JP6345186B2 - Use of BT lipopeptide as a therapeutic for obesity and related diseases - Google Patents

Use of BT lipopeptide as a therapeutic for obesity and related diseases Download PDF

Info

Publication number
JP6345186B2
JP6345186B2 JP2015548053A JP2015548053A JP6345186B2 JP 6345186 B2 JP6345186 B2 JP 6345186B2 JP 2015548053 A JP2015548053 A JP 2015548053A JP 2015548053 A JP2015548053 A JP 2015548053A JP 6345186 B2 JP6345186 B2 JP 6345186B2
Authority
JP
Japan
Prior art keywords
lipopeptide
purified
isolated
peptides
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015548053A
Other languages
Japanese (ja)
Other versions
JP2016508126A (en
Inventor
ジアン,イーウェイ
Original Assignee
エムワイギャラクシー リミテッド カンパニー
エムワイギャラクシー リミテッド カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムワイギャラクシー リミテッド カンパニー, エムワイギャラクシー リミテッド カンパニー filed Critical エムワイギャラクシー リミテッド カンパニー
Publication of JP2016508126A publication Critical patent/JP2016508126A/en
Application granted granted Critical
Publication of JP6345186B2 publication Critical patent/JP6345186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Obesity (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Emergency Medicine (AREA)

Description

関連案件の相互参照
本出願は、2012年12月17日出願した米国特許仮出願第61/738、166号の優先権を主張し、その全体が参考として本明細書に援用される。
This application claims priority from US Provisional Application No. 61 / 738,166, filed Dec. 17, 2012, which is hereby incorporated by reference in its entirety.

本発明は、一般的にバイオテクノロジーの分野、より具体的には、肥満および2型糖尿病を含む肥満関連疾患を治療または予防するリポペプチドファミリーの使用に関する。   The present invention relates generally to the field of biotechnology, and more specifically to the use of the lipopeptide family to treat or prevent obesity-related diseases including obesity and type 2 diabetes.

肥満は代謝症候群として総称的に知られる重大な疾患群を引き起こす。これらの肥満関連疾患には、インスリン耐性(2型糖尿病)、アテローム性異常脂質血症(心臓血管疾患を引き起こす)、高血圧(脳卒中、心臓発作および慢性腎不全のリスクがある)および脂肪肝が含まれる。2型糖尿病と肥満の強い関連性によって「糖尿肥満」という造語が作られている。肥満は最も重大で蔓延している健康問題の1つであり、世界中で4億を超える人に影響を及ぼしている。発展途上国における肥満率は最近20年で3倍に増加しており、一方、米国人の肥満率は世界で最も高い。米国成人の64%が太り過ぎまたは肥満であり、米国の小児および青年の約3分の1は過体重または肥満である。処方薬と市販薬、減量プログラム、ダイエットおよび運動プラグラムを含め、肥満の「治療」には事欠かない。これらの解決策のいくつかは効果があるが、それらは体重または総体的な健康における長期的な改善を伴わず、医師と患者の両者にとってほとんど全面的に期待が満たされない結果となる。数種類の処方薬は中枢作用で食欲を抑制または(抗栄養剤として)脂肪吸収をブロックするのに効果的に作用する。しかしこれらの治療法は限られた効果および/または様々な有害事象の問題がある。これらの治療法を用いるほとんどの患者はリバウンドして体重が増え続ける。   Obesity causes a serious group of diseases known collectively as metabolic syndrome. These obesity-related diseases include insulin resistance (type 2 diabetes), atherodyslipidemia (causing cardiovascular disease), hypertension (risk of stroke, heart attack and chronic renal failure) and fatty liver It is. The word “diabetes obesity” has been created due to the strong association between type 2 diabetes and obesity. Obesity is one of the most serious and prevalent health problems, affecting over 400 million people worldwide. Obesity rates in developing countries have tripled in the last 20 years, while Americans have the highest obesity rate in the world. 64% of US adults are overweight or obese, and about one third of US children and adolescents are overweight or obese. There is no shortage of “treatment” for obesity, including prescription and over-the-counter medications, weight loss programs, diets and exercise programs. Although some of these solutions are effective, they do not involve long-term improvements in weight or overall health, resulting in little to full expectations for both physicians and patients. Several prescription drugs act centrally to suppress appetite or block fat absorption (as an antinutritional agent). However, these therapies have limited efficacy and / or problems with various adverse events. Most patients using these treatments rebound and continue to gain weight.

肥満は、消費を超える不均衡なエネルギー摂取だけの結果ではない。対象者の遺伝的特質、食生活および運動に加えて、腸内微生物叢が肥満および代謝症候群の進行(すなわち、遺伝的肥満マウスob/obマウスにおいて)における主要な環境因子として、2種類の優勢な細菌門(バクテロイデスおよびファーミキューテス)の相対的な量における腸内微生物叢の変化(Ley et al., 2005)および食事からのエネルギーの収集能力の増加によって、明らかになってきた。肥満形質は伝染性または感染性でもあり:「肥満微生物叢」を定着させた無菌マウスは、「痩身微生物叢」を定着させたマウスよりも全体脂肪において有意に大きな増加を生じ(Turnbaugh et al., 2006)、一方、無菌マウスは高脂肪誘発性糖尿肥満に耐性である(Backhed et al., 2004; Backhed et al., 2007; Rabot et al., 2010)。さらに重要なことに、腸内微生物叢のグラム陰性菌によって産生されるリポポリサッカライド(LPS)は、「代謝性エンドトキシン血症」により糖尿肥満において誘発的な役割を演じ:高脂肪食はLPS含有細菌の比率だけでなくLPSの腸透過性も高める(Cani et al., 2007)。従って、プロバイオティックス(Lee et al., 2006; Ma et al., 2008; Aronsson et al., 2010; Kadooka et al., 2010; Kang et al., 2010; Kondo et al., 2010; Chen et al., 2011; Delzenne et al., 2011; Mozaffarian et al., 2011; Fak and Backhed, 2012; Ji et al., 2012; Teixeira et al., 2012)およびプレバイオティックス(Keenan et al., 2006; Zhou et al., 2008; Zhou et al., 2009)などの、ホスト動物に全般的な健康上の利益を付与する既知の微生物叢調節物質/腸障壁増強物質は、肥満および代謝症候群のこの特定の治療領域における新しい臨床的手段として有望である。だが、ヒトにとって望ましくない食事の変化などの問題(すなわち、食事中の8%超の難消化性デンプンプレバイオティックス)がこれらの方法の利用を制限する可能性がある。しかし、腸免疫耐性の長年の概念を維持して以前の理論(Vijay-Kumar et al., 2010)が弱まる中で、病原体パターン感知性toll様受容体(TLR)によって制御される抗感染性先天免疫は、寛容性に打ち勝って「肥満微生物叢」中の肥満原因となる片利共生微生物を外来感染性微生物として標的にし痩身微生物叢を誘発して肥満および代謝症候群を予防することができないようであり、抗感染性の先天免疫調節物質の抗糖尿肥満としての利用を推測する土台が奪われていることが最近見出された(Ubeda et al., 2012)。   Obesity is not just the result of an unbalanced energy intake that exceeds consumption. In addition to the subject's genetic qualities, diet and exercise, the gut microbiota is the two dominant factors as the main environmental factor in the progression of obesity and metabolic syndrome (ie in genetic obese mice ob / ob mice) Changes in the gut microbiota (Ley et al., 2005) in the relative amount of various bacterial phylums (Bacteroides and Fermicutes) and increased ability to collect energy from the diet. Obesity traits are also contagious or infectious: sterile mice that have established the “obese microflora” produce a significantly greater increase in total fat than mice that have established the “slimming microbiota” (Turnbaugh et al. Meanwhile, sterile mice are resistant to high fat-induced diabetic obesity (Backhed et al., 2004; Backhed et al., 2007; Rabot et al., 2010). More importantly, lipopolysaccharide (LPS) produced by gram-negative bacteria in the gut microbiota plays an inductive role in diabetes obesity by “metabolic endotoxemia”: high fat diets contain LPS Not only the proportion of bacteria, but also LPS intestinal permeability is increased (Cani et al., 2007). Therefore, probiotics (Lee et al., 2006; Ma et al., 2008; Aronsson et al., 2010; Kadooka et al., 2010; Kang et al., 2010; Kondo et al., 2010; Chen et al Delzenne et al., 2011; Mozaffarian et al., 2011; Fak and Backhed, 2012; Ji et al., 2012; Teixeira et al., 2012) and prebiotics (Keenan et al., 2006; Known microbiota modulators / intestinal barrier enhancers that confer general health benefits to host animals, such as Zhou et al., 2008; Zhou et al., 2009), are identified in obesity and metabolic syndrome. It is promising as a new clinical tool in the therapeutic field. However, problems such as dietary changes that are undesirable for humans (ie, over 8% resistant starch prebiotics in the diet) can limit the use of these methods. However, while maintaining the longstanding concept of intestinal immune tolerance and weakening previous theories (Vijay-Kumar et al., 2010), anti-infectious congenitals controlled by pathogen pattern-sensitive toll-like receptors (TLRs) Immunity seems to be unable to prevent obesity and metabolic syndrome by overcoming tolerance and targeting the commensal microorganisms that cause obesity in the “obese microbiota” as foreign infectious microorganisms and inducing slimming microbiota It has recently been found that the basis for speculating the use of anti-infectious innate immune modulators as anti-diabetic obesity has been deprived (Ubeda et al., 2012).

現在、肥満に効果的であることが証明されている唯一の治療は胃バイパス手術である。正常な消化では、食物は胃を通って小腸に入り、そこで栄養物およびカロリーのほとんどが吸収される;それから大腸(結腸)へと移行して残った廃物が最終的に排泄される。典型的なルーワイ胃手術では、外科用ステープルまたはプラスチック製バンドを用いて胃の最上部に小袋を造って胃を小さくし;小さくした胃を小腸の中間部分(空腸)に直接繋いで、胃の残りの部分および小腸の上部(十二指腸)をバイパスさせる。10年間まで維持できる食欲抑制および20〜30kgの典型的な体重減少に加えて(Maggard et al., 2005)、胃バイパスは術後の数日以内に、有意な体重減少のかなり前に2型糖尿病を完全に回復させる。しかし胃バイパス手術は、高い手術費、合併症による約1%の著しく高い死亡率、約15%の不成功率、不可逆性、胆石、吸収不良により痩せるほどの体重減少および栄養補充の要求のため、極めて重篤な者に制限される。胃バイパスの基本的な抗糖尿肥満メカニズムは、未消化栄養物を中間および低部の胃腸経路に迂回させ、栄養感知性腸内分泌細胞によるペプチドYYY(PYY)、グルカゴン様ペプチド1(GLP−1)、オキシントモジュリン(OXM)、およびコレシストキニン(CCK)などの食欲抑制抗糖尿肥満GIペプチドホルモンの分泌を刺激するものと考えられる(Geraedts et al., 2009; Geraedts et al., 2010; Laferrere et al., 2010; Peterli et al., 2012)。肥満を治療するためにこれらの抗糖尿肥満ホルモンを注射可能な単一治療剤として使用する試みは、おそらく1種類以上のホルモンを同時に投与することが必要なため成功していない(Field et al., 2010)。 興味深いことに、口腔味覚受容体細胞はGI腸内分泌細胞と(受容体発現およびGIホルモン産生において)高い機能的類似を示し(Wu et al., 2002; Dyer et al., 2005; Bogunovic et al., 2007; Palazzo et al., 2007; Wang et al., 2009)、またDIOマウスの口腔に送達されたPYYが、おそらく口腔内の求心性味覚神経の線維上の特異的Y2受容体との相互作用を介して、食物摂取および体重の非常に優れた低下を誘発したことが示された(Acosta et al., 2011)(US 13/145,660も参照)。今までのところ、口腔味覚受容体細胞における複数のGIホルモンの産生を刺激して抗糖尿肥満効果を付与できる既知の薬剤または方法はない。   Currently, the only treatment that has proven effective in obesity is gastric bypass surgery. In normal digestion, food enters the small intestine through the stomach, where most of the nutrients and calories are absorbed; then it travels to the large intestine (colon), where the remaining waste is eventually excreted. In a typical Lewey stomach operation, a small sachet is made at the top of the stomach using surgical staples or plastic bands to make the stomach smaller; the small stomach is connected directly to the middle part of the small intestine (the jejunum) and the stomach Bypass the rest and the upper part of the small intestine (the duodenum). In addition to appetite suppression that can be maintained for up to 10 years and typical weight loss of 20-30 kg (Maggard et al., 2005), gastric bypass is type 2 within days after surgery, well before significant weight loss. Fully recovers from diabetes. However, gastric bypass surgery is due to high surgical costs, a markedly high mortality rate of about 1% due to complications, an unsuccessful rate of about 15%, irreversibility, gallstones, weight loss due to malabsorption and nutritional supplementation requirements. Limited to very serious persons. The basic anti-diabetic obesity mechanism of gastric bypass diverts undigested nutrients to the middle and lower gastrointestinal pathways, peptides YYY (PYY), glucagon-like peptide 1 (GLP-1) by nutrient-sensitive enteroendocrine cells , Oxyntomodulin (OXM), and cholecystokinin (CCK) are thought to stimulate the secretion of anti-diabetic anti-diabetic GI peptide hormones (Geraedts et al., 2009; Geraedts et al., 2010; Laferrere et al., 2010; Peterli et al., 2012). Attempts to use these anti-diabetic obesity hormones as injectable single therapies to treat obesity have been unsuccessful, probably due to the need to administer one or more hormones simultaneously (Field et al. , 2010). Interestingly, oral taste receptor cells show high functional similarity (in receptor expression and GI hormone production) to GI enteroendocrine cells (Wu et al., 2002; Dyer et al., 2005; Bogunovic et al. , 2007; Palazzo et al., 2007; Wang et al., 2009), and PYY delivered to the oral cavity of DIO mice probably interacts with specific Y2 receptors on afferent taste nerve fibers in the oral cavity. It was shown to induce a very good reduction in food intake and body weight through action (Acosta et al., 2011) (see also US 13 / 145,660). To date, there are no known drugs or methods that can stimulate the production of multiple GI hormones in oral taste receptor cells to confer an anti-diabetic obesity effect.

胃バイパス手術および(有害事象の傾向がある)抗栄養法は、抗栄養剤(ジルロタピドなど)が栄養吸収を阻害してGIホルモンの分泌を誘発するように、GIホルモンの上方調節において機構的にかなり重複している(Wren et al., 2007)。   Gastric bypass surgery and anti-nutritional methods (prone to adverse events) are mechanistically up-regulated in GI hormones such that anti-nutrients (such as zirlotapide) inhibit nutrient absorption and induce secretion of GI hormones. There is considerable overlap (Wren et al., 2007).

胃バイパス手術および微生物叢調節/腸障壁増強抗糖尿肥満治療剤(プレバイオティックスおよびプロバイオティックス)もまた、GIホルモンの上方調節において機構的にかなり重複している。抗糖尿肥満プレバイオティックスである非消化性耐性デンプンの腸内発酵は、短鎖脂肪酸を遊離させてPYYおよびGLP−1の終日持続された分泌を生じる(Keenan et al., 2006; Zhou et al., 2008; Zhou et al., 2009)。TLR2作動剤リポタンパク質/リポペプチド(Sturm et al., 2005)、TLR5作動剤フラゲリン(Schlee et al., 2007; Troge et al., 2012)およびTLR9作動剤CpG DNA (Lammers et al., 2003; Menard et al., 2010; Zhong et al., 2012)などのTLR作動剤は、プロバイオティックスの有効な効果に対する重要な寄与因子である。TLR作動剤はまたGIホルモンの腸内分泌を直接的に誘発する非免疫調節機能も有している(病原体負荷に対する抗感染性の先天免疫を高める活性は報告されていない)。STC−1細胞のような腸内分泌細胞は、TLR2を含む機能的TLRを発現する(Bogunovic et al., 2007)。TLR4、TLR5またはTLR9の活性化(それぞれ作動剤LPS、フラゲリン、またはCpGオリゴDNAによる)は、STC−1腸内分泌細胞からの、ならびにC57BL/6マウスにおけるGIホルモンCCKの分泌を誘発し(Palazzo et al., 2007)、プロバイオティックスのためのTLR仲介抗糖尿肥満腸内分泌機構を示唆している。さらに、飽和脂肪酸はTLR4およびTLR2の両方の作動剤であり(Lee et al., 2001; Lee et al., 2004)、そのためこれらの両TLRは腸内分泌細胞において最も糖尿肥満関連栄養物に関し直接的に栄養感知する役割を演じる。しかし、この免疫非依存性TLR−GIホルモン経路の可能性については、新しい非吸収性の非炎症性TLR作動剤の非存在下では検討されておらず、これは前述の伝統的な炎症性TLR作動剤は、有害なTLR仲介による全身炎症性反応の可能性を防止するために、抗糖尿肥満剤としての使用が除外されなければならないためである(前述のように、LPSは実際に代謝症候群を誘発し得る)。従って、当分野において肥満および代謝症候群のための新規治療剤が必要である。   Gastric bypass surgery and microbiota regulation / intestinal barrier-enhancing anti-diabetic obesity treatments (prebiotics and probiotics) also have considerable mechanistic overlap in the upregulation of GI hormones. Intestinal fermentation of non-digestible resistant starch, an anti-diabetic obesity prebiotic, releases short chain fatty acids resulting in sustained secretion of PYY and GLP-1 throughout the day (Keenan et al., 2006; Zhou et al ., 2008; Zhou et al., 2009). TLR2 agonist lipoprotein / lipopeptide (Sturm et al., 2005), TLR5 agonist flagellin (Schlee et al., 2007; Troge et al., 2012) and TLR9 agonist CpG DNA (Lammers et al., 2003; TLR agonists such as Menard et al., 2010; Zhong et al., 2012) are important contributors to the effective effects of probiotics. TLR agonists also have a non-immunomodulatory function that directly induces intestinal secretion of GI hormone (no activity has been reported to enhance anti-infectious innate immunity against pathogen load). Intestinal endocrine cells such as STC-1 cells express functional TLRs including TLR2 (Bogunovic et al., 2007). Activation of TLR4, TLR5 or TLR9 (by agonist LPS, flagellin, or CpG oligo DNA, respectively) induces secretion of GI hormone CCK from STC-1 enteroendocrine cells as well as in C57BL / 6 mice (Palazzo et al., 2007), suggesting a TLR-mediated anti-diabetic obesity gut endocrine mechanism for probiotics. In addition, saturated fatty acids are agonists of both TLR4 and TLR2 (Lee et al., 2001; Lee et al., 2004), so both these TLRs are most directly related to diabetes related nutrients in enteroendocrine cells. It plays the role of sensing nutrients. However, the possibility of this immune-independent TLR-GI hormonal pathway has not been investigated in the absence of new non-absorbable non-inflammatory TLR agonists, which is the traditional inflammatory TLR described above. This is because agonists must be ruled out as anti-diabetic obesity agents in order to prevent the possibility of adverse TLR-mediated systemic inflammatory responses (as mentioned above, LPS is actually a metabolic syndrome Can be induced). Accordingly, there is a need in the art for new therapeutic agents for obesity and metabolic syndrome.

ブレビバシラス・テクサスポルス(例、ATCC PTA-5854)は既に同定されている土壌細菌であり、非リボソームペプチドシンターゼ(NRPS、GenBank登録番号AY953371のオペロンによってコードされている) を発現してアミノ酸残基13個の関連カチオン性NRP変異体のファミリー/混合物(それらの新たに解明されたN端構造を踏まえた「BTペプチド」または「BTリポペプチド」、本開示では両用語は置き換え可能である)を産生し、それらの中でBT1583が最も豊富な変異体である (WO/2005/074626)。カチオン性ペプチド(B.テクサスポルスから分離される混合または個別ペプチド)はインビトロで広範囲スペクトルの抗菌活性を示す(BT機能No.1)。PTA−5854とブレビバシラス・ラテロスポラス型株との間の高い16SrDNA配列の同一性(98.5%)によって、ブレビバシラス・テクサスポルスはブレビバシラス・ラテロスポラスの亜種として分類され、ブレビバシラス・ラテロスポラス亜種テクサスポルスはBT NRPS由来の非リボソームペプチド(またはBTペプチド)を産生するブレビバシラス・ラテロスポラス株として定義されている。少なくとも2種類のB.ラテロスポラス株(LMG15441およびGI−9)のゲノムシークエンシングによってこの分類が確認されている。両ゲノム(それぞれGenBank登録番号AFRV00000000およびEMBL登録番号CAGD01000001〜CAGD01000061で公開されている)にはAY953371と99%のDNA配列同一性を有する完全なBT NRPSオペロンが含まれるが、これらのB.ラテロスポラス株はBTペプチドの産生株として知られていない。「ブレビバシラス・テクサスポルス」、「ブレビバシラス・ラテロスポラス亜種テクサスポルス」および「B.ラテロスポラス」は、したがって同義的である。   Brevibacillus texasporus (eg, ATCC PTA-5854) is a previously identified soil bacterium that expresses a non-ribosomal peptide synthase (NRPS, encoded by the operon with GenBank accession number AY953371) and has 13 amino acid residues A family / mixture of related cationic NRP variants ("BT peptide" or "BT lipopeptide" in light of their newly elucidated N-terminal structure, both terms interchangeable in this disclosure) Among them, BT1583 is the most abundant mutant (WO / 2005/074626). Cationic peptides (mixed or individual peptides separated from B. texasporus) show a broad spectrum of antibacterial activity in vitro (BT function No. 1). Due to the high 16S rDNA sequence identity (98.5%) between PTA-5854 and Brevibacillus laterosporus strains, Brevibacillus texasporus is classified as a subspecies of Brevibacillus laterospora, and Brevibacillus laterospora sp It is defined as a Brevibacillus laterosporus strain that produces a non-ribosomal peptide (or BT peptide) of origin. At least two types of B.I. This classification has been confirmed by genomic sequencing of Laterosporus strains (LMG15441 and GI-9). Both genomes (published under GenBank accession numbers AFRV00000000 and EMBL accession numbers CAGD01000001 to CAGD01000061, respectively) contain the complete BT NRPS operon with 99% DNA sequence identity with AY953371. Laterosporus strains are not known as producers of BT peptides. “Brevibacillus texasporus”, “Brevibacillus laterosporus subspecies texasporus” and “B. laterosporus” are thus synonymous.

BTペプチドのN末端残基の正確な同一性(その改変を含む)は知られておらず、WO/2005/074626は二重メチル化Bmtの暫定的N末端割り当てである(4R)−4−[(E)−2−ブテニル]−4−メチル−L−トレオニン、およびBT1583の全体構造であるMe−Bmt−Leu−Orn−Ile−Val−Val−Lys−Val−Leu−Lys−Tyr−Leu−Volを示した。ここでOrnはオルニチン、Volはバリノールを表す。BTペプチドは、インビトロにおけるそれらの抗菌活性に基づき抗生物質として発見されたが(WO/2005/074626および(Wu et al., 2005))、経口によって送達されたBTペプチド(B.テクサスポルスから分離された混合物として)はインビボにおける抗菌活性を欠如している。例えば、バンコマイシン耐性腸球菌(VRE)はインビトロでBTペプチドに対する感受性が高いが、最小阻害濃度よりも十分高い濃度で経口送達されたBTペプチドは、マウスGI経路におけるVREのコロニー破壊ができない(Kogut et al., 2007)。重要なことには、経口送達されたBTペプチドはGI経路で消化も吸収もされず、これはおそらくそれぞれ、D型アミノ酸残基の存在および約1,600ダルトンというそれらの比較的大きい分子量によると考えられる。しかし、経口送達されたBTペプチド(またB.テクサスポルスから分離された混合物として)は動物に多くの効果的な全身性作用を生じさせることができる。経口送達されたBTペプチドは、呼吸性大腸菌症(気嚢大腸菌感染)の予防、ならびに若いニワトリにおける成長の促進および飼料効率の増大に効果的である(Jiang et al., 2005)。おそらくさらに重要なことには、BTペプチドのインビボ抗感染効果はインビトロ抗生物質活性とは独立していると考えられ、なぜなら経口送達されたBTペプチドはインビトロ最小阻害濃度以下の濃度で、大腸菌およびサルモネラによるニワトリにおける感染の予防に効果的なためである(Jiang et al., 2005; Kogut et al., 2007; Kogut et al., 2009)。BT摂取したニワトリにおいて循環性好異球および単球が(活性化よりもむしろ)プライミングされることも発見され、これらのインビボ抗感染効果の作用の考えうるメカニズムとして先天免疫調節が示されている。経口送達されたBTペプチドが消化または吸収されずにGI経路を通過するという事実を考慮すると、BTペプチドは腸上皮細胞を刺激して因子を血液に分泌させ、それが今度は白血球をプライミングして抗感染性免疫を高めているのかもしれない(BT機能No.2)。 The exact identity of the N-terminal residue of the BT peptide (including modifications thereof) is not known, and WO / 2005/074626 is a provisional N-terminal assignment of double methylated Bmt (4R) -4- [(E) -2-butenyl] -4-methyl-L-threonine, and Me 2 -Bmt-Leu- D Orn-Ile-Val-Val- D Lys-Val- D Leu-Lys, which is the overall structure of BT1583 -D Tyr-Leu-Vol was shown. Here, Orn represents ornithine and Vol represents valinol. BT peptides have been discovered as antibiotics based on their antibacterial activity in vitro (WO / 2005/074626 and (Wu et al., 2005)), but orally delivered BT peptides (isolated from B. texasporus) As a mixture) lacks in vivo antimicrobial activity. For example, vancomycin-resistant enterococci (VRE) are highly sensitive to BT peptides in vitro, but BT peptides delivered orally at concentrations well above the minimum inhibitory concentration are unable to colonize VRE in the mouse GI pathway (Kogut et al. al., 2007). Importantly, orally delivered BT peptides are neither digested nor absorbed by the GI route, probably according to the presence of D-type amino acid residues and their relatively high molecular weight of about 1,600 daltons, respectively. Conceivable. However, orally delivered BT peptides (also as a mixture isolated from B. texasporus) can produce many effective systemic effects in animals. Orally delivered BT peptides are effective in preventing respiratory colibacillosis (air sac E. coli infection) and promoting growth and increasing feed efficiency in young chickens (Jiang et al., 2005). Perhaps more importantly, the in vivo anti-infective effect of the BT peptide appears to be independent of in vitro antibiotic activity, because orally delivered BT peptide is at a concentration below the in vitro minimum inhibitory concentration at E. coli and Salmonella. This is because it is effective in preventing infection by chickens (Jiang et al., 2005; Kogut et al., 2007; Kogut et al., 2009). It has also been discovered that circulating neutrophils and monocytes are primed (rather than activated) in BT ingested chickens, indicating innate immune regulation as a possible mechanism of action of these in vivo anti-infective effects . Given the fact that orally delivered BT peptide passes through the GI pathway without being digested or absorbed, it stimulates intestinal epithelial cells to secrete factors into the blood, which in turn primes leukocytes. It may increase anti-infectious immunity (BT function No. 2).

ボゴロールはパプアニューギニアのチューブワームで発見された海洋細菌ブレビバシラス・ラテロスポラスPNG276から分離された5種類のリポペプチド抗生物質からなるファミリーであり(US 6,784,283)、これはまたリポペプチド抗生物質タウラムアミドを含む多数の他の抗生物質を産生する(Gerard et al., 1999; Desjardine et al., 2007)。最も豊富な変異体であるボゴロールAは報告されている分子量1,584および報告されている構造(SEQ ID No:1)であるHmp−Dhb−Leu−Orn−Ile−Val−Val−Lys−Val−Leu−Lys−Tyr−Leu−Volを有している(Barsby et al., 2001; Barsby et al., 2006)。ここでHmpは2−ヒドロキシ−3−メチルペンタン酸、Dhbは2,3−デヒドロ−2−アミノブチル酸を表す。本発明の前段階として、本発明人はBTペプチドがリポペプチドであることを発見した:BT1583はボゴロールA(SEQ ID NO:1)と同じ構造を有し、BTとボゴロールファミリーは4種類の共通NRPメンバーを共有し、このためブレビバシラス・ラテロスポラスPNG276もB.テクサスポルス株である(実施例1および2)。 Bogolol is a family of five lipopeptide antibiotics (US 6,784,283) isolated from marine bacterium Brevibacillus laterosporus PNG276 found in a tubeworm in Papua New Guinea (US 6,784,283), which also includes a number of lipopeptide antibiotics tauramide. Produces other antibiotics (Gerard et al., 1999; Desjardine et al., 2007). Bogolol A, the most abundant variant, has a reported molecular weight of 1,584 and a reported structure (SEQ ID No: 1) Hmp- E Dhb-Leu- D Orn-Ile-Val-Val- D It has Lys-Val- D Leu-Lys- D Tyr-Leu-Vol (Barsby et al., 2001; Barsby et al., 2006). Here, Hmp represents 2-hydroxy-3-methylpentanoic acid, and Dhb represents 2,3-dehydro-2-aminobutyric acid. As a pre-stage of the present invention, the present inventors have discovered that the BT peptide is a lipopeptide: BT1583 has the same structure as Bogolol A (SEQ ID NO: 1), and BT and the Bogolol family have four types Brevibacillus laterosporus PNG276 also shares a common NRP member. Texasporus strain (Examples 1 and 2).

本発明は、プロテアーゼ耐性BTペプチドが栄養感知腸内分泌/味覚受容体細胞によって典型的に仲介される生理学的変化を誘発でき、従って経口抗糖尿肥満偽栄養物として使用できる(BT機能No.3)という本発明人の発見に一部基づいている。経口送達されたBTペプチドは、食事誘発された遺伝性肥満およびインスリン耐性を、一方向性の体重減少よりもむしろ体重の正常化と調和したパターンで完全に回復することが示されている。   The present invention allows protease resistant BT peptides to induce physiological changes typically mediated by nutrient-sensing enteroendocrine / taste receptor cells and thus can be used as an oral anti-diabetic obesity pseudonutrient (BT function No. 3). This is based in part on the discovery of the present inventors. Orally delivered BT peptides have been shown to fully restore diet-induced hereditary obesity and insulin resistance in a pattern consistent with weight normalization rather than unidirectional weight loss.

一実施形態では、本発明は肥満および肥満と関連する疾患を治療または予防するための、1種類以上のBTリポペプチドを効果的な量で含む医薬組成物を提供する。例として、本発明のBTリポペプチドはSEQ ID NO: 1〜21から選択される配列を有する。BTリポペプチドはB.テクサスポルス株を用いて天然に(混合物またはさらに精製された個別ペプチドとして)または化学合成によって作製できる。本発明のBTリポペプチドは、分離された水溶性リポペプチド、すなわち実質的に精製された形態として提供される。「実質的に精製された形態」は、本発明の1種類以上のペプチドが組成物の少なくとも約1重量%、好ましくは少なくとも約10重量%、より好ましくは約25重量%、さらにより好ましくは少なくとも約50重量%、さらにより一層好ましくは約75重量%、さらにより一層好ましくは約95重量%、および最も好ましくは約99重量%を構成する。一実施形態では、本発明の医薬組成物は、B.テクサスポルスから分離された混合物として効果的な量のBTペプチドを含むことができる。本発明のペプチドは塩として提供でき、これらの塩には塩と結合するペプチドの一部(例、アミノ酸側基)が塩基性部または酸性部であるかどうかに依存して酸または塩基付加塩が含まれる。好ましくは、塩は医薬品目的として許容可能である。また本発明は、本発明のペプチドおよび医薬品として許容可能なそれらの塩を医薬組成物中に提供する。本発明の医薬組成物は、組成物に基剤、希釈剤または医薬組成物の使用に適した他の材料をペプチドまたは複数ペプチドとともに含むことがあるため、本発明のBTペプチドまたは複数ペプチドを実質的に精製された形態で必ずしも含まなくてもよい。   In one embodiment, the present invention provides a pharmaceutical composition comprising an effective amount of one or more BT lipopeptides for treating or preventing obesity and diseases associated with obesity. By way of example, the BT lipopeptide of the invention has a sequence selected from SEQ ID NOs: 1-21. BT lipopeptide is a B.I. It can be made naturally (as a mixture or further purified individual peptides) or by chemical synthesis using a Texasporus strain. The BT lipopeptide of the present invention is provided as an isolated water-soluble lipopeptide, ie, a substantially purified form. “Substantially purified form” means that one or more peptides of the invention are at least about 1%, preferably at least about 10%, more preferably about 25%, even more preferably at least about 1% by weight of the composition. It constitutes about 50 wt%, even more preferably about 75 wt%, even more preferably about 95 wt%, and most preferably about 99 wt%. In one embodiment, the pharmaceutical composition of the present invention comprises B. An effective amount of BT peptide can be included as a mixture separated from Texasporus. The peptides of the present invention can be provided as salts, wherein these salts are acid or base addition salts depending on whether the portion of the peptide that binds to the salt (eg, amino acid side groups) is a basic or acidic moiety. Is included. Preferably, the salt is acceptable for pharmaceutical purposes. The invention also provides the peptides of the invention and their pharmaceutically acceptable salts in pharmaceutical compositions. Since the pharmaceutical composition of the present invention may contain a base, diluent or other material suitable for use in the pharmaceutical composition together with the peptide or the plurality of peptides, the BT peptide or the plurality of peptides of the present invention is substantially contained. May not necessarily be contained in a purified form.

一実施形態では、肥満および肥満と関連した疾患を治療または予防するための本発明の医薬組成物は経口投与剤型であり、効果的な量の水溶性BTリポペプチドおよび対象の口腔とのペプチドの接触および/または暴露を促進する原料を含む。特定の実施形態では、経口投与剤型は1種類以上のBTリポペプチドを含む水性溶液である。   In one embodiment, the pharmaceutical composition of the invention for treating or preventing obesity and obesity-related diseases is in an oral dosage form, wherein an effective amount of water-soluble BT lipopeptide and peptide in the oral cavity of the subject. Ingredients that facilitate contact and / or exposure. In certain embodiments, the oral dosage form is an aqueous solution comprising one or more BT lipopeptides.

別の実施形態では、本発明は対象における飽食を誘動する方法と関連し、水溶性剤型中に1種類以上のBTリポペプチドを含む組成物を対象の口の少なくとも一部に、食事の前の期間(食前)に適用することを含む。期間は5秒以上であってよい。特定の実施形態では、期間は食事前5〜360分である。さらに特定の実施形態では、期間は食事前30〜120分である。   In another embodiment, the invention relates to a method of inducing satiety in a subject, wherein a composition comprising one or more BT lipopeptides in a water-soluble dosage form is present in at least a portion of the subject's mouth, Including application in the previous period (before meals). The period may be 5 seconds or longer. In certain embodiments, the period is from 5 to 360 minutes before a meal. In a more specific embodiment, the period is 30 to 120 minutes before meals.

別の実施形態は、水溶性形態である1種類以上のBTリポペプチドおよび医薬品として許容可能な基剤を含む固体(例、粉末)、液体または半液体組成物を含む容器と関連する。特定の実施形態では、容器は組成物を対象の口の中に放出するノズルを含む。容器は圧力下にあり、および/またはポンプノズルを備えていてよい。   Another embodiment is associated with a container containing a solid (eg, powder), liquid or semi-liquid composition comprising one or more BT lipopeptides in a water soluble form and a pharmaceutically acceptable base. In certain embodiments, the container includes a nozzle that discharges the composition into the mouth of the subject. The container may be under pressure and / or be equipped with a pump nozzle.

別の実施形態は、水溶性形態である1種類以上のBTリポペプチドを加えた、口に適用可能な物品と関連する。物品は、1種類以上のBTリポペプチドを加えたチューインガム、1種類以上のBTリポペプチドを加えたトローチ(例、口の中である期間保持することが意図された可溶性の固体または半固体物質)、または1種類以上のBTリポペプチドを加えた透過性ポーチまたはスポンジであってよい。物品は1種類以上のBTリポペプチドを口および/または咽頭に長期送達するように設計され、経口投与として従来理解されているようなピル、錠剤またはカプセル組成物の即時嚥下を含む従来の経口投与とは反する。特に、物品は舌に送達するために設計される。   Another embodiment relates to an article applicable to the mouth, to which one or more BT lipopeptides are added that are in a water soluble form. The article can be a chewing gum with one or more BT lipopeptides, a troche with one or more BT lipopeptides (eg, a soluble solid or semi-solid material intended to be held in the mouth for a period of time). Or a permeable pouch or sponge to which one or more BT lipopeptides are added. The article is designed for long-term delivery of one or more BT lipopeptides into the mouth and / or pharynx and includes conventional swallowing of pills, tablets or capsule compositions as is conventionally understood as swallowing orally. Contrary to In particular, the article is designed for delivery to the tongue.

特定の実施形態では、1種類以上のBTリポペプチドは少なくとも5、10、15秒以上の一般的な継続時間に従って対象の口および/または咽頭に送達される。別の実施形態では、送達は0.1〜120分間であり、そのような範囲における0.1分ずつの任意な特定の増加を含む。   In certain embodiments, the one or more BT lipopeptides are delivered to the subject's mouth and / or pharynx according to a typical duration of at least 5, 10, 15 seconds or more. In another embodiment, delivery is between 0.1 and 120 minutes, including any specific increase by 0.1 minutes in such a range.

ある実施形態では、組成物は口の中に噴霧するために調製される。医薬組成物はスプレーノズルを備えた容器中に配置し、ポンプ作動または圧力放出のいずれかによって放出できる。   In certain embodiments, the composition is prepared for spraying into the mouth. The pharmaceutical composition is placed in a container with a spray nozzle and can be released either by pumping or pressure release.

別の実施形態では、医薬組成物は組み合わされてチューインガムの剤型で提供される。   In another embodiment, the pharmaceutical compositions are combined and provided in a chewing gum dosage form.

別の態様では、本発明は1種類以上のBTリポペプチドの効果的な量の経口投与によって肥満および肥満関連疾患を治療または予防する方法を提供する。本発明の一つの代表的な実施形態には、肥満または過体重の患者を選択し、体重または体重増加を低下するのに効果的な量の1種類以上のBTリポペプチドを患者に経口投与することが含まれる。本発明の別の代表的な実施形態は、2型糖尿病を治療または予防する方法であり、血糖量を制御してインスリン感受性を増加するのに効果的な量の1種類以上のBTリポペプチドを患者に経口投与することが含まれる。本発明の別の実施形態は、複合型脂質異常症を治療または予防する方法であり、血中LDLコレステロールおよびトリグリセリド量を制御するのに効果的な量の1種類以上のBTリポペプチドを患者に経口投与することが含まれる。本発明の別の代表的な実施形態は、非アルコール性脂肪肝を治療または予防する方法であり、肝臓中の脂肪蓄積およびそれに続く肝不全を治療または予防するのに効果的な量の1種類以上のBTリポペプチドを患者に経口投与することが含まれる。本発明のさらに別の代表的な実施形態は、高血圧を治療または予防する方法であり、高血圧を治療または予防するのに効果的な量の1種類以上のBTリポペプチドを患者に経口投与することが含まれる。   In another aspect, the present invention provides a method for treating or preventing obesity and obesity-related diseases by oral administration of an effective amount of one or more BT lipopeptides. In one exemplary embodiment of the invention, an obese or overweight patient is selected and an amount of one or more BT lipopeptides is orally administered to the patient in an amount effective to reduce weight or weight gain. It is included. Another exemplary embodiment of the present invention is a method of treating or preventing type 2 diabetes, comprising an amount of one or more BT lipopeptides effective to control blood glucose levels and increase insulin sensitivity. Includes oral administration to patients. Another embodiment of the invention is a method of treating or preventing complex dyslipidemia, wherein the patient is provided with an amount of one or more BT lipopeptides effective to control blood LDL cholesterol and triglyceride levels. Oral administration is included. Another exemplary embodiment of the invention is a method of treating or preventing non-alcoholic fatty liver, one amount effective to treat or prevent fat accumulation in the liver and subsequent liver failure. This includes oral administration of the above BT lipopeptides to a patient. Yet another exemplary embodiment of the present invention is a method for treating or preventing hypertension, wherein an amount of one or more BT lipopeptides is orally administered to a patient in an amount effective to treat or prevent hypertension. Is included.

さらなる態様では、本発明は食物摂取を低下する方法を提供し、肥満または過体重の患者を選択し、食物摂取を低下するのに効果的な量のBTリポペプチドを患者に経口投与することが含まれる。   In a further aspect, the present invention provides a method for reducing food intake, selecting obese or overweight patients and orally administering to the patient an amount of BT lipopeptide effective to reduce food intake. included.

好ましくは、本発明における患者はヒトの患者である。   Preferably, the patient in the present invention is a human patient.

本発明による非吸収性偽栄養物としてのBTリポペプチドの投与量は、一日あたりの食物消費の乾燥重量kgあたりのBTリポペプチドのmgとして計量される(一日あたりの体重kgあたりのmg数に反するものとして)。本発明は、BTリポペプチド偽栄養物の効果的な量が単回投与または分割投与において、一日あたりの食物消費乾燥重量kgあたり100〜10,000mgの範囲であることを提供する。   The dose of BT lipopeptide as a non-absorbable pseudonutrient according to the invention is measured as mg of BT lipopeptide per kg dry weight of food consumption per day (mg per kg body weight per day). As contrary to the number). The present invention provides that an effective amount of BT lipopeptide pseudonutrient is in the range of 100-10,000 mg per kg dry weight of food consumed per day in single or divided doses.

また、本発明では、新規の経口抗糖尿肥満剤を特定する方法を提供し、先天免疫細胞を用いたインビトロでのスクリーニングによって非炎症性TLR作動剤を特定し、ついで経口送達によって糖尿肥満動物モデル(すなわち、DIO、db/db、またはob/obマウス)における不消化、非吸収および抗糖尿肥満効果を試験することを含む。また本発明は、このような新規の経口抗糖尿肥満剤を用いて肥満および肥満関連疾患を治療する方法を提供する。   The present invention also provides a method for identifying a novel oral anti-diabetic obesity agent, identifying a non-inflammatory TLR agonist by in vitro screening using innate immune cells, and then orally delivering it to a diabetic obesity animal model Testing for indigestion, non-absorption and anti-diabetic obesity effects in (ie, DIO, db / db, or ob / ob mice). The present invention also provides a method for treating obesity and obesity-related diseases using such novel oral anti-diabetic obesity agents.

さらに本発明は、微生物(結核菌、大腸菌、サルモネラ、カンピロバクター、黄色ブドウ球菌、エンテロコッカス・フェシウム、肺炎連鎖球菌、淋病、緑膿菌、クロストリジウム・ディフィシル、アシネトバクター・バウマンニ、HIV、インフルエンザ、HBV、HCV、ヘルペスウイルス、フィロウイルス、エプスタインバーウイルス、HPV、カポジ肉腫関連ヘルペスウイルス、ヒトT細胞白血病ウイルス)、寄生虫感染、癌およびこれらの組合せに対するワクチンなどの、ワクチンに対する免疫反応を高める経口アジュバントとしてBTリポペプチドを提供する。   Furthermore, the present invention relates to microorganisms (M. tuberculosis, Escherichia coli, Salmonella, Campylobacter, Staphylococcus aureus, Enterococcus faecium, Streptococcus pneumoniae, gonorrhea, Pseudomonas aeruginosa, Clostridium difficile, Acinetobacter baumannii, HIV, influenza, HBV, HCV, BT lipo as an oral adjuvant to enhance the immune response to vaccines, such as vaccines against herpesviruses, filoviruses, Epstein-Barr virus, HPV, Kaposi's sarcoma-associated herpesviruses, parasitic infections, cancers and combinations thereof A peptide is provided.

H−H NOEを破線で示すBT1583の補正した構造 1 H- 1 corrected structure BT1583 showing the H NOE by a broken line 40ppmの飲用水による経口BT治療は、DIOマウスにおける体重増加、食物または水分の摂取に差を生じなかった。Oral BT treatment with 40 ppm drinking water did not make a difference in weight gain, food or water intake in DIO mice. DIOマウスにおける経口ブドウ糖負荷(oGTT)およびグルコース誘発性ンスリン分泌は、40ppmでの飲用水による30日の経口BT治療によって変化しなかった。Oral glucose tolerance (oGTT) and glucose-induced insulin secretion in DIO mice were not altered by 30-day oral BT treatment with drinking water at 40 ppm. 400ppmでの飲用水による経口BT治療は、DIOマウスにおける体重、食物と水分の摂取を有意に低下した。Oral BT treatment with drinking water at 400 ppm significantly reduced body weight, food and water intake in DIO mice. DIOマウスにおける経口ブドウ糖負荷(oGTT)およびグルコース誘発性ンスリン分泌は、400ppmでの飲用水による30日の経口BT治療によって有意に改善された。Oral glucose tolerance (oGTT) and glucose-induced insulin secretion in DIO mice were significantly improved by 30-day oral BT treatment with drinking water at 400 ppm. 身体組成および水分補給は、400ppmでの飲用水による30日の経口BT治療によって有意に改善された。Body composition and hydration were significantly improved by 30-day oral BT treatment with drinking water at 400 ppm.

本発明の理解を容易にするため、多数の用語を下に定義する。ここで定義された用語は、本発明に関連する分野における通常の技術者によって一般的に理解される意味を有する。不特定的(「a」、「an」など)および特定的(「the」など)であるような用語は、ただ一つの要素を意味すると意図されておらず、説明に使用できる特定の例の一般的な部類を含む。ここに示す用語は、本発明の特定な実施形態を記載するのに使用されるが、これらの使用は請求項で記載される以外、本発明の範囲を定めるものではない。   In order to facilitate understanding of the invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as unspecified ("a", "an", etc.) and specific (such as "the") are not intended to imply a single element, but are specific examples that can be used in the description. Includes general categories. The terminology used herein is used to describe specific embodiments of the invention, but their use does not delimit the invention, except as set forth in the claims.

「NRP変異体」は同一NRPSから微生物によって産生される非リボソームペプチドを意味する。NRP変異体は、NRPSにおけるNRPSコドン縮退の範囲によって1つ以上の残基でアミノ酸配列 が互いに異なっていてよい。   “NRP variant” means a non-ribosomal peptide produced by a microorganism from the same NRPS. NRP variants may differ from each other in amino acid sequence at one or more residues depending on the extent of NRPS codon degeneracy in NRPS.

「非炎症性TLR作動剤」は、先天免疫細胞においてそれ自身では反応を誘発できないが、別の刺激物質によって誘発された細胞の反応を増大できるTLR作動剤を意味する。言い換えると、炎症反応を直接的に誘発する伝統的なTLR作動剤(TLR4作動剤LPSなど)とは異なり、非炎症性TLR作動剤の効果はプライミングのみである。   By “non-inflammatory TLR agonist” is meant a TLR agonist that cannot elicit a response by itself in innate immune cells, but can increase the response of cells elicited by another stimulant. In other words, unlike traditional TLR agonists (such as TLR4 agonist LPS) that directly elicit inflammatory responses, the effects of non-inflammatory TLR agonists are only priming.

「偽栄養物」は、GIホルモンの分泌、抗糖尿肥満効果、および栄養物吸収増強などの栄養感知腸内分泌/味覚受容体細胞によって典型的に仲介される生理学的変化を誘動できる、非消化性および非吸収性の天然または合成化合物を意味する。偽栄養物は、GIホルモンの分泌を誘動する栄養物の吸収を妨害する天然または合成化合物である抗栄養物(ジルロタピドなど)とは区別される(Wren et al., 2007)。   “Pseudonutrients” can induce physiological changes typically mediated by nutrient-sensing enteroendocrine / taste receptor cells such as GI hormone secretion, anti-diabetic obesity effects, and enhanced nutrient absorption Means natural and synthetic compounds which are both sexual and non-absorbable. Pseudonutrients are distinguished from antinutrients (such as zirlotapide) that are natural or synthetic compounds that interfere with the absorption of nutrients that trigger the secretion of GI hormones (Wren et al., 2007).

腸内分泌細胞におけるTLR仲介以外の免疫非依存栄養感知の経路によって、腸内分泌/味覚受容体細胞からの抗糖尿肥満GIホルモンの分泌を誘動できる新規の偽栄養物を特定するための効果的な二段階法が可能となる。第一段階は、分離した白血球などの先天免疫細胞によってインビトロで化合物をスクリーニングすることにより非炎症性(プライミングするが活性化しない)TLR作動剤を特定することを含む。第二段階は、TLR作動剤の経口送達によってDIO,db/dbまたはob/obマウスにおける不消化、非吸収および抗糖尿肥満効果についてTLR作動剤を試験することを含む。起こり得る有害な全身性炎症を避けるため、LPSなどの炎症性TLR作動剤を除外することが必須である。BTリポペプチド偽栄養物の発見は、このスクリーニング法の概念実証を提供する。   Effective to identify novel pseudonutrients capable of triggering secretion of anti-diabetic obesity GI hormone from enteroendocrine / taste receptor cells by pathways of immune-independent nutrient sensing other than TLR-mediated in enteroendocrine cells A two-step method is possible. The first step involves identifying non-inflammatory (priming but not activating) TLR agonists by screening compounds in vitro with innate immune cells such as isolated leukocytes. The second stage involves testing TLR agonists for indigestion, non-absorption and anti-diabetic obesity effects in DIO, db / db or ob / ob mice by oral delivery of TLR agonists. It is essential to exclude inflammatory TLR agonists such as LPS in order to avoid possible harmful systemic inflammation. The discovery of BT lipopeptide pseudonutrients provides a proof of concept for this screening method.

「肥満度指数」(BMI)は個人の体重と身長に基づいた数値であり、健康への体重の影響を評価する方法を提供する。個人の体重のkg値および伸長のm値:BMI=kg/m。健康な「正常体重」は、BMIが19〜24.9であることを意味する。「過体重」はBMI25〜29.9を意味する。「肥満」はBMI30以上を意味する。 “Body Mass Index” (BMI) is a number based on an individual's weight and height and provides a way to assess the effect of weight on health. Kg value of individual and m value of elongation: BMI = kg / m 2 . Healthy “normal weight” means that the BMI is 19-24.9. “Overweight” means BMI 25-29.9. “Obesity” means a BMI of 30 or more.

「投与」は自己投与を含む。「経口送達」または「経口投与」は口腔への送達または投与および/または口腔を通した送達または投与を含む。   “Administration” includes self-administration. “Oral delivery” or “oral administration” includes delivery or administration to the oral cavity and / or delivery or administration through the oral cavity.

実施例3〜7の試験で使用されたBTペプチドまたはBTリポペプチドは、BT NRP変異体を分析する逆相HPLC段階は使用せずに、WO/2005/074626および(Wu et al., 2005)で公開された分離および検出方法を用いて、B.テクサスポルスから分離した天然BT NRP変異体の混合物(SEQ ID NO: 1〜9を含む)であった。当該技術に精通している人はこれらの参照文献に記載された方法を用いてBTペプチドまたはBTリポペプチドを簡単に調製できる。BTペプチドまたはBTリポペプドを特徴付けして、アミノ酸配列を下の表1に示した。表1は、9種類の(検出レベルを超える)BT NRP変異体の構造およびそのような混合物中のそれらの典型的な相対量を示す(非BT−NRPS由来ペプチドは質量分析によって検出されなかった)。   The BT peptides or BT lipopeptides used in the tests of Examples 3-7 do not use the reverse phase HPLC step to analyze BT NRP variants, and do not use WO / 2005/074626 and (Wu et al., 2005). Using the separation and detection methods published in It was a mixture of natural BT NRP variants isolated from Texaspos (including SEQ ID NO: 1-9). Those skilled in the art can easily prepare BT peptides or BT lipopeptides using the methods described in these references. The BT peptide or BT lipopeptide was characterized and the amino acid sequence is shown in Table 1 below. Table 1 shows the structures of nine BT NRP variants (beyond the detection level) and their typical relative amounts in such mixtures (non-BT-NRPS derived peptides were not detected by mass spectrometry) ).

Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186

実施例1
質量分析
Example 1
Mass spectrometry

WO/2005/074626および(Wu et al., 2005)において、BTの非リボソームペプチドシンターゼの第一モジュールのNRPSコドンはトレオニンまたはジヒドロトレオニン(Dht)のコドンであることが予測された。BT1583の標準的なアミノ酸組成測定では、第一アミノ酸残基としてThrまたはDhtのどちらかが存在するというエビデンスは得られなかった。そのためBmtの残基は、その二重N−メチル化型が、タンデム質量分析(MS/MS)で198のbシリーズm/zシグナルにおおよそ「一致」する197の質量を有するフラグメントを与え得たことによってのみ暫定的に割り当てられた。   In WO / 2005/074626 and (Wu et al., 2005), the NRPS codon of the first module of the non-ribosomal peptide synthase of BT was predicted to be a threonine or dihydrothreonine (Dht) codon. The standard amino acid composition measurement of BT1583 did not provide evidence that either Thr or Dht was present as the first amino acid residue. Thus, the residue of Bmt could give a fragment whose double N-methylated form had a mass of 197 that roughly “matches” the 198 b-series m / z signals in tandem mass spectrometry (MS / MS). Was provisionally assigned only by.

N端構造をよりよく理解するため、BT1583ペプチドをさらに包括的MS/MS分析にかけ、それにより83.0ダルトンのΔMと解釈される過去に検出されなかった115.1のより小さなbシリーズm/zシグナルが、第一アミノ酸残基の質量として示された(表2)。83.0ダルトンの質量を有する唯一の既知のアミノ酸残基はまさにジヒドロトレオニン(Dht)であり、文献ではより一般的に2,3−デヒドロ−2−アミノブチル酸(Dhb)として知られている。   In order to better understand the N-terminal structure, the BT1583 peptide was further subjected to comprehensive MS / MS analysis, whereby 115.1 smaller b-series m / The z signal was shown as the mass of the first amino acid residue (Table 2). The only known amino acid residue with a mass of 83.0 Dalton is exactly dihydrothreonine (Dht), more commonly known in the literature as 2,3-dehydro-2-aminobutyric acid (Dhb) .

Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186

BT1583の第一アミノ酸残基がDhbと同定されたことによって、BT1583とリポペプチドボゴロールAが同一分子構造を有するという可能性が生じた。この仮説の最初の試験として、BT1583をHClで110℃、一昼夜処理して遊離アミノ酸に加水分解し、ついでMALDI−TDF質量分析にかけBT1583にもDhbおよびHmp残基が含まれるかどうかを調べた。検出のポジティブモードでは、Tyr(M+H/z=182.1)、Lys(147.1)、Orn(133.1)、Leu/Ile(132.1)、Val(118.1)およびVol(104.1)が明確に検出されたが、Dhb/Dht(102.1)あるいはThr(120.1)は検出されないままであった。しかし検出のネガティブモードでは、131.1のM−H/zシグナルが明確に検出され、BT1583におけるHmp残基の存在が裏付けられた。 The identification of the first amino acid residue of BT1583 as Dhb raised the possibility that BT1583 and lipopeptide bogolol A have the same molecular structure. As a first test of this hypothesis, BT1583 was treated with HCl at 110 ° C. overnight to hydrolyze to free amino acids, and then subjected to MALDI-TDF mass spectrometry to determine whether BT1583 also contained Dhb and Hmp residues. In positive mode of detection, Tyr (M + H + /z=182.1), Lys (147.1), Orn (133.1), Leu / Ile (132.1), Val (118.1) and Vol (11. 104.1) was clearly detected, but Dhb / Dht (102.1) or Thr (120.1) remained undetected. However, in the negative mode of detection, an M-H + / z signal of 131.1 was clearly detected, confirming the presence of the Hmp residue in BT1583.

HPLC精製によって8種類のさらなるBR NRP変異体が分離され、これらも同じ包括的MS/MS分析に供した。これらのNRP変異体はすべて198.1に加えて115.1のbシリーズm/zシグナルを生じた(表2)ため、それらはBT1583と同じN端(Hmp−Dhb−)構造を含むと考えられた。   Eight additional BR NRP variants were separated by HPLC purification and were also subjected to the same comprehensive MS / MS analysis. All of these NRP mutants produced a b-series m / z signal of 115.1 in addition to 198.1 (Table 2), so they appear to contain the same N-terminal (Hmp-Dhb-) structure as BT1583. It was.

従って、質量分析結果によってBTペプチドのボゴロールリポペプチドとのさらなる構造的類似性が明らかとなり、ペプチドの2つのファミリー間の正確な関係を決定するための更なる研究が求められた。   Therefore, mass spectroscopic results revealed further structural similarity of the BT peptide with bogolol lipopeptide, and further studies were sought to determine the exact relationship between the two families of peptides.

実施例2
2D NMR
Example 2
2D NMR

ボゴロールAのアセチル化誘導体の二次元NMRスペクトル分析が、ボゴロールAの構造解析において重要な役割を演じた(US 6,784,283)。天然BT1583の構造を包括的に解明するため、非誘導体化BT1583の二次元NMRスペクトル解析を実施するのに成功した。NMRデータによって、13個のアミノ酸残基(1つのDhb、3つのLeu、1つのOrn、1つのIle、3つのVal、2つのLys、および1つのTyr、1つのVol)およびHmpの1つの脂肪酸残基に相当する14スピン系が明らかになった。完全な共鳴帰属を、アミノ酸、HmpおよびVolに関して報告されている化学シフト値に基づき、ならびにH−H全相関分光法(TOCSY)、H−H相関分光法(COSY)、H−15N異核種間一量子コヒーレンス分光法(HSQC)およびにH−13C異核種間多量子コヒーレンス分光法(HMQC)実験から行い(表3)、これにより14スピン系すべてが同定できた。核オーバーハウザー強化分光法(NOESY)マップスペクトルは、双極子結合性に起因したクロスピークを示した。NHi/NH(i+1)および/またはCαHi/NH(i+1)クロスピーク、ここでiはアミノ酸の位置番号を表している、によってアミノ酸配列およびN末端におけるHmp0のDhb1への連結が決定できた(図1)。 Two-dimensional NMR spectral analysis of the acetylated derivative of Bogolol A played an important role in the structural analysis of Bogolol A (US 6,784,283). In order to comprehensively elucidate the structure of natural BT1583, two-dimensional NMR spectral analysis of non-derivatized BT1583 was successfully performed. NMR data shows 13 amino acid residues (1 Dhb, 3 Leu, 1 Orn, 1 Ile, 3 Val, 2 Lys, 1 Tyr, 1 Vol) and 1 fatty acid in Hmp A 14-spin system corresponding to the residue was revealed. Complete resonance assignments were based on reported chemical shift values for amino acids, Hmp and Vol, and 1 H- 1 H total correlation spectroscopy (TOCSY), 1 H- 1 H correlation spectroscopy (COSY), 1 H - 15 N performs a different species during one quantum coherence spectroscopy (HSQC) and 1 H- 13 C cross species among multiple quantum coherence spectroscopy (HMQC) experiment (Table 3), was thereby be identified 14 spin system all . Nuclear overhauser enhanced spectroscopy (NOESY) map spectrum showed a cross peak due to dipole connectivity. NHi / NH (i + 1) and / or CαHi / NH (i + 1) cross peak, where i represents the amino acid position number, determined the amino acid sequence and the linkage of Hmp0 to Dhb1 at the N-terminus (FIG. 1).

Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186
Figure 0006345186

特に、オレフィンスペクトル領域では、強度1:3:3:1の四重シグナル(約Hδ=5.58ppm)がそのままDhb1 Cβプロトンに帰属された。Dhb1の(E)配置帰属はLeu2 NHプロトンと結合したDhb1 CγプロトンのNOEに基づいて決められた。 In particular, in the olefin spectrum region, a quadruple signal (about 1 Hδ = 5.58 ppm) having an intensity of 1: 3: 3: 1 was directly assigned to the Dhb1 Cβ proton. The (E) configuration assignment of Dhb1 was determined based on the NOE of the Dhb1 Cγ proton bound to the Leu2 NH proton.

Hmp0の主な特徴は、TOCSY、COSYおよびHMQC実験によって確認された。プロトン(Hδ=5.38ppm)は、それが炭素(H−13C HMQCにおける) または窒素(δが比較的低いため)のいずれとも結合していないことに基づいて、ヒドロキシルプロトンとして同定された。H−H COSYおよびH−H TOCSYの両方において、ヒドロキシプロトンはHmp C2プロトン(Hδ=3.59ppm)とのみ相互作用していることが認められた。HmpのC3での側基としての性質は、C6メチルプロトンのC3との排他的なCOSY相互作用によって実証され、またC2およびC4プロトンとのさらなるCOSY相互作用を示した。最後にC2とC6プロトンの間のNOE結合はL−Hmp残基と完全に一致した。 The main features of Hmp0 were confirmed by TOCSY, COSY and HMQC experiments. A proton ( 1 Hδ = 5.38 ppm) is identified as a hydroxyl proton based on its lack of binding to either carbon (in 1 H- 13 C HMQC) or nitrogen (because δ is relatively low). It was. In both 1 H- 1 H COSY and 1 H- 1 H TOCSY, the hydroxy proton was found to interact only with the Hmp C2 proton ( 1 Hδ = 3.59 ppm). The side group nature of Hmp at C3 was demonstrated by the exclusive COSY interaction of C6 methyl proton with C3 and also showed further COSY interaction with C2 and C4 protons. Finally, the NOE bond between the C2 and C6 protons was completely consistent with the L-Hmp residue.

従って、BT1583とブロゴールAは、Hmp−Dhb−Leu−Orn−Ile−Val−Val−Lys−Val−Leu−Lys−Tyr−Leu−Volの同一構造を有している。言い換えると、B.テクサスポルス由来のBT1583およびその天然NRP変異体は、WO/2005/074626で記載され請求されているようにN末端メチル化されていない。この結論は表1の天然BT NRP変異体の記載に取り入れられている(明らかにボゴロールDの酸化誘導体であるボゴロールEを除いたボゴロールとの相関関係について)。 Therefore, BT1583 and Brogor A have the same structure of Hmp- E Dhb-Leu- D Orn-Ile-Val-Val- D Lys-Val- D Leu-Lys- D Tyr-Leu-Vol. In other words, B. BT1583 from Texasporus and its natural NRP variant are not N-terminally methylated as described and claimed in WO / 2005/074626. This conclusion is taken into account in the description of the natural BT NRP variant in Table 1 (for correlation with Bogolol, apparently excluding Bogolol E, an oxidized derivative of Bogolol D).

従って、自然の生息地が大きく異なるにも関わらず、ブレビバシラス・ラテロスポラスPNG276も、そのBTペプチドファミリーの産生に基づき、B.テクサスポルス亜種の株である。   Therefore, despite the large differences in natural habitat, Brevibacillus laterosporus PNG276 is also based on the production of its BT peptide family. It is a strain of Texasporus subspecies.

実施例3
BTおよびTLR2
Example 3
BT and TLR2

経口投与されたBTリポペプチドは、好異球および単球のニワトリ血液先天免疫細胞を(直接的に活性化するよりもむしろ)プライミングし(Kogut et al., 2007; Kogut et al., 2009)、またBTリポペプチドは分離されたニワトリの好異球および単球をインビトロでも(直接的に活性化するよりもむしろ)プライミングする(Kogut et al., 2012)。経口送達されたBTリポペプチドは血液に吸収されずにこれらの先天免疫細胞と直接接触するため、インビトロにおけるBTによる白血球のプライミングは、BTリポペプチドがインビボにおいて同様にふるまうことを決して示唆しない。しかしインビトロにおけるプライミング測定は、BT仲介される先天免疫調節に含まれる可能なシグナル化経路を探索する有効なツールである。TLRは先天免疫において重要な役割を演じる保存された受容体であり(Farnell et al., 2003)またTRL2はリポペプチド作動剤を有する唯一のTLRであるため、同じインビトロBTプライミング測定(Kogut et al., 2012)を実施して、TLR2がBTリポペプチドに対する受容体として機能できるかどうか調べた。   Orally administered BT lipopeptides prime (rather than directly activate) neutrophil and monocyte chicken blood innate immune cells (Kogut et al., 2007; Kogut et al., 2009) BT lipopeptides also prime isolated chicken neutrophils and monocytes in vitro (rather than directly activating) (Kogut et al., 2012). Since orally delivered BT lipopeptides are not absorbed into the blood and come into direct contact with these innate immune cells, priming leukocytes by BT in vitro never suggests that BT lipopeptides behave similarly in vivo. However, in vitro priming measurements are an effective tool to explore possible signaling pathways involved in BT-mediated innate immune regulation. Since TLR is a conserved receptor that plays an important role in innate immunity (Farnell et al., 2003) and TRL2 is the only TLR with lipopeptide agonists, the same in vitro BT priming measurement (Kogut et al. , 2012) to investigate whether TLR2 can function as a receptor for BT lipopeptides.

ヒトTLR2に対するヤギポリクローナル抗体をSanta Cruz Biotechnology Lab (Santa Cruz, CA)から入手した。TLR2ブロッキングのため、分離したニワトリ好異球と抗体(2.0μg/ml)を、BTおよび/またはPMAで処理する前に、39℃で30分間インキュベーションした。   Goat polyclonal antibody against human TLR2 was obtained from Santa Cruz Biotechnology Lab (Santa Cruz, CA). For TLR2 blocking, isolated chicken neutrophils and antibodies (2.0 μg / ml) were incubated at 39 ° C. for 30 minutes prior to treatment with BT and / or PMA.

Figure 0006345186
Figure 0006345186

既に報告されているように、BTリポペプチド(12ppm)による好異球の処理は、PMAの非存在下では酸化的破壊を刺激しなかったが(表4、第3群対第4群)、PMA刺激した酸化的破壊を約3倍有意に増加させた(第4群対第2群)。   As already reported, treatment of neutrophils with BT lipopeptide (12 ppm) did not stimulate oxidative destruction in the absence of PMA (Table 4, Group 3 vs. Group 4), PMA-stimulated oxidative destruction was significantly increased about 3-fold (Group 4 vs. Group 2).

好異球の抗ヒトTLR2ヤギ抗体(2.0μg/mL)での前処理によりBTプライム化した酸化的破壊は43%低下し(第6群対第4群)、これはニワトリTLR2に対するこれらのヒト抗体による阻害の報告されている最大レベル(Farnell et al., 2003)である。これらの結果は、ヒトTLR2に対する抗体がBTによる好異球のプライミングを少なくとも部分的に阻害し、TLR2が精製BTリポペプチドのインビトロでのプライミングに対する受容体として機能しており、かつBTリポペプチドが(プライミングのみの)非炎症性TLR2作動剤であることを実証した。   Pretreatment of neutrophils with anti-human TLR2 goat antibody (2.0 μg / mL) reduced BT-primed oxidative destruction by 43% (Group 6 vs. Group 4), which indicates that these against chicken TLR2 The highest reported level of inhibition by human antibodies (Farnell et al., 2003). These results show that antibodies against human TLR2 at least partially inhibit BT neutrophil priming, TLR2 functions as a receptor for in vitro priming of purified BT lipopeptide, and BT lipopeptide It was demonstrated to be a non-inflammatory TLR2 agonist (priming only).

実施例4
経口アジュバントとしてのBTリポペプチド
Example 4
BT lipopeptide as an oral adjuvant

伝統的な炎症性TLR2作動剤は様々なワクチン用のアジュバントとして使用されているため、BTリポペプチドの非炎症性TLR2作動剤としての発見は、それらのマウスTBワクチンモデルにおけるインビボ免疫調節活性に関する伝統的なアジュバント有効性の試験を促した。C57BL/6マウスを最初に経口BTリポペプチドで処理し、ついで2種類のTBワクチン(比較的弱いESAT−6/MPL/DDAサブユニットワクチンおよび強いBCG生ワクチン)の1つで処理し、それからワクチン処理に対する反応の改善を試験した。試験群は下記を含んだ。   Because traditional inflammatory TLR2 agonists are used as adjuvants for various vaccines, the discovery of BT lipopeptides as non-inflammatory TLR2 agonists is a tradition for their in vivo immunomodulatory activity in mouse TB vaccine models Prompted the testing of effective adjuvant efficacy. C57BL / 6 mice are first treated with oral BT lipopeptide and then with one of two TB vaccines (a relatively weak ESAT-6 / MPL / DDA subunit vaccine and a strong BCG live vaccine) and then the vaccine Improved response to treatment was tested. The test group included:

1.経口BTリポペプチド処理、飲用水中40ppmで3日間の投与のみ。   1. Oral BT lipopeptide treatment, administration for 3 days only at 40 ppm in drinking water.

2.経口BTリポペプチド処理(飲用水中40ppm)を3日間、続いて3日目に1×濃度でESAT−6/MPL/DDA注射。   2. Oral BT lipopeptide treatment (40 ppm in drinking water) for 3 days followed by ESAT-6 / MPL / DDA injection at 1 × concentration on day 3.

3.1×濃度でESAT−6/MPL/DDA注射のみ。   3. ESAT-6 / MPL / DDA injection only at 3.1 × concentration.

4.経口BTリポペプチド処理(飲用水中40ppm)を3日間、続いて3日目に1×濃度でMPL/DDA注射。   4). Oral BT lipopeptide treatment (40 ppm in drinking water) for 3 days followed by MPL / DDA injection at 1 × concentration on day 3.

5.経口BTリポペプチド処理(飲用水中40ppm)を3日間、続いて3日目にBCGワクチンの注射。   5. Oral BT lipopeptide treatment (40 ppm in drinking water) for 3 days followed by BCG vaccine injection on day 3.

6.BCGワクチン注射のみ。   6). BCG vaccine injection only.

7.MPL/DDA注射のみ。   7). MPL / DDA injection only.

8.生理食塩水注射のみ。   8). Saline injection only.

マウスを前述のように接種して4週間休息させた後、毒性ヒト型結核菌H37Rvの低投与量エアゾール(50〜100CFU)を負荷した。そして負荷30日後に生菌数を評価した。感染後30日目にマウスの肺および脾臓について、器官をホモジナイズして7H11寒天平板上に10倍ずつ連続希釈して接種することにより、生菌数の計測を実施した。   Mice were inoculated as described above and rested for 4 weeks before loading with a low dose aerosol (50-100 CFU) of the toxic Mycobacterium tuberculosis H37Rv. And the viable count was evaluated 30 days after the load. On the 30th day after infection, the number of viable bacteria was measured by homogenizing the organs of the mice and inoculating them on a 7H11 agar plate by serial dilution 10-fold.

Figure 0006345186
Figure 0006345186

表5に示す結果は、飲用水中40ppmで3日間経口送達されたBTリポペプチドが、ESAT−6サブユニットワクチンの効果を(特に標的器官である肺において)BCG生ワクチンのレベルまで有意に増加させた(BTアジュバントがワクチンと別々に送達されたときにでさえ)ことを実証し、飲用水中40ppmのこの投与量での経口BTリポペプチドのC57BL/6マウスにおける強い抗感染性免疫調節活性が確認された。   The results shown in Table 5 show that BT lipopeptide delivered orally at 40 ppm in drinking water for 3 days significantly increased the effect of ESAT-6 subunit vaccine (particularly in the target organ lung) to the level of live BCG vaccine Anti-infectious immunomodulatory activity in C57BL / 6 mice of oral BT lipopeptide at this dose of 40 ppm in drinking water (even when BT adjuvant was delivered separately from the vaccine) Was confirmed.

実施例5
BT仲介免疫調節は抗糖尿肥満活性の付与に十分でない
Example 5
BT-mediated immune regulation is not sufficient to confer anti-diabetic obesity activity

BTリポペプチドがTLR2作動剤であるという前述の発見は、BTペプチドが肥満の原因であるという考えを強化すると考えられ、なぜならTLR2シグナリングはマウスモデルにおける食事誘発性肥満(DIO)および代謝症候群を仲介するからある(Ehses et al., 2010; Himes and Smith, 2010; Kuo et al., 2011)。DIOマウス試験を実施して、高い免疫調節量で経口送達したBTリポペプチド(実施例4の伝統的アジュバント試験によって確立されたように、飲用水中40ppmで)の肥満および代謝症候群に対する効果を調べた。   The aforementioned findings that BT lipopeptides are TLR2 agonists are thought to reinforce the idea that BT peptides are responsible for obesity, because TLR2 signaling mediates diet-induced obesity (DIO) and metabolic syndrome in a mouse model (Ehses et al., 2010; Himes and Smith, 2010; Kuo et al., 2011). A DIO mouse study was performed to examine the effect of BT lipopeptides delivered orally at high immunomodulatory doses (at 40 ppm in drinking water as established by the traditional adjuvant study of Example 4) on obesity and metabolic syndrome It was.

高脂肪食誘発した肥満C57BL/6マウスをBTペプチド効果の評価のために使用した。マウスは18週齢であり、処理前12週間は高脂肪食を不断給餌された。マウスの肥満度は中程度(体重約40g)であり、体重/肥満に対するリポペプチドの効果を両方向で評価可能であった。マウスにResearch Diets Inc.から入手した高脂肪食D12492(60%kcal%脂肪)を与えた。天然BTペプチドで処理する前にベースライン計測 (一週間の食物および水分の摂取量、体重、血糖値、インスリン、経口的ブドウ糖負荷試験)を実施した。無作為に2群に分けた[対照(非ペプチド処理)および実験(BTペプチド処理)群]。BTペプチドは飲用水中40ppmまたは40mg/Lで送達した。BTリポペプチドの効果(食物および水分の摂取量、体重、血糖値、インスリン、経口的ブドウ糖負荷に対する)を評価した。   High fat diet-induced obese C57BL / 6 mice were used for evaluation of BT peptide effects. The mice were 18 weeks old and were fed on a high fat diet continuously for 12 weeks prior to treatment. The obesity level of the mice was moderate (weight approximately 40 g), and the effect of lipopeptide on body weight / obesity could be evaluated in both directions. In mice, Research Diets Inc. High fat diet D12492 (60% kcal% fat) obtained from Baseline measurements (weekly food and water intake, body weight, blood glucose, insulin, oral glucose tolerance test) were performed prior to treatment with native BT peptide. Randomly divided into 2 groups [control (non-peptide treated) and experimental (BT peptide treated) groups]. BT peptide was delivered at 40 ppm or 40 mg / L in drinking water. The effect of BT lipopeptide (on food and water intake, body weight, blood glucose level, insulin, oral glucose load) was evaluated.

図2に示すように、40ppmでの飲用水による5週間の経口BT処理は、DIOマウスの体重増加、食物摂取量、または水分摂取量に差を生じなかった。食物中の等量BT送達濃度は、試験全期間にわたって約40ppm(または食物1kgあたりのmg)で一定に維持した。   As shown in FIG. 2, oral BT treatment for 5 weeks with drinking water at 40 ppm did not produce a difference in weight gain, food intake, or water intake of DIO mice. Equivalent BT delivery concentration in food was kept constant at about 40 ppm (or mg per kg food) throughout the study.

図3に示すように、40ppmでの飲用水による5週間の経口BT処理は、DIOマウスの血糖量コントロールまたはインスリン感受性に差を生じなかった。   As shown in FIG. 3, 5-week oral BT treatment with drinking water at 40 ppm produced no difference in blood glucose control or insulin sensitivity in DIO mice.

抗感染性先天免疫の効果的なインビボ調節に十分な量での経口送達BTリポペプチドは、食事誘発された肥満またはインスリン耐性をどちらの方向にも変化させることができず、腸免疫耐性を裏付けられなかった(片利共生生物仲介された糖尿肥満のコントロールにおけるTLR仲介による抗感染先天免疫の役割の欠如)。   Orally delivered BT lipopeptides in an amount sufficient for effective in vivo modulation of anti-infectious innate immunity cannot alter diet-induced obesity or insulin resistance in either direction, supporting intestinal immune resistance (Lack of role of TLR-mediated anti-infective innate immunity in commensal-mediated control of diabetic obesity).

実施例6
DIOマウスにおいて経口投与されたBTリポペプチドの偽栄養物としての抗糖尿肥満効果
Example 6
Anti-diabetic obesity effect as a pseudo-nutrient of BT lipopeptide administered orally in DIO mice

BTリポペプチドの非炎症性TLR2作動剤としての発見は、腸内分泌/味覚受容体細胞におけるTLR介在栄養感知による抗糖尿肥満偽栄養物としてのこれらの利用という、予期しなかった全く正反対の予想となった(「BT−腸内分泌仮説)。GIホルモン反応を誘発する閾値は、食事において最小限8%(または80,000ppm、このとき試験したどのBT濃度よりも3桁多い)の耐性デンプンが血漿GLP−1およびPYYを増加させるために必要とされるように、高いと考えられるため(Belobrajdic et al., 2012)、DIOマウスにおける抗糖尿肥満効果の可能性の新たな試験では、BT濃度(飲用水中)を40ppmから400ppmへと1桁引き上げた。   The discovery of BT lipopeptides as non-inflammatory TLR2 agonists is an unexpected and completely opposite expectation of their use as anti-diabetic obesity pseudonutrients by TLR-mediated nutrient sensing in enteroendocrine / taste receptor cells (“BT-enteric endocrine hypothesis). The threshold for inducing a GI hormone response is a minimum of 8% (or 80,000 ppm, 3 orders of magnitude higher than any BT concentration tested) resistant plasma in the diet. Because it is considered as high as required to increase GLP-1 and PYY (Belobrajdic et al., 2012), a new study of the potential anti-diabetic obesity effect in DIO mice has shown that BT concentrations ( The drinking water was increased by an order of magnitude from 40 ppm to 400 ppm.

C57BLK/6 DIOマウスは24週齢であり、処理前の18週間はD12492を不断給餌され、これらのマウスは試験開始時には極度に肥満して体重が約50gだった。処理の前にベースライン計測 (一週間の食物および水分の摂取量、体重、血糖値、インスリン、経口的ブドウ糖負荷試験)を実施した。対照群(10匹)およびBT群(5匹)を設定した。BTペプチドを飲用水中400ppmまたは400mg/Lで30日間送達した。BTリポペプチドの効果(食物および水分の摂取量、体重、血糖値、インスリン、経口的ブドウ糖負荷に対する)を評価した。   C57BLK / 6 DIO mice were 24 weeks old and were fed D12492 ad libitum for 18 weeks prior to treatment, and these mice were extremely obese and weighed approximately 50 g at the start of the study. Baseline measurements (weekly food and water intake, body weight, blood glucose, insulin, oral glucose tolerance test) were performed prior to treatment. A control group (10 animals) and a BT group (5 animals) were set. BT peptide was delivered at 400 ppm or 400 mg / L in drinking water for 30 days. The effect of BT lipopeptide (on food and water intake, body weight, blood glucose level, insulin, oral glucose load) was evaluated.

図4に示すように、400ppmでの飲用水による経口BT処理はDIOマウスにおける有意な体重減少を生じた。一定の体重低下はBT投与により始まり、第22日頃に約15gまたは対照と比べて全体重の30%の最大に達した。第22日〜第30日で、BT群の平均体重は、低脂肪食を継続して与えた27週齢の健康なマウスの典型的な体重(または正常な体重)である約35gで安定したままであった。従って、BTは完全にこれらのマウスにおけるDIOを回復させた。またBTで誘発された体重減少は、正常体重に到達した正にその時点で止まった(そして低下し過ぎない)ことも認められ、BTの生物学的機能が一方向性の体重減少よりもむしろ体重の正常化(理想の正常体重に向けた最適化)であることを示唆した。   As shown in FIG. 4, oral BT treatment with drinking water at 400 ppm resulted in significant weight loss in DIO mice. The constant weight loss began with BT administration and reached a maximum of about 15 g or 30% of the total body weight compared to the control around day 22. From day 22 to day 30, the average body weight of the BT group stabilized at about 35 g, which is the typical body weight (or normal body weight) of a 27-week-old healthy mouse fed a low-fat diet continuously. It remained. Therefore, BT completely restored DIO in these mice. It was also observed that the weight loss induced by BT stopped (and did not decrease too much) at that time when normal weight was reached, and the biological function of BT was rather than unidirectional weight loss. Suggested normalization of weight (optimization for ideal normal weight).

BTで仲介される体重正常化の考えはまた、食物摂取量の変化によっても裏付けられた。最初に経口BT処理によって食物摂取量の安定した低下が起こり第7日に最大40%の減少に達した。その後(および第22日頃の完全なDIO回復前の2週間にわたって)、食物摂取量は戻り始め第22日までに対照群の量に達した。食欲低下と体重減少が正常な体重の時点で同時に止まったことによって、食欲抑制が体重減少の主な推進役であり、(正常体重からの逸脱に応じた)食欲の微調整が体重正常化の主なメカニズムであることが明確に示された。   The idea of weight normalization mediated by BT was also supported by changes in food intake. Initially oral BT treatment resulted in a stable drop in food intake, reaching a maximum of 40% on day 7. Thereafter (and for two weeks before full DIO recovery around day 22), food intake began to return and reached the amount of the control group by day 22. Appetite reduction and weight loss stopped at the same time as normal weight, so appetite suppression is the main driver of weight loss, and fine adjustment of appetite (in response to deviation from normal weight) It was clearly shown that it was the main mechanism.

水分摂取量は試験全体を通して約3分の2低下し、その結果同等なBTの食物中送達濃度は第2、7、14、22および30日でそれぞれ約168、218、200、186、187および177ppm(または食物1kgあたりのmg)であった。言い換えると、この試験における実際の投与量は実施例5の約5倍だった。経口送達したBTリポペプチドによる食物および水の摂取の同時抑制は、BT−腸内分泌仮説によって予測された結果だった。なぜならGLP−1(Haak, 1999; Gutzwiller et al., 2004; Gutzwiller et al., 2006; McKay et al., 2011; Chan et al., 2013)、PYY(Sloth et al., 2007)およびCCK(Koopmans et al., 1972; Guzek and Morawska, 1986; Verbalis et al., 1987; Bondy et al., 1989; Ebenezer, 1996; Menani and Johnson, 1998)は食物摂取に加えて水分摂取を抑制することが知られているからである。興味深いことに、「条件付け味覚嫌悪」を、水分および食物摂取の両方のBTによる抑制に関する代わりの説明として思い起こすことは、BT−腸内分泌仮説を実際に支持することになるであろう。なぜなら条件付け味覚嫌悪はGIホルモン(Bojanowska, 2005; Chelikani et al., 2006; Schier et al., 2011)および口腔味覚細胞(それらは条件付け味覚嫌悪を仲介する)によって仲介されるからである。   Water intake is reduced by about two-thirds throughout the study, so that equivalent BT food delivery concentrations are about 168, 218, 200, 186, 187 and 2 days, 7, 14, 22, and 30 days, respectively. It was 177 ppm (or mg per kg food). In other words, the actual dose in this study was about 5 times that of Example 5. Simultaneous suppression of food and water intake by orally delivered BT lipopeptide was the result predicted by the BT-enteric endocrine hypothesis. Because GLP-1 (Haak, 1999; Gutzwiller et al., 2004; Gutzwiller et al., 2006; McKay et al., 2011; Chan et al., 2013), PYY (Sloth et al., 2007) and CCK ( Koopmans et al., 1972; Guzek and Morawska, 1986; Verbalis et al., 1987; Bondy et al., 1989; Ebenezer, 1996; Menani and Johnson, 1998) can suppress water intake in addition to food intake. Because it is known. Interestingly, recalling “conditioned taste aversion” as an alternative explanation for the suppression of both water and food intake by BT would actually support the BT-enteric endocrine hypothesis. This is because conditioned taste aversion is mediated by GI hormones (Bojanowska, 2005; Chelikani et al., 2006; Schier et al., 2011) and oral taste cells, which mediate conditioned taste aversion.

図5に示すように、飲用水中400ppmで30日間の経口BT処理は、血糖量コントロールにおける有意な改善およびインスリン感受性の優れた増強(4倍超)を引き起こした。   As shown in FIG. 5, oral BT treatment for 30 days at 400 ppm in drinking water caused a significant improvement in blood glucose control and an excellent enhancement of insulin sensitivity (> 4-fold).

図6に示すように、経口BT処理は、全脂肪量の約40%低下および除脂肪体重の最小限の低下を伴う身体組成の有意な改善を引き起こした。   As shown in FIG. 6, oral BT treatment caused a significant improvement in body composition with about a 40% reduction in total fat mass and a minimal reduction in lean body mass.

重要なことに、経口BT処理は身体水分含量(全水分および自由水の両方)を維持し、かつ水分摂取の低下した正常な体水分補給は、増加した内部水分供給(脂肪分解からの「代謝水」)およびCCKによる抗利尿ホルモンバソプレシンの誘動によって増加した腎臓水分保持(Guzek and Morawska, 1986; Verbalis et al., 1987)の両方に向かった。身体水分補給を維持しながら低下した水分摂取は、糖尿病患者にとって喜ばしい利点であるため、経口送達BTは糖尿病と関連した過度な喉の渇き、水分摂取および排尿の治療に使用できる。経口BTを投与される非糖尿患者において起こり得る水分摂取低下による有害事象は、毎日水を何杯か追加するという医師の指示によって容易に避けることができる。   Importantly, oral BT treatment maintains body water content (both total and free water), and normal body hydration with reduced water intake results in increased internal water supply ("metabolism from lipolysis" Water ") and increased renal water retention (Guzek and Morawska, 1986; Verbalis et al., 1987), which was induced by the stimulation of the antidiuretic vasopressin by CCK. Oral delivery BT can be used to treat excessive thirst, fluid intake and urination associated with diabetes, as reduced fluid intake while maintaining body hydration is a pleasing advantage for diabetics. Adverse events due to reduced water intake that can occur in non-diabetic patients receiving oral BT can be easily avoided by the physician's instructions to add several cups of water daily.

さらに、30日間の経口BT処理は、DIOマウスにおける内臓型肥満の目に見える低下および脂肪肝の改善を引き起こした。重要なことには、生理学的または行動的な有害事象は試験全体を通して観察されなかった。   Furthermore, 30 days of oral BT treatment caused a visible reduction in visceral obesity and improvement in fatty liver in DIO mice. Importantly, no physiological or behavioral adverse events were observed throughout the study.

従って、単剤としてのBTリポペプチドの効果的な量(「栄養感知」量)の経口送達は、栄養物模倣を目的とした試験でのDIOマウスにおいて優れた抗糖尿肥満効果を引き起こした。   Therefore, oral delivery of an effective amount of BT lipopeptide as a single agent (a “nutrient-sensing” amount) caused an excellent anti-diabetic obesity effect in DIO mice in a study aimed at mimicking nutrients.

実施例7
db/dbマウスにおいて経口送達されたBTリポペプチドの偽栄養物としての抗糖尿肥満効果
Example 7
Anti-diabetic obesity effect as a pseudonutrient of BT lipopeptide delivered orally in db / db mice

BTリポペプチドが遺伝的に肥満および糖尿病であるdb/dbマウスに経口投与されたとき、ペプチドは同様な抗糖尿肥満効果をもたらした。400ppmでの飲用水によるBTリポペプチドの経口送達(一日平均の投与量は体重1kgあたり15mg)は、db/dbマウスにおいて劇的に体重を減少させて血糖コントロールを改善した。   When BT lipopeptide was orally administered to db / db mice that are genetically obese and diabetic, the peptide produced a similar anti-diabetic obesity effect. Oral delivery of BT lipopeptide with drinking water at 400 ppm (average daily dose 15 mg / kg body weight) dramatically reduced body weight and improved glycemic control in db / db mice.

しかし、db/dbマウスへの一日一回の胃内強制投与(体重1kgあたりBTリポペプチドを15mg)ではこのような効果がもたらされず、BTリポペプチドが、GIホルモン産生味覚受容体細胞が存在する口腔と直接接触するまたは口腔に暴露されることが重要であると示唆された。それらのカチオン性および両親媒性の特性によって、BTリポペプチドは生体材料に粘着性があると知られており、インビボで水相から容易に捕捉できる(US 61/447,703)。精製したBTペプチドを水溶液として経口送達したとき、食物または他の消化管物質によるペプチドの捕捉効果によって遊離の水性BTリポペプチド濃度を、腸内分泌細胞からGIホルモンの分泌を誘動する閾値より低くできると考えられる。   However, once daily intragastric forced administration to db / db mice (15 mg of BT lipopeptide per kg body weight) does not produce such an effect, and BT lipopeptide is present in GI hormone-producing taste receptor cells. It was suggested that it is important to be in direct contact with or exposed to the oral cavity. Due to their cationic and amphiphilic properties, BT lipopeptides are known to be sticky to biomaterials and can be easily captured from the aqueous phase in vivo (US 61 / 447,703). When purified BT peptide is delivered orally as an aqueous solution, the free aqueous BT lipopeptide concentration can be lowered below the threshold to induce secretion of GI hormone from enteroendocrine cells due to the capture effect of the peptide by food or other gastrointestinal substances it is conceivable that.

本発明はいくつかの実施形態で記載されているが、本発明は本公開の趣旨および範囲内でさらに変更できる。従って、本出願は本発明の一般的原理を使用したいかなる変化、利用、または適応も含むことが意図されている。さらに本出願は、本発明が関連し、添付された請求項の制限内にある当該技術における既知または慣例的な履行内にあるような本開示からの逸脱も含むことが意図されている。   While this invention has been described in several embodiments, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations using the general principles of the present invention. Furthermore, this application is intended to cover deviations from this disclosure as it pertains to known or routine implementations in the art to which this invention pertains and which are within the scope of the appended claims.

ここに引用されている公開、特許、および特許出願を含むすべての参考文献は、それぞれの参考文献が参考として組み込まれると個別および特定的に示されそのすべてが本明細書で説明されているかのように本明細書に同じ範囲で参考として組み込まれ、下記の文献を含む。


Acosta, A., Hurtado, M.D., Gorbatyuk, O., La Sala, M., Duncan, D., Aslanidi, G., Campbell-Thompson, M., Zhang, L., Herzog, H., Voutetakis, A., Baum, B.J., and Zolotukhin, S. (2011). Salivary PYY: a putative bypass to satiety. PLoS ONE 6, e26137.
Aronsson, L., Huang, Y., Parini, P., Korach-Andre, M., Hakansson, J., Gustafsson, J.A., Pettersson, S., Arulampalam, V., and Rafter, J. (2010). Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS ONE 5.
Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., and Gordon, J.I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 15718-15723.
Backhed, F., Manchester, J.K., Semenkovich, C.F., and Gordon, J.I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104, 979-984.
Barsby, T., Kelly, M.T., Gagne, S.M., and Andersen, R.J. (2001). Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3, 437-440.
Barsby, T., Warabi, K., Sorensen, D., Zimmerman, W.T., Kelly, M.T., and Andersen, R.J. (2006). The Bogorol family of antibiotics: template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J Org Chem 71, 6031-6037.
Belobrajdic, D.P., King, R.A., Christophersen, C.T., and Bird, A.R. (2012). Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr Metab (Lond) 9, 93.
Bogunovic, M., Dave, S.H., Tilstra, J.S., Chang, D.T., Harpaz, N., Xiong, H., Mayer, L.F., and Plevy, S.E. (2007). Enteroendocrine cells express functional Toll-like receptors. Am J Physiol Gastrointest Liver Physiol 292, G1770-1783.
Bojanowska, E. (2005). Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit 11, RA271-278.
Bondy, C.A., Jensen, R.T., Brady, L.S., and Gainer, H. (1989). Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium. Proc Natl Acad Sci U S A 86, 5198-5201.
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., Waget, A., Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrieres, J., Tanti, J.F., Gibson, G.R., Casteilla, L., Delzenne, N.M., Alessi, M.C., and Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761-1772.
Chan, S.W., Lin, G., Yew, D.T., Yeung, C.K., and Rudd, J.A. (2013). Separation of emetic and anorexic responses of exendin-4, a GLP-1 receptor agonist in Suncus murinus (house musk shrew). Neuropharmacology 70, 141-147.
Chelikani, P.K., Haver, A.C., and Reidelberger, R.D. (2006). Dose-dependent effects of peptide YY(3-36) on conditioned taste aversion in rats. Peptides 27, 3193-3201.
Chen, J., Wang, R., Li, X.F., and Wang, R.L. (2011). Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107, 1429-1434.
Delzenne, N.M., Neyrinck, A.M., Backhed, F., and Cani, P.D. (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7, 639-646.
Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., and Andersen, R.J. (2007). Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70, 1850-1853.
Dyer, J., Salmon, K.S., Zibrik, L., and Shirazi-Beechey, S.P. (2005). Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33, 302-305.
Ebenezer, I.S. (1996). Systemic administration of cholecystokinin (CCK) inhibits operant water intake in rats: implications for the CCK-satiety hypothesis. Proc Biol Sci 263, 491-496.
Ehses, J.A., Meier, D.T., Wueest, S., Rytka, J., Boller, S., Wielinga, P.Y., Schraenen, A., Lemaire, K., Debray, S., Van Lommel, L., Pospisilik, J.A., Tschopp, O., Schultze, S.M., Malipiero, U., Esterbauer, H., Ellingsgaard, H., Rutti, S., Schuit, F.C., Lutz, T.A., Boni-Schnetzler, M., Konrad, D., and Donath, M.Y. (2010). Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 53, 1795-1806.
Fak, F., and Backhed, F. (2012). Lactobacillus reuteri Prevents Diet-Induced Obesity, but not Atherosclerosis, in a Strain Dependent Fashion in Apoe-/- Mice. PLoS ONE 7, e46837.
Farnell, M.B., Crippen, T.L., He, H., Swaggerty, C.L., and Kogut, M.H. (2003). Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial toll agonists. Dev Comp Immunol 27, 423-429.
Field, B.C., Wren, A.M., Peters, V., Baynes, K.C., Martin, N.M., Patterson, M., Alsaraf, S., Amber, V., Wynne, K., Ghatei, M.A., and Bloom, S.R. (2010). PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 59, 1635-1639.
Geraedts, M.C., Troost, F.J., Fischer, M.A., Edens, L., and Saris, W.H. (2010). Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins. Mol Nutr Food Res 55, 476-484.
Geraedts, M.C., Troost, F.J., and Saris, W.H. (2009). Peptide-YY is released by the intestinal cell line STC-1. J Food Sci 74, H79-82.
Gerard, J.M., Haden, P., Kelly, M.T., and Andersen, R.J. (1999). Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62, 80-85.
Gutzwiller, J.P., Hruz, P., Huber, A.R., Hamel, C., Zehnder, C., Drewe, J., Gutmann, H., Stanga, Z., Vogel, D., and Beglinger, C. (2006). Glucagon-like peptide-1 is involved in sodium and water homeostasis in humans. Digestion 73, 142-150.
Gutzwiller, J.P., Tschopp, S., Bock, A., Zehnder, C.E., Huber, A.R., Kreyenbuehl, M., Gutmann, H., Drewe, J., Henzen, C., Goeke, B., and Beglinger, C. (2004). Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89, 3055-3061.
Guzek, J.W., and Morawska, J. (1986). Cholecystokinin affects water intake as well as neurohypophysial storage of vasopressin and oxytocin in the rat. Exp Clin Endocrinol 88, 200-206.
Haak, T. (1999). New developments in the treatment of type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 107 Suppl 3, S108-113.
Himes, R.W., and Smith, C.W. (2010). Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 24, 731-739.
Ji, Y.S., Kim, H.N., Park, H.J., Lee, J.E., Yeo, S.Y., Yang, J.S., Park, S.Y., Yoon, H.S., Cho, G.S., Franz, C.M., Bomba, A., Shin, H.K., and Holzapfel, W.H. (2012). Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3, 13-22.
Jiang, Y.W., Sims, M.D., and Conway, D.P. (2005). The efficacy of TAMUS 2032 in preventing a natural outbreak of colibacillosis in broiler chickens in floor pens. Poult Sci 84, 1857-1859.
Kadooka, Y., Sato, M., Imaizumi, K., Ogawa, A., Ikuyama, K., Akai, Y., Okano, M., Kagoshima, M., and Tsuchida, T. (2010). Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64, 636-643.
Kang, J.H., Yun, S.I., and Park, H.O. (2010). Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 48, 712-714.
Keenan, M.J., Zhou, J., McCutcheon, K.L., Raggio, A.M., Bateman, H.G., Todd, E., Jones, C.K., Tulley, R.T., Melton, S., Martin, R.J., and Hegsted, M. (2006). Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 14, 1523-1534.
Kogut, M.H., Genovese, K.J., He, H., Li, M.A., and Jiang, Y.W. (2007). The effects of the BT/TAMUS 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection. Int Immunopharmacol 7, 912-919.
Kogut, M.H., Genovese, K.J., He, H., Swaggerty, C.L., and Jiang, Y.W. (2012). BT cationic peptides: small peptides that modulate innate immune responses of chicken heterophils and monocytes. Vet Immunol Immunopathol 145, 151-158.
Kogut, M.H., He, H., Genovese, K.J., and Jiang, Y.W. (2009). Feeding the BT Cationic Peptides to Chickens at Hatch Reduces Cecal Colonization by Salmonella enterica Serovar Enteritidis and Primes Innate Immune Cell Functional Activity. Foodborne Pathog Dis.
Kondo, S., Xiao, J.Z., Satoh, T., Odamaki, T., Takahashi, S., Sugahara, H., Yaeshima, T., Iwatsuki, K., Kamei, A., and Abe, K. (2010). Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74, 1656-1661.
Koopmans, H.S., Deutsch, J.A., and Branson, P.J. (1972). The effect of cholecystokinin pancreozymin on hunger and thirst in mice. Behav Biol 7, 441-444.
Kuo, L.H., Tsai, P.J., Jiang, M.J., Chuang, Y.L., Yu, L., Lai, K.T., and Tsai, Y.S. (2011). Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia 54, 168-179.
Laferrere, B., Swerdlow, N., Bawa, B., Arias, S., Bose, M., Olivan, B., Teixeira, J., McGinty, J., and Rother, K.I. (2010). Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab 95, 4072-4076.
Lammers, K.M., Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., Matteuzzi, D., and Campieri, M. (2003). Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38, 165-172.
Lee, H.Y., Park, J.H., Seok, S.H., Baek, M.W., Kim, D.J., Lee, K.E., Paek, K.S., and Lee, Y. (2006). Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761, 736-744.
Lee, J.Y., Sohn, K.H., Rhee, S.H., and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 16683-16689.
Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., Fitzgerald, K.A., and Hwang, D.H. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 279, 16971-16979.
Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070-11075.
Ma, X., Hua, J., and Li, Z. (2008). Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 49, 821-830.
Maggard, M.A., Shugarman, L.R., Suttorp, M., Maglione, M., Sugerman, H.J., Livingston, E.H., Nguyen, N.T., Li, Z., Mojica, W.A., Hilton, L., Rhodes, S., Morton, S.C., and Shekelle, P.G. (2005). Meta-analysis: surgical treatment of obesity. Ann Intern Med 142, 547-559.
McKay, N.J., Kanoski, S.E., Hayes, M.R., and Daniels, D. (2011). Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake. Am J Physiol Regul Integr Comp Physiol 301, R1755-1764.
Menani, J.V., and Johnson, A.K. (1998). Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite. Am J Physiol 275, R1431-1437.
Menard, O., Gafa, V., Kapel, N., Rodriguez, B., Butel, M.J., and Waligora-Dupriet, A.J. (2010). Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 76, 2846-2855.
Mozaffarian, D., Hao, T., Rimm, E.B., Willett, W.C., and Hu, F.B. (2011). Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med 364, 2392-2404.
Palazzo, M., Balsari, A., Rossini, A., Selleri, S., Calcaterra, C., Gariboldi, S., Zanobbio, L., Arnaboldi, F., Shirai, Y.F., Serrao, G., and Rumio, C. (2007). Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J Immunol 178, 4296-4303.
Peterli, R., Steinert, R.E., Woelnerhanssen, B., Peters, T., Christoffel-Courtin, C., Gass, M., Kern, B., von Fluee, M., and Beglinger, C. (2012). Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 22, 740-748.
Rabot, S., Membrez, M., Bruneau, A., Gerard, P., Harach, T., Moser, M., Raymond, F., Mansourian, R., and Chou, C.J. (2010). Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24, 4948-4959.
Schier, L.A., Davidson, T.L., and Powley, T.L. (2011). Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal "bitter taste" cue. Am J Physiol Regul Integr Comp Physiol 301, R1557-1568.
Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T.A., Stange, E.F., and Fellermann, K. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75, 2399-2407.
Sloth, B., Davidsen, L., Holst, J.J., Flint, A., and Astrup, A. (2007). Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab 293, E604-609.
Sturm, A., Rilling, K., Baumgart, D.C., Gargas, K., Abou-Ghazale, T., Raupach, B., Eckert, J., Schumann, R.R., Enders, C., Sonnenborn, U., Wiedenmann, B., and Dignass, A.U. (2005). Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect Immun 73, 1452-1465.
Teixeira, T.F., Collado, M.C., Ferreira, C.L., Bressan, J., and Peluzio Mdo, C. (2012). Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res 32, 637-647.
Troge, A., Scheppach, W., Schroeder, B.O., Rund, S.A., Heuner, K., Wehkamp, J., Stange, E.F., and Oelschlaeger, T.A. (2012). More than a marine propeller - the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus. Int J Med Microbiol 302, 304-314.
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031.
Ubeda, C., Lipuma, L., Gobourne, A., Viale, A., Leiner, I., Equinda, M., Khanin, R., and Pamer, E.G. (2012). Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med 209, 1445-1456.
Verbalis, J.G., Richardson, D.W., and Stricker, E.M. (1987). Vasopressin release in response to nausea-producing agents and cholecystokinin in monkeys. Am J Physiol 252, R749-753.
Vijay-Kumar, M., Aitken, J.D., Carvalho, F.A., Cullender, T.C., Mwangi, S., Srinivasan, S., Sitaraman, S.V., Knight, R., Ley, R.E., and Gewirtz, A.T. (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228-231.
Wang, H., Zhou, M., Brand, J., and Huang, L. (2009). Inflammation and taste disorders: mechanisms in taste buds. Ann N Y Acad Sci 1170, 596-603.
Wren, J.A., King, V.L., Campbell, S.L., and Hickman, M.A. (2007). Biologic activity of dirlotapide, a novel microsomal triglyceride transfer protein inhibitor, for weight loss in obese dogs. J Vet Pharmacol Ther 30 Suppl 1, 33-42.
Wu, S.V., Rozengurt, N., Yang, M., Young, S.H., Sinnett-Smith, J., and Rozengurt, E. (2002). Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A 99, 2392-2397.
Wu, X., Ballard, J., and Jiang, Y.W. (2005). Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl Environ Microbiol 71, 8519-8530.
Zhong, Y., Huang, J., Tang, W., Chen, B., and Cai, W. (2012). Effects of probiotics, probiotic DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown-Norway rats via TLR9/NF-kappaB pathway. FEMS Immunol Med Microbiol 66, 71-82.
Zhou, J., Martin, R.J., Tulley, R.T., Raggio, A.M., McCutcheon, K.L., Shen, L., Danna, S.C., Tripathy, S., Hegsted, M., and Keenan, M.J. (2008). Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295, E1160-1166.
Zhou, J., Martin, R.J., Tulley, R.T., Raggio, A.M., Shen, L., Lissy, E., McCutcheon, K., and Keenan, M.J. (2009). Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J Agric Food Chem 57, 8844-8851.


All references, including publications, patents, and patent applications cited herein are individually and specifically indicated as if each reference was incorporated by reference, and all of which are described herein. As such, it is incorporated herein by reference within the same scope and includes the following references:


Acosta, A., Hurtado, MD, Gorbatyuk, O., La Sala, M., Duncan, D., Aslanidi, G., Campbell-Thompson, M., Zhang, L., Herzog, H., Voutetakis, A ., Baum, BJ, and Zolotukhin, S. (2011). Salivary PYY: a putative bypass to satiety.PLoS ONE 6, e26137.
Aronsson, L., Huang, Y., Parini, P., Korach-Andre, M., Hakansson, J., Gustafsson, JA, Pettersson, S., Arulampalam, V., and Rafter, J. (2010). Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4) .PLoS ONE 5.
Backhed, F., Ding, H., Wang, T., Hooper, LV, Koh, GY, Nagy, A., Semenkovich, CF, and Gordon, JI (2004) .The gut microbiota as an environmental factor that regulates fat storage.Proc Natl Acad Sci USA 101, 15718-15723.
Backhed, F., Manchester, JK, Semenkovich, CF, and Gordon, JI (2007) .Mechanics underlying the resistance to diet-induced obesity in germ-free mice.Proc Natl Acad Sci USA 104, 979-984.
Barsby, T., Kelly, MT, Gagne, SM, and Andersen, RJ (2001) .Bogorol A produced in culture by a marine Bacillus sp. Reveals a novel template for protecting peptide antibiotics. Org Lett 3, 437-440.
Barsby, T., Warabi, K., Sorensen, D., Zimmerman, WT, Kelly, MT, and Andersen, RJ (2006) .The Bogorol family of antibiotics: template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J Org Chem 71, 6031-6037.
Belobrajdic, DP, King, RA, Christophersen, CT, and Bird, AR (2012) .Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats.Nutr Metab (Lond) 9, 93.
Bogunovic, M., Dave, SH, Tilstra, JS, Chang, DT, Harpaz, N., Xiong, H., Mayer, LF, and Plevy, SE (2007). Enteroendocrine cells express functional Toll-like receptors. Am J Physiol Gastrointest Liver Physiol 292, G1770-1783.
Bojanowska, E. (2005). Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit 11, RA271-278 .
Bondy, CA, Jensen, RT, Brady, LS, and Gainer, H. (1989). Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium.Proc Natl Acad Sci USA 86, 5198-5201.
Cani, PD, Amar, J., Iglesias, MA, Poggi, M., Knauf, C., Bastelica, D., Neyrinck, AM, Fava, F., Tuohy, KM, Chabo, C., Waget, A. , Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrieres, J., Tanti, JF, Gibson, GR, Casteilla, L., Delzenne, NM, Alessi, MC, and Burcelin, R. (2007) .Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761-1772.
Chan, SW, Lin, G., Yew, DT, Yeung, CK, and Rudd, JA (2013). Separation of emetic and anorexic responses of exendin-4, a GLP-1 receptor agonist in Suncus murinus (house musk shrew) Neuropharmacology 70, 141-147.
Chelikani, PK, Haver, AC, and Reidelberger, RD (2006). Dose-dependent effects of peptide YY (3-36) on conditioned taste aversion in rats. Peptides 27, 3193-3201.
Chen, J., Wang, R., Li, XF, and Wang, RL (2011). Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 107, 1429-1434.
Delzenne, NM, Neyrinck, AM, Backhed, F., and Cani, PD (2011) .Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7, 639-646.
Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., and Andersen, RJ (2007) .Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70, 1850-1853.
Dyer, J., Salmon, KS, Zibrik, L., and Shirazi-Beechey, SP (2005) .Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells.Biochem Soc Trans 33, 302-305.
Ebenezer, IS (1996) .Systemic administration of cholecystokinin (CCK) inhibits operant water intake in rats: implications for the CCK-satiety hypothesis.Proc Biol Sci 263, 491-496.
Ehses, JA, Meier, DT, Wueest, S., Rytka, J., Boller, S., Wielinga, PY, Schraenen, A., Lemaire, K., Debray, S., Van Lommel, L., Pospisilik, JA, Tschopp, O., Schultze, SM, Malipiero, U., Esterbauer, H., Ellingsgaard, H., Rutti, S., Schuit, FC, Lutz, TA, Boni-Schnetzler, M., Konrad, D. , and Donath, MY (2010) .Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet.Diabetologia 53, 1795-1806.
Fak, F., and Backhed, F. (2012) .Lactobacillus reuteri Prevents Diet-Induced Obesity, but not Atherosclerosis, in a Strain Dependent Fashion in Apoe-/-Mice.PLoS ONE 7, e46837.
Farnell, MB, Crippen, TL, He, H., Swaggerty, CL, and Kogut, MH (2003) .Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial toll agonists.Dev Comp Immunol 27 , 423-429.
Field, BC, Wren, AM, Peters, V., Baynes, KC, Martin, NM, Patterson, M., Alsaraf, S., Amber, V., Wynne, K., Ghatei, MA, and Bloom, SR ( 2010) .PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans.Diabetes 59, 1635-1639.
Geraedts, MC, Troost, FJ, Fischer, MA, Edens, L., and Saris, WH (2010) .Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins.Mol Nutr Food Res 55, 476 -484.
Geraedts, MC, Troost, FJ, and Saris, WH (2009) .Peptide-YY is released by the intestinal cell line STC-1.J Food Sci 74, H79-82.
Gerard, JM, Haden, P., Kelly, MT, and Andersen, RJ (1999) .Loloatins AD, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium.J Nat Prod 62, 80-85.
Gutzwiller, JP, Hruz, P., Huber, AR, Hamel, C., Zehnder, C., Drewe, J., Gutmann, H., Stanga, Z., Vogel, D., and Beglinger, C. (2006 ). Glucagon-like peptide-1 is involved in sodium and water homeostasis in humans.Digestion 73, 142-150.
Gutzwiller, JP, Tschopp, S., Bock, A., Zehnder, CE, Huber, AR, Kreyenbuehl, M., Gutmann, H., Drewe, J., Henzen, C., Goeke, B., and Beglinger, C. (2004). Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89, 3055-3061.
Guzek, JW, and Morawska, J. (1986) .Cholecystokinin affects water intake as well as neurohypophysial storage of vasopressin and oxytocin in the rat.Exp Clin Endocrinol 88, 200-206.
Haak, T. (1999) .New developments in the treatment of type 1 diabetes mellitus.Exp Clin Endocrinol Diabetes 107 Suppl 3, S108-113.
Himes, RW, and Smith, CW (2010). Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 24, 731-739.
Ji, YS, Kim, HN, Park, HJ, Lee, JE, Yeo, SY, Yang, JS, Park, SY, Yoon, HS, Cho, GS, Franz, CM, Bomba, A., Shin, HK, and Holzapfel, WH (2012) .Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 3, 13-22.
Jiang, YW, Sims, MD, and Conway, DP (2005) .The efficacy of TAMUS 2032 in preventing a natural outbreak of colibacillosis in broiler chickens in floor pens.Poult Sci 84, 1857-1859.
Kadooka, Y., Sato, M., Imaizumi, K., Ogawa, A., Ikuyama, K., Akai, Y., Okano, M., Kagoshima, M., and Tsuchida, T. (2010). of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64, 636-643.
Kang, JH, Yun, SI, and Park, HO (2010) .Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats.J Microbiol 48, 712-714.
Keenan, MJ, Zhou, J., McCutcheon, KL, Raggio, AM, Bateman, HG, Todd, E., Jones, CK, Tulley, RT, Melton, S., Martin, RJ, and Hegsted, M. (2006 Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat.Obesity (Silver Spring) 14, 1523-1534.
Kogut, MH, Genovese, KJ, He, H., Li, MA, and Jiang, YW (2007) .The effects of the BT / TAMUS 2032 optionally peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection Int Immunopharmacol 7, 912-919.
Kogut, MH, Genovese, KJ, He, H., Swaggerty, CL, and Jiang, YW (2012) .BT BT peptides: small peptides that modulate innate immune responses of chicken heterophils and monocytes.Vet Immunol Immunopathol 145, 151-158 .
Kogut, MH, He, H., Genovese, KJ, and Jiang, YW (2009). Feeding the BT Cationic Peptides to Chickens at Hatch Reduces Cecal Colonization by Salmonella enterica Serovar Enteritidis and Primes Innate Immune Cell Functional Activity.Foodborne Pathog Dis.
Kondo, S., Xiao, JZ, Satoh, T., Odamaki, T., Takahashi, S., Sugahara, H., Yaeshima, T., Iwatsuki, K., Kamei, A., and Abe, K. ( Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74, 1656-1661.
Koopmans, HS, Deutsch, JA, and Branson, PJ (1972) .The effect of cholecystokinin pancreozymin on hunger and thirst in mice.Behav Biol 7, 441-444.
Kuo, LH, Tsai, PJ, Jiang, MJ, Chuang, YL, Yu, L., Lai, KT, and Tsai, YS (2011) .Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signaling in the mouse. Diabetologia 54, 168-179.
Laferrere, B., Swerdlow, N., Bawa, B., Arias, S., Bose, M., Olivan, B., Teixeira, J., McGinty, J., and Rother, KI (2010). Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes.J Clin Endocrinol Metab 95, 4072-4076.
Lammers, KM, Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., Matteuzzi, D., and Campieri, M. (2003) .Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38, 165-172.
Lee, HY, Park, JH, Seok, SH, Baek, MW, Kim, DJ, Lee, KE, Paek, KS, and Lee, Y. (2006) .Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761, 736-744.
Lee, JY, Sohn, KH, Rhee, SH, and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4.J Biol Chem 276 , 16683-16689.
Lee, JY, Zhao, L., Youn, HS, Weatherill, AR, Tapping, R., Feng, L., Lee, WH, Fitzgerald, KA, and Hwang, DH (2004) .Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1.J Biol Chem 279, 16971-16979.
Ley, RE, Backhed, F., Turnbaugh, P., Lozupone, CA, Knight, RD, and Gordon, JI (2005). Obesity alters gut microbial ecology.Proc Natl Acad Sci USA 102, 11070-11075.
Ma, X., Hua, J., and Li, Z. (2008) .Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells.J Hepatol 49, 821-830.
Maggard, MA, Shugarman, LR, Suttorp, M., Maglione, M., Sugerman, HJ, Livingston, EH, Nguyen, NT, Li, Z., Mojica, WA, Hilton, L., Rhodes, S., Morton , SC, and Shekelle, PG (2005). Meta-analysis: surgical treatment of obesity. Ann Intern Med 142, 547-559.
McKay, NJ, Kanoski, SE, Hayes, MR, and Daniels, D. (2011). Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.Am J Physiol Regul Integr Comp Physiol 301, R1755- 1764.
Menani, JV, and Johnson, AK (1998) .Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite.Am J Physiol 275, R1431-1437.
Menard, O., Gafa, V., Kapel, N., Rodriguez, B., Butel, MJ, and Waligora-Dupriet, AJ (2010). Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 76 , 2846-2855.
Mozaffarian, D., Hao, T., Rimm, EB, Willett, WC, and Hu, FB (2011) .Changes in diet and lifestyle and long-term weight gain in women and men.N Engl J Med 364, 2392- 2404.
Palazzo, M., Balsari, A., Rossini, A., Selleri, S., Calcaterra, C., Gariboldi, S., Zanobbio, L., Arnaboldi, F., Shirai, YF, Serrao, G., and Rumio, C. (2007) .Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion.J Immunol 178, 4296-4303.
Peterli, R., Steinert, RE, Woelnerhanssen, B., Peters, T., Christoffel-Courtin, C., Gass, M., Kern, B., von Fluee, M., and Beglinger, C. (2012) Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 22, 740-748.
Rabot, S., Membrez, M., Bruneau, A., Gerard, P., Harach, T., Moser, M., Raymond, F., Mansourian, R., and Chou, CJ (2010). Germ- free C57BL / 6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24, 4948-4959.
Schier, LA, Davidson, TL, and Powley, TL (2011) .Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal "bitter taste" cue. Am J Physiol Regul Integr Comp Physiol 301, R1557-1568.
Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, TA, Stange, EF, and Fellermann, K. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin Infect Immun 75, 2399-2407.
Sloth, B., Davidsen, L., Holst, JJ, Flint, A., and Astrup, A. (2007) .Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab 293, E604-609.
Sturm, A., Rilling, K., Baumgart, DC, Gargas, K., Abou-Ghazale, T., Raupach, B., Eckert, J., Schumann, RR, Enders, C., Sonnenborn, U., Wiedenmann, B., and Dignass, AU (2005) .Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect Immun 73, 1452-1465.
Teixeira, TF, Collado, MC, Ferreira, CL, Bressan, J., and Peluzio Mdo, C. (2012). Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res 32, 637-647.
Troge, A., Scheppach, W., Schroeder, BO, Rund, SA, Heuner, K., Wehkamp, J., Stange, EF, and Oelschlaeger, TA (2012) .More than a marine propeller-the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus.Int J Med Microbiol 302, 304-314.
Turnbaugh, PJ, Ley, RE, Mahowald, MA, Magrini, V., Mardis, ER, and Gordon, JI (2006). An obesity-associated gut microbiome with increased capacity for energy harvest.Nature 444, 1027-1031.
Ubeda, C., Lipuma, L., Gobourne, A., Viale, A., Leiner, I., Equinda, M., Khanin, R., and Pamer, EG (2012). Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice.J Exp Med 209, 1445-1456.
Verbalis, JG, Richardson, DW, and Stricker, EM (1987) .Vasopressin release in response to nausea-producing agents and cholecystokinin in monkeys.Am J Physiol 252, R749-753.
Vijay-Kumar, M., Aitken, JD, Carvalho, FA, Cullender, TC, Mwangi, S., Srinivasan, S., Sitaraman, SV, Knight, R., Ley, RE, and Gewirtz, AT (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228-231.
Wang, H., Zhou, M., Brand, J., and Huang, L. (2009). Inflammation and taste disorders: mechanisms in taste buds. Ann NY Acad Sci 1170, 596-603.
Wren, JA, King, VL, Campbell, SL, and Hickman, MA (2007) .Biologic activity of dirlotapide, a novel microsomal triglyceride transfer protein inhibitor, for weight loss in obese dogs.J Vet Pharmacol Ther 30 Suppl 1, 33- 42.
Wu, SV, Rozengurt, N., Yang, M., Young, SH, Sinnett-Smith, J., and Rozengurt, E. (2002). Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC -1 cells.Proc Natl Acad Sci USA 99, 2392-2397.
Wu, X., Ballard, J., and Jiang, YW (2005) .Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus.Appl Environ Microbiol 71, 8519-8530.
Zhong, Y., Huang, J., Tang, W., Chen, B., and Cai, W. (2012). Effects of probiotics, probiotic DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown-Norway rats via TLR9 / NF-kappaB pathway. FEMS Immunol Med Microbiol 66, 71-82.
Zhou, J., Martin, RJ, Tulley, RT, Raggio, AM, McCutcheon, KL, Shen, L., Danna, SC, Tripathy, S., Hegsted, M., and Keenan, MJ (2008). Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents.Am J Physiol Endocrinol Metab 295, E1160-1166.
Zhou, J., Martin, RJ, Tulley, RT, Raggio, AM, Shen, L., Lissy, E., McCutcheon, K., and Keenan, MJ (2009). Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss.J Agric Food Chem 57, 8844-8851.


Claims (17)

肥満および/または2型糖尿病を治療または予防するための、対象の口および/または咽頭に送達用の剤形である医薬組成物であって、体重および/または血糖値の正常化を誘導するのに有効な量の、分離され、精製されてなるBTリポペプチドを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、医薬組成物。
A pharmaceutical composition which is a dosage form for delivery to the mouth and / or pharynx of a subject for treating or preventing obesity and / or type 2 diabetes, which induces normalization of body weight and / or blood glucose level An effective amount of the isolated and purified BT lipopeptide,
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
前記分離され、精製されてなるBTリポペプチドがSEQ ID NO: 4〜9から選択される配列の1つ以上のペプチドをさらに含む、請求項1に記載の医薬組成物。   The pharmaceutical composition according to claim 1, wherein the isolated and purified BT lipopeptide further comprises one or more peptides of a sequence selected from SEQ ID NOs: 4-9. 前記分離され、精製されてなるBTリポペプチドがSEQ ID NO: 4〜9の配列の6つのペプチド全てをさらに含む、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the isolated and purified BT lipopeptide further comprises all six peptides of the sequence of SEQ ID NO: 4-9. 前記分離され、精製されてなるBTリポペプチドがブレビバシラス・テクサスポルスから分離された混合物である、請求項1〜3のいずれか一項に記載の医薬組成物。   The pharmaceutical composition according to any one of claims 1 to 3, wherein the separated and purified BT lipopeptide is a mixture separated from Brevibacillus texasporus. 前記分離され、精製されてなるBTリポペプチドが合成物である、請求項1〜4のいずれか一項に記載の医薬組成物。   The pharmaceutical composition according to any one of claims 1 to 4, wherein the separated and purified BT lipopeptide is a synthetic product. 量が単回または分割投与において1日あたり食物消費の乾燥重量1kgあたり100〜10,000mgの範囲である、請求項1〜5のいずれか一項に記載の医薬組成物。   6. The pharmaceutical composition according to any one of claims 1 to 5, wherein the amount ranges from 100 to 10,000 mg per kg dry weight of food consumption per day in single or divided doses. 剤形が、チューインガム、トローチ、及び口腔スプレー剤である、請求項1に記載の医薬組成物。   The pharmaceutical composition according to claim 1, wherein the dosage forms are chewing gum, troches, and oral sprays. 肥満、2型糖尿病および/または肥満と関連する他の疾患を治療または予防する方法であって、ブレビバシラス・テクサスポルスから分離され、精製されてなるBTリポペプチドを効果的な量でそれを必要とする対象(ヒトを除く)の口および/または咽頭に送達することを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、方法。
A method of treating or preventing obesity, type 2 diabetes and / or other diseases associated with obesity, which requires an effective amount of BT lipopeptides isolated and purified from Brevibacillus texaspors Delivering to the mouth and / or pharynx of a subject (except a human),
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
体重または体重増加を低下する方法であって、ブレビバシラス・テクサスポルスから分離され、精製されてなるBTリポペプチドを効果的な量でそれを必要とする対象(ヒトを除く)の口および/または咽頭に送達することを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、方法。
A method for reducing body weight or weight gain, which is isolated from Brevibacillus texasporus and purified BT lipopeptide in an effective amount in the mouth and / or pharynx of a subject (excluding humans) in need thereof Including delivering,
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
食物摂取量を低下する方法であって、ブレビバシラス・テクサスポルスから分離され、精製されてなるBTリポペプチドを効果的な量でそれを必要とする対象(ヒトを除く)の口および/または咽頭に送達することを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、方法。
A method of reducing food intake, wherein BT lipopeptides isolated and purified from Brevibacillus texaspors are delivered in an effective amount to the mouth and / or pharynx of a subject (except humans) in need thereof Including
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
2型糖尿病を治療または予防する方法であって、ブレビバシラス・テクサスポルスから分離され、精製されてなるBTリポペプチドを、血糖量をコントロールしてインスリン感受性を増加するのに効果的な量で、それを必要とする対象(ヒトを除く)の口および/または咽頭に送達することを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、方法。
A method of treating or preventing type 2 diabetes, the BT lipopeptide isolated and purified from Brevibacillus texasporus, in an amount effective to control blood glucose and increase insulin sensitivity. Delivering to the mouth and / or pharynx of a subject in need (excluding humans),
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
複合型脂質異常症を治療または予防する方法であって、ブレビバシラス・テクサスポルスから分離され、精製されてなるBTリポペプチドを、血中LDLコレステロールおよびトリグリセリド量をコントロールするのに効果的な量で、それを必要とする対象(ヒトを除く)の口および/または咽頭に送達することを含み、
前記分離され、精製されてなるBTリポペプチドは、水溶性であり、
前記分離され、精製されてなるBTリポペプチドは、SEQ ID NO: 1〜3の配列の3つのペプチド全てを含む、方法。
A method for treating or preventing complex dyslipidemia, wherein BT lipopeptide isolated and purified from Brevibacillus texasporus is used in an amount effective to control blood LDL cholesterol and triglyceride levels. Delivering to the mouth and / or pharynx of a subject (excluding humans) in need of
The separated and purified BT lipopeptide is water-soluble,
The isolated and purified BT lipopeptide comprises all three peptides having the sequence of SEQ ID NO: 1 to 3 .
前記分離され、精製されてなるBTリポペプチドがSEQ ID NO: 4〜21から選択される配列の1つ以上のペプチドをさらに含む、請求項8〜12のいずれか一項に記載の方法。   The method according to any one of claims 8 to 12, wherein the separated and purified BT lipopeptide further comprises one or more peptides of a sequence selected from SEQ ID NOs: 4-21. 前記分離され、精製されてなるBTリポペプチドがSEQ ID NO: 4〜9から選択される配列の1つ以上のペプチドをさらに含む、請求項8〜12のいずれか一項に記載の方法。   The method according to any one of claims 8 to 12, wherein the separated and purified BT lipopeptide further comprises one or more peptides of a sequence selected from SEQ ID NOs: 4-9. 前記分離され、精製されてなるBTリポペプチドがSEQ ID NO: 4〜9の配列の6つのペプチド全てをさらに含む、請求項8〜12のいずれか一項に記載の方法。 The method according to any one of claims 8 to 12, wherein the separated and purified BT lipopeptide further comprises all six peptides of the sequence of SEQ ID NO: 4-9. 前記分離され、精製されてなるBTリポペプチドがブレビバシラス・テクサスポルスから分離された混合物である、請求項8〜15のいずれか一項に記載の方法。   The method according to any one of claims 8 to 15, wherein the separated and purified BT lipopeptide is a mixture separated from Brevibacillus texasporus. 前記対象(ヒトを除く)が肥満または過体重である、請求項8〜10のいずれか一項に記載の方法。   The method according to any one of claims 8 to 10, wherein the subject (excluding a human) is obese or overweight.
JP2015548053A 2012-12-17 2013-12-17 Use of BT lipopeptide as a therapeutic for obesity and related diseases Expired - Fee Related JP6345186B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261738166P 2012-12-17 2012-12-17
US61/738,166 2012-12-17
PCT/US2013/075521 WO2014099829A1 (en) 2012-12-17 2013-12-17 Uses of bt lipopeptides as therapeutics for obesity and related diseases

Publications (2)

Publication Number Publication Date
JP2016508126A JP2016508126A (en) 2016-03-17
JP6345186B2 true JP6345186B2 (en) 2018-06-20

Family

ID=50979091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015548053A Expired - Fee Related JP6345186B2 (en) 2012-12-17 2013-12-17 Use of BT lipopeptide as a therapeutic for obesity and related diseases

Country Status (5)

Country Link
US (1) US9744211B2 (en)
EP (1) EP2941265B1 (en)
JP (1) JP6345186B2 (en)
CN (2) CN104780931B (en)
WO (1) WO2014099829A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
US9898585B2 (en) 2014-01-31 2018-02-20 Aseko, Inc. Method and system for insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
WO2016069475A1 (en) 2014-10-27 2016-05-06 Aseko, Inc. Subcutaneous outpatient management
US11081226B2 (en) 2014-10-27 2021-08-03 Aseko, Inc. Method and controller for administering recommended insulin dosages to a patient
JP6858751B2 (en) 2015-08-20 2021-04-14 アセコー インコーポレイテッド Diabetes Management Therapy Advisor
CN111280182B (en) * 2020-04-01 2020-12-01 北京工商大学 Active peptide composition and application thereof
WO2024088138A1 (en) * 2022-10-25 2024-05-02 宁波明亦生物科技有限公司 Plasma membrane-permeabilized inactivated oral vaccine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2337923A1 (en) * 2000-02-25 2001-08-25 Raymond J. Andersen Peptide antibiotics
US7498404B2 (en) * 2004-01-30 2009-03-03 The Texas A&M University System Compositions, methods and uses for a novel family of peptides
US8377898B2 (en) * 2006-10-12 2013-02-19 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
GB201022049D0 (en) * 2010-12-29 2011-02-02 Imp Innovations Ltd Methods
US8673290B2 (en) * 2011-03-01 2014-03-18 MYGALAXY Limited Company Sporulation-deficient B. texasporus cells and methods for efficient and cost-effective inactivation and use thereof

Also Published As

Publication number Publication date
US9744211B2 (en) 2017-08-29
CN108478790B (en) 2022-05-31
CN108478790A (en) 2018-09-04
US20160193287A1 (en) 2016-07-07
JP2016508126A (en) 2016-03-17
CN104780931A (en) 2015-07-15
EP2941265A1 (en) 2015-11-11
EP2941265A4 (en) 2017-03-01
WO2014099829A1 (en) 2014-06-26
CN104780931B (en) 2018-05-18
EP2941265B1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6345186B2 (en) Use of BT lipopeptide as a therapeutic for obesity and related diseases
Palmela et al. Adherent-invasive Escherichia coli in inflammatory bowel disease
D’Amelio et al. Gut microbiota, immune system, and bone
JP6444358B2 (en) Pharmaceutical composition containing pediococcus and method for reducing symptoms of digestive syndrome
Hwang et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon‐like peptide 1 in diet‐induced obesity
Dubreuil The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion
Liang et al. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment
Girard et al. Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model
ES2924041T3 (en) Fecal matter for the prevention or treatment of autoimmune diseases
KR101184833B1 (en) Compositions for mucosal and oral administration comprising HCG fragments
US20230226145A1 (en) Mutant Peptides And Methods Of Treating Subjects Using The Same
ES2887086T3 (en) Procedure to produce egg yolk with high af-16 content
US20240181000A1 (en) Lgg-derived peptides and methods of use thereof
US20220218768A1 (en) Methods of enhancing the potency of incretin-based drugs in subjects in need thereof
TWI361694B (en) Use of bombesin/gastrin-releasing peptide antagonists for the treatment of sepsis or acute lung injury
Șeicaru et al. Enhancing Metformin Effects by Adding Gut Microbiota Modulators to Ameliorate the Metabolic Status of Obese, Insulin-Resistant Hosts.
JP2023539682A (en) Treatment and prevention of viral infections
WO2011065867A2 (en) Liposomes containing oligopeptide fragments of myelin basic protein, a pharmaceutical composition and a method for treatment of multiple sclerosis
Flynn Bombesin receptor antagonists block the effects of exogenous bombesin but not of nutrients on food intake
Pero et al. Microbiota and LPS-induced obesity inflammation: therapeutic implications
US11951140B2 (en) Modulation of an individual's gut microbiome to address osteoporosis and bone disease
WO2016026016A1 (en) Opioid peptide
Kathayat Discovery of Novel Antibacterial Agents against Avian Pathogenic Escherichia coli (APEC): Identification of Molecular Targets, Assessing Impact on Gut Microbiome and Evaluating Potential as Antibiotic Adjuvants
Steyl Improving Broiler Performance and Gut Health Using Essential Oils Organic Acids and Direct-Fed Microbials
Bauer The Upper Small Intestinal Microbiota Regulates Nutrient Sensing Pathways to Influence Glucose Homeostasis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180522

R150 Certificate of patent or registration of utility model

Ref document number: 6345186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees