JP6344556B2 - Battery heating device for hybrid vehicle - Google Patents

Battery heating device for hybrid vehicle Download PDF

Info

Publication number
JP6344556B2
JP6344556B2 JP2014124238A JP2014124238A JP6344556B2 JP 6344556 B2 JP6344556 B2 JP 6344556B2 JP 2014124238 A JP2014124238 A JP 2014124238A JP 2014124238 A JP2014124238 A JP 2014124238A JP 6344556 B2 JP6344556 B2 JP 6344556B2
Authority
JP
Japan
Prior art keywords
battery
engine
temperature
air
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014124238A
Other languages
Japanese (ja)
Other versions
JP2016002863A (en
Inventor
仁史 室田
仁史 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014124238A priority Critical patent/JP6344556B2/en
Publication of JP2016002863A publication Critical patent/JP2016002863A/en
Application granted granted Critical
Publication of JP6344556B2 publication Critical patent/JP6344556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バッテリを加温するハイブリッド車両のバッテリ暖房装置に関する。   The present invention relates to a battery heating device for a hybrid vehicle that heats a battery.

エンジン、モータおよびバッテリパック(バッテリ)が搭載されたハイブリッド車両には、走行状態やバッテリパックの電力量に応じて、EV走行(バッテリの電力による走行)、シリーズ走行(エンジン駆動で発電される電力による走行)、パラレル走行(エンジン走行をモータ駆動でアシストする走行)を可能としたものがある。
ところで、車両に搭載のバッテリパックは、低温時、出力が低下することは知られている。そのため、ハイブリッド車両では、低温時、ヒータ素子で加温された空気をバッテリパックの内部へ供給して、内部のバッテリモジュールを暖めるようにしている。
A hybrid vehicle equipped with an engine, a motor, and a battery pack (battery) has EV driving (running by battery power) and series driving (power generated by engine driving) according to the driving state and the amount of power of the battery pack. ) And parallel travel (travel that assists engine travel by motor drive).
By the way, it is known that the output of a battery pack mounted on a vehicle decreases at low temperatures. Therefore, in the hybrid vehicle, air heated by the heater element is supplied to the inside of the battery pack at a low temperature to warm the internal battery module.

ところが、ヒータ素子の出力は限られている。このため、外気温が極低温の極低温環境下を走行、特に高速で走行するという、バッテリパックの熱が外部へ逃げる量が多くなる走行環境下では、適切な温度の維持が困難な状況となり、バッテリ温度が目標温度に保てない(バッテリパックが走行風の影響を受けやすいため)。そのため、バッテリパックは目標の出力特性が確保できず(バッテリ出力の低下)、車両の動力性能の低下が懸念される。   However, the output of the heater element is limited. For this reason, it is difficult to maintain an appropriate temperature in a driving environment in which the amount of heat of the battery pack that escapes to the outside increases, such as driving in a cryogenic environment where the outside air temperature is extremely low, especially at high speeds. The battery temperature cannot be kept at the target temperature (because the battery pack is easily affected by the driving wind). Therefore, the battery pack cannot secure the target output characteristics (decrease in battery output), and there is a concern that the power performance of the vehicle will deteriorate.

そこで、特許文献1のように導入ダクトを用いて、エンジンの周囲の空気をバッテリパックの周囲に流通させ、バッテリパックを通過した空気を戻しダクトから導入ダクトの経路途中へ戻す技術が提案されている。つまり、エンジンの廃熱でバッテリパックを周囲から暖める。   Therefore, a technique has been proposed in which air around the engine is circulated around the battery pack using the introduction duct as in Patent Document 1, and the air that has passed through the battery pack is returned from the return duct to the middle of the path of the introduction duct. Yes. That is, the battery pack is warmed from the surroundings by the waste heat of the engine.

特開2013−180614号公報JP 2013-180614 A

ところが、特許文献1は、バッテリパックを通過した後の空気を、バッテリパックへ向かう空気流の途中に合流させるため、バッテリパックの周囲へ導入される空気の温度は低下しやすい。これでは、十分にバッテリパックが暖められず、バッテリ温度が目標温度に到達し難い。
そこで、本発明の目的は、エンジン周囲を通過した空気で、効率良くバッテリが暖められるハイブリッド車両のバッテリ暖房装置を提供する。
However, in Patent Document 1, since the air after passing through the battery pack is joined in the middle of the air flow toward the battery pack, the temperature of the air introduced to the periphery of the battery pack is likely to decrease. With this, the battery pack is not sufficiently warmed, and the battery temperature hardly reaches the target temperature.
Accordingly, an object of the present invention is to provide a battery heating device for a hybrid vehicle in which the battery is efficiently warmed by the air that has passed around the engine.

本発明の態様は、車両前方に設けられたエンジン、エンジンへ送風する送風部および走行用モータを駆動するバッテリが設けられたハイブリッド車両のバッテリ暖房装置において、送風部によって送風されエンジンの周囲を通過した空気をバッテリの周囲へ導く廃熱導入路と、バッテリの周囲を通過した空気をエンジンの送風方向風上側へ戻す戻り路と、エンジンから車両後方へ延びる排気管とを具備し、戻り路は、車両後方から車両前方に亘って排気管に沿って隣接されるものとした (請求項1)。 An aspect of the present invention relates to a battery heating device for a hybrid vehicle provided with an engine provided in front of the vehicle , a blower that blows air to the engine, and a battery that drives the driving motor, and is blown by the blower and passes around the engine. and a waste heat introduction passage for guiding air to the surroundings of the battery, comprising a return path for the air passing through the periphery of the battery back to the blowing direction windward of the engine, an exhaust pipe extending from the engine to the rear of the vehicle, the return path The vehicle is adjacent to the exhaust pipe from the rear of the vehicle to the front of the vehicle (claim 1).

ましくは、外気温を検出する外気温検出部と、バッテリの温度を検出するバッテリ温度検出部とを更に具備し、送風部は、エンジンへ走行風を導く走行風導入部と、外気温がバッテリの温度以下のとき、走行風導入部を閉じる開閉シャッタとを有するものとした(請求項2)。 Good Mashiku includes outside air temperature detection unit for detecting an outside air temperature, and further comprising a battery temperature detecting unit for detecting the temperature of the battery, the blower unit includes a running wind introduction portion for guiding running wind to the engine, the outside air temperature There when: the temperature of the battery, close the running wind introduction part was to have a closing shutter (claim 2).

好ましくは、廃熱導入路に設けられ、エンジンの周囲を通過した空気の流れる方向を切り換える第1ダンパー部と、第1ダンパー部を制御する制御部と、を更に具備し、制御部は、バッテリの温度が所定温度未満のとき、エンジンの周囲を通過した空気をバッテリの周囲へ導くように第1ダンパー部を制御し、バッテリの温度が所定温度以上のとき、エンジンの周囲を通過した空気を戻り路へ導くように第1ダンパー部を制御するものとした(請求項3)。 Preferably, the apparatus further includes a first damper portion that is provided in the waste heat introduction path and switches a flow direction of the air that has passed around the engine, and a control portion that controls the first damper portion. When the temperature of the battery is below a predetermined temperature, the first damper unit is controlled so that the air that has passed around the engine is guided to the periphery of the battery. When the temperature of the battery is equal to or higher than the predetermined temperature, the air that has passed around the engine is The first damper portion is controlled so as to lead to the return path ( claim 3 ).

好ましくは、戻り路の車両後方側に設けられ、戻り路と大気との間を開閉する第2ダンパー部を更に具備し、制御部は、バッテリの温度が所定温度未満のとき、第2ダンパー部を閉じるよう制御し、バッテリの温度が所定温度以上のとき、第2ダンパー部を開放するよう制御するものとした(請求項4)。 Preferably, the vehicle is further provided with a second damper portion that is provided on the vehicle rear side of the return path and opens and closes between the return path and the atmosphere, and the control unit has the second damper portion when the temperature of the battery is lower than a predetermined temperature. The second damper portion is controlled to be opened when the temperature of the battery is equal to or higher than a predetermined temperature ( Claim 4 ).

本発明によれば、エンジンルームの廃熱を含む空気は、バッテリの周囲へ導かれるだけでなく、バッテリと熱交換を終えた後、エンジンの送風方向風上側へ戻り、再びエンジンの廃熱で加温されてから、再びバッテリの周囲へ導かれる。
それ故、バッテリは、バッテリ周囲を通過した空気の再循環により、効率良く加温できる。特に、戻り路を車両前方に設けられたエンジンから車両後方へ延びる排気管に沿わせたことにより、エンジン前方に戻るまでの経路を利用して、戻る空気をエンジン廃熱で車両後方から前方に亘って加熱することができ、エンジンの廃熱を十分に活用したバッテリパックの暖房を行うことができる。
According to the present invention, the air containing the waste heat of the engine room is not only led to the periphery of the battery, but also after the heat exchange with the battery, the air is returned to the windward side of the engine in the ventilation direction, and again by the waste heat of the engine. After being heated, it is led around the battery again.
Therefore, the battery can be efficiently heated by recirculation of the air that has passed around the battery. In particular, since the return path is along an exhaust pipe extending from the engine provided in the front of the vehicle to the rear of the vehicle, the return air is forwarded from the rear of the vehicle to the front by the engine waste heat by using a route to return to the front of the engine. Thus, the battery pack can be heated by fully utilizing the waste heat of the engine.

本発明の一実施形態に係る態様となるバッテリ暖房装置の構成を、通常時(バッテリ暖房の要求なし)における空気の流れと共に示す図。The figure which shows the structure of the battery heating apparatus used as the aspect which concerns on one Embodiment of this invention with the flow of air in normal time (the request | requirement of battery heating is not required). バッテリ暖房の要求時、エンジンの廃熱にてバッテリが暖房される制御を示すフローチャート。The flowchart which shows the control in which a battery is heated with the waste heat of an engine at the time of the request | requirement of battery heating. 同バッテリ暖房時における空気の流れを示す図。The figure which shows the flow of the air at the time of the battery heating.

以下、本発明を図1から図3に示す一実施形態にもとづいて説明する。
図1は、本発明を適用したハイブリッド車両を示している。ハイブリッド車両は、前部にエンジンルーム3を有し、中央部に車室5を有した車体1を備える。エンジンルーム3内には、エンジン7や、図示はしないが同エンジン7で駆動される発電機などが収められている。むろん、エンジン7には、インテークマニホルド(図示しない)やエキゾーストマニホルド(図示しない)やエキゾーストマニホルドから車両後方へ延びる排気管7aや触媒(図示しない)などが付いている。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows a hybrid vehicle to which the present invention is applied. The hybrid vehicle includes a vehicle body 1 having an engine room 3 at the front and a vehicle compartment 5 at the center. The engine room 3 houses an engine 7 and a generator driven by the engine 7 (not shown). Of course, the engine 7 includes an intake manifold (not shown), an exhaust manifold (not shown), an exhaust pipe 7a extending from the exhaust manifold to the rear of the vehicle, a catalyst (not shown), and the like.

エンジン7の前方側には、ラジエータ9が、電動式のラジエータファン9aと共に設けられている。ラジエータ9と向き合うエンジンルーム3の前端部には、走行風を導入する開口部11aを有するグリル11(本願の開口部に相当)が設けられている。これにより、車両走行で発生する走行風や、ラジエータファン9aの作動により発生する風が、エンジンルーム3へ導入される。つまり、グリル11やラジエータファン9aが送風部となって、車両前方側からエンジン7へ送風が行われる。ちなみにラジエータファン9aは、種々のエンジン7の条件下で作動するが、ここでは説明を簡単にするため、エンジン7の運転に伴い作動するものとする。   A radiator 9 is provided on the front side of the engine 7 together with an electric radiator fan 9a. At the front end of the engine room 3 facing the radiator 9, a grill 11 (corresponding to the opening of the present application) having an opening 11a for introducing running air is provided. As a result, traveling wind generated by traveling the vehicle and wind generated by the operation of the radiator fan 9a are introduced into the engine room 3. That is, the grill 11 and the radiator fan 9a serve as a blowing section, and the blowing is performed from the front side of the vehicle to the engine 7. Incidentally, the radiator fan 9a operates under various conditions of the engine 7, but here it is assumed that the radiator fan 9a operates in accordance with the operation of the engine 7 in order to simplify the description.

また車体1の下部、例えば車室5のフロア5a下には、走行用のバッテリであるところのバッテリパック13が設けられている。またバッテリパック13の下部直下には、バッテリパック13の下面部全体を覆うようアンダカバー13aが設けられている。バッテリパック13は、例えば扁平なバッテリケース14a内に多数のバッテリモジュール14bを収めて構成される。アンダカバー13aの周縁部は、フロア5aの下面に固定される。ちなみに、図示はしないがバッテリケース14aの内部には、ヒータ素子で加温した空気をバッテリケース14a内部に循環させる装置が収められている。   A battery pack 13 serving as a traveling battery is provided below the vehicle body 1, for example, below the floor 5 a of the passenger compartment 5. An under cover 13 a is provided immediately below the lower portion of the battery pack 13 so as to cover the entire lower surface of the battery pack 13. The battery pack 13 is configured, for example, by accommodating a large number of battery modules 14b in a flat battery case 14a. The peripheral edge of the under cover 13a is fixed to the lower surface of the floor 5a. Incidentally, although not shown, a device for circulating the air heated by the heater element inside the battery case 14a is housed inside the battery case 14a.

車体1の後部のフロア5a下には、走行用モータ15(例えば三相交流同期電動機:以下、単にモータ15と称す)、バッテリパック13の直流電圧を交流電圧に変換してモータ15へ供給するインバータ17などが設けられている。
またハイブリッド車両には、例えばマイクロコンピュータで構成された制御部19が搭載されている。制御部19には、車両の運転状態を代表するエンジン回転数およびスロットル開度、さらにはバッテリ電力量などに基づき、例えばEV走行モード、シリーズ走行モード、パラレル走行モードといった各種走行モードを実行する制御が設定されている。ちなみに、ここでのEV走行モードは、例えば低負荷走行のとき、バッテリパック13に蓄えられた電力でモータ15を駆動して走行する走行モードで、シリーズ走行モードは、バッテリパック13の電力量の低下あるいは高電力が求められるとき、エンジン7で発電機(図示しない)を駆動し、発生する電力でモータ15を駆動して走行する走行モードで、パラレル走行モードは、例えば高負荷走行のとき、エンジン7の駆動力で走行し、そのエンジン走行をモータ15の駆動力でアシストする走行モードをいう。
Below the floor 5 a at the rear of the vehicle body 1, a traveling motor 15 (for example, a three-phase AC synchronous motor: hereinafter simply referred to as a motor 15), a DC voltage of the battery pack 13 is converted into an AC voltage and supplied to the motor 15. An inverter 17 and the like are provided.
The hybrid vehicle is equipped with a control unit 19 composed of, for example, a microcomputer. The control unit 19 performs control for executing various travel modes such as an EV travel mode, a series travel mode, and a parallel travel mode based on the engine speed and the throttle opening representing the driving state of the vehicle, and the battery power amount. Is set. Incidentally, the EV traveling mode here is a traveling mode in which the motor 15 is driven by the electric power stored in the battery pack 13 when traveling at a low load, for example, and the series traveling mode is an electric power amount of the battery pack 13. When a decrease or high power is required, the engine 7 drives a generator (not shown) and the motor 15 is driven by the generated power to travel. The parallel travel mode is, for example, when driving at a high load. A traveling mode in which the vehicle travels with the driving force of the engine 7 and assists the engine traveling with the driving force of the motor 15.

さらにハイブリッド車両には、エンジンルーム3内のエンジン廃熱を利用してバッテリパック13を周囲から暖めるバッテリ暖房装置21が搭載されている。図1には、このバッテリ暖房装置21における通常時(バッテリ暖房を必要としない)の状態が示され、図3には、バッテリパック13を暖房しているときの状態が示されている。
図1および図3を参照してバッテリ暖房装置21の主要な構成を説明すると、23aは、バッテリパック13を取り囲むフロア5a下面とアンダカバー13aの周縁部とを固定している固定部分のうち、例えば車両前部に設けられた廃熱導入口、23bは、同じく例えば車両後部に設けられた廃熱導出口を示す。
Further, the hybrid vehicle is equipped with a battery heating device 21 that warms the battery pack 13 from the surroundings using engine waste heat in the engine room 3. FIG. 1 shows a normal state (not requiring battery heating) in the battery heating device 21, and FIG. 3 shows a state when the battery pack 13 is heated.
Referring to FIGS. 1 and 3, the main configuration of the battery heating device 21 will be described. Of the fixed portions 23 a fixing the lower surface of the floor 5 a surrounding the battery pack 13 and the peripheral portion of the under cover 13 a, For example, a waste heat introduction port 23b provided in the front part of the vehicle similarly indicates a waste heat outlet port provided in the rear part of the vehicle, for example.

廃熱導入口23aと同入口23aの前方のエンジンルーム3部分の間は、廃熱導入路25で連通されている。廃熱導入路25は、例えばエンジンルーム3と車室5とを仕切るダッシュパネル4下を通過する導入ダクト部25aで形成される。そして、導入ダクト部25aの入口となる一端部が例えばエンジン7の後部(車両後側)に臨み、出口となる他端部が廃熱導入口23aと連通している。   A waste heat introduction path 25 communicates between the waste heat introduction port 23a and the engine room 3 portion in front of the entrance 23a. The waste heat introduction path 25 is formed by, for example, an introduction duct portion 25 a that passes under the dash panel 4 that partitions the engine room 3 and the vehicle compartment 5. And one end part used as the inlet_port | entrance of the introduction duct part 25a faces the rear part (vehicle rear side) of the engine 7, for example, and the other end part used as an exit is connected with the waste heat introduction port 23a.

この導入ダクト部25aにて、車両走行やラジエータファン9aの作動に伴い、エンジンルーム3内のエンジン7の周囲を通過した空気が、バッテリパック13の周囲、すなわちバッテリケース14aとフロア5aやアンダカバー13aとの間の間隙へ流れるようにしている。これにより、エンジン7の廃熱が、バッテリケース14aを介して、内部のバッテリモジュール14bに伝わる。すなわち、エンジン廃熱で、バッテリモジュール14bが加温されるようにしている。   In this introduction duct portion 25a, the air that has passed around the engine 7 in the engine room 3 as the vehicle travels and the radiator fan 9a is operated is surrounded by the battery pack 13, that is, the battery case 14a, the floor 5a, and the undercover. It is made to flow into a gap between the terminal 13a. Thereby, the waste heat of the engine 7 is transmitted to the internal battery module 14b via the battery case 14a. That is, the battery module 14b is heated by engine waste heat.

またバッテリパック13には、バッテリパック13と熱交換を終えた空気を戻す戻り路27が設けられている。戻り路27は、廃熱導出口23bからエンジン7まで連続して延びる導出ダクト部27aから形成される。具体的には戻り路27は、例えばエンジン7の下面部、廃熱導入路25の下面部、アンダカバー13aの下面部を経て廃熱導出口23bへ至る導出ダクト部27aで形成される。ここでは、導出ダクト部27aは、エンジン7から車両後方へ延びている排気管7aと隣接、具体的には排気管7aと沿わせて配置されている。   In addition, the battery pack 13 is provided with a return path 27 for returning the air after heat exchange with the battery pack 13. The return path 27 is formed from a lead-out duct portion 27 a that continuously extends from the waste heat lead-out port 23 b to the engine 7. Specifically, the return path 27 is formed, for example, by a lead-out duct part 27a that reaches the waste heat outlet 23b through the bottom face of the engine 7, the bottom face of the waste heat introduction path 25, and the bottom face of the under cover 13a. Here, the lead-out duct portion 27a is disposed adjacent to the exhaust pipe 7a extending from the engine 7 to the rear of the vehicle, specifically along the exhaust pipe 7a.

戻り路27の後部端とバッテリパック13の廃熱導出口23bとは、排気ダンパー29(本願の第2ダンパー部に相当)を介して連通されている。排気ダンパー29は、廃熱導出口23bおよび戻り路27の後端部と、大気に開放する大気開放口部28との間を開閉可能とした回動式のダンパーで構成される。図1中aは、同ダンパーの動作位置のうちの廃熱導出口23bおよび戻り路27の後端部と大気開放口部28とが連通する大気開放位置を示し、図3中bは、同じく大気開放口部28が閉じ、廃熱導出口23bと戻り路27の後端部間を連通する連通位置を示している。つまり、バッテリパック13の周囲を通過した空気は、b位置の排気ダンパー29で、戻り路27へ導入される。またa位置の排気ダンパー29で、戻り路27の入口側となる後端部は、大気に開放される。   The rear end of the return path 27 and the waste heat outlet 23b of the battery pack 13 are in communication with each other via an exhaust damper 29 (corresponding to the second damper portion of the present application). The exhaust damper 29 is a rotary damper that can be opened and closed between the waste heat outlet 23b and the rear end of the return path 27 and the atmosphere opening 28 that opens to the atmosphere. In FIG. 1, “a” indicates an atmospheric release position where the exhaust heat outlet 23 b and the rear end portion of the return path 27 and the atmospheric release port 28 communicate with each other among the operating positions of the damper, and “b” in FIG. The air release port portion 28 is closed, and a communication position where the waste heat outlet port 23b and the rear end portion of the return path 27 communicate with each other is shown. That is, the air that has passed around the battery pack 13 is introduced into the return path 27 by the exhaust damper 29 at the position b. Further, the rear end portion on the inlet side of the return path 27 is opened to the atmosphere by the exhaust damper 29 at the position a.

戻り路27の前端部は、エンジン7の送風方向風上側となるラジエータ9の吸込側まで延びていて、前端に形成される出口をラジエータ9の吸込側に配置させている。これにより、バッテリパック13を通過した空気は、エンジン7の送風方向風上側へ戻る。つまり、バッテリパック13と熱交換を終えた空気は、再びエンジン7の廃熱で加熱されるようにしている。   The front end portion of the return path 27 extends to the suction side of the radiator 9 that is the windward side of the engine 7 and the outlet formed at the front end is disposed on the suction side of the radiator 9. Thereby, the air that has passed through the battery pack 13 returns to the upwind direction of the engine 7 in the blowing direction. That is, the air that has finished heat exchange with the battery pack 13 is again heated by the waste heat of the engine 7.

グリル11は、グリル11の開口部11aを開閉する例えば回動式のグリルシャッタ31(本願の開閉シャッタに相当)を備えている。グリルシャッタ31は、外気温センサ42で検出される外気温がバッテリ温度以下になるとき、開口部11aを閉じる。これにより、エンジンルーム3、廃熱導入路25、バッテリパック13周囲、戻り路27が連通している状態下で(図3)、グリル11の開口部11aを閉じられると、閉空間化、すなわちエンジンルーム3、廃熱導入路25、バッテリパック13周囲の間隙、戻り路27が閉空間となる。つまり、閉空間下において、エンジン7を通過した空気が、バッテリパック13の周りを循環する構造となっている。   The grill 11 includes, for example, a rotary grill shutter 31 (corresponding to the open / close shutter of the present application) that opens and closes the opening 11 a of the grill 11. The grill shutter 31 closes the opening portion 11a when the outside air temperature detected by the outside air temperature sensor 42 becomes equal to or lower than the battery temperature. As a result, when the opening 11a of the grill 11 is closed in a state where the engine room 3, the waste heat introduction path 25, the battery pack 13 and the return path 27 are in communication (FIG. 3), a closed space is formed. The engine room 3, the waste heat introduction path 25, the gap around the battery pack 13, and the return path 27 are closed spaces. That is, the air that has passed through the engine 7 circulates around the battery pack 13 in a closed space.

さらにバッテリパック13の暖房(加温)の必要がない通常時に応えられるよう、廃熱導入路25には、図1および図3に示されるようにエンジン廃熱を外部へ導出させる切換部33が設けられている。すなわち、切換部33は、廃熱導入ダンパー37(本願の第1ダンパー部に相当)を有している。ここでは廃熱導入ダンパー37は、例えば図3に示される廃熱導入路25と廃熱導入口23aとを連通する廃熱導入位置(図3中のc位置)と、図1に示される廃熱導入路25と戻り路27のダクト部分に形成された切換口35とを連通する廃熱導出位置(図1中のd位置)とを変位可能とした回動式ダンパーから構成される。   Further, a switching unit 33 for deriving engine waste heat to the outside as shown in FIG. 1 and FIG. 3 is provided in the waste heat introduction path 25 so as to respond to normal time when heating (heating) of the battery pack 13 is not required. Is provided. That is, the switching unit 33 includes a waste heat introduction damper 37 (corresponding to the first damper unit of the present application). Here, the waste heat introduction damper 37 is, for example, a waste heat introduction position (c position in FIG. 3) that connects the waste heat introduction path 25 and the waste heat introduction port 23a shown in FIG. The waste heat extraction position (d position in FIG. 1) that communicates the heat introduction path 25 and the switching port 35 formed in the duct portion of the return path 27 is configured to be a rotatable damper.

これにより、バッテリパック13の暖房が必要なときは、図3のように廃熱導入ダンパー37にて、廃熱導入路25と廃熱導入口23aとを連通し、切換口35を閉じる。これで、エンジンルーム3内のエンジン廃熱を含む空気は、バッテリパック13へ導かれる。バッテリパック13の暖房が必要でないときは、図1のように廃熱導入ダンパー37にて、廃熱導入路25と切換口35とを連通し、廃熱導入口23aを閉じる。これで、エンジンルーム3内のエンジン周囲を通過した空気は、バッテリパック13へ向かわず、戻り路27へ逆方向から導入される。さらに述べると、大気開放となる排気ダンパー29(第2ダンパー部)との協働により、エンジン廃熱が、戻り路27を通じ、大気へ導出されるようにしている。   Thus, when the battery pack 13 needs to be heated, the waste heat introduction damper 25 communicates with the waste heat introduction path 25 and the waste heat introduction port 23a as shown in FIG. Thus, the air containing the engine waste heat in the engine room 3 is guided to the battery pack 13. When heating of the battery pack 13 is not required, the waste heat introduction damper 25 communicates with the waste heat introduction path 25 and the switching port 35 as shown in FIG. 1, and the waste heat introduction port 23a is closed. Thus, the air that has passed around the engine in the engine room 3 does not go to the battery pack 13 but is introduced into the return path 27 from the reverse direction. More specifically, the engine waste heat is led to the atmosphere through the return path 27 in cooperation with the exhaust damper 29 (second damper portion) that is opened to the atmosphere.

制御部19には、バッテリパック13の暖房の要求、不要求(通常時)に応じて、グリルシャッタ31、各ダンパー29,37を制御する設定がなされている。これには、例えばバッテリ温度(バッテリモジュール温度)を検出するバッテリ温度センサ39、エンジン7が運転しているか否かを判定するセンサ、例えば廃熱導入路25へ導入される空気温度を検出する導入空気温度センサ41、外気温を検出する外気温センサ42(本願の外気温検出部に相当)を用いて、バッテリパック13の暖房が要求されるとき、エンジン廃熱をバッテリパック13へ導入させる設定が用いられる。   The control unit 19 is set to control the grill shutter 31 and the dampers 29 and 37 in response to a request for heating or non-request (normal time) of the battery pack 13. This includes, for example, a battery temperature sensor 39 that detects the battery temperature (battery module temperature), a sensor that determines whether or not the engine 7 is operating, for example, an introduction that detects the temperature of the air introduced into the waste heat introduction passage 25. Setting that introduces engine waste heat into the battery pack 13 when the air temperature sensor 41 and the outside air temperature sensor 42 that detects the outside air temperature (corresponding to the outside air temperature detecting unit of the present application) are required. Is used.

具体的には制御部19は、例えばバッテリ暖房開始を規定するしきい値として暖房許可温度値Thを設定しておく。バッテリ暖房を必要としないときは、バッテリ温度が所定温度以上のとき(このときは外気温を上回る)、すなわち暖房許可温度値Th以上になるとの判定から、通常モード、すなわちグリルシャッタ31を開、廃熱導入口23aを閉(切換口35:開)、廃熱導出口23bおよび戻り路27の後端部を大気開放側に切換える。この設定により、エンジンルーム3内の空気は、バッテリパック13の周囲を通らず、戻り路27から大気へ放出される。   Specifically, the control part 19 sets the heating permission temperature value Th as a threshold value which prescribes | regulates the battery heating start, for example. When the battery heating is not required, the normal mode, that is, the grill shutter 31 is opened from the determination that the battery temperature is equal to or higher than a predetermined temperature (in this case, exceeds the outside air temperature), that is, the heating permission temperature value Th or higher. The waste heat introduction port 23a is closed (switching port 35: open), and the rear end portions of the waste heat outlet port 23b and the return path 27 are switched to the atmosphere open side. By this setting, the air in the engine room 3 does not pass around the battery pack 13 but is released from the return path 27 to the atmosphere.

またバッテリ温度が暖房許可温度値Thを下回るときは、通常時とは異なり、バッテリ暖房が必要とする。このときバッテリパック13へ導入される空気温度がバッテリ温度よりも高いと、エンジン7の廃熱が確保されたと判定し、バッテリ暖房モードが実行される。また外気温がバッテリ温度以下なので、グリルシャッタ31を閉じる設定がなされる。
詳しくはバッテリ暖房モードでは、廃熱導入口23aを開(切換口35:閉)、廃熱導出口23bと戻り路27の後端部とを連通する側に切換えるモードにする。またグリルシャッタ31は閉にし、閉空間下で、エンジンルーム3内の空気がバッテリパック13の周囲を循環するようにしている。ちなみに、暖房許可温度値を、複数段階に設定し、さらに開度が複数段で設定可能なグリルシャッタ31を用いて、しきい値たる複数段階の暖房許可温度値に応じて、グリルシャッタ31の開度を可変することも考えられる。また、外気温がバッテリ温度よりも高い場合は、グリルシャッタ31を開、廃熱導入口23aを開(切換口35:閉)、廃熱導出口23bと戻り路27の後端部とを連通する側に切換えるモードとして、外気温を取り込むようにしてもよい。
Also, when the battery temperature falls below the heating permission temperature value Th, battery heating is required unlike the normal time. At this time, if the air temperature introduced into the battery pack 13 is higher than the battery temperature, it is determined that the waste heat of the engine 7 is secured, and the battery heating mode is executed. Further, since the outside air temperature is equal to or lower than the battery temperature, the grill shutter 31 is set to be closed.
Specifically, in the battery heating mode, the waste heat introduction port 23a is opened (switching port 35: closed), and the mode is switched to the side where the waste heat outlet port 23b and the rear end portion of the return path 27 communicate with each other. The grill shutter 31 is closed so that the air in the engine room 3 circulates around the battery pack 13 in the closed space. Incidentally, the grille shutter 31 is set in a plurality of stages, and the opening degree of the grille shutter 31 can be set in a plurality of stages. It is also conceivable to vary the opening. When the outside air temperature is higher than the battery temperature, the grille shutter 31 is opened, the waste heat introduction port 23a is opened (switching port 35: closed), and the waste heat outlet port 23b is communicated with the rear end of the return path 27. As a mode for switching to the side to perform, outside air temperature may be taken in.

図2のフローチャートには、より具体的なバッテリ暖房の制御が示されている。
図2を参照して同制御を詳細に説明すると、ステップS1においては、バッテリ温度センサ39からバッテリ温度(バッテリモジュール温度)Tbを検出し、続くステップS3においては、導入空気温度センサ41からエンジンルーム3内の空気温度Tinを検出する。
The more specific control of battery heating is shown in the flowchart of FIG.
The control will be described in detail with reference to FIG. 2. In step S1, the battery temperature (battery module temperature) Tb is detected from the battery temperature sensor 39, and in the subsequent step S3, the engine room is detected from the introduction air temperature sensor 41. The air temperature Tin in 3 is detected.

このときハイブリッド車両は、通常の外気温下で、シリーズ走行(エンジンで発電機を駆動する発電電力で走行)や、パラレル走行(エンジン走行をモータ駆動でアシストする走行)などで走行しているとする。
このときは、バッテリ温度は上昇しているので(外気温を上回る)、エンジン7の廃熱によるバッテリパック13の暖房は必要でない。
At this time, the hybrid vehicle is running in a series running (running with the generated power that drives the generator with the engine) or parallel running (running that assists the engine running with the motor drive) under normal outside air temperature. To do.
At this time, since the battery temperature is rising (exceeding the outside air temperature), heating of the battery pack 13 by waste heat of the engine 7 is not necessary.

この点を説明すると、続くステップS5においては、バッテリ温度Tbとバッテリ暖房許可温度値Thとを比較し、バッテリ暖房の有無を判定するが、このときはバッテリ温度Ttbは、外気温を上回り、バッテリ暖房許可温度値Thより高くなる挙動を示す。このため、ステップS5からステップS7へ進み、制御部19は、図1のように排気ダンパー29を「開」、グリルシャッタ31を「開」、廃熱導入ダンパー37を「閉」にする。   Explaining this point, in the following step S5, the battery temperature Tb is compared with the battery heating permission temperature value Th to determine whether or not the battery heating is present. At this time, the battery temperature Ttb exceeds the outside air temperature, The behavior which becomes higher than heating permission temperature value Th is shown. Therefore, the process proceeds from step S5 to step S7, and the control unit 19 sets the exhaust damper 29 to “open”, the grill shutter 31 to “open”, and the waste heat introduction damper 37 to “close” as shown in FIG.

すると、エンジン7の周囲を通過した空気は、切換口35から、戻り路27へ、戻り路27の流通方向とは逆方向から導入される。これにより、同空気は、戻り路27を通じ、戻り路27端に有る大気開放口部28から大気に導出される。つまり、通常時は、エンジン周囲を通過した空気は、バッテリパック13へ送り込まれない。また廃熱導出口23bは大気に開放され、通常時に適した対応、すなわちバッテリパック13の温度上昇を抑える対応がとられる。   Then, the air that has passed around the engine 7 is introduced from the switching port 35 to the return path 27 from the direction opposite to the flow direction of the return path 27. Thereby, the air is led out to the atmosphere through the return path 27 from the atmosphere opening port 28 at the end of the return path 27. That is, normally, the air that has passed around the engine is not sent to the battery pack 13. Further, the waste heat outlet 23b is opened to the atmosphere, and a countermeasure suitable for normal times, that is, a countermeasure for suppressing the temperature rise of the battery pack 13 is taken.

一方、ハイブリッド車両が、例えば極低温環境で高速走行(シリーズ走行あるいはパラレル走行)するとする。
極低温下で高速走行中のハイブリッド車両は、バッテリ温度Tbの適切な温度での維持が困難な状況にある。このため、通常時とは異なり、バッテリ温度Tbは、外気温やバッテリ暖房許可温度Thより低くなる。そのため、ステップS5からステップS9へ進む。
On the other hand, it is assumed that the hybrid vehicle travels at a high speed (series travel or parallel travel), for example, in a cryogenic environment.
A hybrid vehicle that is traveling at a high speed under an extremely low temperature is in a situation where it is difficult to maintain the battery temperature Tb at an appropriate temperature. For this reason, unlike normal time, the battery temperature Tb is lower than the outside air temperature or the battery heating permission temperature Th. Therefore, the process proceeds from step S5 to step S9.

ステップS9では、バッテリ温度Tbとバッテリパック13に導入される空気の温度Tinとを比較するが、ここでは高速走行中のハイブリッド車両におけるエンジンルーム3内の空気温度(導入空気温度Tinに相当)は、エンジン7で生ずる廃熱によって上昇しているので、バッテリ温度Tbよりも高くなる挙動を示す。これにより、制御部19は、バッテリパック13に導入される空気が、バッテリパック13の暖房を行える熱を有していると判定する。もちろん、バッテリパック13の暖房を行い得るエンジン廃熱が確保されているとの判定も行われる。   In step S9, the battery temperature Tb is compared with the temperature Tin of the air introduced into the battery pack 13. Here, the air temperature (corresponding to the introduced air temperature Tin) in the engine room 3 in the hybrid vehicle running at high speed is calculated. Since the temperature rises due to the waste heat generated in the engine 7, the behavior becomes higher than the battery temperature Tb. Thus, the control unit 19 determines that the air introduced into the battery pack 13 has heat that can heat the battery pack 13. Of course, it is also determined that engine waste heat that can heat the battery pack 13 is secured.

これにより、ステップS9からステップS11へと進む。すると、制御部19は、図3のように排気ダンパー29を「閉」、グリルシャッタ31を「閉」、廃熱導入ダンパー37を「開」にする。
この制御に伴い、図3に示されるようにエンジンルーム3、廃熱導入路25、バッテリパック13周囲の間隙、戻り路27は、外部と断たれた閉空間になる。この閉空間下において、ラジエータファン9aの作動により、図3中の矢印に示されるようにエンジン周囲を通過した空気は、廃熱導入路25を通じて、廃熱導入口23aからバッテリパック13の周囲へ導かれる。この空気が、バッテリケース14aとフロア5aやアンダカバー13aとの間隙を通過する間に熱交換が行われ、エンジン廃熱でバッテリケース14a内のバッテリモジュール14bを暖める。
Thereby, it progresses from step S9 to step S11. Then, the control unit 19 “closes” the exhaust damper 29, “closes” the grill shutter 31, and “opens” the waste heat introduction damper 37 as shown in FIG.
With this control, as shown in FIG. 3, the engine room 3, the waste heat introduction path 25, the gap around the battery pack 13, and the return path 27 become closed spaces disconnected from the outside. Under this closed space, the air that has passed around the engine as shown by the arrow in FIG. Led. Heat exchange is performed while this air passes through the gap between the battery case 14a and the floor 5a or the under cover 13a, and the battery module 14b in the battery case 14a is warmed by engine waste heat.

バッテリパック13を通過した空気(熱交換により温度低下)は、廃熱導出口23bから戻り路27を通り、エンジン7の前方、すなわちエンジン7の送風方向風上に配置されているラジエータ9の吸込側に戻る。ちなみに戻り路27を通過する際、同空気は、隣接配置されている排気管7aを流れる排ガスの熱を受けて加熱(加温)される。
エンジンルーム3に戻った空気は、エンジン7の周囲を通過する際に、再び加熱される。そして、再びバッテリパック13へ導かれて、バッテリパック13の周囲を循環するという、サイクルが繰り返される。
The air that has passed through the battery pack 13 (temperature reduction due to heat exchange) passes through the return path 27 from the waste heat outlet 23b, and is sucked into the radiator 9 disposed in front of the engine 7, that is, on the wind direction of the engine 7 Return to the side. Incidentally, when passing through the return path 27, the air is heated (heated) by receiving the heat of the exhaust gas flowing through the adjacent exhaust pipe 7a.
The air that has returned to the engine room 3 is heated again when it passes around the engine 7. Then, the cycle of being guided to the battery pack 13 again and circulating around the battery pack 13 is repeated.

このようにバッテリ暖房が必要とされるとき、バッテリ周囲を通過した空気の再循環加熱により、バッテリパック13は、エンジン周囲を通過した空気を有効に用いて効率良く加温できる。これにより、たとえ極低温環境下を高速走行する場合でも、バッテリ温度を目標温度に保つことができる。
それ故、ハイブリッド車両の極低温環境下におけるバッテリ出力の低下を抑えることができ、車両の走行性能の低下を抑えることができる。特に、バッテリ暖房が要求されるとき(外気温がバッテリ温度以下のとき)、グリルシャッタ31を用いて、エンジンルーム3、廃熱導入路25、バッテリパック13周囲の間隙、戻り路27を閉空間としたことにより、エンジン7の廃熱を最も有効にバッテリパック13に伝えることができる。
Thus, when battery heating is required, the battery pack 13 can efficiently heat the air that has passed around the engine by using the recirculation heating of the air that has passed around the battery. Thereby, even when traveling at a high speed in a cryogenic environment, the battery temperature can be maintained at the target temperature.
Therefore, it is possible to suppress a decrease in battery output under a cryogenic environment of the hybrid vehicle, and it is possible to suppress a decrease in vehicle running performance. In particular, when battery heating is required (when the outside air temperature is lower than the battery temperature), the grille shutter 31 is used to close the engine room 3, the waste heat introduction path 25, the gap around the battery pack 13, and the return path 27. Thus, the waste heat of the engine 7 can be transmitted to the battery pack 13 most effectively.

また戻り路27を車両前方に設けられたエンジン7から車両後方へ延びる排気管7aに沿わせたことにより(隣接配置)、エンジン前方に戻るまでの経路を利用して、戻る空気をエンジン7の廃熱で車両後方から前方に亘って加熱することができ、エンジン7の廃熱を十分に活用したバッテリパック13の暖房が行える。
そのうえ、バッテリパック13の暖房の要求がないとき、エンジンルーム3内のエンジン廃熱を外部(大気)へ導出させるようにしたことにより、バッテリパック暖房の必要がない通常時は、バッテリパック13の温度上昇が抑えられる。そのため、バッテリ暖房は、通常時と両立できる。特にエンジンルーム3と戻り路27の出口側を連通する廃熱導入ダンパー37と、戻り路27の車両後方側を大気に開放する排気ダンパー29とを用いて、戻り路27を逆方向から流通させるという手法でエンジンの廃熱を外部へ導出させたので、エンジン7からの廃熱をバッテリパック13に当てることなく車外へ排出することができる。
Further, by arranging the return path 27 along the exhaust pipe 7a extending from the engine 7 provided in the front of the vehicle to the rear of the vehicle (adjacent arrangement), the return air is supplied to the engine 7 by using the path to return to the front of the engine. The waste heat can be heated from the rear to the front of the vehicle, and the battery pack 13 can be heated by fully utilizing the waste heat of the engine 7.
In addition, when there is no request for heating of the battery pack 13, the engine waste heat in the engine room 3 is led out to the outside (atmosphere). Temperature rise is suppressed. Therefore, battery heating is compatible with normal times. In particular, the return path 27 is circulated in the reverse direction by using a waste heat introduction damper 37 that connects the engine room 3 and the exit side of the return path 27 and an exhaust damper 29 that opens the vehicle rear side of the return path 27 to the atmosphere. Since the waste heat of the engine is led out to the outside by the method, the waste heat from the engine 7 can be discharged outside the vehicle without hitting the battery pack 13.

なお、上述した一実施形態における各構成およびそれの組合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能であることはいうまでもない。また本発明は、実施形態によって限定されることはなく、「特許請求の範囲」によってのみ限定されることはいうまでもない。
例えば一実施形態では、バッテリ暖房(加温)が要求されるときとして、極低温時の高速走行を一例に挙げたが、これに限らず、他のバッテリ暖房と必要するときでも構わない。また一実施形態では、ヒータ素子を用いてバッテリパック内部を暖める装置を有するハイブリッド車両を挙げたが、同装置の無いハイブリッド車両に本発明を適用してもよい。
It should be noted that each configuration and combination thereof in the above-described embodiment is an example, and the addition, omission, replacement, and other changes of the configuration are possible without departing from the spirit of the present invention. Needless to say. Further, the present invention is not limited by the embodiment, and it is needless to say that the present invention is limited only by the “claims”.
For example, in one embodiment, the case where battery heating (heating) is required has been described as an example of high-speed traveling at an extremely low temperature. However, the present invention is not limited to this. In one embodiment, although the hybrid vehicle which has a device which warms the inside of a battery pack using a heater element was mentioned, the present invention may be applied to a hybrid vehicle without the device.

1 車体
7 エンジン
7a 排気管
9a,11 ラジエータファン,グリル(送風部)
11a 開口部
13 バッテリパック(バッテリ)
15 モータ(走行用モータ)
19 制御部
25 廃熱導入路
27 戻り路
29 排気ダンパー(第2ダンパー部)
31 グリルシャッタ(開閉シャッタ部)
37 廃熱導入ダンパー(第1ダンパー部)
41 導入空気温度センサ(バッテリ温度検出部)
42 外気温センサ(外気温検出部)
1 Car body 7 Engine 7a Exhaust pipe 9a, 11 Radiator fan, grill (blower part)
11a Opening 13 Battery pack (battery)
15 Motor (traveling motor)
19 Control section 25 Waste heat introduction path 27 Return path 29 Exhaust damper (second damper section)
31 Grill shutter (opening / closing shutter part)
37 Waste heat introduction damper (first damper part)
41 Inlet air temperature sensor (battery temperature detector)
42 Outside temperature sensor (outside temperature detector)

Claims (4)

車両前方に設けられたエンジン、前記エンジンへ送風する送風部および走行用モータを駆動するバッテリが設けられたハイブリッド車両のバッテリ暖房装置において、
前記送風部によって送風され前記エンジンの周囲を通過した空気を前記バッテリの周囲へ導く廃熱導入路と、
前記バッテリの周囲を通過した空気を前記エンジンの送風方向風上側へ戻す戻り路と、
前記エンジンから車両後方へ延びる排気管と、
を具備し、
前記戻り路は、車両後方から車両前方に亘って前記排気管に沿って隣接される
ことを特徴するハイブリッド車両のバッテリ暖房装置。
In a battery heating device for a hybrid vehicle provided with an engine provided in front of the vehicle , a blower for blowing air to the engine, and a battery for driving a driving motor,
A waste heat introduction path that guides air that has been blown by the blower and passed around the engine to the periphery of the battery;
A return path for returning the air that has passed around the battery to the windward side of the engine in the air blowing direction;
An exhaust pipe extending from the engine to the rear of the vehicle;
Equipped with,
The return path is adjacent along the exhaust pipe from the rear of the vehicle to the front of the vehicle.
Battery heating system for a hybrid vehicle, wherein the.
外気温を検出する外気温検出部と、
前記バッテリの温度を検出するバッテリ温度検出部とを更に具備し、
前記送風部は、
前記エンジンへ走行風を導く走行風導入部と、
前記外気温が前記バッテリの温度以下のとき、前記走行風導入部を閉じる開閉シャッタと、
を有することを特徴とする請求項1に記載のハイブリッド車両のバッテリ暖房装置。
An outside air temperature detector for detecting outside air temperature,
A battery temperature detecting unit for detecting the temperature of the battery;
The blowing section is
A traveling wind introduction section for guiding traveling wind to the engine;
When the outside air temperature is equal to or lower than the temperature of the battery, an open / close shutter that closes the traveling wind introduction portion,
The battery heating device for a hybrid vehicle according to claim 1, comprising:
前記廃熱導入路に設けられ、前記エンジンの周囲を通過した空気の流れる方向を切り換える第1ダンパー部と、
前記第1ダンパー部を制御する制御部と、を更に具備し、
前記制御部は、
前記バッテリの温度が所定温度未満のとき、前記エンジンの周囲を通過した空気を前記バッテリの周囲へ導くように前記第1ダンパー部を制御し、
前記バッテリの温度が所定温度以上のとき、前記エンジンの周囲を通過した空気を前記戻り路へ導くように前記第1ダンパー部を制御することを特徴とする請求項2に記載のハイブリッド車両のバッテリ暖房装置。
A first damper portion provided in the waste heat introduction path and switching a flow direction of air that has passed around the engine;
A control unit for controlling the first damper unit;
The controller is
When the temperature of the battery is lower than a predetermined temperature, the first damper unit is controlled to guide the air that has passed around the engine to the periphery of the battery,
3. The hybrid vehicle battery according to claim 2 , wherein when the temperature of the battery is equal to or higher than a predetermined temperature, the first damper unit is controlled so as to guide air that has passed around the engine to the return path. 4. Heating device.
前記戻り路の車両後方側に設けられ、前記戻り路と大気との間を開閉する第2ダンパー部を更に具備し、
前記制御部は、
前記バッテリの温度が所定温度未満のとき、前記第2ダンパー部を閉じるよう制御し、
前記バッテリの温度が所定温度以上のとき、前記第2ダンパー部を開放するよう制御する
ことを特徴とする請求項3に記載のハイブリッド車両のバッテリ暖房装置。
A second damper portion that is provided on the vehicle rear side of the return path and opens and closes between the return path and the atmosphere;
The controller is
When the temperature of the battery is lower than a predetermined temperature, control to close the second damper part,
The battery heating device for a hybrid vehicle according to claim 3 , wherein when the temperature of the battery is equal to or higher than a predetermined temperature, the second damper unit is controlled to be opened.
JP2014124238A 2014-06-17 2014-06-17 Battery heating device for hybrid vehicle Expired - Fee Related JP6344556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124238A JP6344556B2 (en) 2014-06-17 2014-06-17 Battery heating device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124238A JP6344556B2 (en) 2014-06-17 2014-06-17 Battery heating device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2016002863A JP2016002863A (en) 2016-01-12
JP6344556B2 true JP6344556B2 (en) 2018-06-20

Family

ID=55222500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124238A Expired - Fee Related JP6344556B2 (en) 2014-06-17 2014-06-17 Battery heating device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP6344556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6568915B2 (en) * 2017-09-29 2019-08-28 株式会社Subaru Vehicle having capsule structure of power unit
JP2021133723A (en) * 2020-02-25 2021-09-13 マツダ株式会社 Vehicle air-conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130917A (en) * 1995-10-31 1997-05-16 Suzuki Motor Corp Temperature control device of hybrid automobile
JP5333425B2 (en) * 2010-12-10 2013-11-06 アイシン精機株式会社 Grill shutter opening / closing control device

Also Published As

Publication number Publication date
JP2016002863A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
US10946720B2 (en) Airflow control system
US10875384B2 (en) Air flow circulation structure for vehicle
JP6036746B2 (en) vehicle
JP5409160B2 (en) Temperature control method for vehicle and power storage device
CN110053451A (en) The system and method for heating passenger compartment
JP2009252688A (en) Temperature control system of storage battery for vehicle
EP2708402B1 (en) Vehicle heat exchange structure
JP2013180614A (en) Vehicle battery temperature control structure
KR20120023409A (en) Air-conditioning method for electric vehicle
JP5799912B2 (en) Power supply temperature control device
JP6344556B2 (en) Battery heating device for hybrid vehicle
JP6102803B2 (en) Air conditioner for vehicles
JP2016147554A (en) Vehicular shutter opening/closing control device
JP2009272112A (en) Temperature adjustment device of energy storage device
JP2005297714A (en) Cooling device
JP2007153054A (en) Cooling device of electric equipment mounted on vehicle
KR101190736B1 (en) A battery temperature arranging apparatus of vehicle
JP2006050892A (en) Control system and method of battery environment in vehicle
JP5210803B2 (en) Exhaust heat recovery system for vehicles
JP7316119B2 (en) electric car air conditioning system
JP6102809B2 (en) Air conditioner for vehicles
KR101600300B1 (en) Air conditioning system for electric vehicle
KR100892532B1 (en) Method for controlling hvac of hev
JP2022158151A (en) air conditioning control system
KR20120134313A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R151 Written notification of patent or utility model registration

Ref document number: 6344556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees