the boundary between the cup portion C2 and the bow portion B2. The analysis result shown in FIG. 2A shows that the entire cymbal M1 is displaced by the displacement of the cup portion C1 from 0.15 seconds to 0.33 seconds after the impact. On the other hand, in the analysis result shown in FIG. 2 (b), there is almost no displacement of the cup portion C2 from 0.15 seconds to 0.33 seconds after the impact, and the vibration of the node diameter in which the ring-shaped bow portion B2 vibrates. Since the mode becomes dominant, the vibration mode does not contribute to the sound generation, and the attenuation of the hitting sound is faster than the analysis result shown in FIG.
本発明に係る体鳴楽器に用いる金属材料としては、Sn15質量%〜26質量%を含有するCu−Sn系銅合金に、Zr0.0005質量%〜0.25質量%を含有している合金材料が好ましい。こうした合金材料は、Zrが微細な金属間化合物として分散しているため、結晶粒が微細化している。結晶粒の大きさは、断面積でみた場合に、100μm2〜300μm2に微細化されていることが好ましく、結晶粒の微細化により、高強度で加工性を向上させることができ、割れにくい金属組織となる。そのため、冷間加工等の成形加工により硬度を高めて弱音部を形成することができ、打撃部に連接した弱音部を加工により形成して、用途に応じて様々な音響特性を備えるように調整することが可能となる。具体的には、プレス成形又は冷間鍛造といった冷間加工を行う場合、冷間加工率は、0.05%〜10%に設定することが好ましい。冷間加工率が0.05%未満では加工率が小さいため硬度を高める十分な効果が得られず、10%を超えると成形加工が困難となって割れてしまうため好ましくない。 As a metal material used for the body instrument according to the present invention, an alloy material containing Zr 0.0005 mass% to 0.25 mass% in a Cu—Sn based copper alloy containing Sn 15 mass% to 26 mass% Is preferred. In such an alloy material, Zr is dispersed as a fine intermetallic compound, so that the crystal grains are refined. The grain size, when viewed in cross section, preferably being miniaturized to 100μm 2 ~300μm 2, by refinement of the crystal grains, it is possible to improve the workability high strength against cracking It becomes a metal structure. Therefore, it is possible to increase the hardness by forming processing such as cold processing and form a weak sound part, and to form a weak sound part connected to the striking part by processing and adjust it to have various acoustic characteristics according to the application It becomes possible to do. Specifically, when performing cold working such as press forming or cold forging, the cold working rate is preferably set to 0.05% to 10%. If the cold working rate is less than 0.05%, the working rate is small, so that a sufficient effect of increasing the hardness cannot be obtained. If the cold working rate exceeds 10%, the forming process becomes difficult and cracks are not preferable.
合金材料は、特許第3040768号公報に記載された水田方式により製造することができる。水田方式では、銅合金原料の溶解時に黒鉛坩堝内をアルゴンガスシールドすると共に、溶解開始後は、炭素小片若しくは炭素粉末または炭素系フラックスで溶湯表面を覆い、黒鉛坩堝中で銅合金原料を溶解した後、坩堝内で溶湯を底部から急冷して一方向凝固させることで合金材料を製造する。 The alloy material can be manufactured by the paddy field method described in Japanese Patent No. 3040768. In the paddy method, the inside of the graphite crucible is shielded with argon gas when the copper alloy raw material is melted, and after the start of melting, the surface of the molten metal is covered with carbon pieces, carbon powder or carbon flux, and the copper alloy raw material is melted in the graphite crucible. Thereafter, the molten metal is rapidly cooled from the bottom in the crucible and solidified in one direction to produce an alloy material.
本発明では、Cu−Sn−Zrの上述した成分組成に、必要に応じて様々な元素を所定範囲の含有量で添加することで、高強度で加工性を有する音響特性に優れた合金材料を得ることができる。水田方式では、Cu−Sn系合金の融点(800℃〜900℃)より200℃〜250℃程度高温(1,050℃〜1,100℃)に保持して添加した元素をZrとともに完全溶解させる。そして、坩堝内で溶湯を底部から水冷して凝固させることで、様々な元素を含有させた状態で鋳造することができる。様々な元素を含有する合金材料としては、以下のものが挙げられる。
(1)Zrを含有する上記の成分組成に、さらにTi0.1質量%〜1.0質量%及びP0.001質量%〜1.0質量%の内の1種又は2種を含有する合金材料。
(2)Zrを含有する上記の成分組成又は(1)の成分組成に、さらに、Ag0.005質量%〜0.1質量%及びFe0.01質量%〜0.1質量%の内の1種又は2種を含有する合金材料。
(3)Zrを含有する上記の成分組成に、さらに、V、Mo、Mg、Cr、Ni、Co、Nb、Hf、Taの1種又は2種以上を総量で0.005質量%〜1質量%を含有する合金材料。
(4)(3)の成分組成に、さらに、B、Si、Ga、Alの1種又は2種以上を総量で0.005質量%〜1質量%を含有する合金材料。
In the present invention, an alloy material having high strength and workability and excellent acoustic characteristics can be obtained by adding various elements in a predetermined range as needed to the above-described component composition of Cu-Sn-Zr. Can be obtained. In the paddy field method, the added element is completely dissolved together with Zr while being held at a temperature about 200 ° C. to 250 ° C. (1,050 ° C. to 1,100 ° C.) higher than the melting point (800 ° C. to 900 ° C.) of the Cu—Sn alloy. . And it can cast in the state in which various elements were contained by water-cooling and solidifying the molten metal from the bottom in a crucible. The following are mentioned as an alloy material containing various elements.
(1) An alloy material containing one or two of Ti 0.1 mass% to 1.0 mass% and P0.001 mass% to 1.0 mass% in the above-described component composition containing Zr .
(2) In addition to the above component composition containing Zr or the component composition of (1), one of Ag 0.005 mass% to 0.1 mass% and Fe 0.01 mass% to 0.1 mass% Or an alloy material containing two kinds.
(3) In addition to the above-described component composition containing Zr, one or more of V, Mo, Mg, Cr, Ni, Co, Nb, Hf, Ta are added in a total amount of 0.005% by mass to 1% by mass. % Alloying material.
(4) An alloy material containing 0.005% by mass to 1% by mass in total of one or more of B, Si, Ga and Al in the component composition of (3).
上記した様々な成分組成の合金材料に対して冷間加工により硬度を高めた弱音部を形成することで、打撃音の周波数成分のピーク値の大きさや周波数帯域とともに減衰特性を調整することができ、弱音部の形成により減衰を速めることが可能となる。 Attenuation characteristics can be adjusted along with the magnitude and frequency band of the peak value of the frequency component of the percussion sound by forming a weak sound part with increased hardness by cold working on the alloy materials having the above-mentioned various component compositions. It is possible to accelerate the attenuation by forming the weak sound part.
本発明に好ましく用いることのできる上述の合金材料について成分組成を限定した理由を以下に説明する。 The reason for limiting the component composition of the above-described alloy material that can be preferably used in the present invention will be described below.
Sn:
SnはCuに添加することにより機械的性質及び音質を向上させる作用を有するが、その含有量が15質量%未満では、音に複雑さや重厚感を与えないだけでなく振動が打撃部よりも速く減衰しにくくなり調整が難しくなるため好ましくない。一方、26質量%を超えて含有すると、合金材料の伸びが無くなり成形加工が困難となるため好ましくない。したがって、成形加工及び減衰特性の調整を容易にするために、Snの含有量を15質量%〜26質量%に設定することが好ましい。
Sn:
Sn has the effect of improving mechanical properties and sound quality by adding to Cu, but if its content is less than 15% by mass, it not only gives the sound no complexity and profound feeling, but also vibrates faster than the hitting part. It is not preferable because it is difficult to attenuate and adjustment becomes difficult. On the other hand, if it exceeds 26 mass%, the elongation of the alloy material is lost and the molding process becomes difficult, which is not preferable. Therefore, in order to facilitate the adjustment of the molding process and the damping characteristics, it is preferable to set the Sn content to 15 mass% to 26 mass%.
Zr:
Zrは、鋳造した青銅合金鋳物の結晶粒を微細化させるとともにZrが微細に分散された金属材料とすることで、機械的性質の改善及び冷間加工による硬度調整により発生する音の高調波成分を調整できる。Zrの含有量が0.0005質量%未満では結晶粒の微細化による十分な効果を発揮することがなく好ましくない。一方、0.25質量%を超えて含有すると、Zr化合物が分散して硬化しすぎてしまい成型加工が困難になるとともに音の減衰が速くなりすぎて音が鳴らなくなるので好ましくない。したがって、成形加工及び減衰特性の調整を容易にするために、Zrの含有量を0.0005質量%〜0.25質量%に設定することが好ましい。
Zr:
Zr is a harmonic material of sound generated by improving the mechanical properties and adjusting the hardness by cold working by making the crystal grain of the cast bronze alloy finer and making Zr finely dispersed. Can be adjusted. If the content of Zr is less than 0.0005% by mass, a sufficient effect due to the refinement of crystal grains is not exhibited, which is not preferable. On the other hand, if the content exceeds 0.25% by mass, the Zr compound is dispersed and hardened too much, making the molding process difficult, and the sound attenuation becomes too fast and no sound is produced. Therefore, it is preferable to set the Zr content to 0.0005% by mass to 0.25% by mass in order to facilitate the adjustment of the molding process and the damping characteristics.
Ti:
Tiは、合金材料に添加することにより圧延といった成形加工性を向上させ、0Hz〜5,000Hzの周波数を多く発生させることで音に複雑性と重厚感を持たせるという作用を有するため必要に応じて添加する。Tiの含有量が0.1質量%未満では十分な効果が得られないので好ましくない。一方、1.0質量%を超えて含有すると、音に対する大きな効果がみられなくなり、溶解・鋳造時にTiの炭化物及び酸化物を生成してしまい機械的性質が低下するため好ましくない。したがって、成形加工の向上及び音響特性への十分な効果を得るために、Tiの含有量を0.1質量%〜1.0質量%に設定することが好ましい。
Ti:
Addition to the alloy material improves the workability of rolling, such as rolling, and generates a high frequency of 0 Hz to 5,000 Hz, so that Ti has the effect of adding complexity and profound feeling to the sound. Add. If the Ti content is less than 0.1% by mass, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 1.0% by mass, a large effect on sound is not observed, and Ti carbides and oxides are generated during melting and casting, which is not preferable. Therefore, in order to obtain a sufficient effect on the molding process and the acoustic characteristics, the Ti content is preferably set to 0.1 mass% to 1.0 mass%.
P:
Pは、合金材料に添加することにより硬度を向上させ、Zrとともに含有されていることで音の減衰の速さを調整する作用を有するため必要に応じて添加する。Pの含有量が0.001質量%未満では十分な効果が得られないので好ましくない。一方、1.0質量%を超えて含有すると、硬いCu3P金属間化合物を生成し脆化するとともに音の減衰が速くなりすぎて音が鳴らなくなるので好ましくない。したがって、硬度の調整及び音の減衰特性への十分な効果を得るために、Pの含有量を0.1質量%〜1.0質量%に設定することが好ましい。
P:
P is added to the alloy material if necessary, since it has the effect of improving the hardness and adjusting the speed of sound attenuation by containing with Zr. If the P content is less than 0.001% by mass, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 1.0% by mass, a hard Cu 3 P intermetallic compound is generated and embrittled, and sound decay becomes too fast and no sound is produced. Therefore, in order to obtain a sufficient effect on the adjustment of the hardness and the sound attenuation characteristics, the P content is preferably set to 0.1% by mass to 1.0% by mass.
Ag及びFe:
さらにAg、Feといった従来の楽器用合金材料に含まれる周知の成分を必要に応じて含有させることができる。Agの含有量については、従来と同様に、0.005質量%〜0.1質量%であることが好ましく、Feの含有量についても、従来と同様に、0.01質量%〜0.1質量%であることが好ましい。
Ag and Fe:
Furthermore, the well-known component contained in the conventional alloy material for musical instruments, such as Ag and Fe, can be contained as needed. The content of Ag is preferably 0.005% by mass to 0.1% by mass as in the past, and the content of Fe is also 0.01% by mass to 0.1% in the same manner as in the past. It is preferable that it is mass%.
その他成分:
V、Mo、Mg、Cr、Ni、Co、Nb、Hf及びTa(その他成分1)は、B、Si、Ga及びAl(その他成分2)と金属間化合物を容易に形成するため、上述した金属間化合物を生成する成分と同様の効果を発揮する。その他成分1の1種又は2種以上の含有量又はその他成分1の元素とともに含まれるその他成分2の1種又は2種以上の含有量(以下「その他成分の含有量」という)が総量で0.005質量%未満では金属間化合物の分散粒子の量が少ないので十分な効果が得られないので好ましくない。一方、その他成分の含有量が総量で1.0質量%を超えて含有すると、溶解鋳造時、熱間圧延時又は熱処理時に粗大な酸化物又は粗大な晶出物が散在してしまい、成型加工時及び打撃時の割れにつながってしまうので好ましくない。したがって、その他成分の含有量を総量で0.005質量%〜1質量%に設定することが好ましい。
Other ingredients:
V, Mo, Mg, Cr, Ni, Co, Nb, Hf, and Ta (other components 1) easily form intermetallic compounds with B, Si, Ga, and Al (other components 2). It exhibits the same effect as the component that forms intermetallic compounds. 1 or 2 or more types of content of other component 1 or 1 or 2 or more types of content of other component 2 included with the elements of other component 1 (hereinafter referred to as “content of other components”) is 0 in total If it is less than 0.005% by mass, the amount of intermetallic compound dispersed particles is small, so that a sufficient effect cannot be obtained. On the other hand, if the total content of other components exceeds 1.0% by mass, coarse oxides or coarse crystallized substances are scattered at the time of melt casting, hot rolling or heat treatment, and molding processing is performed. It is not preferable because it leads to cracking at the time of hitting and hitting. Accordingly, the content of other components is preferably set to 0.005 mass% to 1 mass% in total.
以下、本発明に係る体鳴楽器の実施例について説明する。実施例の成分組成を表1及び表2に示す。成分組成の単位は、質量%である。実施例1〜4は、Cu及びSnの他にZr及びFeを含有した例である。また、表2には、その他成分を含有する実施例が挙げられており、実施例5及び7は、Cu及びSnの他にZr、Fe及びその他成分を含有した例であり、実施例6は、Cu及びSnの他にZr、Ag、Fe及びその他成分を含有した例であり、実施例8は、Cu及びSnの他にZr、P、Fe及びその他成分を含有した例であり、実施例9は、Cu及びSnの他にZr、Ti、Fe及びその他成分を含有した例であり、実施例10は、Cu及びSnの他にZr、Ti及びその他成分を含有した例である。 Hereinafter, embodiments of the somatic instrument according to the present invention will be described. The component compositions of the examples are shown in Tables 1 and 2. The unit of component composition is mass%. Examples 1-4 are examples containing Zr and Fe in addition to Cu and Sn. Table 2 lists examples containing other components. Examples 5 and 7 are examples containing Zr, Fe and other components in addition to Cu and Sn. Example 8 contains Zr, Ag, Fe and other components in addition to Cu and Sn. Example 8 is an example containing Zr, P, Fe and other components in addition to Cu and Sn. 9 is an example containing Zr, Ti, Fe and other components in addition to Cu and Sn, and Example 10 is an example containing Zr, Ti and other components in addition to Cu and Sn.
<合金材料の作製>
合金材料を製造する場合には、表1に示す成分組成の青銅合金材料(Cu、Sn)を高周波溶解炉(富士電機株式会社製)にて、大気中で、アルゴン(Ar)ガス雰囲気中及び木炭被膜下で溶解する。電気溶青銅温度が1,050℃〜1,100℃になった時点でZr及びTiを添加し、次にP、Ag及びFeを添加する。その後その他成分1に含まれる元素を添加し、最後にその他成分2に含まれる元素を添加して必要な成分組成に対応する材料を添加した青銅合金の溶湯を鋳造し、直径110mm及び高さ150mmの鋳塊(インゴット)からなる合金材料を作製した。
<Production of alloy material>
In the case of producing an alloy material, bronze alloy materials (Cu, Sn) having the composition shown in Table 1 are used in a high-frequency melting furnace (manufactured by Fuji Electric Co., Ltd.) in the atmosphere, in an argon (Ar) gas atmosphere, and Dissolves under charcoal coating. Zr and Ti are added when the electromolten bronze temperature reaches 1,050 ° C. to 1,100 ° C., and then P, Ag and Fe are added. After that, the element contained in the other component 1 is added, and finally the element contained in the other component 2 is added to cast a molten bronze alloy to which the material corresponding to the necessary component composition is added, and the diameter is 110 mm and the height is 150 mm. An alloy material made of an ingot was prepared.
作製した鋳塊を直径110mm及び高さ34mmの大きさに切り出して、熱間圧延機(有限会社トップラントエンジ製)により720℃で熱間クロス圧延し、直径430mm〜450mmで厚み約1.7mmの略円板状の素材を成形し、空冷した。 The produced ingot was cut into a size of 110 mm in diameter and 34 mm in height, and hot cross-rolled at 720 ° C. with a hot rolling mill (manufactured by Topland Engineering Co., Ltd.), with a diameter of 430 mm to 450 mm and a thickness of about 1.7 mm. A substantially disk-shaped material was molded and air-cooled.
<シンバルの成形加工>
次に、得られた素材を打楽器であるシンバルの形状とするため、中央部分のカップ形状を熱間プレス機(株式会社小出製作所製)により熱間プレスで成形し、約730℃で水中に投入して急冷した後、直径400mmの円板状となるように切り出した。得られた成形素材を冷間加工率0.1%〜5%の冷間加工でへら絞り加工によりシンバルに成形加工し、成形されたシンバルの表面に形成された酸化膜を切削により除去し、直径400mmで厚み1.5mmのシンバルを作製した。なお、実施例のシンバルでは、カップ部の冷間加工率を大きくすることで硬度を高め、弱音部を形成した。比較のため、カップ部をへら絞り加工せずボウ部のみをへら絞り加工したもの及び全体にへら絞り加工を行わずボウ部のみハンマリング加工を行ったものを作製した。
<Cymbal molding>
Next, in order to make the obtained material into the shape of a cymbal that is a percussion instrument, the cup shape in the center part is formed by hot pressing with a hot press machine (manufactured by Koide Manufacturing Co., Ltd.) and immersed in water at about 730 ° C. After being put in and rapidly cooled, it was cut out into a disk shape having a diameter of 400 mm. The obtained molding material is formed into a cymbal by spatula drawing with cold working at a cold working rate of 0.1% to 5%, and the oxide film formed on the surface of the formed cymbal is removed by cutting. A cymbal having a diameter of 400 mm and a thickness of 1.5 mm was produced. In addition, in the cymbal of the example, the hardness was increased by increasing the cold working rate of the cup portion, and the weak sound portion was formed. For comparison, a cup part that was not subjected to a spatula drawing process and a bow part only was subjected to a spatula drawing process, and a whole part that was subjected to hammering process without a spatula drawing process was prepared.
[比較例]
比較例1から3として従来品の3種類のシンバルを準備した。比較例1から3の成分組成を表1に示す。また、比較例4として、表1に示す成分組成で作製した合金材料を用いて、カップ部をへら絞り加工せずボウ部のみをへら絞り加工したものを準備し、比較例5として、表1に示す成分組成で作製した合金材料を用いて、全体にへら絞り加工を行わずボウ部のみハンマリング加工を行ったもの準備した。
[Comparative example]
As Comparative Examples 1 to 3, three types of conventional cymbals were prepared. Table 1 shows the component compositions of Comparative Examples 1 to 3. Further, as Comparative Example 4, an alloy material prepared with the component composition shown in Table 1 was used, and a cup part was not spatally drawn but only a bow part was spatally drawn. As Comparative Example 5, Table 1 was prepared. Using the alloy material produced with the component composition shown in Fig. 1, the whole material was not subjected to spatula drawing but was subjected to hammering only at the bow portion.
<音響特性に関する試験>
表1及び表2に示す実施例及び比較例のシンバルについて音響特性に関する試験を行った。まず、無響室(福井県工業技術センターに設置)内に、PULSEオーディオアナライザ(ブリュエル・ケアー社製3560-C-T00)及びマイクロフォン(ブリュエル・ケアー社製4193及び2269)をセットした。シンバルを支持装置(ソナー・ドラム・ハードウェア)に取り付けて、マイクロフォンに向かってシンバルを配置した。シンバルを一定の力で打撃する装置(株式会社東洋テクニカ製)により打撃して打音を測定した。
<Test on acoustic characteristics>
Tests relating to acoustic characteristics were performed on the cymbals of Examples and Comparative Examples shown in Tables 1 and 2. First, a PULSE audio analyzer (3560-C-T00 made by Brüel & Kjær) and a microphone (4193 and 2269 made by Brüel & Kjær) were set in an anechoic room (installed at Fukui Prefectural Industrial Technology Center). The cymbal was attached to a support device (sonar drum hardware) and the cymbal was placed toward the microphone. The hitting sound was measured by hitting the cymbal with a constant force (made by Toyo Technica Co., Ltd.).
そして、打撃後の10秒間の打音について、時間−周波数でのスペクトログラム波形を出力し、FFT周波数特性分析を行い高調波成分の解析及び0.25秒毎の瞬時FFT解析を行い、残響時間単位での周波数成分を解析することで、減衰時間の長さ及び周波数との関連性を評価した。図3は、実施例1及び比較例1のFFT解析結果を示している。図3(a)では、上のグラフが比較例1の10秒間の周波数分析結果(横軸;周波数(kHz)、縦軸;音圧の強さ(振幅))で、下のグラフが比較例1のスペクトログラム波形(横軸;時間(秒)、縦軸;周波数(kHz))を示しており、図3(b)では、同様に実施例1の10秒間の周波数分析結果及びスペクトログラム波形を示している。両者の解析結果を比較すると、実施例1では、4kHz以上の音のピークがほとんどなくなっているのに対し、比較例では10kHzの高周波領域でも音のピークがあるのがわかる。これは、実施例1が静かな音を発生させているのに対し、比較例1が華やかな音を発生させており、顕著な音響特性の違いが表れている。 Then, for 10 seconds after the impact, a spectrogram waveform in time-frequency is output, FFT frequency characteristics analysis is performed, harmonic component analysis and instantaneous FFT analysis every 0.25 seconds, reverberation time unit The relationship between the length of the decay time and the frequency was evaluated by analyzing the frequency component at. FIG. 3 shows the FFT analysis results of Example 1 and Comparative Example 1. In FIG. 3A, the upper graph is the frequency analysis result (horizontal axis: frequency (kHz), vertical axis: sound pressure intensity (amplitude)) of Comparative Example 1, and the lower graph is the comparative example. 1 shows a spectrogram waveform (horizontal axis; time (seconds), vertical axis; frequency (kHz)), and FIG. 3 (b) also shows the frequency analysis result and spectrogram waveform of Example 1 for 10 seconds. ing. Comparing the analysis results of both, it can be seen that in Example 1, there is almost no sound peak of 4 kHz or higher, whereas in the comparative example, there is a sound peak even in the high frequency region of 10 kHz. This is because Example 1 generates a quiet sound, whereas Comparative Example 1 generates a gorgeous sound, and a significant difference in acoustic characteristics appears.
図4は、1/3オクターブ分析(中心周波数4kHz;打撃後4秒間)を示すグラフであり、横軸に時間(秒)をとり、縦軸に音圧レベルをとっている。実施例1では、比較例1に比べて打撃開始後から急速に減衰しており、減衰特性が明確に変化していることがわかる。また、表3に7.5kHzから20kHzまでの範囲の音の残響時間を示す。なお、残響時間については、打撃開始から音圧の強さのピーク成分がほとんどみられなくなるまでの時間を、残響時間として算出した。なお、比較例4及び5については、音の残響がほとんど測定されなかった。 FIG. 4 is a graph showing 1/3 octave analysis (center frequency 4 kHz; 4 seconds after impact), with the horizontal axis representing time (seconds) and the vertical axis representing sound pressure level. In Example 1, as compared with Comparative Example 1, it is attenuated more rapidly after the start of hitting, and it can be seen that the attenuation characteristic is clearly changed. Table 3 shows the reverberation time of sound in the range from 7.5 kHz to 20 kHz. As for the reverberation time, the time from the start of striking until the peak component of the sound pressure intensity is almost not observed was calculated as the reverberation time. In Comparative Examples 4 and 5, the sound reverberation was hardly measured.
<硬度の測定>
表1及び表2に示す実施例及び比較例のシンバルについて半径方向に切断して、カップ部及びボウ部についてそれぞれ半径方向に20mmずつ切り出して複数の試験片を作成し、た。得られた試験片に対してビッカース硬度計(株式会社アカシ製)を用いて硬度を測定した。測定結果を表3に示す。なお、表3では、それぞれの部位で得られた試験片の硬度の平均値を算出した結果を示している。また、図5は、実施例1及び比較例1の半径方向の硬度の測定結果を示すグラフである。横軸に中心から半径方向の距離(cm)をとり、縦軸に硬度(Hv)をとっている。実施例1では、カップ部がボウ部よりも高硬度となっており、境界位置で硬度が不連続に変化するように仕上げられているのに対し、比較例1では、カップ部からボウ部にかけて連続的に硬度が高くなるように仕上げられている。
<Measurement of hardness>
The cymbals of the examples and comparative examples shown in Table 1 and Table 2 were cut in the radial direction, and the cup part and the bow part were cut out by 20 mm each in the radial direction to prepare a plurality of test pieces. Hardness was measured with respect to the obtained test piece using a Vickers hardness tester (manufactured by Akashi Co., Ltd.). Table 3 shows the measurement results. Table 3 shows the result of calculating the average value of the hardness of the test piece obtained at each part. FIG. 5 is a graph showing the measurement results of the hardness in the radial direction of Example 1 and Comparative Example 1. The horizontal axis represents the distance (cm) in the radial direction from the center, and the vertical axis represents the hardness (Hv). In Example 1, the cup part has a higher hardness than the bow part and is finished so that the hardness changes discontinuously at the boundary position, whereas in Comparative Example 1, from the cup part to the bow part. Finished to continuously increase the hardness.
実施例では、比較例よりも残量時間が短くなっており、打撃音の減衰が速くなっていることが確認された。そして、打撃部よりも硬度を高めた弱音部の形成により減衰特性を調整することが可能となり、硬度の調整、弱音部の範囲設定及び成分組成の調整により様々な音響特性を実現することができる。 In the example, it was confirmed that the remaining time was shorter than that of the comparative example, and the decay of the hitting sound was faster. And it becomes possible to adjust the attenuation characteristic by forming a weak sound part with higher hardness than the striking part, and various acoustic characteristics can be realized by adjusting the hardness, setting the range of the weak sound part and adjusting the component composition. .
<結晶粒径の測定>
表1及び表2に示す実施例のシンバルについて断面積を電子顕微鏡(日本電子株式会社製)により観察し、結晶粒の粒径を測定した。まず、成形加工したシンバルを半径方向に切り出し、切り出した試験片(10mm〜12mm角)をフェノール樹脂に埋め込んで固定した。樹脂に埋め込まれた試験片の断面を電子顕微鏡でミクロ組織観察し、Zrの金属間化合物の粒径を解析した。粒径は、金属間化合物の断面積と同じ面積の仮想円の直径として算出した。粒径の測定は電子顕微鏡のスケールから算出し、10箇所の測定結果を平均して粒径値とした。図6は、実施例1についてミクロ組織観察した撮影写真である。図6では、黒色部分がα相を示し、灰色部分がβ相を示している。点状の白色部分がZrの金属間化合物を示している。
<Measurement of crystal grain size>
Regarding the cymbals of Examples shown in Table 1 and Table 2, the cross-sectional area was observed with an electron microscope (manufactured by JEOL Ltd.), and the grain size of the crystal grains was measured. First, the molded cymbal was cut out in the radial direction, and the cut out test piece (10 mm to 12 mm square) was embedded in a phenol resin and fixed. The cross section of the test piece embedded in the resin was observed with a microstructure through an electron microscope, and the particle size of the Zr intermetallic compound was analyzed. The particle size was calculated as the diameter of a virtual circle having the same area as the cross-sectional area of the intermetallic compound. The measurement of the particle size was calculated from the scale of an electron microscope, and the measurement results at 10 locations were averaged to obtain a particle size value. FIG. 6 is a photograph of the microstructure observed in Example 1. In FIG. 6, the black portion indicates the α phase and the gray portion indicates the β phase. A dotted white portion indicates an intermetallic compound of Zr.
また、硫酸及び過酸化水素を水で希釈した処理液を用いて試験片の断面をエッチングし、マイクロスコープ(株式会社キーエンス製)でマクロ組織観察し、10mm2当りの3箇所の結晶粒についてその粒径を解析した。粒径は、結晶粒の断面積と同じ面積の仮想円の直径として算出し、算出した粒径の平均値を平均結晶粒径とした。得られた平均結晶粒径は50μm〜300μmとなっており、微細な金属間化合物が分散して生成されていることが確認された。 Further, the sulfuric acid and hydrogen peroxide cross-section of the test piece using the processing solution diluted with water and etched to macrostructure observed with a microscope (Keyence Corporation), the three per 10 mm 2 for grain The particle size was analyzed. The particle diameter was calculated as the diameter of a virtual circle having the same area as the cross-sectional area of the crystal grains, and the average value of the calculated particle diameters was taken as the average crystal grain diameter. The obtained average crystal grain size was 50 μm to 300 μm, and it was confirmed that fine intermetallic compounds were produced by dispersion.
本発明に係る体鳴楽器としては、上述したシンバルに限定されることはなく、ベルメタルの代表であるチャーチベルを始め、タムタム、ゴング、クロテイルやお鈴といった様々な体鳴楽器へ適用することができる。また、硬度を高めた弱音部の形成により減衰特性を調整することが可能となり、金属材料の成分組成を調整するとともに弱音部を適宜設定して硬度の調整を行うことで様々な音響特性を実現することができるので、演奏者の要望にきめ細かく対応した体鳴楽器を提供することが可能となる。 The body sound instrument according to the present invention is not limited to the above-mentioned cymbals, but can be applied to various body sound instruments such as bell bell, representative of bell metal, tam tom, gong, crotale and bell. it can. In addition, it is possible to adjust the attenuation characteristics by forming a weak sound part with increased hardness, and various acoustic characteristics are realized by adjusting the component composition of the metal material and adjusting the hardness by appropriately setting the weak sound part Therefore, it is possible to provide a body sound instrument that closely responds to the demands of the performer.
M1、M2・・・シンバル、C1、C2・・・カップ部、B1、B2・・・ボウ部 M1, M2 ... Cymbals, C1, C2 ... Cup part, B1, B2 ... Bow part
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017103122A JP6347037B1 (en) | 2017-05-24 | 2017-05-24 | Body instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017103122A JP6347037B1 (en) | 2017-05-24 | 2017-05-24 | Body instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6347037B1 true JP6347037B1 (en) | 2018-06-27 |
JP2018197827A JP2018197827A (en) | 2018-12-13 |
Family
ID=62706230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017103122A Active JP6347037B1 (en) | 2017-05-24 | 2017-05-24 | Body instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6347037B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009174003A (en) * | 2008-01-24 | 2009-08-06 | Nosaku:Kk | Metal ware and metal product made of metal material used for the metal ware |
JP2016160509A (en) * | 2015-03-04 | 2016-09-05 | 株式会社 大阪合金工業所 | Bronze alloy for musical instrument and percussion instrument using the same |
JP2017116898A (en) * | 2015-12-27 | 2017-06-29 | 将由 山▲崎▼ | Melody percussion instrument |
-
2017
- 2017-05-24 JP JP2017103122A patent/JP6347037B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009174003A (en) * | 2008-01-24 | 2009-08-06 | Nosaku:Kk | Metal ware and metal product made of metal material used for the metal ware |
JP2016160509A (en) * | 2015-03-04 | 2016-09-05 | 株式会社 大阪合金工業所 | Bronze alloy for musical instrument and percussion instrument using the same |
JP2017116898A (en) * | 2015-12-27 | 2017-06-29 | 将由 山▲崎▼ | Melody percussion instrument |
Also Published As
Publication number | Publication date |
---|---|
JP2018197827A (en) | 2018-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5 Si–0.5 Mg alloy | |
Zhu et al. | Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys | |
WO2001088215A1 (en) | Process for nodulizing silicon in casting aluminum silicon alloys | |
JP6347037B1 (en) | Body instrument | |
JP2006312777A (en) | Rapidly cooled and solidified thin strip having excellent soft magnetic characteristics | |
Bartocha et al. | Influence of tin bronze melting and pouring parameters on its properties and bells’ tone | |
JP5928624B1 (en) | Bronze alloy for musical instrument and percussion instrument using the same | |
JPH062058A (en) | Crystal grain growth suppressing oxygen free copper | |
CN1026998C (en) | Sound copper alloy | |
JP2018141223A (en) | Method for producing metallic material, and metallic material | |
Cekus et al. | Assessment of the change in the tin concentration in bronzes to the basic components of the sound of bells | |
JPS58117850A (en) | Aluminum alloy for contact parts | |
Chong et al. | Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.% Fe. | |
JP2005164627A (en) | Steel wire for musical instrument string, and its manufacturing method | |
Lisovskii et al. | Sparingly alloyed bell bronzes with elevated parameters of mechanical properties | |
Tavitas-Medrano et al. | On the enhancement of the impact toughness of A319 alloys: role of Mg content and melt treatment | |
JPS643932B2 (en) | ||
JPH05257479A (en) | Tuned aluminium-made musical hand bell | |
JP4253101B2 (en) | High vibration damping cast steel with excellent machinability and manufacturing method thereof | |
UA146989U (en) | METHOD OF MANUFACTURE OF BELLS AND SOUND ELEMENTS OF PERFORMANCE MUSICAL INSTRUMENTS | |
Slamet et al. | The effect of post-casting gamelan blade forging on Cu-25wt.% Sn alloy on microstructure, hardness and sound acoustic | |
JPH01255634A (en) | High damping alloy | |
White et al. | The cymbal as an instructional device for materials education | |
SU594205A1 (en) | Complex inoculant | |
JPS601938B2 (en) | Zn alloy for audio parts with excellent vibration absorption performance and high strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6347037 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |