JP6344550B2 - Ferrite particles for transporting functional powder - Google Patents

Ferrite particles for transporting functional powder Download PDF

Info

Publication number
JP6344550B2
JP6344550B2 JP2014058452A JP2014058452A JP6344550B2 JP 6344550 B2 JP6344550 B2 JP 6344550B2 JP 2014058452 A JP2014058452 A JP 2014058452A JP 2014058452 A JP2014058452 A JP 2014058452A JP 6344550 B2 JP6344550 B2 JP 6344550B2
Authority
JP
Japan
Prior art keywords
ferrite particles
powder
resin
functional powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014058452A
Other languages
Japanese (ja)
Other versions
JP2015182905A (en
Inventor
五十嵐 哲也
哲也 五十嵐
小島 隆志
隆志 小島
康二 安賀
康二 安賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2014058452A priority Critical patent/JP6344550B2/en
Publication of JP2015182905A publication Critical patent/JP2015182905A/en
Application granted granted Critical
Publication of JP6344550B2 publication Critical patent/JP6344550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、機能性粉体を輸送、搬送及び成型等に用いる際に、機能性粉体のハンドリング性向上を目的として機能性粉体と混合されるフェライト粒子に関する。   The present invention relates to a ferrite particle that is mixed with a functional powder for the purpose of improving the handleability of the functional powder when the functional powder is used for transportation, conveyance, molding, and the like.

現在、プリンターやコピー機で使用されているトナーを始めとする機能性粉体はさまざまな分野や用途に用いられており、電子写真現像方式が使用されている。   At present, functional powders such as toners used in printers and copiers are used in various fields and applications, and electrophotographic development methods are used.

この電子写真現像方式による現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤及びトナー粒子のみを用いる一成分系現像剤に分けられる。   The developing method based on this electrophotographic developing method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is toner particles. And a two-component developer composed of carrier particles and a one-component developer using only toner particles.

こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。   Among these developers, as a developing method using a two-component developer composed of toner particles and carrier particles, the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.

二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に攪拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合・攪拌され、一定期間繰り返して使用される。   In the two-component developer, the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles, and thus being charged. A carrier material for transporting toner particles to the surface of the photoreceptor to form a toner image on the photoreceptor. The carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.

二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合・攪拌され、トナー粒子を帯電させ、さらに搬送する機能を有しており、現像剤を設計する際の制御性が良い。従って、二成分系現像剤は高画質が要求されるフルカラー現像装置及び画像維持の信頼性、耐久性が要求される高速印刷を行う装置等に適している。   Unlike the one-component developer, the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting the toner particles. Good controllability. Therefore, the two-component developer is suitable for a full-color developing device that requires high image quality and a device that performs high-speed printing that requires image maintenance reliability and durability.

一方、電子写真現像方式以外の機能性粉体を使用する分野においては、機能性粉体単体でハンドリングすることが多いが、使用する機能性粉体は自身が持っている機能性を発現しようとすると、ハンドリング性が劣ってしまうものがある。   On the other hand, in the field of using functional powders other than the electrophotographic development system, the functional powder is often handled as a single unit, but the functional powder used tries to express its own functionality. Then, there is a thing with inferior handling property.

例えば、空気中の水分、酸素に対して変質しやすい機能性粉体、等方的な形状でないために流動性が極めて悪い機能性粉体、嵩密度が極めて小さい機能性粉体、放射性物質であるため人体に有害で直接ハンドリングできない場合等、取り扱いが難しく、使用時の環境条件、装置条件等に大きな制約が存在する場合がある。   For example, functional powders that are easily altered by moisture and oxygen in the air, functional powders that have extremely poor flowability because they are not isotropic, functional powders that have extremely low bulk density, and radioactive materials. Therefore, handling is difficult, such as when it is harmful to the human body and cannot be handled directly, and there may be significant restrictions on environmental conditions, equipment conditions, etc. during use.

特許文献1(特開平08−22150号公報)には、MnO、MgO及びFeからなるフェライトの一部をSrOで置換した電子写真現像剤用フェライトキャリアが記載されている。同文献に記載のフェライトは、フェライトキャリア粒子間の磁化のバラツキを低減させることにより画質及び耐久性に優れ、環境に優しく、長寿命でかつ環境安定性に優れた電子写真現像用キャリアを得ることができるとされている。 Patent Document 1 (Japanese Patent Laid-Open No. 08-22150) describes a ferrite carrier for an electrophotographic developer in which a part of ferrite composed of MnO, MgO and Fe 2 O 3 is substituted with SrO. The ferrite described in this document can obtain an electrophotographic developer carrier that is excellent in image quality and durability, is environmentally friendly, has a long life, and is excellent in environmental stability by reducing the variation in magnetization between ferrite carrier particles. It is supposed to be possible.

また、特許文献2(特開2009−244573号公報)には、トナー粉として金属粉、無機化合物又はこれらの混合粉のいずれかを回路形成用トナー粉として用い、この回路形成用トナー粉をキャリア粒子の表面に静電力で付着させて絶縁層の表面に運び、該絶縁層上に回路形状を直接形成するために用いるキャリア粒子であって、該キャリア粒子は、キャリア芯材粒子の粒子表面にアクリル樹脂組成物を用いた一定量の被覆層を有し、かつキャリア芯材粒子の形状係数SF−1が100〜110である電子写真現像法による配線回路形成用キャリア粒子が記載されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2009-244573) uses as a toner powder any one of a metal powder, an inorganic compound, or a mixed powder thereof as a toner powder for circuit formation, and uses the toner powder for circuit formation as a carrier. Carrier particles that are attached to the surface of the particles with an electrostatic force and are carried to the surface of the insulating layer to form a circuit shape directly on the insulating layer. The carrier particles are formed on the surface of the carrier core particles. There is described a carrier particle for forming a wiring circuit by an electrophotographic developing method having a certain amount of a coating layer using an acrylic resin composition and having a carrier core material particle having a shape factor SF-1 of 100 to 110.

また、特許文献3(特開2006−235460号公報)には、粒子形状が不定形であり、40個数%以上がロック型氷砂糖形状及び/又は牡蠣殻形状の粒子であり、形状係数(SF−1)が140〜250、その分布幅(δ)が60以下である不定形フェライトキャリアが記載されている。   Further, in Patent Document 3 (Japanese Patent Laid-Open No. 2006-235460), the particle shape is indefinite, and 40% by number or more is a rock-type rock sugar shape and / or oyster shell shape particle, and the shape factor (SF− 1) is 140 to 250, and an irregular ferrite carrier having a distribution width (δ) of 60 or less is described.

特開平08−22150号公報Japanese Patent Application Laid-Open No. 08-22150 特開2009−244573号公報JP 2009-244573 A 特開2006−235460号公報JP 2006-235460 A

しかし、これら特許文献1〜3に用いられるフェライト粒子は、その磁気的な特性と物理的な特性に注目し、間接的に機能性粉体とのハンドリング性を高めるものではない。   However, the ferrite particles used in Patent Documents 1 to 3 pay attention to the magnetic characteristics and physical characteristics, and do not indirectly improve the handleability with the functional powder.

このように機能性粉体にフェライト粒子をメディアとして混合することにより、フェライト粒子の磁気的な特性と物理的な特性を用いて間接的にハンドリング性を高めるフェライト粒子の提案はあまりなされていない。   Thus, there have not been many proposals for ferrite particles that indirectly improve handling by using the magnetic properties and physical properties of the ferrite particles by mixing the ferrite particles with the functional powder as a medium.

従って、本発明の目的は、機能性粉体にフェライト粒子をメディアとして混合することにより、フェライト粒子の磁気的な特性と物理的な特性を用いて間接的にハンドリング性を高める機能性粉体輸送用フェライト粒子を提供することにある。   Therefore, the object of the present invention is to transport the functional powder indirectly by using the magnetic and physical properties of the ferrite particles by mixing the ferrite particles as a medium with the functional powder. It is to provide ferrite particles for use.

本発明者らは、上記のような課題を解決すべく鋭意検討した結果、特定の組成を持つフェライト粒子であって、かつ該フェライト粒子の平均粒径が一定範囲とすることにより上記目的が達成し得ることを知見し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have achieved the above object by providing ferrite particles having a specific composition and having an average particle diameter of the ferrite particles within a certain range. It has been found that this is possible, and the present invention has been achieved.

すなわち、本発明は、フェライト粒子の組成が下記式(1)で表され、該フェライト粒子の平均粒径が200〜3000μmであり、水銀ポロシメーターによって測定される該フェライト粒子のピーク細孔径が10〜200μmであることを特徴とする機能性粉体輸送用フェライト粒子を提供するものである。 That is, in the present invention, the composition of the ferrite particles is represented by the following formula (1), the average particle diameter of the ferrite particles is 200 to 3000 μm, and the peak pore diameter of the ferrite particles measured by a mercury porosimeter is 10 to 10 μm. The present invention provides a ferrite particle for transporting a functional powder characterized by being 200 μm .

本発明に係る上記フェライト粒子は、式(1)で表され、式(1)中の(MnO)及び/又(MgO)の一部がSrOで置換され、そのSrOの置換量が、0.1〜10モル%であることが望ましい。   The ferrite particles according to the present invention are represented by the formula (1), and a part of (MnO) and / or (MgO) in the formula (1) is substituted with SrO. 1-10 mol% is desirable.

本発明に係る上記フェライト粒子は、安息角が10〜20°あることが望ましい。   The ferrite particles according to the present invention preferably have an angle of repose of 10 to 20 °.

本発明に係る上記フェライト粒子は、フェライト粒子の3K・1000/4π・A/m印加時の磁化が35〜85Am/kgであることが望ましい。 The ferrite particles according to the present invention preferably have a ferrite particle magnetization of 35 to 85 Am 2 / kg when 3K · 1000 / 4π · A / m is applied.

また、本発明は、上記フェライト粒子の表面に樹脂を被覆した樹脂被覆フェライト粒子を提供するものである。   The present invention also provides resin-coated ferrite particles in which the surface of the ferrite particles is coated with a resin.

また、本発明は、上記フェライト粒子又は上記樹脂被覆フェライト粒子と機能性粉体とからなることを特徴とする混合物を提供するものである。   The present invention also provides a mixture comprising the ferrite particles or the resin-coated ferrite particles and a functional powder.

本発明に係る上記混合物において、上記機能性粉体の平均粒径が15〜1000μmであることが望ましい。   In the above mixture according to the present invention, the functional powder preferably has an average particle size of 15 to 1000 μm.

また、本発明に係る輸送方法は、上記混合物を用いたことを特徴とする粉体輸送方法を提供するものである。   Moreover, the transport method according to the present invention provides a powder transport method characterized by using the above mixture.

本発明に係る上記粉体輸送方法は、上記混合物からフェライト粒子を除去し、除去したフェライト粒子を再度機能性粉体と混合し使用することが望ましい。   In the method for transporting powder according to the present invention, it is desirable to remove ferrite particles from the mixture and to use the removed ferrite particles again mixed with functional powder.

また、本発明は、上記フェライト粒子又は上記樹脂被覆フェライト粒子を用いた磁気的特性及び/又は粉体的特性を利用したことを特徴する粉体保持方法を提供するものである。   The present invention also provides a powder holding method characterized by utilizing the magnetic properties and / or powder properties using the ferrite particles or the resin-coated ferrite particles.

本発明に係る機能性粉体輸送用フェライト粒子は、特定の組成を持つフェライト粒子であって、該フェライト粒子の平均粒径が200〜3000μmであり、水銀ポロシメーターによって測定されるフェライト粒子のピーク細孔径が10〜200μmであるため、機能性粉体にフェライト粒子をメディアとして混合することにより、フェライト粒子の磁気的な特性と物理的な特性を用いて間接的にハンドリング性が優れたものとなる。 The ferrite particles for transporting functional powder according to the present invention are ferrite particles having a specific composition, and the ferrite particles have an average particle size of 200 to 3000 μm, and the ferrite particles have a peak fineness measured by a mercury porosimeter. Since the pore diameter is 10 to 200 μm, by mixing the ferrite particles with the functional powder as a medium, the handling properties are indirectly improved by using the magnetic properties and physical properties of the ferrite particles. .

図1は、実施例6により得られたフェライト粒子の走査電子顕微鏡写真(×35)である。1 is a scanning electron micrograph (× 35) of the ferrite particles obtained in Example 6. FIG.

以下、本発明を実施するための形態について説明する。
<本発明に係る機能性粉体輸送用フェライト粒子及び樹脂被覆フェライト粒子>
Hereinafter, modes for carrying out the present invention will be described.
<Functional powder transport ferrite particles and resin-coated ferrite particles according to the present invention>

本発明における上記フェライト粒子は、一般式として下記式(1)で示される。   The ferrite particles in the present invention are represented by the following formula (1) as a general formula.

ここで、xが35モル%未満であり、yが15モル%を超えるような組成の場合、フェライトの磁化を高めることができず、磁場による混合物の制御が難しくなるため好ましくない。また、xが45モル%を超え、yが5モル%未満になると、磁化を高めることはできるが、本焼成を行う際にフェライト粒子内部まで十分熱が伝わらず、1粒子の磁力が大きく異なる可能性が高いため好ましくない。Mnを上記範囲で含有することによって、低磁場側の磁化を高くすることができ、本焼成における炉出の際の再酸化を防止する効果が期待できる。   Here, when the composition is such that x is less than 35 mol% and y exceeds 15 mol%, the magnetization of the ferrite cannot be increased, and it becomes difficult to control the mixture by a magnetic field, which is not preferable. Further, when x exceeds 45 mol% and y is less than 5 mol%, the magnetization can be increased, but heat is not sufficiently transferred to the inside of the ferrite particles during the main firing, and the magnetic force of one particle is greatly different. Since possibility is high, it is not preferable. By containing Mn in the above range, the magnetization on the low magnetic field side can be increased, and the effect of preventing reoxidation upon exiting from the furnace in the main firing can be expected.

所望の磁気特性を得るために、また経時でも特性が安定したフェライトを得るためには、z=40mol%以上であることが好ましい。この場合、MnO及びMgOの量にもよるが、重量比としてはFeが50重量%以上になる。 In order to obtain desired magnetic characteristics and to obtain ferrite having stable characteristics over time, z = 40 mol% or more is preferable. In this case, although depending on the amounts of MnO and MgO, the weight ratio of Fe 2 O 3 is 50% by weight or more.

本発明に係る上記フェライト粒子は、式(1)で表され、式(1)中の(MnO)及び/又(MgO)の一部がSrOで置換され、そのSrOの置換量が0.1〜10モル%であることが望ましい。SrOは抵抗や表面性の調整に寄与するだけでなく、含有することでフェライト粒子の帯電能力を高める効果も得られる。また、機能性粉体と混合して使用する際、混合物に対して磁場を印加し、その後磁場を取り除いた際にその保磁力によって混合物が型崩れしにくくさせることができる。   The ferrite particles according to the present invention are represented by the formula (1), and a part of (MnO) and / or (MgO) in the formula (1) is substituted with SrO, and the substitution amount of the SrO is 0.1. It is desirable that it is 10 mol%. SrO not only contributes to the adjustment of resistance and surface properties, but also contains the effect of increasing the charging ability of the ferrite particles. Moreover, when mixing and using with functional powder, a magnetic field is applied with respect to a mixture, and when a magnetic field is removed after that, a mixture can make it hard to lose a shape with the coercive force.

SrOの置換量が0.1モル%未満であると、上述のようなSrOを含有させる効果が得られにくいため好ましくない。SrOの置換量が10モル%を超えると、残留磁化や保磁力が上がり、フェライト粒子の流動性が悪くなるため機能性粉体との混合性が悪くなるため好ましくない。SrOの量は0.1〜5モル%が好ましく、より好ましくは0.3〜2.5モル%である。   If the amount of substitution of SrO is less than 0.1 mol%, it is difficult to obtain the effect of containing SrO as described above, such being undesirable. If the substitution amount of SrO exceeds 10 mol%, the residual magnetization and coercive force are increased, and the fluidity of the ferrite particles is deteriorated, so that the miscibility with the functional powder is deteriorated. The amount of SrO is preferably from 0.1 to 5 mol%, more preferably from 0.3 to 2.5 mol%.

(Fe、Mn、Mg及びSrの含有量)
これらFe、Mn、Mg及びSrの含有量は、下記によって測定される。
フェライト粒子0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS−1000IV)を用いてFe、Mn、Mg及びSrの含有量を測定した。
(Contents of Fe, Mn, Mg and Sr)
The contents of these Fe, Mn, Mg and Sr are measured by the following.
0.2 g of ferrite particles are weighed, 60 ml of pure water added with 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid is heated to prepare an aqueous solution in which ferrite particles are completely dissolved, and an ICP analyzer (ICPS manufactured by Shimadzu Corporation) is prepared. -1000IV) was used to measure the contents of Fe, Mn, Mg and Sr.

本発明に係る上記フェライト粒子では、平均粒径は200〜3000μmであることが必要である。フェライト粒子の平均粒径がこの範囲にあることにより、機能性粉体と混合及び/又は分離する際に、フェライト粒子の磁気的な特性と物理的な特性を用いて間接的にハンドリング性に優れたものとすることができる。この平均粒径は、下記の円相当径によって求められる。   In the ferrite particles according to the present invention, the average particle size needs to be 200 to 3000 μm. Due to the average particle size of the ferrite particles being in this range, when mixed and / or separated from the functional powder, it is indirectly excellent in handling properties by using the magnetic properties and physical properties of the ferrite particles. Can be. This average particle diameter is determined by the following equivalent circle diameter.

フェライト粒子の平均粒径が200μm未満では、磁場印加によって機能性粉体を分離する際、フェライト粒子が凝集してしまい機能性粉体と分離できなくなる可能性がある。また、フェライト粒子の平均粒径が3000μmを超えると、フェライト粒子同士の空隙が大きくなりすぎ、磁界を印加した状態で機能性粉体とフェライト粒子の混合物を磁界によって搬送しようとする際に機能性粉体が脱離してしまい、十分な機能性粉体の搬送性を確保できなくなる恐れがある。   If the average particle size of the ferrite particles is less than 200 μm, when the functional powder is separated by applying a magnetic field, the ferrite particles may be aggregated and cannot be separated from the functional powder. Further, when the average particle diameter of the ferrite particles exceeds 3000 μm, the gap between the ferrite particles becomes too large, and the functionality when the mixture of the functional powder and the ferrite particles is conveyed by the magnetic field in a state where a magnetic field is applied. There is a possibility that the powder will be detached and sufficient transportability of the functional powder cannot be secured.

本発明に係る上記フェライト粒子では、水銀ポロシメーターによって測定されるフェライト粒子のピーク細孔径が10〜200μmであることが望ましい。   In the ferrite particles according to the present invention, it is desirable that the peak pore diameter of the ferrite particles measured by a mercury porosimeter is 10 to 200 μm.

フェライト粒子のピーク細孔径が200μmを超えると、磁場を印加してフェライト粒子と機能性粉体の混合物について流動性や成形性、搬送性の制御を行う際に、機能性粉体がフェライト粒子により十分ホールドできず、ハンドリング性が劣ってしまう可能性がある。一方、本発明に係るフェライト粒子の平均粒径ではピーク細孔径が10μmを下回ることはない。   When the peak pore diameter of the ferrite particles exceeds 200 μm, when the magnetic field is applied to control the fluidity, moldability, and transportability of the mixture of the ferrite particles and the functional powder, the functional powder is controlled by the ferrite particles. There is a possibility that handling cannot be sufficiently performed and handling properties are deteriorated. On the other hand, the average pore diameter of the ferrite particles according to the present invention does not make the peak pore diameter less than 10 μm.

(フェライト粒子の細孔容積・ピーク細孔径)
このフェライト粒子の細孔容積の測定は、次のようにして行われる。すなわち、水銀ポロシメーターPascal140とPascal240(ThermoFisher Scientific社製)を用いて測定した。ディラトメータはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメータ内に入れた。Pascal140で脱気後、水銀を充填し低圧領域(0〜400Kpa)を測定し、フェライト粒子の細孔容積を求めた。また、細孔径を求める際には装置付属の制御・解析兼用ソフトウェア PASCAL 140/240/440を用い、低圧側のピーク細孔径を細孔径とし、水銀の表面張力を480dyn/cm、接触角を141.3°として計算した。
(Pore volume and peak pore diameter of ferrite particles)
Measurement of the pore volume of the ferrite particles is performed as follows. That is, it measured using mercury porosimeter Pascal140 and Pascal240 (ThermoFisher Scientific company make). CD3P (for powder) was used as the dilatometer, and the sample was put in a commercially available gelatin capsule having a plurality of holes and placed in the dilatometer. After degassing with Pascal 140, mercury was filled and the low pressure region (0 to 400 Kpa) was measured to determine the pore volume of the ferrite particles. In addition, when the pore diameter is obtained, the control / analysis combined use software PASCAL 140/240/440 attached to the apparatus is used, the peak pore diameter on the low pressure side is defined as the pore diameter, the surface tension of mercury is 480 dyn / cm, and the contact angle is 141. Calculated as 3 °.

本発明に係る上記フェライト粒子は、その形状係数SF−2が100〜180であることが望ましい。形状係数SF−2は、完全に真球の場合100になるので、100未満になることはない。形状係数SF−2が180を超えると、粒子形状が悪化する傾向にあり、フェライト粒子と機能性粉体の混合物の流動性を悪化させる原因となるため好ましくない。   The ferrite particles according to the present invention preferably have a shape factor SF-2 of 100 to 180. The shape factor SF-2 is 100 in the case of a perfect sphere, so it does not become less than 100. When the shape factor SF-2 exceeds 180, the particle shape tends to be deteriorated, which causes the fluidity of the mixture of ferrite particles and functional powder to deteriorate, which is not preferable.

(形状係数SF−2)
形状係数SF−2(真円度)は、フェライト粒子の投影周囲長を2乗した値をフェライト粒子の投影面積で割った値に4πで除し、さらに100倍して得られる数値であり、キャリアの形状が球に近いほど100に近い値になる。この形状係数SF−2(真円度)は、下記のように測定される。形状係数SF−2は、1粒子毎に算出し、100粒子の平均値をフェライト粒子の形状係数SF−2とした。
(Shape factor SF-2)
The shape factor SF-2 (roundness) is a numerical value obtained by dividing the value obtained by squaring the projected circumference of the ferrite particles by the value obtained by dividing the value by the projected area of the ferrite particles by 4π, and further multiplying by 100. The closer the carrier shape is to a sphere, the closer to 100. The shape factor SF-2 (roundness) is measured as follows. The shape factor SF-2 was calculated for each particle, and the average value of 100 particles was defined as the ferrite particle shape factor SF-2.

この粒子の形状係数SF−2は、FE―SEM(日立ハイテクノロジーズ社製SU−8020)を用いてフェライト粒子をLM(L)モード、加速電圧1KV、倍率35倍視野にて撮影し、その画像情報を、インターフェースを介してメディアサイバネティクス社製画像解析ソフト(Image−Pro PLUS)に導入して解析を行い粒子ごとの(投影)周囲長を求め、下記式より算出し得られた値である。   The shape factor SF-2 of this particle was obtained by photographing a ferrite particle using FE-SEM (SU-8020 manufactured by Hitachi High-Technologies Corporation) in the LM (L) mode, an acceleration voltage of 1 KV, and a field of magnification of 35 times. The information is introduced into image analysis software (Image-Pro PLUS) manufactured by Media Cybernetics through an interface and analyzed to obtain a (projection) perimeter for each particle, which is a value obtained from the following equation.

(平均粒径)
上記で得られたフェライト粒子の(投影)面積から1粒子毎に円相当径を算出し、100粒子の平均値を平均粒径とした。
(Average particle size)
The equivalent circle diameter was calculated for each particle from the (projected) area of the ferrite particles obtained above, and the average value of 100 particles was defined as the average particle diameter.

本発明に係る上記フェライト粒子は、3K・1000/4π・A/m印加時の磁化が35〜85Am/kgであることが好ましい。 The ferrite particles according to the present invention preferably have a magnetization of 35 to 85 Am 2 / kg when 3K · 1000 / 4π · A / m is applied.

フェライト粒子の3K・1000/4π・A/m印加時の磁化が、35Am/kg未満であると、磁力線に沿ってフェライト粒子を整列させることができず機能性粉体を搬送することが難しくなる。一方、本特許に記載の組成では85Am/kgを超えることはない。 If the magnetization of the ferrite particles is less than 35 Am 2 / kg when 3K · 1000 / 4π · A / m is applied, the ferrite particles cannot be aligned along the lines of magnetic force and it is difficult to transport the functional powder. Become. On the other hand, the composition described in this patent does not exceed 85 Am 2 / kg.

(磁気特性)
この磁化の測定は、積分型B−HトレーサーBHU−60型(株式会社理研電子製)を使用して測定した。電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを入れる。この場合、試料は4πIコイルに入れる。電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、H出力をX軸に、4πIコイルの出力をY軸に、ヒステリシスループを記録紙に描く。ここで測定条件としては、試料充填量:約1g、試料充填セル:内径7mmφ±0.02mm、高さ10mm±0.1mm、4πIコイル:巻数30回にて測定した。
(Magnetic properties)
This magnetization was measured using an integral BH tracer BHU-60 type (manufactured by Riken Denshi Co., Ltd.). A magnetic field measuring H coil and a magnetization measuring 4πI coil are placed between the electromagnets. In this case, the sample is placed in a 4πI coil. The outputs of the H coil and the 4πI coil whose magnetic field H is changed by changing the current of the electromagnet are respectively integrated, and the H output is drawn on the X axis, the output of the 4πI coil is drawn on the Y axis, and a hysteresis loop is drawn on the recording paper. As measurement conditions, sample filling amount: about 1 g, sample filling cell: inner diameter 7 mmφ ± 0.02 mm, height 10 mm ± 0.1 mm, 4πI coil: measured with 30 turns.

本発明に係る上記フェライト粒子は、安息角が15〜25°であることが望ましい。   The ferrite particles according to the present invention preferably have an angle of repose of 15 to 25 °.

フェライト粒子の安息角が25°よりも大きいと流動性が良くないことを示し、機能性粉体と混合して使用する際に十分な搬送性が得られないことがある。また、フェライト粒子の安息角が15°よりも小さいと流動性が高すぎることを示し、機能性粉体を搬送するためのフェライト粒子の混合量が多くなり、搬送効率が悪くなることがある。   When the repose angle of the ferrite particles is larger than 25 °, it indicates that the fluidity is not good, and sufficient transportability may not be obtained when mixed with functional powder. Further, if the repose angle of the ferrite particles is smaller than 15 °, it indicates that the fluidity is too high, and the mixing amount of the ferrite particles for conveying the functional powder increases, and the conveyance efficiency may deteriorate.

本発明に係る上記フェライト粒子は、崩壊角が10〜20°であることが望ましい。   The ferrite particles according to the present invention desirably have a collapse angle of 10 to 20 °.

フェライト粒子の崩壊角が20°よりも大きいと流動性が良くないことを示し、機能性粉体と混合して使用する際に十分な搬送性が得られないことがある。また、フェライト粒子の崩壊角が10°よりも小さいと流動性が高すぎることを示し、機能性粉体と混合して使用する際に、機能性粉体を搬送するためのフェライト粒子の混合量が多くなり、搬送効率が悪くなることがある。   If the decay angle of the ferrite particles is larger than 20 °, it indicates that the fluidity is not good, and sufficient transportability may not be obtained when mixed with the functional powder. Further, when the decay angle of the ferrite particles is smaller than 10 °, it indicates that the fluidity is too high, and the amount of the ferrite particles for conveying the functional powder when used by mixing with the functional powder. May increase and the conveyance efficiency may deteriorate.

(安息角及び崩壊角)
これら安息角及び崩壊角は、JIS 9301−2−2に準拠して測定を行った。
(Repose angle and collapse angle)
These repose angles and collapse angles were measured according to JIS 9301-2-2.

本発明に係る機能性粉体輸送用フェライト粒子は、機能性粉体と混合・搬送・成型時のさらなるハンドリング性を向上するために、上記フェライト粒子の表面に被覆樹脂により表面被覆し、樹脂被覆フェライト粒子として使用することが望ましい。機能性粉体に合った表面被覆を行うことで、所望とする粉体特性とすることができる。   The ferrite particles for transporting the functional powder according to the present invention are coated with a coating resin on the surface of the ferrite particles in order to improve further handling properties at the time of mixing, transporting and molding with the functional powder. It is desirable to use it as ferrite particles. By performing surface coating suitable for the functional powder, desired powder characteristics can be obtained.

被覆樹脂は特に制限されない。例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル−スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性した変性シリコーン樹脂等が挙げられる。使用中の機械的ストレスによる樹脂の脱離を考慮すると、熱硬化性樹脂が好ましく用いられる。具体的な熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂及びそれらを含有する樹脂等が挙げられる。樹脂の被覆量は、フェライト粒子100重量部に対して、0.5〜5.0重量部が好ましい。   The coating resin is not particularly limited. For example, fluorine resin, acrylic resin, epoxy resin, polyamide resin, polyamideimide resin, polyester resin, unsaturated polyester resin, urea resin, melamine resin, alkyd resin, phenol resin, fluorine acrylic resin, acrylic-styrene resin, silicone resin, Alternatively, modified silicone resins modified with resins such as acrylic resin, polyester resin, epoxy resin, polyamide resin, polyamideimide resin, alkyd resin, urethane resin, and fluororesin can be used. In view of the detachment of the resin due to mechanical stress during use, a thermosetting resin is preferably used. Specific examples of thermosetting resins include epoxy resins, phenol resins, silicone resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and resins containing them. The coating amount of the resin is preferably 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the ferrite particles.

また、被覆樹脂中には、帯電制御剤を含有させることができる。帯電制御剤の例としては、トナー用に一般的に用いられる各種の帯電制御剤や、各種シランカップリング剤が挙げられる。これは多量の樹脂を被覆した場合、帯電付与能力が低下することがあるが、各種の帯電制御剤やシランカップリング剤を添加することにより、コントロールできるためである。使用できる帯電制御剤やカップリング剤の種類は特に限定されないが、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等の帯電制御剤、アミノシランカップリング剤やフッ素系シランカップリング剤等が好ましい。   In addition, the coating resin can contain a charge control agent. Examples of the charge control agent include various charge control agents generally used for toners and various silane coupling agents. This is because, when a large amount of resin is coated, the charge imparting ability may be reduced, but it can be controlled by adding various charge control agents and silane coupling agents. The types of charge control agents and coupling agents that can be used are not particularly limited, but charge control agents such as nigrosine dyes, quaternary ammonium salts, organometallic complexes, and metal-containing monoazo dyes, aminosilane coupling agents, and fluorine-based silane couplings. An agent or the like is preferable.

<本発明に係る機能性粉体輸送用フェライト粒子の製造方法>
本発明に係る機能性粉体輸送用フェライト粒子の製造方法について説明する。
<Method for Producing Ferrite Particles for Transporting Functional Powder According to the Present Invention>
A method for producing ferrite particles for transporting functional powder according to the present invention will be described.

本発明に係る機能性粉体輸送用フェライト粒子の製造方法は、まず、原材料を適量秤量した後、ボ−ルミル又は振動ミル等で0.5時間以上、好ましくは1〜20時間粉砕混合する。原料は特に制限されないが、上述した元素を含有する組成となるように選択することが望ましい。   In the method for producing ferrite particles for transporting functional powder according to the present invention, first, an appropriate amount of raw materials is weighed, and then pulverized and mixed in a ball mill or vibration mill for 0.5 hours or more, preferably 1 to 20 hours. The raw material is not particularly limited, but is preferably selected so as to have a composition containing the above-described elements.

このようにして得られた粉砕物を、加圧成型機等を用いてペレット化した後、700〜1300℃で仮焼成する。加圧成型機を使用せずに、粉砕した後、水を加えてスラリー化し、スプレードライヤーを用いて粒状化しても良い。仮焼成後さらにボ−ルミル又は振動ミル等で粉砕した後、バインダー等を添加し、ヘンシェルミキサー等の乾式混合装置を用いて造粒を行う。   The pulverized product thus obtained is pelletized using a pressure molding machine or the like and then calcined at 700 to 1300 ° C. You may grind | pulverize without using a pressure molding machine, add water to make a slurry, and granulate using a spray dryer. After calcination, the mixture is further pulverized with a ball mill or a vibration mill, and then a binder is added and granulated using a dry mixing apparatus such as a Henschel mixer.

その後、得られた造粒物を脱バインダー処理行った後、酸素濃度の制御された雰囲気下で、800〜1500℃で1〜24時間保持し、本焼成を行う。その際、ロータリー式電気炉やバッチ式電気炉又は連続式電気炉等を使用し、焼成時の雰囲気も、窒素等の不活性ガスや水素や一酸化炭素等の還元性ガスを打ち込んで、酸素濃度の制御を行っても良い。   Thereafter, the obtained granulated material is subjected to a binder removal treatment, and then held at 800 to 1500 ° C. for 1 to 24 hours in an atmosphere in which the oxygen concentration is controlled to perform main baking. At that time, a rotary electric furnace, a batch electric furnace or a continuous electric furnace is used, and an atmosphere at the time of firing is also injected with an inert gas such as nitrogen or a reducing gas such as hydrogen or carbon monoxide. The concentration may be controlled.

このようにして得られた焼成物を、分級する。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法、各種篩を使った分級等を用いて所望の粒径に粒度調整する。   The fired product thus obtained is classified. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, classification using various sieves, or the like.

上述のように、フェライト粒子を作製した後、樹脂により表面を被覆してもよい。とりわけ粉体特性はフェライト粒子表面に存在する材料や性状に影響されることが多い。従って、適当な樹脂を表面被覆することによって、所望とする粉体特性に調整することができる。被覆する方法としては、公知の方法、例えば刷毛塗り法、乾式法、流動床によるスプレードライ方式、ロータリードライ方式、万能攪拌機による液浸乾燥法等により被覆することができる。被覆率を向上させるためには、流動床による方法が好ましい。樹脂被覆後、焼き付けする場合には、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。UV硬化樹脂を用いる場合は、UV加熱器を用いる。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げる必要がある。   As described above, after producing the ferrite particles, the surface may be covered with a resin. In particular, the powder characteristics are often influenced by the materials and properties existing on the surface of the ferrite particles. Therefore, the desired powder characteristics can be adjusted by coating the surface with an appropriate resin. As a coating method, the coating can be performed by a known method such as a brush coating method, a dry method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, or the like. In order to improve the coverage, a fluidized bed method is preferred. In the case of baking after resin coating, either an external heating method or an internal heating method may be used. For example, a stationary or fluid electric furnace, a rotary electric furnace, a burner furnace, or microwave baking may be used. When a UV curable resin is used, a UV heater is used. Although the baking temperature varies depending on the resin to be used, a temperature equal to or higher than the melting point or the glass transition point is necessary. For a thermosetting resin or a condensation-crosslinking resin, it is necessary to raise the temperature to a point where the curing proceeds sufficiently.

本発明に係る混合物は、このフェライト粒子又はこのフェライト粒子に樹脂を被覆した樹脂フェライト粒子と機能性粉体とからなる。   The mixture according to the present invention comprises the ferrite particles or resin ferrite particles obtained by coating the ferrite particles with a resin and functional powder.

機能性粉体としては、各種金属粉、各種無機化合物粉(水酸化物、炭酸塩、金属酸化物、硫化物、窒化物等)、樹脂粉、又はこれらの混合粉等が挙げられ、電子写真現像剤用トナー、回路形成用トナー、3Dプリンター用粉体(造形用原料粉体)、粉体塗装用粉体等の用途に用いられる。   Examples of functional powders include various metal powders, various inorganic compound powders (hydroxides, carbonates, metal oxides, sulfides, nitrides, etc.), resin powders, or mixed powders thereof. It is used in applications such as developer toner, circuit forming toner, 3D printer powder (raw material powder), powder coating powder, and the like.

機能性粉体の平均粒径は15〜1000μmが望ましく、機能性粉体の平均粒径が15μm未満では、粒径が小さすぎ、大量の機能性粉体を大面積に効率よく粉体を搬送する用途には向かない、1000μmを超えると、粒径が大きすぎ、フェライト粒子と機能性粉体の混合物を磁界によって搬送するシステムには適応しづらい。   The average particle size of the functional powder is desirably 15 to 1000 μm. If the average particle size of the functional powder is less than 15 μm, the particle size is too small, and a large amount of the functional powder is efficiently conveyed over a large area. If it exceeds 1000 μm, the particle size is too large, and it is difficult to adapt to a system that conveys a mixture of ferrite particles and functional powder by a magnetic field.

本発明に係る粉体輸送方法は、上記した混合物を用いることを特徴とするものである。望ましくは、上記混合物からフェライト粒子を除去し、除去したフェライト粒子を再度機能性と混合し使用する。   The powder transport method according to the present invention is characterized by using the above-mentioned mixture. Desirably, the ferrite particles are removed from the mixture, and the removed ferrite particles are mixed with the functionality again and used.

本発明に係る粉体保持方法は、フェライト粒子又は樹脂被覆フェライト粒子を用いた磁気的特性及び/又は粉体的特性を利用したことを特徴する。   The powder holding method according to the present invention is characterized by utilizing magnetic properties and / or powder properties using ferrite particles or resin-coated ferrite particles.

以下、実施例等に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

[実施例1]
原料としてFe:51モル%、Mn:13モル%、Mg(OH):9モル%及びSrCO:1モル%の割合で仕込み、ヘンシェルミキサーで1時間粉砕混合した。このようにして得られた粉砕物を、ローラコンバクターを用いてペレット化した後、大気中、1000℃で5時間ロータリーキルンを用いて仮焼成を行った。
[Example 1]
As raw materials, Fe 2 O 3 : 51 mol%, Mn 3 O 4 : 13 mol%, Mg (OH) 2 : 9 mol% and SrCO 3 : 1 mol% were charged, and pulverized and mixed for 1 hour with a Henschel mixer. The pulverized material thus obtained was pelletized using a roller compactor, and then pre-baked using a rotary kiln at 1000 ° C. for 5 hours in the air.

仮焼成後さらにボ−ルミルで粉砕した。粉砕物の平均粒径は3.54μmであった。この仮焼粉3kgに対してポリビニルアルコール(10重量%水溶液)500gを加え、ヘンシェルミキサーを用いて15分混合、造粒を行った。   After calcination, it was further pulverized by a ball mill. The average particle size of the pulverized product was 3.54 μm. 500 g of polyvinyl alcohol (10% by weight aqueous solution) was added to 3 kg of the calcined powder, and mixed and granulated using a Henschel mixer for 15 minutes.

その後、得られた造粒物を900℃で脱バインダー処理を行い、有機物を除去し、次いで、酸素濃度0容量%の雰囲気下で、電気炉にて1280℃で、4時間保持し、本焼成を行った。その後、焼成物を解砕し、さらに分級して粒度調整を行い、磁力選鉱により低磁力品を分別し、フェライト粒子を得た。   Thereafter, the obtained granulated material is subjected to a binder removal treatment at 900 ° C. to remove organic substances, and then held in an electric furnace at 1280 ° C. for 4 hours in an atmosphere having an oxygen concentration of 0% by volume, followed by firing. Went. Thereafter, the fired product was crushed, further classified to adjust the particle size, and the low-magnetism product was separated by magnetic separation to obtain ferrite particles.

[実施例2]
本焼成の温度を1300℃とした以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 2]
Ferrite particles were obtained in the same manner as in Example 1 except that the temperature of the main firing was 1300 ° C.

[実施例3]
本焼成温度を1180℃とした以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 3]
Ferrite particles were obtained in the same manner as in Example 1 except that the main firing temperature was 1180 ° C.

[実施例4]
本焼成時の雰囲気を大気中とした以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 4]
Ferrite particles were obtained in the same manner as in Example 1 except that the atmosphere during the main firing was in the air.

[実施例5]
分級条件を変更した以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 5]
Ferrite particles were obtained in the same manner as in Example 1 except that the classification conditions were changed.

[実施例6]
分級条件を変更した以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 6]
Ferrite particles were obtained in the same manner as in Example 1 except that the classification conditions were changed.

[実施例7]
原料としてFe:50モル%、Mn:11.7モル%及びMg(OH):15モル%の割合で仕込んだ以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 7]
Ferrite particles were obtained in the same manner as in Example 1, except that Fe 2 O 3 : 50 mol%, Mn 3 O 4 : 11.7 mol% and Mg (OH) 2 : 15 mol% were charged as raw materials. It was.

[実施例8]
原料としてFe:50モル%、Mn:15モル%及びMg(OH):5.1モル%の割合で仕込んだ以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 8]
Ferrite particles were obtained in the same manner as in Example 1 except that Fe 2 O 3 : 50 mol%, Mn 3 O 4 : 15 mol% and Mg (OH) 2 : 5.1 mol% were charged as raw materials. It was.

[実施例9]
原料としてFe:60モル%、Mn:11.7モル%、Mg(OH):5モル%及びSrCO:2モル%の割合で仕込み、本焼成を大気中で行った以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 9]
As raw materials, Fe 2 O 3 : 60 mol%, Mn 3 O 4 : 11.7 mol%, Mg (OH) 2 : 5 mol% and SrCO 3 : 2 mol% were charged, and the main calcination was performed in the atmosphere. Except for the above, ferrite particles were obtained in the same manner as in Example 1.

[実施例10]
原料としてFe:40モル%、Mn:15モル%及びMg(OH):15モル%の割合で仕込んだ以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 10]
Ferrite particles were obtained in the same manner as in Example 1 except that Fe 2 O 3 : 40 mol%, Mn 3 O 4 : 15 mol% and Mg (OH) 2 : 15 mol% were charged as raw materials.

[実施例11]
原料としてFe:51モル%、Mn:13モル%及びMg(OH):9モル%の割合で仕込んだ以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 11]
Ferrite particles were obtained in the same manner as in Example 1, except that Fe 2 O 3 : 51 mol%, Mn 3 O 4 : 13 mol% and Mg (OH) 2 : 9 mol% were charged as raw materials.

[実施例12]
原料としてFe:51モル%、Mn:13モル%、Mg(OH):9モル%及びSrCO:2モル%の割合で仕込み、本焼成を大気中で行った以外は、実施例1と同様にしてフェライト粒子を得た。
[Example 12]
Fe 2 O 3 : 51 mol%, Mn 3 O 4 : 13 mol%, Mg (OH) 2 : 9 mol% and SrCO 3 : 2 mol% were charged as raw materials, and the main firing was performed in the air. Obtained ferrite particles in the same manner as in Example 1.

[実施例13]
実施例1で得られたフェライト粒子にアクリル樹脂(三菱レイヨン製LR−269)を用いてフェライト粒子に対して0.25重量%となるように万能混合攪拌機にて樹脂被覆処理を行った。使用した樹脂溶液は樹脂固形分が20重量%となるようにトルエンで希釈したものを使用した。樹脂被覆後、熱風乾燥器にて150℃にて2時間焼き付けを行い、樹脂被覆フェライト粒子を得た。
[Example 13]
The ferrite particles obtained in Example 1 were subjected to a resin coating treatment with an all-purpose mixing stirrer using an acrylic resin (LR-269 manufactured by Mitsubishi Rayon) so that the ferrite particles would be 0.25% by weight. The resin solution used was diluted with toluene so that the resin solid content was 20% by weight. After resin coating, baking was performed at 150 ° C. for 2 hours in a hot air dryer to obtain resin-coated ferrite particles.

[比較例1]
仮焼粉を湿式ビーズミル及びスプレードライヤーで粉砕及び造粒し、かつ仮焼粉20kgに対してポリビニルアルコール(10重量%水溶液)2000gを加え、その後、650℃で脱バインダー処理した以外は、実施例1と同様にしてフェライト粒子を得た。なお、粉砕後のスラリー中の固形分は50重量%であった。
[Comparative Example 1]
Example except that the calcined powder was pulverized and granulated with a wet bead mill and a spray dryer, and 2000 g of polyvinyl alcohol (10% by weight aqueous solution) was added to 20 kg of the calcined powder, and then the binder was removed at 650 ° C. In the same manner as in Example 1, ferrite particles were obtained. The solid content in the slurry after pulverization was 50% by weight.

[比較例2]
1050℃で脱バインダー処理し、さらに本焼成を溶射で行った以外は、比較例1と同様にしてフェライト粒子を得た。
[Comparative Example 2]
Ferrite particles were obtained in the same manner as in Comparative Example 1 except that the binder was removed at 1050 ° C. and the main firing was performed by thermal spraying.

[比較例3]
仮焼成後さらにボ−ルミルで粉砕した粉砕物の平均粒径を105.87μmとし、ポリビニルアルコールを添加せず、ロールクラッシャーで粉砕を行い、脱バインダー処理を行わなかった以外は、実施例1と同様にしてフェライト粒子を得た。
[Comparative Example 3]
Example 1 except that the average particle size of the pulverized product further pulverized by a ball mill after pre-baking was 105.87 μm, polyvinyl alcohol was not added, pulverization was performed with a roll crusher, and no debinding treatment was performed. Similarly, ferrite particles were obtained.

実施例1〜13及び比較例1〜3の製造条件〔原料仕込、成型装置、仮焼条件(仮焼温度及び仮焼雰囲気)、粉砕後平均粒径、本造粒条件(仮焼後の重量、固形分、PVA量、造粒装置・粉砕装置及び混合時間)、脱バインダー処理、本焼成条件(焼成温度)、焼成雰囲気〕を表1及び2に示す。また、実施例6により得られたフェライト粒子の走査電子顕微鏡写真(×35)を図1に示す。また、実施例1〜12及び比較例1〜3で得られたフェライト粒子の組成、粉体特性(得られた粒子の平均粒径、タップ密度、ピーク細孔径、安息角及び崩壊角)、形状係数(SF−2)及び磁気特性(磁化、保磁力及び残留磁化)を表3に示す。表3中のタップ密度の測定方法を下記に示す。その他の測定方法は上述の通りである。また、ホールド性、搬送性及び分離性の評価を表4に示す。   Production conditions of Examples 1 to 13 and Comparative Examples 1 to 3 [raw material charging, molding apparatus, calcining conditions (calcining temperature and calcining atmosphere), average particle size after pulverization, main granulation conditions (weight after calcining) , Solid content, PVA amount, granulator / pulverizer and mixing time), binder removal treatment, main firing conditions (firing temperature), firing atmosphere] are shown in Tables 1 and 2. Moreover, the scanning electron micrograph (x35) of the ferrite particle obtained by Example 6 is shown in FIG. Also, the composition, powder characteristics (average particle diameter, tap density, peak pore diameter, angle of repose and decay angle) of the ferrite particles obtained in Examples 1-12 and Comparative Examples 1-3, shape Table 3 shows the coefficient (SF-2) and magnetic characteristics (magnetization, coercive force, and remanent magnetization). The method for measuring the tap density in Table 3 is shown below. Other measurement methods are as described above. Table 4 shows the evaluation of holdability, transportability, and separability.

(タップ密度)
JIS Z 2512−2012に準拠して行った。
(Tap density)
This was performed according to JIS Z 2512-2012.

(ホールド性、搬送性及び分離性の評価)
得られたフェライト粒子19.4gと機能性粉体(3M社製グラスバブルズiM16K)0.6gを50ccのガラス瓶に入れて、回転数100rpmのボールミルにて30分間混合した。
(Evaluation of holdability, transportability and separability)
19.4 g of the obtained ferrite particles and 0.6 g of functional powder (Glass Bubbles iM16K manufactured by 3M) were put in a 50 cc glass bottle and mixed for 30 minutes in a ball mill with a rotation speed of 100 rpm.

(ホールド性)
得られた混合物の入ったガラス瓶の下側からNd−Fe−B磁石を近づけ、ガラス瓶に混合物が凝集した状態でガラス瓶の上下を反転させ、ガラス瓶のふたに脱離した機能性粉体を回収しその重量を測定した(回収した機能性粉体の重量が少ないほどホールド性に優れていることを示す。)。
(Holding property)
The Nd-Fe-B magnet is brought close to the bottom of the glass bottle containing the obtained mixture, and the glass bottle is turned upside down with the mixture agglomerated in the glass bottle, and the functional powder detached on the glass bottle lid is recovered. The weight was measured (the smaller the weight of the recovered functional powder, the better the holdability).

(搬送性)
得られた混合物の入ったガラス瓶の横側からNd−Fe−B磁石を近づけ、ゆっくり横転させたのち、手で10回転同じ方向に回転させ、その後、口が下を向くようにして、ガラス瓶のふたに脱離した機能性粉体を回収しその重量を測定した(回収した機能性粉体の重量が少ないほど搬送性に優れていることを示す。)。
(Transportability)
Move the Nd-Fe-B magnet close to the side of the glass bottle containing the resulting mixture, slowly roll it over, rotate it in the same direction 10 times by hand, and then make the mouth face down, The functional powder detached from the lid was collected and its weight was measured (the smaller the weight of the collected functional powder, the better the transportability).

(分離性)
得られた混合物の入ったガラス瓶を反転させ、ガラス瓶の上側からNd−Fe−B磁石を近づけ、ガラス瓶の底に混合物が凝集するようにし、ガラス瓶のふたに脱離した機能性粉体を回収しその重量を測定した(回収した機能性粉体の重量が多いほど分離性に優れていることを示す。)。
(Separability)
Invert the glass bottle containing the resulting mixture, bring the Nd-Fe-B magnet closer from the upper side of the glass bottle so that the mixture aggregates on the bottom of the glass bottle, and collect the functional powder detached on the lid of the glass bottle. The weight was measured (the greater the weight of the recovered functional powder, the better the separation).

表4中のホールド性、搬送性及び分離性の評価基準は下記の通りである。
◎:優
〇:良
△:可
×:不可
The evaluation criteria for holdability, transportability and separation in Table 4 are as follows.
◎: Excellent 〇: Good △: Acceptable ×: Impossible

表4の結果から明らかなように、実施例1〜13は機能性粉体のホールド性、搬送性、分離性のいずれにおいても良好であり、特に、実施例13はホールド性、実施例6は搬送性、実施例5は分離性に優れた結果となった。粒子形状は図1に示すように特許文献3とは異なる滑らかな表面状態が形成された粒状粒子となった。一方、比較例1はフェライト粒子の粒径が小さいため、凝集しやすくホールド性と分離性が劣る結果となった。比較例2は粒子形状が丸いため搬送性は良好だったものの、凝集しやすくホールド性と分離性が劣る結果となった。比較例3は不定形状であり、ホールド性は良好であったが搬送性と分離性が劣る結果となった。   As is clear from the results of Table 4, Examples 1 to 13 are good in all of the holdability, transportability, and separation property of the functional powder. In particular, Example 13 is holdability, and Example 6 is The transportability of Example 5 was excellent in separability. As shown in FIG. 1, the particle shape was a granular particle in which a smooth surface state different from that of Patent Document 3 was formed. On the other hand, in Comparative Example 1, since the ferrite particles were small in size, they easily aggregated, resulting in poor holdability and separability. Comparative Example 2 had good transportability because of its round particle shape, but it was easy to agglomerate, resulting in poor holdability and separability. Comparative Example 3 had an indeterminate shape and had good holdability, but resulted in poor transportability and separation.

本発明に係る機能性粉体輸送用フェライト粒子をメディアとして機能性粉体に混合することにより、フェライト粒子の磁気的な特性と物理的な特性を用いて間接的にハンドリング性が優れたものとなる。   By mixing the ferrite particles for transporting the functional powder according to the present invention into the functional powder as a medium, the handling properties are indirectly improved using the magnetic properties and physical properties of the ferrite particles. Become.

Claims (8)

フェライト粒子の組成が下記式(1)で表され、該フェライト粒子の平均粒径が200〜3000μmであり、水銀ポロシメーターによって測定される該フェライト粒子のピーク細孔径が10〜200μmであることを特徴とする機能性粉体輸送用フェライト粒子。
The composition of the ferrite particles is represented by the following formula (1), the average particle diameter of the ferrite particles is 200 to 3000 μm, and the peak pore diameter of the ferrite particles measured by a mercury porosimeter is 10 to 200 μm. Ferrite particles for functional powder transport.
上記式(1)中の(MnO)及び/又(MgO)の一部がSrOで置換されており、そのSrOの置換量が、0.1〜10モル%である請求項1に記載の機能性粉体輸送用フェライト粒子。   The function according to claim 1, wherein a part of (MnO) and / or (MgO) in the formula (1) is substituted with SrO, and the substitution amount of SrO is 0.1 to 10 mol%. Ferrite particles for transporting porous powder. 請求項1又は2に記載のフェライト粒子の表面に、樹脂を被覆してなる機能性粉体輸送用樹脂被覆フェライト粒子。   Resin-coated ferrite particles for transporting functional powder obtained by coating the surface of the ferrite particles according to claim 1 or 2 with a resin. 請求項1〜3のいずれかに記載のフェライト粒子又は樹脂被覆フェライト粒子と機能性粉体とからなることを特徴とする混合物。   A mixture comprising the ferrite particles or resin-coated ferrite particles according to any one of claims 1 to 3 and a functional powder. 上記機能性粉体の平均粒径が15〜1000μmである請求項4に記載の混合物。   The mixture according to claim 4, wherein the functional powder has an average particle size of 15 to 1000 μm. 請求項4又は5に記載の混合物を用いたことを特徴とする粉体輸送方法。 A powder transportation method using the mixture according to claim 4 or 5. 上記混合物からフェライト粒子を除去し、除去したフェライト粒子を再度機能性粉体と混合し使用する請求項6に記載の粉体輸送方法。   The powder transport method according to claim 6, wherein ferrite particles are removed from the mixture, and the removed ferrite particles are mixed with a functional powder again and used. 請求項1〜3のいずれかに記載のフェライト粒子又は樹脂被覆フェライト粒子を用いた磁気的特性及び/又は粉体的特性を利用したことを特徴する粉体保持方法。   A powder holding method using magnetic properties and / or powder properties using the ferrite particles or resin-coated ferrite particles according to claim 1.
JP2014058452A 2014-03-20 2014-03-20 Ferrite particles for transporting functional powder Active JP6344550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058452A JP6344550B2 (en) 2014-03-20 2014-03-20 Ferrite particles for transporting functional powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058452A JP6344550B2 (en) 2014-03-20 2014-03-20 Ferrite particles for transporting functional powder

Publications (2)

Publication Number Publication Date
JP2015182905A JP2015182905A (en) 2015-10-22
JP6344550B2 true JP6344550B2 (en) 2018-06-20

Family

ID=54349862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058452A Active JP6344550B2 (en) 2014-03-20 2014-03-20 Ferrite particles for transporting functional powder

Country Status (1)

Country Link
JP (1) JP6344550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672094B2 (en) 2016-07-01 2020-03-25 株式会社日立製作所 Plant control device, rolling control device, plant control method, and plant control program
WO2018181845A1 (en) * 2017-03-29 2018-10-04 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, manufacturing method thereof, and electrophotographic developer using said ferrite carrier
JP6757284B2 (en) * 2017-03-31 2020-09-16 Dowaエレクトロニクス株式会社 Carrier core material, carrier for electrophotographic using it, and developer for electrophotographic

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767578A (en) * 1971-06-10 1973-10-23 Xerox Corp Carrier material for electrostatographic developer
US4078930A (en) * 1975-10-28 1978-03-14 Xerox Corporation Developer compositions comprising toner and carrier
JPS58123550A (en) * 1982-01-19 1983-07-22 Hitachi Metals Ltd Electrophotographic developing carrier
JPS60258559A (en) * 1984-06-06 1985-12-20 Ricoh Co Ltd Electrostatic latent image developer
JPH02120750A (en) * 1988-10-28 1990-05-08 Mita Ind Co Ltd Carrier for developer
JP3243376B2 (en) * 1994-07-05 2002-01-07 パウダーテック株式会社 Ferrite carrier for electrophotographic developer and developer using the carrier
JP2010026349A (en) * 2008-07-23 2010-02-04 Ricoh Co Ltd Image forming apparatus and image forming method
JP5522451B2 (en) * 2010-02-26 2014-06-18 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier

Also Published As

Publication number Publication date
JP2015182905A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP4001606B2 (en) Resin-filled carrier and electrophotographic developer using the carrier
JP4781015B2 (en) Ferrite carrier core material for electrophotography, ferrite carrier for electrophotography, production method thereof, and developer for electrophotography using the ferrite carrier
JP5334251B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
EP2402820B1 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5360701B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
CN103430105B (en) Electrophotographic developing ferrite carrier core, ferrite carrier and their manufacture method, and use the electrophotographic developing of this ferrite carrier
JP2009258595A (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP2013057817A (en) Carrier for developing electrostatic latent image, process cartridge, and image forming device
JP2015138052A (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer using ferrite particle having outer shell structure, and electrophotographic developer using the ferrite carrier
JP4474561B2 (en) Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and production method thereof
JP6766134B2 (en) Method for manufacturing ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, ferrite carrier core material for electrophotographic developer and electrophotographic developer
JP2011154288A (en) Core material of ferrite carrier for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP6344550B2 (en) Ferrite particles for transporting functional powder
JP5850331B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5541598B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier for electrophotographic developer
TWI702481B (en) Ferrite particles with shell structure
JP2016106262A (en) Electrophotographic developer ferrite carrier core material, ferrite carrier and manufacturing method of electrophotographic developer ferrite carrier core material, and ferrite carrier, and electrophotographic developer ferrite carrier core material using ferrite carrier
JP2008216339A (en) Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
JP5348587B2 (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP2013205614A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP6742119B2 (en) Core material for carrier, carrier, developer and electrophotographic development system
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP2009086093A (en) Method of manufacturing resin-filled carrier for electrophotographic developer
WO2018147001A1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP6302123B1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6344550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250