JP6345458B2 - Rotating shaft holding mechanism and rotational viscometer using the same - Google Patents

Rotating shaft holding mechanism and rotational viscometer using the same Download PDF

Info

Publication number
JP6345458B2
JP6345458B2 JP2014059713A JP2014059713A JP6345458B2 JP 6345458 B2 JP6345458 B2 JP 6345458B2 JP 2014059713 A JP2014059713 A JP 2014059713A JP 2014059713 A JP2014059713 A JP 2014059713A JP 6345458 B2 JP6345458 B2 JP 6345458B2
Authority
JP
Japan
Prior art keywords
rotating shaft
holding mechanism
elastic hinge
rotation
shaft holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014059713A
Other languages
Japanese (ja)
Other versions
JP2015184095A (en
Inventor
健司 菜嶋
健司 菜嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014059713A priority Critical patent/JP6345458B2/en
Publication of JP2015184095A publication Critical patent/JP2015184095A/en
Application granted granted Critical
Publication of JP6345458B2 publication Critical patent/JP6345458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転軸を必要とする機構、機器の中で、必要とする回転量が小さいものに利用できる回転軸の保持機構に関し、高精度のトルク測定が必要な分野の課題解決に向けて考案されたものであって、特に、回転粘度計、或いは、回転粘度計型レオメータ(以下では、単に回転粘度計と記してもこの両者を指す。)におけるトルク測定に利用するのに好適である。   The present invention relates to a rotating shaft holding mechanism that can be used for a mechanism and a device that require a rotating shaft and requires a small amount of rotation, and to solve problems in fields that require highly accurate torque measurement. The invention has been devised and is particularly suitable for use in torque measurement in a rotational viscometer or a rotational viscometer type rheometer (hereinafter simply referred to as a rotational viscometer). .

回転軸の保持機構の多くは、ボールベアリング等の回転体を挟み込む構造のものが用いられる。これによって回転軸の精度と摩擦抵抗を軽減している。しかし、ベアリングに挟み込まれている回転体は、回転軸の精度を左右し、さらに、回転の抵抗を軸の回転と共に細かく変動させる。これが問題となる用途で、特に高精度、低摩擦抵抗が要求される場合には、空気の膜を挟み込む構造のエアベアリングが用いられる。しかし、エアベアリングは、別途高圧の空気源が必要な他、余りコンパクトにはできず、回転モーメントが大きくなってしまうという欠点があった。また、エアベアリングに供給する空気圧は、場合によってはトルクの発生源となり、高精度なトルク測定の軸受けとしてエアベアリングを用いる際に注意が必要な事項となっている。
高精度な回転軸を必要とする機構の内、回転を殆どしないものには、バネの変形によって必要な回転を担保できる構造の保持機構が採用可能であり、本発明者等も、弾性ヒンジ機構を用いる軸受け機構を先に出願している(特許文献1参照)。特許文献1の回転軸保持機構は図3に示すように、(1)平行バネリンクを複数用い、それぞれ(2)平行バネリンクの変形する側の辺の長さと角度を、平行バネと回転軸との接合点の回転軸心からの距離と方向に一致させた構造である。上記(1)の平行バネリンク構造を用いることにより、回転方向以外の変形に対して高い剛性を付与でき、上記(2)の長さを一致させることで、平行バネの変形による軸の移動を無くすことが出来るものである。
Many of the rotating shaft holding mechanisms have a structure in which a rotating body such as a ball bearing is sandwiched. This reduces the accuracy and frictional resistance of the rotating shaft. However, the rotating body sandwiched between the bearings affects the accuracy of the rotating shaft, and further, the resistance of rotation varies finely with the rotation of the shaft. In applications where this is a problem, particularly when high accuracy and low friction resistance are required, an air bearing having a structure in which an air film is sandwiched is used. However, the air bearing requires a separate high-pressure air source, and cannot be made too compact, resulting in a drawback that the rotational moment increases. In addition, the air pressure supplied to the air bearing is a source of torque in some cases, and is a matter requiring attention when using the air bearing as a bearing for high-accuracy torque measurement.
Among the mechanisms that require a highly accurate rotating shaft, a holding mechanism having a structure that can ensure the necessary rotation by deformation of the spring can be adopted for a mechanism that hardly rotates, and the present inventors also have an elastic hinge mechanism. An application for a bearing mechanism that uses the above has already been filed (see Patent Document 1). As shown in FIG. 3, the rotating shaft holding mechanism of Patent Document 1 uses (1) a plurality of parallel spring links, and (2) the length and angle of the side on which the parallel spring links are deformed, and the parallel spring and the rotating shaft. It is the structure made to correspond to the distance and direction from the rotating shaft center of a junction point. By using the parallel spring link structure of (1) above, high rigidity can be imparted to deformations other than the rotation direction, and by matching the lengths of (2) above, movement of the shaft due to deformation of the parallel springs can be achieved. It can be lost.

特開2012−132856号公報JP 2012-132856 A

上記特許文献1の平行バネリンクを持つ弾性ヒンジ機構による軸受けは、理想的には、薄い弾性ヒンジ部(板バネ)とその2倍の厚さの板バネにより、回転軸が軸の回転によって変動しない構成が可能である。ただし、バネの弾性による復元力が働くので、この復元力が問題になるときには板バネを薄く作る必要がある。
しかしながら、板バネを薄く作る時、特許文献1の構成によると、薄い板バネ構造で常に問題となる座屈限界により、軸受けの耐荷重性能の限界が低くなってしまう問題があった。
そこで、本発明の課題は、上記問題点を解決し座屈による耐荷重性能の低下を改善した回転軸保持機構を提供することにある。
The bearing by the elastic hinge mechanism having the parallel spring link of Patent Document 1 is ideally changed by the rotation of the shaft due to the thin elastic hinge portion (plate spring) and the plate spring twice as thick as that. A configuration that is not possible is possible. However, since the restoring force due to the elasticity of the spring works, when this restoring force becomes a problem, it is necessary to make the leaf spring thin.
However, when the leaf spring is made thin, according to the configuration of Patent Document 1, there is a problem that the limit of the load bearing performance of the bearing is lowered due to the buckling limit which is always a problem in the thin leaf spring structure.
Therefore, an object of the present invention is to provide a rotating shaft holding mechanism that solves the above-described problems and improves the decrease in load bearing performance due to buckling.

座屈は、薄い梁が長手方向から圧縮されるときの現象であるので、軸を支える弾性ヒンジ要素の組が圧縮と引っ張りの両方を同時に受ける上記特許文献1の従来構造に代え、圧縮のみか、引っ張りのみの組み合わせとなるように構成を変更する。軸に加わる横荷重を支える弾性ヒンジ要素を複数にすることで、あらゆる方向からの横荷重について引っ張り応力で軸を支える弾性ヒンジ要素が存在できる。この要素が座屈モードをもつ圧縮応力の要素を保護し軸受けの破壊を防ぐ。このために、平行バネリンクの可動部と軸構造を接続する弾性ヒンジ要素の方向を平行バネリンクの固定部へ接続する弾性ヒンジ要素の方向を逆にすることで解決できる。
また、平行バネリンクは、理想的には、平行四辺形の頂点の角度のみ変わる構造で、一辺が固定され、それに繋がっている二辺が変形して、他の一辺を平行移動させるものである。物がずれ動くことが無いので、非常になめらかな移動が可能であり、高精度な計測が必要なところで、機構部品に使われている。可動側の辺の動きは、詳細に見ると、変形辺を半径とする円運動になっており、可動辺に固定された任意の一点は、変形辺の長さと向きによって定められる一点を中心とする円周上を動く。従って、この位置に、角度可変のヒンジを配置すれば、回転軸を構成する要素となることが分かる。平行バネリンクが一つでは、ヒンジの角度は自由であるため、回転軸を規定できないので、180度方向では無い2つ以上の方向から、同一の軸上に円運動の中心を持つヒンジを平行バネリンクによって配置し、この軸に一致する回転軸を構成する。
Since buckling is a phenomenon when a thin beam is compressed from the longitudinal direction, the elastic hinge element set that supports the shaft is subjected only to compression instead of the conventional structure of Patent Document 1 that receives both compression and tension at the same time. The configuration is changed so that only the pull is combined. By using a plurality of elastic hinge elements that support the lateral load applied to the shaft, there can be an elastic hinge element that supports the shaft with a tensile stress with respect to a lateral load from any direction. This element protects the compressive stress element with the buckling mode and prevents the bearing from breaking. For this reason, the problem can be solved by reversing the direction of the elastic hinge element that connects the movable part of the parallel spring link and the shaft structure to the fixed part of the parallel spring link.
The parallel spring link ideally has a structure in which only the angle of the vertex of the parallelogram changes, and one side is fixed, and the two sides connected to it are deformed to translate the other side. . Since objects do not move, they can move very smoothly, and are used for mechanical parts where high-precision measurement is required. When the movement of the movable side is viewed in detail, it is a circular motion with the radius of the deformed side, and an arbitrary point fixed to the movable side is centered on a point determined by the length and orientation of the deformed side. Move around the circle. Therefore, it can be seen that if a variable angle hinge is arranged at this position, it becomes an element constituting the rotation axis. With one parallel spring link, the angle of the hinge is free, so the rotation axis cannot be defined. Therefore, the hinges having the center of circular motion on the same axis are parallel from two or more directions that are not 180 degrees. The rotating shaft is arranged by a spring link and coincides with this axis.

すなわち、特許文献1の従来構造(図3参照)では、上記、ヒンジを配置する可動辺に固定された任意の点を、軸心を含む部材(中実の回転軸)につなげられた構造であったが、本発明では、ヒンジを配置する可動辺に固定された任意の点は実体としては軸心を含まない構造(中空の回転軸)をとり、仮想的な軸心の周囲を回転する部材に接合(図1参照)される。より現実的には、図1の構成の回転軸を固定部側とし、かつ、図1の構成の固定部を軸心を実体として含む可動軸側(回転軸)とする構成(図2参照)となる。
本発明は、回転軸の回転中心から半径方向に実行長hの位置で弾性ヒンジにより回転軸に接合された可動辺と、一端が弾性ヒンジで前記可動辺に接合され他端が弾性ヒンジで固定部に接合された複数の互いに平行な実行長hの変形辺とからなる平行バネリンクを少なくとも2つ備えることにより前記回転軸の回動を許容する回転軸保持機構であって、前記可動辺と前記回転軸を接合する前記弾性ヒンジの接合方向は、前記回転中心から半径方向に前記実行長hより内側に位置する可動辺の接合部と、前記実行長hより外側に位置する回転軸の接合部とを弾性ヒンジで接合したことを特徴とする。
また、本発明は、回転軸の回転中心から半径方向に実行長hの位置で弾性ヒンジにより固定部に接合された可動辺と、一端が弾性ヒンジで前記可動辺に接合され他端が弾性ヒンジで回転軸に接合された複数の互いに平行な実行長hの変形辺とからなる平行バネリンクを少なくとも2つ備えることにより前記回転軸の回動を許容する回転軸保持機構であって、前記固定部と前記可動辺を接合する前記弾性ヒンジの接合方向は、前記回転軸の回転中心から半径方向に前記実行長hより内側に位置する可動辺の接合部と、前記実行長hより外側に位置する固定部の接合部とを接合したことを特徴とする。
また、本発明は、回転粘度計であって、上記の回転軸保持機構を、回転粘度計のトルク測定軸の保持機構として用いたことを特徴とする回転粘度計である。
That is, in the conventional structure of Patent Document 1 (see FIG. 3), the above-described arbitrary point fixed to the movable side where the hinge is arranged is connected to a member including a shaft center (solid rotating shaft). However, in the present invention, an arbitrary point fixed to the movable side on which the hinge is arranged has a structure that does not include an axis as a substance (hollow rotation axis), and rotates around a virtual axis. Joined to the member (see FIG. 1). More realistically, the rotation shaft having the configuration shown in FIG. 1 is the fixed portion side, and the fixed portion having the configuration shown in FIG. 1 is the movable shaft side (rotation shaft) including the shaft center as an entity (see FIG. 2). It becomes.
In the present invention, a movable side joined to the rotary shaft by an elastic hinge at a position of an execution length h in the radial direction from the rotation center of the rotary shaft, one end joined to the movable side by an elastic hinge, and the other end fixed by the elastic hinge A rotating shaft holding mechanism that allows rotation of the rotating shaft by providing at least two parallel spring links formed of a plurality of parallel deformed sides having an execution length h that are joined to a portion, The joining direction of the elastic hinge that joins the rotating shaft is the joining of the joint portion of the movable side that is located inward from the effective length h in the radial direction from the center of rotation and the rotating shaft that is located outside the effective length h. The part is joined with an elastic hinge.
The present invention also provides a movable side joined to the fixed portion by an elastic hinge at a position of an execution length h in the radial direction from the rotation center of the rotary shaft, and one end joined to the movable side by an elastic hinge and the other end is an elastic hinge. A rotating shaft holding mechanism that allows rotation of the rotating shaft by providing at least two parallel spring links formed of a plurality of parallel deformable sides having an execution length h joined to the rotating shaft, The joining direction of the elastic hinge that joins the movable part and the movable side is located at the joint part of the movable side located inside the effective length h in the radial direction from the rotation center of the rotating shaft, and outside the effective length h. It is characterized in that the joint portion of the fixed portion to be joined is joined.
The present invention is also a rotational viscometer, characterized in that the above-described rotational shaft holding mechanism is used as a torque measuring shaft retaining mechanism of the rotational viscometer.

本発明によれば、平行バネリンク機構を採用したので回転方向以外の変形に対して剛性の高い精密な回転軸保持機構が提供でき、エアベアリング等に比べて低コストでメンテナンスや取り扱いが容易であり、また、回転軸に横荷重が負荷された際に、少なくとも一つの平行バネリンクにおいてリンク内の全ての弾性ヒンジが引っ張り応力で回転軸を支えるようにしたので、弾性ヒンジ部の座屈による耐荷重性能が改善される。
また、本発明の回転軸保持機構を用いた回転粘度計では、座屈による耐荷重性能の改善により弾性ヒンジ部のさらなる薄型化が可能となり弾性ヒンジによる応力トルクを小さくすることができ高精度のトルク検出が可能となる。
According to the present invention, since a parallel spring link mechanism is adopted, a precise rotating shaft holding mechanism having high rigidity against deformations other than the rotating direction can be provided, and maintenance and handling are easy at low cost compared to air bearings and the like. In addition, when a lateral load is applied to the rotating shaft, all the elastic hinges in the link support the rotating shaft with tensile stress in at least one parallel spring link. Load bearing performance is improved.
In the rotational viscometer using the rotating shaft holding mechanism of the present invention, the elastic hinge portion can be made thinner by improving the load bearing performance due to buckling, and the stress torque due to the elastic hinge can be reduced. Torque can be detected.

図1は、本発明の回転軸保持機構の原理を説明した図である。FIG. 1 is a diagram for explaining the principle of the rotary shaft holding mechanism of the present invention. 図2は、本発明の回転軸保持機構の一実施例を示した図である。図2の構造では、Bを回転軸側、Eを固定部側として用いることもできるし、逆に、Bを固定部側、Eを回転軸側として用いることもできる。FIG. 2 is a view showing an embodiment of the rotating shaft holding mechanism of the present invention. In the structure of FIG. 2, B can be used as the rotating shaft side and E can be used as the fixed portion side. Conversely, B can be used as the fixed portion side and E can be used as the rotating shaft side. 図3は、特許文献1の従来の回転軸保持機構の原理を説明した図である。FIG. 3 is a diagram illustrating the principle of the conventional rotating shaft holding mechanism disclosed in Patent Document 1. In FIG. 図4は、本発明の回転軸保持機構の、回転粘度計の回転軸保持機構への応用例を説明するための図である。FIG. 4 is a diagram for explaining an application example of the rotating shaft holding mechanism of the present invention to a rotating shaft holding mechanism of a rotational viscometer.

まず、特許文献1の従来型の平行バネリンクによる回転軸保持機構について、図3を参照して説明する。図3において、A:可動辺、B:固定部、C1、C2:変形辺、D:弾性ヒンジ、O:回転軸(OからDに至る間は変形せずに剛体として一体的に回動する)であり、平行バネリンクの可動辺Aは、互いに平行な変形辺C1、C2の実行長hと等しい半径hの円弧を描く。回転軸Oの中心としたい位置より、平行バネリンクに傾き(変形辺C1、C2の傾き)と長さ(h)が一致する地点に回転軸Oと可動辺Aとを接合する弾性ヒンジDを設ける。このとき弾性ヒンジDは可動辺Aからみて回転軸Oの中心位置側に向けて回転軸と接合する。すると、回転軸Oは可動辺Aの円弧状の運動に従う回転軸を構成する。この弾性ヒンジDの位置に規定はないので、回転軸Oの位置は自由に設定できる。そして、図3の平行バネリンクが一つだけだと,弾性ヒンジDにより回転軸Oの位置は固定されないので、一つの回転軸Oに対して方向の異なる二つ以上の平行バネリンクを組み合わせることで、回転軸Oの位置を決定できる。
以上説明した従来型の平行バネリンクによる回転軸保持機構では、回転軸に横荷重が加わった場合に、例えば、可動辺Aと回転軸Oを接合する弾性ヒンジDに引っ張り荷重がかかれば、変形辺C1、C2の両端の弾性ヒンジDには圧縮荷重(座屈モード)がかかり、逆に、可動辺Aと回転軸Oを接合する弾性ヒンジDに圧縮荷重(座屈モード)がかかれば、変形辺C1、C2の両端の弾性ヒンジDには引っ張り荷重がかかることとなり、一つの平行バネリンク内の弾性ヒンジには圧縮を受けているものと引っ張りを受けているものとが同時に存在するので、圧縮荷重のかかる弾性ヒンジ部の座屈破壊を防止するために弾性ヒンジ部の薄肉化に限界が有り、弾性ヒンジによる応力トルクを十分に小さくすることが必ずしもできなかった。
First, a rotation shaft holding mechanism using a conventional parallel spring link of Patent Document 1 will be described with reference to FIG. In FIG. 3, A: movable side, B: fixed part, C1, C2: deformation side, D: elastic hinge, O: rotating shaft (rotates integrally as a rigid body without deformation from O to D) The movable side A of the parallel spring link draws an arc having a radius h equal to the execution length h of the deformation sides C1 and C2 that are parallel to each other. An elastic hinge D that joins the rotary shaft O and the movable side A at a point where the inclination (inclination of the deformation sides C1 and C2) and the length (h) coincide with the parallel spring link from the position where the rotation axis O is desired to be the center. Provide. At this time, the elastic hinge D is joined to the rotating shaft toward the center position side of the rotating shaft O when viewed from the movable side A. Then, the rotation axis O constitutes a rotation axis that follows the arcuate motion of the movable side A. Since the position of the elastic hinge D is not specified, the position of the rotation axis O can be freely set. If the number of the parallel spring links in FIG. 3 is only one, the position of the rotation axis O is not fixed by the elastic hinge D. Therefore, two or more parallel spring links having different directions with respect to one rotation axis O are combined. Thus, the position of the rotation axis O can be determined.
In the rotary shaft holding mechanism using the conventional parallel spring link described above, when a lateral load is applied to the rotary shaft, for example, if a tensile load is applied to the elastic hinge D that joins the movable side A and the rotary shaft O, the deformation is deformed. A compression load (buckling mode) is applied to the elastic hinges D at both ends of the sides C1, C2, and conversely, if a compression load (buckling mode) is applied to the elastic hinge D that joins the movable side A and the rotating shaft O, A tensile load is applied to the elastic hinges D at both ends of the deformed sides C1 and C2, and the elastic hinges in one parallel spring link are simultaneously subjected to compression and tensile. In order to prevent buckling failure of the elastic hinge portion to which a compressive load is applied, there is a limit to the thinning of the elastic hinge portion, and the stress torque due to the elastic hinge cannot always be sufficiently reduced.

そこで、本発明では、回転軸に横荷重が加わった際に、一つの平行バネリンク内の弾性ヒンジが圧縮のみか、引っ張りのみの組み合わせとなるように改良するとともに、平行バネリンクを複数具備することで、あらゆる方向からの横荷重について、少なくとも一つの平行バネリンクにおいてリンク内の全ての弾性ヒンジが引っ張り応力で軸を支えるようにしたものである。
図1は、本発明の原理を説明するための図であり、図3の従来技術と異なるところは、回転軸と可動辺とを接合する弾性ヒンジDの接合方向を逆にした点、つまり、可動辺Aから見て回転軸の中心位置方向ではなく反対側の外側の回転体の一部Eに対して弾性ヒンジDで接合した点である。A:可動辺、B:固定部、C1、C2:変形辺、D:弾性ヒンジ、O:回転軸、E:回転軸の回転体の一部であり、平行バネリンクの可動辺Aは、互いに平行な変形辺C1、C2の実行長hと等しい半径hの円弧を描く。回転軸Oの中心としたい場所より、平行バネリンクに傾き(変形辺C1、C2の傾き)と長さ(h)が一致する地点に回転軸O(図では中心軸部分が中空な回転軸の回転体の一部E)と可動辺Aを接合する弾性ヒンジDを設ける。すると、回転軸Oは可動辺Aの円弧状の運動に従う回転軸を構成する。但し、注意を要するのは、可動辺Aと弾性ヒンジDで接合される回転軸の回転体の一部Eは、接合点の弾性ヒンジDから見て回転軸Oの回転中心側ではなく半径方向外側に配置され、可動辺Aが接合点の弾性ヒンジDから見て回転中心側に配置される接合方向を採用した点が肝要である。言い換えれば、可動辺Aと回転軸Oを接合する弾性ヒンジDの接合方向は、回転中心から半径方向に実行長hより内側に位置する可動辺Aの接合部と、前記実行長hより外側に位置する回転軸O(E)の接合部とを弾性ヒンジDで接合したことを特徴とするものである
なお、図1において、回転軸の回転体の一部Eから接合点の弾性ヒンジDまで伸びている部材は回転体の一部Eと同様に回転軸と一体に剛体として回動することを表しているものである。また、図1では回転軸と可動辺とを接合する弾性ヒンジの接合方向の説明をわかりやすくするために中心軸部分に実体を持たない中空の回転軸を用いて説明したが、本発明の回転軸保持機構は必要とする回転量が小さい回転を許容するものであることを前提としているので、中実の回転軸であっても、中実の回転軸に穴や凹部や変形溝などを設け、当該穴や凹部や変形溝の内部に可動辺等の平行バネリンクの一部または全部を入れることによって前記接合方向を実現させることも可能である。
図1の本発明の平行バネリンク要素が一つだけだと、ヒンジDによりOの位置は固定されない。しかし、方向の異なる二つ以上の平行バネリンク要素を一つのOに対して組み合わせることで、回転軸Oの位置を決定できる。但し、二つの平行バネリンク要素の場合、力の方向によっては、全てのヒンジ部に対して圧縮応力となる。通常三つ以上の本平行バネリンク要素を組み合わせることで、これを回避する(後述する軸を水平に配置した場合などは三つ以上が絶対条件ではない)。
なお、より現実的には、図1の構成の回転軸側Eを固定し、平行バネリンクの固定辺側Bを軸心を実体として含む可動軸とする構成となる(後述する図2のハッチング部分の構成を参照)。この場合の構成要素は、固定軸の固定部と可動軸を遠ざける方向に働く力は、構成する各弾性ヒンジ要素に対して引っ張り力となる。逆に、近づける方向の力は、各弾性ヒンジ要素に対して圧縮力として作用し、座屈モードが生じる。このように構成した平行バネリンク要素を3以上の方向から軸に接続すると、軸の横荷重に対する応力は、1つ以上の平行バネリンク要素において引っ張り応力のみとなり、他の平行バネリンク要素の座屈応力を解消する。ここで、3以上の方向としているのは絶対条件ではなく、例えば、軸を水平につり下げてつり下げた方向のみに荷重が掛かる軸では、下方向に引っ張る要素を省略できる。この構成により、より薄い部材を用いた弾性ヒンジ構造を構成することが可能となり、回転に対する復元力の小さい回転軸を作成することが可能となる。また、軸を水平に配置する等、軸に対して垂直方向の力を受けやすい構成での使用法に利用できる。
Therefore, in the present invention, when a lateral load is applied to the rotating shaft, the elastic hinge in one parallel spring link is improved so as to be a combination of only compression or only tension, and a plurality of parallel spring links are provided. Thus, with respect to the lateral load from all directions, in the at least one parallel spring link, all the elastic hinges in the link support the shaft with a tensile stress.
FIG. 1 is a diagram for explaining the principle of the present invention. The difference from the prior art of FIG. 3 is that the joining direction of the elastic hinge D that joins the rotating shaft and the movable side is reversed, that is, This is a point where the elastic hinge D is joined to a part E of the rotating body on the opposite side, not the direction of the center position of the rotating shaft as viewed from the movable side A. A: movable side, B: fixed part, C1, C2: deformed side, D: elastic hinge, O: rotating shaft, E: part of rotating body of rotating shaft, and the movable side A of the parallel spring link is mutually An arc having a radius h equal to the execution length h of the parallel deformation sides C1 and C2 is drawn. From the location where the center of the rotation axis O is desired, the rotation axis O (in the figure, the center axis portion of the rotation axis having a hollow center axis) is located at a point where the inclination (the inclination of the deformation sides C1 and C2) and the length (h) coincide with the parallel spring link. An elastic hinge D that joins a part E) of the rotating body and the movable side A is provided. Then, the rotation axis O constitutes a rotation axis that follows the arcuate motion of the movable side A. However, it should be noted that a part E of the rotating body of the rotating shaft joined by the movable side A and the elastic hinge D is not in the rotational center side of the rotating shaft O as viewed from the elastic hinge D at the joining point. It is important to adopt a joining direction in which the movable side A is arranged on the rotation center side when viewed from the elastic hinge D at the joining point. In other words, the joining direction of the elastic hinge D that joins the movable side A and the rotation axis O is a joint portion of the movable side A located radially inside the effective length h from the center of rotation and outside the effective length h. In FIG. 1, from the part E of the rotating body of the rotating shaft to the elastic hinge D at the joining point, the connecting portion of the rotating shaft O (E) positioned is joined by the elastic hinge D. The extending member indicates that it rotates as a rigid body integrally with the rotating shaft, like the part E of the rotating body. Further, in FIG. 1, in order to make the explanation of the joining direction of the elastic hinge that joins the rotating shaft and the movable side easy to understand, the hollow rotating shaft having no substance in the central shaft portion has been explained. Since the shaft holding mechanism is based on the premise that the rotation amount required is small, even a solid rotation shaft is provided with holes, recesses, deformation grooves, etc. in the solid rotation shaft It is also possible to realize the joining direction by putting a part or all of a parallel spring link such as a movable side inside the hole, the concave portion or the deformation groove.
If there is only one parallel spring link element of the present invention in FIG. 1, the position of O is not fixed by the hinge D. However, the position of the rotation axis O can be determined by combining two or more parallel spring link elements having different directions with respect to one O. However, in the case of two parallel spring link elements, depending on the direction of the force, a compressive stress is applied to all hinge portions. Normally, this is avoided by combining three or more parallel spring link elements (three or more are not an absolute condition when the axes described later are arranged horizontally, for example).
More realistically, the rotary shaft side E in the configuration of FIG. 1 is fixed, and the fixed side B of the parallel spring link is a movable shaft including the axis as a substance (hatching in FIG. 2 described later). See section structure). In the component in this case, the force acting in the direction in which the fixed portion of the fixed shaft and the movable shaft are moved away from each other becomes a pulling force with respect to each elastic hinge element. Conversely, the force in the approaching direction acts as a compressive force on each elastic hinge element, and a buckling mode occurs. When the parallel spring link elements configured in this way are connected to the shaft from three or more directions, the stress with respect to the lateral load of the shaft is only tensile stress in one or more parallel spring link elements, and the seats of the other parallel spring link elements. Eliminate bending stress. Here, the direction of three or more is not an absolute condition. For example, in an axis in which a load is applied only in the direction in which the axis is suspended horizontally, an element that pulls downward can be omitted. With this configuration, it is possible to configure an elastic hinge structure using a thinner member, and it is possible to create a rotating shaft with a small restoring force against rotation. In addition, the present invention can be used for usage in a configuration in which the shaft is easily subjected to a force in a direction perpendicular to the shaft, for example, the shaft is disposed horizontally.

本発明の原理を図示した図1の例では、回転体の一部Eは中心軸部分に実体を持たないので、固定部Bを中心軸を含む領域に移動できる。この様にすると、中心軸を含む固定部であった部分を回転部とし、回転体であった部分を固定部とするように入れ替えて使用することができる。この構造を3方向から中心軸を含む図1のBの領域を接続するためには、B上の弾性ヒンジの位置を可動辺方向にずらす必要がある。
このように構成した実施例を、図2に示す。図2において、A:可動辺、B:回転部、D0〜D2:弾性ヒンジ、O:回転軸心、E:固定部であり、3方向から平行バネリンクを用いて回転軸を支える軸受けが作成される。なお、図2のハッチング部分が図1の平行バネリンク要素の一個分に対応する、ただし固定部Eと回転部Bが入れ替わっている(図1ではBが固定部でEが回転体の一部であった)。図2では、固定部となったEの部分を適当な方法で固定し、回転軸実体を回転部B上の中心穴に通して回転軸実体と回転部Bを互いに固着し、回転部Bは回転軸実体と一体的に回動する。当該軸受けで、最も重要な点は、3つの平行バネ要素全てで、弾性ヒンジD1からD2の実効長hと方向が、回転軸心Oから弾性ヒンジD0までの実効長hと方向に一致していることであり、さらに、固定部Eと可動辺Aを接合する弾性ヒンジD0の接合方向は、回転軸の回転軸心(回転中心)から半径方向に実行長hより内側に位置する可動辺Aの接合部と、実行長hより外側に位置する固定部Eの接合部とを接合したことである。
この実施例では、回転に対する応力トルクを小さくするために、弾性ヒンジ部分を板バネを用いて製作しているが、これに限定されるものではなく、薄肉ヒンジによっても製作可能である。また、この実施例では3つの平行バネリンクを用いて構成したが、4つ以上の平行バネリンクを用いても構成できることはいうまでもなく、さらに、前述の軸を水平につり下げた方向のみに荷重が掛かる軸等では、2つの平行バネリンクでも構成可能である。
In the example of FIG. 1 illustrating the principle of the present invention, since the part E of the rotating body does not have a substance in the central axis part, the fixed part B can be moved to a region including the central axis. If it does in this way, it can replace and use so that the part which was a fixed part containing a central axis may be used as a rotation part, and the part which was a rotary body may be used as a fixed part. In order to connect this structure to the region B in FIG. 1 including the central axis from three directions, it is necessary to shift the position of the elastic hinge on B in the movable side direction.
An embodiment constructed in this way is shown in FIG. In FIG. 2, A: movable side, B: rotating portion, D0 to D2: elastic hinge, O: rotating shaft center, E: fixed portion, and a bearing that supports the rotating shaft using parallel spring links is created from three directions. Is done. The hatched portion in FIG. 2 corresponds to one parallel spring link element in FIG. 1, except that the fixed portion E and the rotating portion B are interchanged (in FIG. 1, B is the fixed portion and E is a part of the rotating body). Met). In FIG. 2, the portion E which has become the fixing portion is fixed by an appropriate method, the rotating shaft entity is passed through the central hole on the rotating portion B, and the rotating shaft entity and the rotating portion B are fixed to each other. It rotates integrally with the rotating shaft entity. In the bearing, the most important point is that the effective length h and direction of the elastic hinges D1 to D2 coincide with the effective length h from the rotational axis O to the elastic hinge D0 in all three parallel spring elements. Further, the joining direction of the elastic hinge D0 that joins the fixed portion E and the movable side A is the movable side A that is located on the inner side of the execution length h in the radial direction from the rotation axis (rotation center) of the rotation shaft. And the joint part of the fixed part E located outside the effective length h.
In this embodiment, in order to reduce the stress torque with respect to rotation, the elastic hinge portion is manufactured using a leaf spring. However, the present invention is not limited to this, and a thin hinge can also be manufactured. In this embodiment, the three parallel spring links are used. However, it goes without saying that four or more parallel spring links can be used. Further, only the direction in which the above-mentioned shaft is suspended horizontally is used. For a shaft on which a load is applied, two parallel spring links can be used.

(回転粘度計への応用)
図4は、本発明の回転軸保持機構の回転粘度計への応用を説明するために、典型的な回転粘度計の一つである外筒回転方式の共軸二重円筒型回転粘度計の構成を示した図である。図4において、a・e・fはトルク検出機構、bは精密な回転軸保持機構、cは内筒・外筒、dは恒温槽、g・hは外筒の回転機構、iは恒温槽の昇降機構である。図4の外筒回転方式の共軸二重円筒型回転粘度計では、内筒と外筒の間に試料流体を入れ外筒を回転させた時の内筒に働くトルクを内筒軸に設けたトルク検出機構で検出することにより試料流体の粘度を測定する。図の例では、内筒軸が回転変位したときその回転変位を相殺するだけのトルクを内筒軸に負荷し、負荷したトルクの値を算出することによってトルクを検出する方式であって、内筒軸はほとんど回転しないが、トルクを正確に検出するためには回転の負荷変動が小さい精密な回転軸保持機構を用いる必要がある。そのため、従来は、回転の負荷変動が小さいエアベアリングの使用や、本発明者等による特許文献1の回転軸保持機構が提案されてきた。しかしながら、エアベアリングはコストと扱いやすさの両面で難点があり、特許文献1の回転軸保持機構は、前述のとおり軸へ横荷重が加わったときの薄い弾性ヒンジ部の座屈限界により、耐荷重性能の限界が低くなってしまうという難点があった。
そこで、回転粘度計の回転軸保持機構として、従来のエアベアリングや特許文献1の保持機構を、本発明の回転軸保持機構で置き換えた回転粘度計とすることにより、コストと扱いやすさの両面でより優れた回転粘度計とすることができ、また、回転軸へ加わる横荷重に対しても耐荷重性能の限界が高い回転粘度計とすることが可能である。
このようにして得られた回転粘度計は、軸の剛性及び耐荷重性能の限界を高く、且つ、慣性モーメントを小さくできるので、回転粘度計のトルクメータとしては理想的である。これにより、測定可能な領域を広げることが出来る。慣性モーメントが小さいことで、応答速度が上昇し、特に、レオメータの周波数領域拡大に貢献する。さらに、価格面だけでなく、性能の向上、メンテナンスの軽減や扱いやすさの向上が見込める。
(Application to rotational viscometer)
FIG. 4 is a perspective view of an outer cylinder rotation type coaxial double cylindrical rotational viscometer which is one of typical rotational viscometers in order to explain the application of the rotating shaft holding mechanism of the present invention to a rotational viscometer. It is the figure which showed the structure. 4, a, e, and f are torque detection mechanisms, b is a precise rotating shaft holding mechanism, c is an inner cylinder / outer cylinder, d is a thermostatic chamber, g and h are rotating mechanisms of the outer cylinder, and i is a thermostatic chamber. This is a lifting mechanism. In the coaxial double-cylindrical rotational viscometer of the outer cylinder rotation type in FIG. 4, the inner cylinder shaft is provided with torque that acts on the inner cylinder when the sample cylinder is inserted between the inner cylinder and the outer cylinder and the outer cylinder is rotated The viscosity of the sample fluid is measured by detecting with a torque detection mechanism. In the example shown in the figure, when the inner cylinder shaft is rotationally displaced, a torque sufficient to cancel the rotational displacement is applied to the inner cylinder shaft, and the torque is detected by calculating the value of the loaded torque. Although the cylindrical shaft hardly rotates, it is necessary to use a precise rotating shaft holding mechanism with a small rotational load fluctuation in order to accurately detect the torque. Therefore, conventionally, the use of an air bearing having a small rotational load variation and the rotating shaft holding mechanism of Patent Document 1 by the present inventors have been proposed. However, air bearings have drawbacks in both cost and ease of handling, and the rotating shaft holding mechanism of Patent Document 1 is resistant to buckling of a thin elastic hinge when a lateral load is applied to the shaft as described above. There was the difficulty that the limit of load performance would become low.
Therefore, both the cost and ease of handling can be achieved by replacing the conventional air bearing and the holding mechanism of Patent Document 1 with the rotating shaft holding mechanism of the present invention as the rotating shaft holding mechanism of the rotary viscometer. Therefore, it is possible to provide a rotational viscometer having a higher limit of load bearing performance against a lateral load applied to the rotating shaft.
The rotational viscometer thus obtained is ideal as a torque meter for a rotational viscometer because the shaft rigidity and load-bearing performance are limited and the moment of inertia can be reduced. Thereby, the measurable area can be expanded. The small moment of inertia increases the response speed, and in particular contributes to the expansion of the rheometer frequency range. In addition to price, it is expected to improve performance, reduce maintenance and improve ease of handling.

本発明の回転軸保持機構は、高精度のトルク測定が必要な回転粘度計の回転軸を保持する機構として開発したものであるが、特にこれに限定されることなく、必要とする回転量が小さい回転軸の保持機構として広く用いることができる。   The rotating shaft holding mechanism of the present invention has been developed as a mechanism for holding the rotating shaft of a rotational viscometer that requires highly accurate torque measurement. It can be widely used as a holding mechanism for a small rotating shaft.

Claims (3)

端が弾性ヒンジで可動辺に接合され他端が弾性ヒンジで固定部に接合された複数の互いに平行な実行長hの変形辺からなる平行バネリンクを少なくとも2つ備えることにより前記可動辺の間において、中空回転体をその回転中心の周りでの回動を許容するように保持する回転軸保持機構であって
記回転中心から前記変形辺と平行な半径方向に沿って前記実行長hより内側に位置する前記可動辺の接合部と、前記中空回転体から前記半径方向に沿って前記回転中心へ向けて伸びる部材の前記回転中心から前記半径方向に沿って前記実行長hより外側に位置する接合部とを弾性ヒンジで接合したことを特徴とする回転軸保持機構。
The movable by one end comprises at least two deformation sides or Ranaru parallel spring links joined plurality of mutually parallel run length h in the fixing portion and the other end is joined to the soluble Dohen an elastic hinge with elastic hinge Between the sides, a rotating shaft holding mechanism that holds the hollow rotating body so as to allow rotation around its rotation center ,
A joint portion of the movable side located inward of the execution length h along the front Symbol rotation center to the deformation parallel to the side radially, towards the said hollow rotating body to the center of rotation along the radially rotary shaft holding mechanism from said center of rotation of the extending member, characterized in that the junction you positioned outside the said run length h along the radial direction and joined by an elastic hinge.
前記弾性ヒンジは板バネからなることを特徴とする請求項1記載の回転軸保持機構。 The rotary shaft holding mechanism according to claim 1, wherein the elastic hinge includes a leaf spring . 請求項1または請求項2記載の回転軸保持機構を、回転粘度計のトルク測定軸の保持機構として用いたことを特徴とする回転粘度計。   A rotary viscometer using the rotary shaft holding mechanism according to claim 1 or 2 as a torque measuring shaft holding mechanism of a rotary viscometer.
JP2014059713A 2014-03-24 2014-03-24 Rotating shaft holding mechanism and rotational viscometer using the same Active JP6345458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059713A JP6345458B2 (en) 2014-03-24 2014-03-24 Rotating shaft holding mechanism and rotational viscometer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059713A JP6345458B2 (en) 2014-03-24 2014-03-24 Rotating shaft holding mechanism and rotational viscometer using the same

Publications (2)

Publication Number Publication Date
JP2015184095A JP2015184095A (en) 2015-10-22
JP6345458B2 true JP6345458B2 (en) 2018-06-20

Family

ID=54350801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059713A Active JP6345458B2 (en) 2014-03-24 2014-03-24 Rotating shaft holding mechanism and rotational viscometer using the same

Country Status (1)

Country Link
JP (1) JP6345458B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124617B2 (en) * 1992-05-01 2001-01-15 キヤノン株式会社 Fine movement drive mechanism
JP4162838B2 (en) * 2000-07-07 2008-10-08 住友重機械工業株式会社 XY stage device
US7093827B2 (en) * 2001-11-08 2006-08-22 Massachusetts Institute Of Technology Multiple degree of freedom compliant mechanism
JP2012092929A (en) * 2010-10-28 2012-05-17 Jtekt Corp Reducer
JP5598921B2 (en) * 2010-12-24 2014-10-01 独立行政法人産業技術総合研究所 Rotating shaft holding mechanism and rotational viscometer using the same
EP2865990A4 (en) * 2012-06-22 2016-03-16 Nat Inst Of Advanced Ind Scien Device for measuring rotation angle acceleration

Also Published As

Publication number Publication date
JP2015184095A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
Goldfarb et al. A well-behaved revolute flexure joint for compliant mechanism design
KR102230369B1 (en) Torque sensor device and method for measuring torque
Pei et al. An effective pseudo-rigid-body method for beam-based compliant mechanisms
EP2021758B1 (en) Elastic joint with a translating spherical hinge and force and moment sensor improved by means of the said joint
Halverson et al. Tension-based multi-stable compliant rolling-contact elements
CN108662010B (en) Zero-axis floating reed type flexible hinge
US20070095156A1 (en) Flexure system for strain-based instruments
JP2014167471A5 (en)
Qin et al. Compliance modeling and analysis of statically indeterminate symmetric flexure structures
US7716998B2 (en) Device for measuring reaction moments and forces on a lever
JP6345458B2 (en) Rotating shaft holding mechanism and rotational viscometer using the same
Qiu et al. Research on the line-arc-line constant-torque flexure hinge (LAL-CTFH) based on improved pseudo-rigid-body model (PRBM)
JP5598921B2 (en) Rotating shaft holding mechanism and rotational viscometer using the same
Awtar et al. Flexure systems based on a symmetric diaphragm flexure
WO2013171896A1 (en) Rotating shaft holding mechanism and rotational viscometer with same
US10378976B2 (en) Balance devices
JP6530058B2 (en) Linear bearing
US3613457A (en) Isolation coupling arrangement for a torque measuring system
US6585445B1 (en) Split tube flexure
Devi et al. Anti-Bourdon tube pressure gauge
Farhadi Machekposhti et al. Monolithic and statically balanced rotational power transmission coupling for parallel axes
CN114033798A (en) Large-angle elastic bearing
Liu et al. Research of performance comparison of topology structure of cross-spring flexural pivots
CN105864275A (en) High-precision rotary flexible hinge
JP2021004755A (en) Torsion torque reference device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180523

R150 Certificate of patent or registration of utility model

Ref document number: 6345458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250