JP6342668B2 - Composite powder - Google Patents

Composite powder Download PDF

Info

Publication number
JP6342668B2
JP6342668B2 JP2014025439A JP2014025439A JP6342668B2 JP 6342668 B2 JP6342668 B2 JP 6342668B2 JP 2014025439 A JP2014025439 A JP 2014025439A JP 2014025439 A JP2014025439 A JP 2014025439A JP 6342668 B2 JP6342668 B2 JP 6342668B2
Authority
JP
Japan
Prior art keywords
apm
composite powder
core
powder
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014025439A
Other languages
Japanese (ja)
Other versions
JP2015151357A (en
Inventor
浩志 浅野
浩志 浅野
朋子 奥浦
朋子 奥浦
巌 浅井
巌 浅井
泰正 高尾
泰正 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nippon Menard Cosmetic Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nippon Menard Cosmetic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nippon Menard Cosmetic Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014025439A priority Critical patent/JP6342668B2/en
Publication of JP2015151357A publication Critical patent/JP2015151357A/en
Application granted granted Critical
Publication of JP6342668B2 publication Critical patent/JP6342668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、合成スチブンサイト、リン酸L−アスコルビルマグネシウム(以下、APMと略す)、アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンを含有し、外殻部に当該シリカ被覆微粒子酸化チタンを含む固形粉末化粧料用のコアシェル構造の球状複合粉体の製造方法に関するものである。 The present invention, synthetic stevensite, L- ascorbyl magnesium phosphate (hereinafter, abbreviated as APM), containing silica-coated ultrafine titanium dioxide free of alumina and aluminum hydroxide, comprising the silica-coated ultrafine titanium dioxide in the outer shell The present invention relates to a method for producing a spherical composite powder having a core-shell structure for a solid powder cosmetic .

近年、美白化粧品が注目され、メラニンの生成を抑え、日やけによるシミ・ソバカスを防ぐ効果を持った医薬部外品の市場も拡大している。美白化粧品には、通常、美白効果のある成分が配合されるが、これらの成分のうちAPMは安定なアスコルビン酸誘導体であるにもかかわらず水への溶解性が悪い。このために、水を含む系においてAPMを溶解して配合する場合は、ごく少量のAPMを水に溶解して配合する方法、有機塩基等の水溶液に2〜3重量%のAPMを溶解させる方法等で処方設計を行っている。   In recent years, whitening cosmetics have attracted attention, and the market for quasi-drugs that has the effect of suppressing the production of melanin and preventing spots and freckles caused by sunburn is also expanding. In the whitening cosmetics, ingredients having a whitening effect are usually blended, but among these ingredients, APM has a poor solubility in water despite being a stable ascorbic acid derivative. Therefore, when APM is dissolved and blended in a system containing water, a method of dissolving a very small amount of APM in water and a method of dissolving 2-3% by weight of APM in an aqueous solution of an organic base or the like The prescription design is done by etc.

一方、メイクアップ化粧料は多くの成分が粉体等で構成され処方中の水分が無い又は少ない傾向にある。組成中の水分量が多く、美白成分が水などに溶解されて配合されている化粧水、美容液、乳液、クリームなどの基礎化粧品とは異なる形態となっている。このため、メイクアップ化粧料へAPMを水に溶解して配合することは、結晶析出等、基礎化粧品以上に安定性において不利であり、粉体のままでAPMを配合した方が処方設計しやすくなる。   On the other hand, makeup cosmetics tend to have a lot of ingredients composed of powder or the like and no or little moisture in the formulation. The amount of moisture in the composition is large, and it is in a form different from basic cosmetics such as lotion, beauty essence, milky lotion, cream and the like in which whitening ingredients are dissolved in water. For this reason, mixing APM in makeup cosmetics in water is disadvantageous in terms of stability over basic cosmetics, such as crystal precipitation, and it is easier to formulate a formulation if APM is blended in powder form. Become.

しかし、固形粉末化粧料へAPMを粉体のまま化粧料に配合する方法では、水に溶けにくいAPMが肌へ効率よく浸透していくことは期待できない。そこで、特許文献1では粘土鉱物とAPMの複合粉体を調製し、APMが粉体状態からでも水分中へ溶解しやすくし、肌の水分や化粧下地中の少量の水にも溶けて肌へ浸透するようにしている。 However, in the method of blending APM into a solid powder cosmetic as it is in powder form, it cannot be expected that APM which is difficult to dissolve in water will penetrate into the skin efficiently. Therefore, in Patent Document 1, a composite powder of clay mineral and APM is prepared, and APM is easily dissolved in moisture even from the powder state, and is dissolved in moisture of the skin and a small amount of water in the makeup base to the skin. To penetrate.

しかしながら、特許文献1の複合粉体をパウダーファンデーションのような固形粉末化粧料に配合して、繰り返して使用したとき、使用時の水分などに影響を受け化粧料表面に粒状の凝集物が現れ使用性が低下する場合があった。   However, when the composite powder of Patent Document 1 is blended into a solid powder cosmetic such as a powder foundation and used repeatedly, a granular aggregate appears on the surface of the cosmetic due to the influence of moisture during use. In some cases, the sexiness decreased.

更に、特許文献1の複合粉体を固形粉末化粧料に多く配合していくと次第に塗布時の滑らかさが低下していく傾向もみられた。   Furthermore, when a large amount of the composite powder of Patent Document 1 was added to the solid powder cosmetic, there was a tendency that the smoothness during application gradually decreased.

このため、APMの複合粉体へ新たなコーティングや外殻部を設け、水分による凝集化とAPMの溶解性を両立させた、更には、固形粉末化粧料の使用感を損なわせない新たな複合粉体の開発の必要性が生じた。この対応として、従来の特許文献1の複合粉体へシリコーン処理等の疎水化処理を施したが、粉体状態から少量の水に溶解する特性は失われ、APMの浸透性は期待できなくなった。   For this reason, a new coating and outer shell have been provided on the APM composite powder to achieve both water agglomeration and APM solubility, and a new composite that does not impair the usability of solid powder cosmetics. The need for powder development has arisen. As a countermeasure for this, the conventional composite powder of Patent Document 1 was subjected to a hydrophobic treatment such as silicone treatment, but the property of dissolving in a small amount of water from the powder state was lost, and the permeability of APM could not be expected. .

一方、外殻部を付与する方法として、特許文献2のシリカ部を設ける方法が挙げられるが、内部にある有機化合物の安定性を保つことと分散安定性を目的とするものであった。特許文献3では、親水性材料を多核マイクロカプセル化しているが、この方法では、内部物質の安定化を目的としているため粉体状態から外部への放出は望めない。特許文献4では、生理活性成分を生体適合性のポリマーで内包しているが、水分に対する安定性が悪く、原料が非常に高価であること、粒子が細かくきしみ感があることで、固形粉末化粧料への配合は限られていた。   On the other hand, as a method for providing the outer shell part, there is a method of providing a silica part of Patent Document 2, which is intended to maintain the stability of the organic compound in the interior and to provide dispersion stability. In Patent Document 3, a hydrophilic material is encapsulated in a multinuclear microcapsule. However, since this method aims to stabilize an internal substance, release from a powder state to the outside cannot be expected. In Patent Document 4, a physiologically active ingredient is encapsulated with a biocompatible polymer. However, the stability to moisture is poor, the raw material is very expensive, and the particles are fine and squeezed. Mixing into the ingredients was limited.

特開2003−155217JP 2003-155217 A 特開2009−263171JP2009-263171A 特開2013−136054JP2013-136054A 特開2006−321763JP 2006-321863 A

本願発明が解決しようとする課題は、粉末化粧料中へAPMを粉体のまま配合しても、該APMが粉体状態から少量の水分中へ溶解し、しかも、継続的な使用時には化粧料表面に凝集物を発生させず、塗布時の滑らかさも損なわせないAPMの複合粉体の製造方法を提供することである。 The problem to be solved by the present invention is that even when APM is blended in powder cosmetics as it is, the APM dissolves from the powder state into a small amount of water, and the cosmetics are used during continuous use. An object of the present invention is to provide a method for producing an APM composite powder that does not generate aggregates on the surface and does not impair smoothness during application.

本願発明は、合成スチブンサイト、APM、アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンを含有する固形粉末化粧料用のコアシェル構造の球状複合粉体の製造方法であり、特には外殻部に当該シリカ被覆微粒子酸化チタンを含有する固形粉末化粧料用のコアシェル構造の球状複合粉体の製造方法である。 The present invention is a method for producing a spherical composite powder having a core-shell structure for a solid powder cosmetic containing silica-coated fine particle titanium oxide that does not contain synthetic stevensite , APM, alumina, and aluminum hydroxide. This is a method for producing a spherical composite powder having a core-shell structure for a solid powder cosmetic containing the silica-coated fine particle titanium oxide.

また、このコアシェル構造の球状複合粉体は、水に浸漬した場合、内部が溶出し、外殻部は残って崩壊しない特徴を有する。外殻部がアルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンの場合は特にその崩壊しない特徴を有する。 In addition, the spherical composite powder having the core-shell structure has a characteristic that when immersed in water, the inside elutes and the outer shell portion remains and does not collapse. In the case where the outer shell portion is silica-coated fine particle titanium oxide containing no alumina or aluminum hydroxide , it has the characteristic that it does not collapse.

また、本願発明では、合成スチブンサイトを予め1.9〜2.2重量%の濃度範囲で水に分散させた水分散液に、APMを溶解させ、更にシリカ被覆微粒子酸化チタンを分散させて最終的に15〜30重量%の固形分濃度となるように混合液体を調製した後、その混合液体を噴霧乾燥する工程を経てコアシェル構造の球状複合粉体を得る方法であるFurther, in the present invention , APM is dissolved in an aqueous dispersion in which synthetic stevensite is previously dispersed in water at a concentration range of 1.9 to 2.2% by weight , and silica-coated fine particle titanium oxide is further dispersed. after the mixture liquid was prepared so that the solid concentration of 15 to 30% by weight, a method of obtaining spherical composite powder of the core-shell structure by the steps of spray-drying the mixture liquid.

本願発明において、合成スチブンサイトは、水熱合成等によって得られる微粒子状の粘土鉱物で、水に分散すると膨潤し、濃度上昇と共にチキソトロピックなゲルが得られる。この合成スチブンサイトは、調製時にAPMを溶解させるために必要な成分であり、また、噴霧乾燥工程でAPMを内包したコアシェル構造を形成するために不可欠である。 In the present invention, synthetic stevensite is a fine-grained clay mineral obtained by hydrothermal synthesis or the like, and swells when dispersed in water, and a thixotropic gel is obtained as the concentration increases. This synthetic stevensite is a component necessary for dissolving APM during preparation, and is indispensable for forming a core-shell structure including APM in the spray drying process.

さらに、この合成スチブンサイトとして水に分散したときの透明性から、化粧品用原料としてのイオナイト−T(水澤化学工業株式会社)等である。 Furthermore, Ionite-T (Mizusawa Chemical Co., Ltd.) as a raw material for cosmetics is used because of transparency when dispersed in water as this synthetic stevensite .

本願発明で用いるリン酸L−アスコルビルマグネシウム、すなわち、APMは、他にもアスコルビン酸リン酸エステルマグネシウム、リン酸L−アスコルビン酸エステルマグネシウムと呼ばれている、アスコルビン酸の生理活性をもった安定な誘導体であり、通常化粧品に用いることができるものならば用いることができる。   L-ascorbyl magnesium phosphate used in the present invention, that is, APM, which is also called ascorbic acid magnesium phosphate, phosphoric acid L-ascorbic acid magnesium, is stable with the physiological activity of ascorbic acid. Any derivative can be used as long as it can be usually used in cosmetics.

本願発明で用いるシリカ被覆微粒子酸化チタンは、微粒子酸化チタンを基材としてシリカを被覆したものである。また、微粒子酸化チタンの活性を抑える目的やシリカ被覆の助剤としてアルミナ及び水酸化アルミニウムをシリカ被覆微粒子酸化チタン中に含まない。 The silica-coated fine particle titanium oxide used in the present invention is obtained by coating silica with fine particle titanium oxide as a base material. Further, alumina and aluminum hydroxide are not included in the silica-coated fine particle titanium oxide for the purpose of suppressing the activity of the fine particle titanium oxide or as a silica coating aid .

一般的に、シリカ被覆微粒子酸化チタンの基材の微粒子酸化チタンは、平均粒子径10〜100nmの略球状又は紡錘状である(粒子径はカタログ値又は電子顕微鏡による直接観察による。紡錘状の粒子は短径と長径の両方が前記粒子径範囲に入る。)。被覆層のシリカは、無水ケイ酸又は含水ケイ酸であり、シリカ被覆微粒子酸化チタン全量に対して、微粒子酸化チタン表面に15〜40重量%被覆されているものが好ましい。アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンの市販品としては、昭和電工株式会社からマックスライトTS−01とマックスライトTS−04、テイカ株式会社からMT−100WP、堺化学株式会社からSTR−100W等が販売されている。 In general, the fine particle titanium oxide of the base material of the silica-coated fine particle titanium oxide is substantially spherical or spindle-shaped with an average particle diameter of 10 to 100 nm (the particle diameter is a catalog value or by direct observation with an electron microscope. Spindle-shaped particles In this case, both the minor axis and the major axis fall within the particle diameter range.) The silica of the coating layer is anhydrous silicic acid or hydrous silicic acid, and it is preferable that the surface of the fine particle titanium oxide is coated on the surface of the fine particle titanium oxide with respect to the total amount of fine silica particle coated titanium oxide. Commercially available products of silica-coated fine particle titanium oxide containing no alumina or aluminum hydroxide include Maxlite TS-01 and Maxlite TS-04 from Showa Denko KK, MT-100WP from Teika Co. , Ltd., and STR from Sakai Chemical Co., Ltd. -100W etc. are sold.

本願発明ではシリカ被覆微粒子酸化チタンとして、アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタン、水分散性の高いこと、球状のコアシェルを成型しやすいこと、安定な外殻部を形成しやすいことから、用いる As the silica-coated fine particles of titanium oxide in the present invention, alumina and silica-coated fine particles of titanium oxide containing no aluminum hydroxide, highly water-dispersible, the spherical core-shell easily molded, easily form a stable outer shell I will use it .

本願発明では、APMが粉体状態からでも少量の水分中へ溶解しやすく、塗布時の滑らかさも損なわせない、さらには収率良く固形粉末化粧料用のコアシェル構造の球状複合粉体を工業的に製造するために、以下の製造方法で行う。 In the present invention, APM is easily dissolved in a small amount of moisture even from a powder state, does not impair the smoothness at the time of application, and further, a spherical composite powder having a core-shell structure for solid powder cosmetics is produced industrially. In order to manufacture, it carries out with the following manufacturing methods.

先ず、本願発明では、合成スチブンサイトを予め1.9〜2.2重量%の濃度範囲で水に分散させる。予め分散することで、合成スチブンサイトが水分散体中で膨潤して沈降を防ぐことができ均一な水分散体が得られる。また、パルセーターやホモミキサー等の一般的な撹拌機で水分散及び膨潤操作を行うので、合成スチブンサイトがゲル化して撹拌し難くならない程度の1.9〜2.2重量%の合成スチブンサイト濃度が適切である。 First, in the present invention, the synthetic stevensite is previously dispersed in water in a concentration range of 1.9 to 2.2% by weight . By dispersing in advance, the synthetic stevensite swells in the aqueous dispersion and can prevent sedimentation, and a uniform aqueous dispersion is obtained. In addition, since the water dispersion and swelling operations are performed with a general stirrer such as a pulsator or a homomixer , the synthetic stevensite concentration of 1.9 to 2.2% by weight is such that the synthetic stevensite is not gelled and difficult to stir. Is appropriate.

更に、製造工程で予め合成スチブンサイトの水分散体を用意することで、APMを容易に溶解することができる。水だけのところへAPMを加えて撹拌すると、パルセーターやホモミキサー等の一般的な撹拌機では、APMの水和物の状態で残り易く必要量のAPMを十分に溶解することは難しい。 Furthermore, APM can be easily dissolved by preparing an aqueous dispersion of synthetic stevensite in advance in the production process. When APM is added to only water and stirred, a general stirrer such as a pulsator or a homomixer tends to remain in a hydrated state of APM and it is difficult to sufficiently dissolve the required amount of APM.

次に、本願発明ではAPMが溶解した合成スチブンサイトの水分散体へ、更にシリカ被覆微粒子酸化チタンを分散させ混合液体を得る。APMの溶解よりも先にシリカ被覆微粒子酸化チタンを分散させる方法では、混合液体自身が白くなり、APMの溶解の確認が困難になる。 Next, in the present invention, silica-coated fine particle titanium oxide is further dispersed in a synthetic stevensite aqueous dispersion in which APM is dissolved to obtain a mixed liquid . In the method in which the silica-coated fine particle titanium oxide is dispersed prior to the dissolution of APM, the mixed liquid itself becomes white and it is difficult to confirm the dissolution of APM.

シリカ被覆微粒子酸化チタンの分散操作では、一般的な撹拌機であるパルセーターやホモミキサーで予備分散し、更に強力な撹拌機である、ビーズミルや超高圧ホモジナイザー等で分散する方が好ましい。特に、金属酸化物などの無機固形物を強力に分散するので、機器の消耗が少ない媒体撹拌型粉砕装置であるビーズミルを強力な撹拌機として用いた方が最も好ましい。   In the dispersion operation of the silica-coated fine particle titanium oxide, it is preferable to preliminarily disperse with a general stirrer such as a pulsator or a homomixer and further disperse with a powerful stirrer such as a bead mill or an ultrahigh pressure homogenizer. In particular, since inorganic solids such as metal oxides are strongly dispersed, it is most preferable to use a bead mill, which is a medium agitation type pulverizer with less equipment consumption, as a powerful agitator.

更に、このビーズミルに充填する媒体としては、シリカ被覆微粒子酸化チタンが割れて酸化チタンの新たな活性面が表面に出てくることを防ぎながら、効率よく分散質に接触して分散効率を高めるために30μm以下の粒子径を持った媒体が好ましい。   Furthermore, as a medium to be filled in this bead mill, the silica-coated fine particle titanium oxide is prevented from cracking and a new active surface of the titanium oxide is prevented from appearing on the surface, while efficiently contacting the dispersoid and increasing the dispersion efficiency. In particular, a medium having a particle size of 30 μm or less is preferable.

また、この媒体の材質として分散体へのコンタミネーションを防ぐため、ジルコニアビーズ又はイットリウム安定化ジルコニアビーズが好ましい。   Further, zirconia beads or yttrium-stabilized zirconia beads are preferable as a material for the medium in order to prevent contamination to the dispersion.

本願発明では、合成スチブンサイト、APM、アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタン等を固形分とし、分散と溶解の操作により混合液体を得るが、(1)当該シリカ被覆微粒子酸化チタンを分散する操作で十分な撹拌ができること、(2)噴霧乾燥工程等で液送パイプや噴霧口の目詰まりを防ぐこと、(3)噴霧乾燥を用いた場合に連続的に均一な液滴を噴霧することができること等、混合液体の粘性を調節して、混合液体中の固形分濃度を15〜30重量%とする。 In the present invention, synthetic stevensite, APM, alumina and silica-coated fine particles of titanium oxide or the like which does not contain aluminum hydroxide and solids, but to obtain a mixed liquid by the operation of dissolution and dispersion, the (1) the silica-coated ultrafine titanium dioxide Sufficient agitation can be achieved by the dispersing operation, (2) prevention of clogging of the liquid feed pipe and the spray port in the spray drying process, etc. (3) spraying uniform droplets continuously when spray drying is used. The viscosity of the mixed liquid is adjusted so that the solid content concentration in the mixed liquid is 15 to 30% by weight .

本願発明では、噴霧乾燥工程で連続的に均一な液滴を噴霧してコアシェル構造の球状複合粉体を得る方法が好ましいが、この場合、液滴の微粒化と均一性を維持するために、また、噴霧装置の冷却塔内での速やかな水分の完全蒸発を可能にするために、100μm以下の液滴を噴霧する方式がよい。具体的には、ノズル方式やディスク方式で液滴を形成するが、市販の噴霧乾燥装置の方式では、藤崎電機株式会社の二流体ノズル、三流体ノズル、四流体ノズル、ロータリアトマイザー、大川原化工機株式会社の加圧二流体ノズル、ツインジェットノズル、M型ディスク等を用いて行う。   In the present invention, a method of obtaining a spherical composite powder having a core-shell structure by spraying uniform droplets continuously in the spray-drying step is preferable. In this case, in order to maintain atomization and uniformity of the droplets, Further, in order to enable quick and complete evaporation of moisture in the cooling tower of the spraying device, a method of spraying droplets of 100 μm or less is preferable. Specifically, droplets are formed by a nozzle method or a disk method, but with a commercially available spray drying method, a two-fluid nozzle, a three-fluid nozzle, a four-fluid nozzle, a rotary atomizer, Okawara Kakoki from Fujisaki Electric Co., Ltd. This is carried out using a pressurized two-fluid nozzle, twin jet nozzle, M-type disk, etc.

本願発明では、APMが粉体状態からでも少量の水分中へ溶解しやすく、塗布時の滑らかさも損なわせないために、コアシェル構造の球状複合粉体の粒子径として10μm以下の粒子径が好ましい。噴霧乾燥でこの粒子サイズを実現するためには30μm以下の液滴を形成できるノズル方式がより好ましく、均一な粒子が得られる点から上記、三流体ノズル、四流体ノズル、ツインジェットノズルを用いて噴霧する方法が最も良い。   In the present invention, since the APM is easily dissolved in a small amount of moisture even from the powder state and the smoothness at the time of application is not impaired, the particle diameter of the core-shell structure spherical composite powder is preferably 10 μm or less. In order to achieve this particle size by spray drying, a nozzle system capable of forming droplets of 30 μm or less is more preferable. From the viewpoint of obtaining uniform particles, the above-described three-fluid nozzle, four-fluid nozzle, and twin jet nozzle are used. The spraying method is the best.

以上のようにして、本願発明では、良好なコアシェル構造の球状複合粉体を得ることができるが、特に、合成スチブンサイトを予め分散させた水分散液にAPMを溶解させ、更にアルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンを分散させて混合液体を調製した後、その混合液体を噴霧乾燥する工程を経てコアシェル構造の球状複合粉体を得る方法は、特許文献に示されたような液相でのアルコキシシランの反応によるものやモノマーからポリマー層を形成させる方法よりも大量生産性に優れる。すなわち、連続的な分散工程と瞬間的な液滴の固化による噴霧乾燥工程を用いているために大量生産性に優れる。 As described above, in the present invention, a spherical composite powder having a good core-shell structure can be obtained. In particular, APM is dissolved in an aqueous dispersion in which synthetic stevensite is previously dispersed, and alumina and aluminum hydroxide are further dissolved. A method of obtaining a spherical composite powder having a core-shell structure through a step of spray-drying a mixed liquid after preparing a mixed liquid by dispersing silica-coated fine particle titanium oxide not containing a liquid is disclosed in Patent Literature 1. The mass productivity is superior to those obtained by the reaction of alkoxysilane in the phase and the method of forming a polymer layer from a monomer. That is, since the continuous drying process and the spray drying process by instantaneous solidification of droplets are used, the mass productivity is excellent.

更には、以上のような簡便な大量生産性に優れる方法で生産されるにもかかわらず、水に浸漬すると外殻部を残して内部が溶出する特徴(水により全崩壊するような顆粒体等とは異なる特徴)、すなわち、実用上、内包された薬効成分のAPMが肌の水分や化粧下地中の少量の水に溶けて徐々に放出され、しかも、APMを放出した後も球状の外殻部が残って中空状態となり、滑らかな使用感を維持する特性は新規な薬物カプセルとして有用である。   Furthermore, even though it is produced by the simple method described above with excellent mass productivity, it is characterized by elution of the inside leaving the outer shell part when immersed in water (such as a granule that is totally disintegrated by water) In other words, the APM, which is a medicinal ingredient contained in the skin, is gradually released by being dissolved in the moisture of the skin and a small amount of water in the makeup base, and even after the APM is released, the spherical outer shell The part remains in a hollow state, and the characteristic of maintaining a smooth use feeling is useful as a novel drug capsule.

特に化粧パフに水を含ませて使用するタイプのパウダーファンデーションでは、実使用により固形のファンデーション表面に水分が接触して、水による膨潤と乾燥を繰り返すことになる。この使用時において、一般的な全崩壊するような顆粒体では、ファンデーション表面に凝集物が発生しやすくなり、商品価値を下げる可能性が高い。本願発明のコアシェル構造の球状複合粉体では、APMが放出されても外殻部がそのまま中空球状の状態で残るので、凝集物の発生が軽減され、転がり効果によって塗布時の滑らかさも損なわれない。   In particular, in a powder foundation that is used with water contained in a cosmetic puff, the surface of the solid foundation is contacted with water by actual use, and swelling and drying with water are repeated. At the time of this use, in the general granule which completely disintegrates, aggregates are likely to be generated on the surface of the foundation, and there is a high possibility of reducing the commercial value. In the spherical composite powder of the core-shell structure of the present invention, even when APM is released, the outer shell portion remains in a hollow spherical state, so that the generation of aggregates is reduced and the smoothness during coating is not impaired by the rolling effect. .

以上から、本願発明のコアシェル構造の球状複合粉体は、パウダーファンデーション、フェイスパウダー、チークカラー、アイシャドウ等の固形粉末化粧料へ配合する。 From the above, the spherical composite powder of the core-shell structure of the present invention is blended into solid powder cosmetics such as powder foundation, face powder, cheek color, eye shadow and the like.

なお、本願発明では合成スチブンサイト、APM、アルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンをコアシェル構造の球状複合粉体に含有する成分として挙げたが、化粧料や医薬品に一般的に用いられる原料を、本願発明を損なわない範囲で含むことができる。特に、APMのように弱酸の金属塩であり弱アルカリ性で溶解性が増す塩の薬剤、非イオン性の薬剤等の場合は、良好なコアシェル構造が形成され薬剤カプセルを調製することができる。これらの薬剤としては、パルミチン酸アスコルビルリン酸3ナトリウム、トコフェリルリン酸ナトリウム、グリチルリチン酸ジカリウム等が挙げられる。 In the present invention, silica-coated fine particle titanium oxide not containing synthetic stevensite , APM, alumina, and aluminum hydroxide is cited as a component contained in a spherical composite powder having a core-shell structure, but it is generally used for cosmetics and pharmaceuticals. A raw material can be included in the range which does not impair this invention. In particular, in the case of a drug such as APM, which is a weak acid metal salt that is weakly alkaline and has increased solubility, a good core-shell structure is formed, and a drug capsule can be prepared. Examples of these agents include trisodium ascorbyl palmitate, sodium tocopheryl phosphate, dipotassium glycyrrhizinate, and the like.

本願発明の固形粉末化粧料のコアシェル構造の球状複合粉体は、内部の薬物が少量の水で徐々に溶解して放出される特徴と、球状であるために滑らかなサラサラとした使用感を持つ新規な粉末状薬物担体である。このような材料設計では、内部に薬物を担持した薬物カプセルとして利用の発展性があり、本願発明での製造法は大量生産ができる点で利用価値が高い。 The spherical composite powder of the core-shell structure of the solid powder cosmetic of the present invention has a feature that the drug inside is gradually dissolved and released with a small amount of water and has a smooth and smooth feeling because it is spherical. It is a novel powdery drug carrier. Such a material design has the potential to be used as a drug capsule carrying a drug inside, and the production method of the present invention is highly useful in that mass production is possible.

コアシェル構造の球状複合粉体のSEM観察試料作製フローSEM observation sample preparation flow for spherical composite powder with core-shell structure コアシェル構造の球状複合粉体の外観Appearance of spherical composite powder with core-shell structure コアシェル構造の球状複合粉体の割断面像Split section image of spherical composite powder with core-shell structure 水浸漬後のコアシェル構造の球状複合粉体の割断面像Split section image of spherical composite powder with core-shell structure after water immersion 凹みのある粉体Dent powder 凹みのある梅干様の粉体Umeboshi-like powder with dents

次に、本願発明の固形粉末化粧料用のコアシェル構造の球状複合粉体の製造方法について実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。 Next, although the manufacturing method of the spherical-shell composite powder of the core-shell structure for solid powder cosmetics of this invention is demonstrated in detail, an Example is given, This invention is not limited to these.

<合成スチブンサイトの水分散濃度>
本願発明では、最終工程で噴霧乾燥を行う。このため、均一な液滴形成のため噴霧口の目詰まりなく混合液体を噴霧する必要がある。これに対し、合成スチブンサイトの水分散液は合成スチブンサイトの濃度上昇と共にチキソトロピー性のあるゲルになる。そこで、予め調製する合成スチブンサイトの水分散液の適切な濃度範囲を決めるため、様々な濃度の合成スチブンサイトの水分散液を調製し状態を確認し、表1にまとめた。
<Water dispersion concentration of synthetic stevensite >
In the present invention, spray drying is performed in the final step. For this reason, in order to form uniform droplets, it is necessary to spray the mixed liquid without clogging the spray port. In contrast, aqueous dispersion of synthetic stevensite becomes a thixotropic with elevated concentrations of synthetic stevensite gel. Therefore, in order to determine an appropriate concentration range of the synthetic stevensite aqueous dispersion prepared in advance , various concentrations of the synthetic stevensite aqueous dispersion were prepared, the states were confirmed, and the results were summarized in Table 1.

表1より、水分散体中の合成スチブンサイトの濃度変化で、4重量%までは撹拌で流動化して良好であるが、5重量%では弱い撹拌力の機器の一部で撹拌し難いことと、更に固形分としてのAPMやシリカ被覆微粒子酸化チタンが加えられることから、十分流動性のある4重量%以下で予め合成スチブンサイトの水分散液を調製することが適切である。 From Table 1, the concentration change of the synthetic stevensite in the aqueous dispersion is good up to 4% by weight when fluidized with stirring, but 5% by weight is difficult to stir with some of the devices with weak stirring power, Further, since APM as a solid content and silica-coated fine particle titanium oxide are added, it is appropriate to prepare a synthetic stevensite aqueous dispersion in advance at a sufficiently fluidity of 4% by weight or less.

<APMの溶解性>
本願発明での、APMの溶解性を検証するため、精製水のみ、2重量%合成スチブンサイト水分散液、2重量%クエン酸三カリウム水溶液(クエン酸三カリウム一水和物の水溶液)の各100gの溶媒へ、パルセーターで撹拌しながら3gのAPMを加えて溶解状態を確認した。その結果を表2に示す。
<APM solubility>
In order to verify the solubility of APM in the present invention, 100 g each of purified water only, 2 wt% synthetic stevensite aqueous dispersion, 2 wt% tripotassium citrate aqueous solution ( tripotassium citrate monohydrate aqueous solution) While stirring with a pulsator, 3 g of APM was added to the solvent, and the dissolved state was confirmed. The results are shown in Table 2.

表2の結果より、合成スチブンサイト水分散体やクエン酸三カリウム水溶液にはAPMが完全溶解するが、精製水だけでは溶かし難い。 From the results in Table 2, APM is completely dissolved in the synthetic stevensite aqueous dispersion and the tripotassium citrate aqueous solution, but it is difficult to dissolve with purified water alone.

<コアシェル構造の球状複合粉体の調製法>
上記の予備的な試験結果を踏まえ、表3の製造例及び比較例の構成成分量で、下記に示す方法にて本願発明のコアシェル構造の球状複合粉体を調製した。
(1)パルセーターで攪拌しながらイオン交換水に合成スチブンサイトを徐々に添加して予備分散し、更にホモミキサーで十分に分散させて合成スチブンサイトの水分散体を得た。(比較例1のクエン酸三カリウムを用いた場合はパルセーターのみで溶解させた。)
(2)合成スチブンサイトの水分散体にパルセーター又はホモミキサーで攪拌しながら徐々にAPMを添加して完全溶解した。
(3)更にパルセーター又はホモミキサーで攪拌しながら徐々にシリカ被覆微粒子酸化チタンを加え予備分散を行い、次の条件でビーズミルにて分散して混合液体を得た。
ビーズミル:ウルトラアペックスミルUAM−015(寿工業株式会社製)
使用媒体:30μmイットリウム安定化ジルコニアビーズ
処理時間:30分
なお、比較例4については固形分濃度の検討のためビーズミルにて分散した後、追加のイオン交換水を加えて調製した。
(4)得られた混合液体を下記条件で噴霧乾燥して本願発明のコアシェル構造の球状複合粉体を調製した。
噴霧乾燥器:MDL−050B型(藤崎電機株式会社製)
液滴形成法:三流体ノズルPN3005型(藤崎電機株式会社製、液滴サイズ5〜15μm)
冷却塔内温度:入口230〜250℃、出口100〜120℃
捕集法:サイクロン回収
混合液体流量:冷却塔内温度が設定内に収まるように制御
<Preparation method of spherical composite powder with core-shell structure>
Based on the preliminary test results described above, the core-shell structured spherical composite powder of the present invention was prepared by the method shown below with the amounts of the constituent components of the production examples and comparative examples in Table 3 .
(1) While stirring with a pulsator, synthetic stevensite was gradually added to ion-exchanged water and pre-dispersed, and further sufficiently dispersed with a homomixer to obtain an aqueous dispersion of synthetic stevensite. (When tripotassium citrate of Comparative Example 1 was used, it was dissolved only with a pulsator.)
(2) APM was gradually added to the aqueous dispersion of synthetic stevensite while stirring with a pulsator or a homomixer, and completely dissolved.
(3) Further, while stirring with a pulsator or homomixer, silica-coated fine particle titanium oxide was gradually added and predispersed, and dispersed with a bead mill under the following conditions to obtain a mixed liquid.
Bead mill: Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)
Medium used: 30 μm yttrium-stabilized zirconia beads Processing time: 30 minutes In addition, Comparative Example 4 was prepared by adding additional ion-exchanged water after being dispersed in a bead mill for examination of the solid content concentration.
(4) The obtained mixed liquid was spray-dried under the following conditions to prepare a spherical composite powder having a core-shell structure according to the present invention.
Spray dryer: MDL-050B type (Fujisaki Electric Co., Ltd.)
Droplet formation method: Three-fluid nozzle PN3005 type (manufactured by Fujisaki Electric Co., Ltd., droplet size 5-15 μm)
Cooling tower temperature: inlet 230-250 ° C, outlet 100-120 ° C
Collection method: Cyclone recovery Mixed liquid flow rate: Control so that the cooling tower temperature is within the setting

<生成状態の確認法>
調製したコアシェル構造の球状複合粉体を走査型電子顕微鏡(SEM)で観察した。観察は、複合粉体の外観像、複合粉体とエポキシ樹脂を混合・固化して割断した割断像、複合粉体を一度水に浸漬した後、ろ過・乾燥して取り出した粉体をエポキシ樹脂で固め割断した割断像(APMの溶出や外殻部の状態を確認する)について行った(図1のSEM観察試料作製フロー参照)。
<How to check the generation status>
The prepared core-shell structure spherical composite powder was observed with a scanning electron microscope (SEM). Observation is the appearance image of the composite powder, the cleaved image obtained by mixing and solidifying the composite powder and the epoxy resin, and the powder extracted by immersing the composite powder once in water and then filtering and drying. Was performed on the cleaved image (check the elution of APM and the state of the outer shell) (see SEM observation sample preparation flow in FIG. 1).

外観では、図2の様な球状が得られ(製造例6の外観像)、割断では図3のように内部に密にAPMが詰まった像が観察でき(製造例6の割断像)、水浸漬後の割断では図4のように内部のAPMや合成スチブンサイトが溶出して外殻部が崩壊しない状態で確認できたもの(製造例6の水浸漬後の割断像)を良好○、概ね良好△とした。不良とした×は、図5のように凹みのある粉体(比較例2の外観像)や図6のような梅干様の凹みがある粉体(比較例1の外観像)等が視野内で多く確認できたもの(2000倍程度の低倍率で視野内に約半分の個数で凹みのあるものが確認した場合を×とした)、外観はきれいな球形であったが水浸漬により完全に崩壊したもの等である。なお、シリカ被覆微粒子酸化チタンの外殻部での存在は、SEMにエネルギー分散型X線分析装置を接続し、水浸漬によりAPMと合成スチブンサイトが溶出して外殻部が残った部分の組成分析(面分析)の結果から、チタンとケイ素が同定されたことから確認した。   In the appearance, a spherical shape as shown in FIG. 2 is obtained (appearance image of Production Example 6), and in the cleaving, an image in which APM is densely packed inside can be observed as shown in FIG. In the cleaving after the immersion, the APM and the synthetic stevensite eluted as shown in FIG. 4 and the outer shell was confirmed not to collapse (the cleaved image after the water immersion in Production Example 6) is good. Δ. Poor x indicates that a powder with a dent as shown in FIG. 5 (appearance image of Comparative Example 2), a powder with a umeboshi-like dent as shown in FIG. 6 (appearance image of Comparative Example 1), etc. (Approx. X when the number of dents in the field of view was confirmed to be about half the number at a low magnification of about 2000 times), and the appearance was a beautiful sphere, but completely disintegrated by water immersion Etc. In addition, the presence of silica-coated fine particle titanium oxide in the outer shell part is connected to an SEM with an energy dispersive X-ray analyzer, and APM and synthetic stevensite are eluted by water immersion, and the composition analysis of the part where the outer shell part remains. It confirmed from the result of (surface analysis) that titanium and silicon were identified.

<生成した粉体の粒子サイズ>
生成したコアシェル構造の球状複合粉体等の粒子サイズは、SEM像から、視野内で粒子径の最大のものを目安に5μm以下、10μm以下、20μm以下、50μm未満、50μm以上と分類した。
<Particle size of generated powder>
The particle size of the produced spherical composite powder having a core-shell structure was classified as 5 μm or less, 10 μm or less, 20 μm or less, less than 50 μm, or 50 μm or more based on the maximum particle size in the field of view from the SEM image.

<生成したコアシェル構造の球状複合粉体からのAPM溶出確認>
生成したコアシェル構造の球状複合粉体から少量の水でも溶出することを確認するため以下のようにして検討した。
(1)複合粉体約0.1gをエタノール/1,3−ブチレングリコール混液(容量比3/1)に加えて分散させ、メンブラン吸引ろ過(内径35mmフィルターホルダー)して、メンブラフィルター(セルロースアセテート、孔径0.8μm、外径47mm)に付着させた。
(2)化粧用コットンに、軽く圧する程度で水が染み出さないように調節した量である、1枚当たりに精製水7gを加えて湿らせた。
(3)シャーレに新たに化粧用コットン1枚を置き、上記湿らせたコットン1枚を載せ、(1)のメンブランフィルターを乗せて軽く押さえて密着させた。シャーレのフタを被せて、メンブランフィルターに付着しているコアシェル構造の球状複合粉体からAPMが溶出し、下のコットンへの移行する試験を開始した。
(4)一定時間経過後(10分、30分、60分)、メンブランフィルターを取り除き、2枚のコットンを回収して、両コットンに移行したAPMを高速液体クロマトグラフィーにて定量した。試験は、各時間毎に繰り返し、大きな差の少ない3点の平均値とし、APMの溶出率を算出した。
<Confirmation of APM elution from the spherical composite powder with core-shell structure>
In order to confirm that even a small amount of water is eluted from the produced spherical composite powder having a core-shell structure, the following examination was conducted.
(1) About 0.1 g of the composite powder is added to and dispersed in an ethanol / 1,3-butylene glycol mixture (volume ratio 3/1), and subjected to membrane suction filtration (inner diameter 35 mm filter holder) to obtain a membrane filter (cellulose Acetate, pore diameter 0.8 μm, outer diameter 47 mm).
(2) 7 g of purified water per sheet, which was an amount adjusted so that water did not bleed out by lightly pressing the cosmetic cotton, was moistened.
(3) A new piece of cosmetic cotton was placed on the petri dish, the wetted cotton piece was placed thereon, and the membrane filter of (1) was placed on it and lightly pressed to adhere. A test was started in which APM was eluted from the spherical-shell composite powder having a core-shell structure attached to the membrane filter by the cover of the petri dish and transferred to the lower cotton.
(4) After a certain period of time (10 minutes, 30 minutes, 60 minutes), the membrane filter was removed, two cottons were collected, and APM transferred to both cottons was quantified by high performance liquid chromatography. The test was repeated every time, and the average value of 3 points with little difference was calculated, and the elution rate of APM was calculated.

<結果>
APMの溶解性の知見と、製造例1及び比較例1の結果から、合成スチブンサイトの水分散体に溶かしたAPMとシリカ被覆微粒子酸化チタンの混合液体を噴霧乾燥した場合にはコアシェル構造の球状複合粉体はできるが、クエン酸三カリウムで溶かされたAPMを利用した場合には、球状とはならないことが明らかとなった。すなわち、コアシェル構造の球状複合粉体を形成するには合成スチブンサイトの水分散体にAPMを溶かす。
<Result>
From the knowledge of the solubility of APM and the results of Production Example 1 and Comparative Example 1, when a mixed liquid of APM and silica-coated fine particle titanium oxide dissolved in an aqueous dispersion of synthetic stevensite is spray-dried, a spherical composite with a core-shell structure Although it was possible to make a powder, it became clear that when APM dissolved in tripotassium citrate was used, it did not become spherical. That is, in order to form a spherical composite powder having a core-shell structure, APM is dissolved in a synthetic stevensite aqueous dispersion .

合成スチブンサイトの濃度による水分散体の状態変化の結果と、製造例及び比較例の結果から、予め用意する合成スチブンサイトの水分散体の濃度は、1.9〜2.2重量%である。 From the results of the state change of the aqueous dispersion depending on the concentration of the synthetic stevensite and the results of the production example and the comparative example , the concentration of the aqueous dispersion of the synthetic stevensite prepared in advance is 1.9 to 2.2% by weight.

比較例3の結果からは、シリカ被覆微粒子酸化チタンが無ければコアシェル構造はできず、水に浸漬した場合も完全に崩壊した。更に比較例6のように、シリカの被覆層が無い微粒子酸化チタンでは、外観上、球状の複合粒子が得られるが、水に浸漬すると完全に崩壊して外殻部が残らなかった。従って、本願発明のコアシェル構造の球状複合粉体を形成するにはシリカ被覆微粒子酸化チタンが必須であることが示された。   From the results of Comparative Example 3, the core-shell structure could not be formed without the silica-coated fine particle titanium oxide, and even when immersed in water, the core-shell structure was completely disintegrated. Further, as in Comparative Example 6, finely divided titanium oxide having no silica coating layer obtained spherical composite particles in appearance, but when immersed in water, it completely disintegrated and no outer shell portion remained. Accordingly, it was shown that silica-coated fine particle titanium oxide is essential for forming the core-shell structure spherical composite powder of the present invention.

製造例1と製造例4の結果から、シリカのみの被覆であるマックスライトTS−04を用いた製造例1に対し、約6重量%の水酸化アルミニウムも被覆されているMT−100HPを用いた場合には、凹みのある粉体がやや存在するようになり形状の不均一さが懸念されたので、収率良くコアシェル構造の球状複合粉体を得るためにはシリカ被覆のみの微粒子酸化チタンを用いる。また、製造例1に対して、図4のような水浸漬後の割断面のSEM観察を、エネルギー分散型X線分析装置を接続して組成分析を行ったところ、チタンとケイ素を同定してシリカ被覆微粒子酸化チタンを確認した。 From the results of Production Example 1 and Production Example 4, MT-100HP coated with about 6% by weight of aluminum hydroxide was used compared to Production Example 1 using Maxlite TS-04, which is a silica-only coating. in this case, since the non-uniformity of the shape looks like powder with a recess exists little is concerned, the fine particles of titanium dioxide of the silica-coated only in order to obtain a spherical composite powder of good yield a core-shell structure Use . Moreover, when SEM observation of the fractured surface after immersion in water as shown in FIG. 4 was conducted with respect to Production Example 1 with an energy dispersive X-ray analyzer connected, titanium and silicon were identified. Silica-coated fine particle titanium oxide was confirmed.

本願発明での製造工程では、混合液体の調製においても、液滴の噴霧においても、より均一に混合や噴霧することが重要と考えられる。そのために、混合液体の粘性を左右する固形分濃度が重要である。本願発明では、混合液体から最終的に固形分として得られる、合成スチブンサイト、APM、シリカ被覆微粒子酸化チタンを固形分として、この固形分濃度を目安にコアシェル構造の球状複合粉体の生成状態を確認した。製造例1〜8、比較例4、比較例5の結果から、固形分濃度は15〜30重量%が適切であると判断した(実際の計算値を小数点以下四捨五入)。 In the manufacturing process according to the present invention, it is considered important to mix and spray more uniformly both in the preparation of the mixed liquid and in the spraying of the droplets. Therefore, the solid content concentration that affects the viscosity of the mixed liquid is important. In the invention of this application, the synthetic state finally obtained as a solid content from the mixed liquid is confirmed as the solid content of the synthetic shell site , APM, silica-coated fine particle titanium oxide, and the production state of the core-shell structure spherical composite powder is confirmed using this solid content concentration as a guide. did. From the results of Production Examples 1 to 8, Comparative Example 4 and Comparative Example 5, it was determined that 15 to 30% by weight of the solid content concentration was appropriate (the actual calculated value was rounded off to the nearest decimal place).

製造例6で得られたコアシェル構造の球状複合粉体についてAPMの溶出確認を行った。その結果、初めに含まれているAPM量に対し、10分で58重量%、30分で88重量%、60分で98重量%のAPMが溶出していることを確認した。これに対し、比較例3で得られたシリカ被覆微粒子酸化チタンを外殻部としない複合粉体では、10分で98重量%の値を示した。また、比較例2のように凹みのある形状の複合粉体でも比較例3と同様に10分で殆どのAPMが流出した。従って、本願発明のコアシェル構造の球状複合粉体は、徐放特性があることが示された。すなわち、本願発明のコアシェル構造の球状複合粉体は、実際の化粧料の使用時では、APMが少量の肌の水分に徐々に溶ける、持続的な溶出や浸透が期待できる新規な薬剤カプセル素材であるといえる。   About the spherical composite powder having the core-shell structure obtained in Production Example 6, elution confirmation of APM was performed. As a result, it was confirmed that 58% by weight of APM was eluted in 10 minutes, 88% by weight in 30 minutes, and 98% by weight in 60 minutes. In contrast, the composite powder obtained in Comparative Example 3 without using the silica-coated fine particle titanium oxide as the outer shell portion showed a value of 98% by weight in 10 minutes. Further, even in the composite powder having a dent shape as in Comparative Example 2, most APM flowed out in 10 minutes as in Comparative Example 3. Therefore, it was shown that the spherical composite powder having the core-shell structure of the present invention has sustained release characteristics. That is, the core-shell structured spherical composite powder of the present invention is a novel drug capsule material that can be expected to be continuously dissolved and penetrated when APM is gradually dissolved in a small amount of skin moisture when actually using cosmetics. It can be said that there is.

実施例2として、表3の製造例6において、ビーズミルの使用媒体を50μmのイットリウム安定化ジルコニアビーズに変更してコアシェル構造の球状複合粉体を調製した。   As Example 2, a core-shell structured spherical composite powder was prepared by changing the working medium of the bead mill to 50 μm yttrium-stabilized zirconia beads in Production Example 6 of Table 3.

得られたコアシェル構造の球状複合粉体をSEMで確認すると、外観で30μmの媒体を使用した時よりも凹みのある球状粉体がやや多く観察された(APMの溶出は水浸後の割断面の観察から良好)。同様な傾向が100μmのイットリウム安定化ジルコニアビーズでも確認され、更に凹みのあるものが多く観察されるようになったので、使用するビーズの粒子径は30μm以下が好ましい。   When the obtained spherical composite powder having a core-shell structure was confirmed by SEM, a slightly larger number of hollow spherical powder was observed than when 30 μm medium was used in appearance (APM elution is a fractured surface after water immersion). Good observation). A similar tendency was confirmed with 100 μm yttrium-stabilized zirconia beads, and many dents were observed. Therefore, the particle diameter of the beads used is preferably 30 μm or less.

実施例3として、表3の製造例6において、噴霧乾燥工程で噴霧を、藤崎電機株式会社の四流体ノズル、大川原化工機株式会社のツインジェットノズル、藤崎電機株式会社のロータリアトマイザー、大川原化工機株式会社のM型ディスクに変更し、コアシェル構造の球状複合粉体を調製した。   As Example 3, in the manufacturing example 6 of Table 3, spraying is performed in the spray drying process. The four-fluid nozzle of Fujisaki Electric Co., Ltd., the twin jet nozzle of Okawahara Chemical Co., Ltd., the rotary atomizer of Fujisaki Electric Co., Ltd., and the Okawara Chemical Machine Co., Ltd. A spherical composite powder having a core-shell structure was prepared by changing to an M-type disk of Co., Ltd.

その結果、SEM観察とAPMの溶出試験において、藤崎電機株式会社の四流体ノズルと大川原化工機株式会社のツインジェットノズルで行った場合は、実施例1での製造例6と同様な粒子サイズの粒子が確認され、同様な早さでAPMを放出することを確認した。   As a result, in the SEM observation and the APM elution test, when the four-fluid nozzle of Fujisaki Electric Co., Ltd. and the twin jet nozzle of Okawara Chemical Industries Co., Ltd. were used, the same particle size as in Production Example 6 in Example 1 was obtained. The particles were confirmed and confirmed to release APM at a similar rate.

一方、藤崎電機株式会社のロータリアトマイザーや大川原化工機株式会社のM型ディスクで噴霧した場合は、50μm以上の粒子サイズの粒子が得られ、APMの溶出も10分で約30重量%と半減した。従って、より水分量が少ないと考えられる肌上での溶出にしやすさや、粉末化粧料に配合した場合の滑らかな使用感が得られる10μm以下の粒子径の複合粉体を得るために(塗布時の滑らかさを上げるために、パウダーファンデーションでは5〜10μmの球状粉体が一般的に用いられる。)、30μm以下の液滴を噴霧することができる三流体ノズル、四流体ノズル、ツインジェットノズルを用いて噴霧するノズル方式が好ましい。   On the other hand, when sprayed with a rotary atomizer manufactured by Fujisaki Electric Co., Ltd. or an M-type disk manufactured by Okawara Chemical Industries Co., Ltd., particles with a particle size of 50 μm or more were obtained, and the elution of APM was halved to about 30% by weight in 10 minutes. . Therefore, in order to obtain a composite powder having a particle size of 10 μm or less that can be easily dissolved on the skin, which is considered to have a lower water content, and can be used smoothly when blended into a powder cosmetic (at the time of application) In order to increase the smoothness of the powder, a spherical powder of 5 to 10 μm is generally used in the powder foundation.) A three-fluid nozzle, a four-fluid nozzle, and a twin jet nozzle that can spray droplets of 30 μm or less are used. A nozzle system that uses and sprays is preferred.

本願発明で得られたコアシェル構造の球状複合粉体は、APMのような薬剤を内部に封入して徐放性がある。このため、潮解性があるような水溶性の薬剤を安定に粉末状の薬剤に配合することができ、更に、内部の薬剤を放出させたいときはわずかな水分に触れさせれば放出させるシステム設計の製剤に最適である。

The core-shell structure spherical composite powder obtained in the present invention has a sustained release property by enclosing a drug such as APM inside. For this reason, it is possible to stably mix water-soluble drugs that have deliquescence into powdered drugs, and when you want to release internal drugs, you can release them by touching a little water. It is most suitable for the formulation of

Claims (3)

固形粉末化粧料用のコアシェル構造の球状複合粉体の製造方法であって、合成スチブンサイトを予め1.9〜2.2重量%の濃度範囲で水に分散させた水分散液に、リン酸L−アスコルビルマグネシウムを溶解させる工程と、更にアルミナ及び水酸化アルミニウムを含まないシリカ被覆微粒子酸化チタンを分散させて最終的に15〜30重量%の固形分濃度となるように混合液体を調製した後、その混合液体を噴霧乾燥する工程を含むことを特徴とする製造方法。 A method for producing a spherical composite powder having a core-shell structure for a solid powder cosmetic, in which a synthetic stevensite is previously dispersed in water in a concentration range of 1.9 to 2.2% by weight, phosphoric acid L - a step of Ru dissolved magnesium ascorbyl, after the liquid mixture was prepared as further comprising alumina and silica-coated fine particles of titanium oxide were dispersed finally solids concentration of 15 to 30 wt%, which did not contain aluminum hydroxide, The manufacturing method characterized by including the process of spray-drying the liquid mixture . 請求項1記載のコアシェル構造の球状複合粉体の製造方法において、混合液体中のシリカ被覆微粒子酸化チタンの分散をビーズミルで行うことを特徴とする製造方法。 2. The method for producing a spherical composite powder having a core-shell structure according to claim 1, wherein the dispersion of the silica-coated fine particle titanium oxide in the mixed liquid is performed by a bead mill . 請求項1又は2記載のコアシェル構造の球状複合粉体の製造方法において、噴霧乾燥工程のうち噴霧を100μm以下の液滴で行うことを特徴とする製造方法。

3. The method for producing a spherical composite powder having a core-shell structure according to claim 1 or 2, wherein spraying is performed with droplets of 100 [mu] m or less in the spray drying step .

JP2014025439A 2014-02-13 2014-02-13 Composite powder Active JP6342668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025439A JP6342668B2 (en) 2014-02-13 2014-02-13 Composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025439A JP6342668B2 (en) 2014-02-13 2014-02-13 Composite powder

Publications (2)

Publication Number Publication Date
JP2015151357A JP2015151357A (en) 2015-08-24
JP6342668B2 true JP6342668B2 (en) 2018-06-13

Family

ID=53893989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025439A Active JP6342668B2 (en) 2014-02-13 2014-02-13 Composite powder

Country Status (1)

Country Link
JP (1) JP6342668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797580B2 (en) * 2016-07-07 2020-12-09 ポーラ化成工業株式会社 Manufacturing method of powdered cosmetics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277244B1 (en) * 1986-07-24 1994-09-21 Shiseido Company Limited Spherical clay mineral powder, process for its production, and composition containing same
JPH0696447B2 (en) * 1986-07-24 1994-11-30 株式会社資生堂 Composite powder and its manufacturing method
JPH02231496A (en) * 1989-03-06 1990-09-13 Chisso Corp Readily water-soluble phosphate-l-ascorbylmagnesium, production thereof and cosmetic
JP4585074B2 (en) * 2000-03-28 2010-11-24 ライオン株式会社 Method for producing pharmaceutical composition
JP3895157B2 (en) * 2001-11-19 2007-03-22 日本メナード化粧品株式会社 Composite powder
EP1469819B1 (en) * 2002-01-31 2019-01-09 Ciba Holding Inc. Micropigment mixtures
JP4282395B2 (en) * 2003-08-11 2009-06-17 日本メナード化粧品株式会社 Topical skin preparation
JP2005089303A (en) * 2003-09-12 2005-04-07 Nippon Menaade Keshohin Kk Compounded powdery material
JP2006016338A (en) * 2004-07-01 2006-01-19 Daito Kasei Kogyo Kk Composite globular particle composition and method for producing the same
JP4836232B2 (en) * 2005-07-07 2011-12-14 テイカ株式会社 Method for producing silica-coated fine particle titanium oxide or silica-coated fine particle zinc oxide
JP5663778B2 (en) * 2007-07-06 2015-02-04 中村 憲司 Crystalline composite powder and method for producing the same
JP5594782B2 (en) * 2011-04-29 2014-09-24 独立行政法人産業技術総合研究所 Method for producing aggregate

Also Published As

Publication number Publication date
JP2015151357A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
KR101441169B1 (en) Porous silica particle having surface smoothness, method for production of the porous silica particle, and cosmetic comprising the porous silica particle
TWI453040B (en) New controlled release active agent carrier
JP5914708B2 (en) Continuous silica production process and silica product prepared therefrom
CN106660812B (en) Porous silica silicon systems particle, its manufacture method and coordinate its cosmetic preparation
KR0169807B1 (en) Cosmetic composition
JP2006256921A (en) Manufacturing method of silica hollow particle
JP6040497B2 (en) Method for producing inorganic particulate matter
CN108685765A (en) Organo-mineral complexing particle and cosmetic preparation
JP2004506671A (en) Method for producing dentifrice composition and product thereof
JP6342668B2 (en) Composite powder
JP2015214515A (en) Kit for skin external preparation
EP3202713B1 (en) Porous silica-based particles, method for producing same, and cleansing cosmetic material including porous silica-based particles
JP3151169B2 (en) Capsule-containing cosmetic and method for producing the same
TWI686236B (en) Composite powder of porous polymer impregnated with jade powder particle, cosmetic composition comprising the same and the manufacturing method thereof
CN107661280A (en) The manufacture method and solid state powder cosmetic of solid state powder cosmetic
JP6648230B2 (en) Skin preparation kit
JP2017190289A (en) Composite powder and method for producing the same and cosmetic in which composite powder is mixed
JP5388561B2 (en) Method for producing hydrogel particles
EP2649982B1 (en) Hair bleaching composition and method for producing same
JP5663778B2 (en) Crystalline composite powder and method for producing the same
WO2017209216A1 (en) Method for producing pharmaceutical composition containing microparticles of sparingly-soluble drug
JP3107987B2 (en) Moisturizing composite particles and method for producing the same
JPH06321748A (en) Apatite composite particle
JP5428058B2 (en) Method for producing atomized ellagic acid compound
JPH0532518A (en) Apatite composite particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250