JP6340991B2 - Closed switchboard - Google Patents

Closed switchboard Download PDF

Info

Publication number
JP6340991B2
JP6340991B2 JP2014166644A JP2014166644A JP6340991B2 JP 6340991 B2 JP6340991 B2 JP 6340991B2 JP 2014166644 A JP2014166644 A JP 2014166644A JP 2014166644 A JP2014166644 A JP 2014166644A JP 6340991 B2 JP6340991 B2 JP 6340991B2
Authority
JP
Japan
Prior art keywords
main circuit
conductor
arc
circuit conductor
floating electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014166644A
Other languages
Japanese (ja)
Other versions
JP2016042777A (en
Inventor
岳 浅沼
岳 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014166644A priority Critical patent/JP6340991B2/en
Publication of JP2016042777A publication Critical patent/JP2016042777A/en
Application granted granted Critical
Publication of JP6340991B2 publication Critical patent/JP6340991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Patch Boards (AREA)

Description

本発明は、盤内に電源の各相に対応する主回路導体を平行に並べて敷設した受電盤,母線盤などを対象とする閉鎖型配電盤に関し、詳しくは主回路の相間短絡事故が基で主回路導体の線間に発弧してその導体終端部に伝搬したアークが盤筐体の壁面に直接触れることがないようにアークの伸長を規制して盤筐体の耐アーク性向上を図った盤内の配線構造に係わる。   The present invention relates to a closed type switchboard for power receiving boards, busbar boards, etc., in which main circuit conductors corresponding to each phase of a power supply are arranged in parallel in the board, and more particularly, based on a short circuit accident between main circuits. The arc extension of the board casing was restricted and the arc resistance of the board casing was improved so that the arc that propagated between the conductors of the circuit conductor and propagated to the end of the conductor did not touch the wall of the board casing. It relates to the wiring structure in the panel.

この種の閉鎖型配電盤においては、盤内に敷設した電源各相に対応する主回路導体(主母線バー)に相間短絡事故が生じると、これが基で主回路導体の線間に閃絡アークが発生する。この場合に主回路導体が裸のバー導体(銅,アルミバー)であると、電源側からアーク発生点に流れる導体電流の磁界とアーク電流との間に作用するローレンツ力を受けてアークが電源側から負荷側に向う方向に伝搬駆動されるようになる。   In this type of closed type switchboard, when a short circuit accident occurs between the main circuit conductors (main busbars) corresponding to each phase of the power supply installed in the panel, a flash arc occurs between the lines of the main circuit conductor. Occur. In this case, if the main circuit conductor is a bare bar conductor (copper, aluminum bar), the arc is powered by the Lorentz force acting between the magnetic field of the conductor current flowing from the power source side to the arc generation point and the arc current. Propagation is driven in the direction from the side toward the load side.

次に、閉鎖型配電盤の盤内に敷設した主回路導体の従来における配線構造、および主回路の相間短絡事故が基で主回路導体の線間に発弧したアークの挙動について、図3〜図5で説明する。図において、1は閉鎖型配電盤(母線盤)の盤筐体、1aは盤筐体1の壁面、2は上下に平行に並べて盤筐体1の内部に敷設して電源側のケーブル(不図示)に接続したR,S,T各相に対応した裸バー導体(銅バー)で構成された主回路導体、2aは、各相の主回路導体2の途中から下位系統の負荷側設備に向けてほぼ直角方向に分岐した分岐回路導体、2bは主回路導体2の電源側と反対側の導体終端部である。導体終端部2bの先端が気中絶縁距離L(例えば、「日本配電盤工業会」の規格に準拠)を隔てて盤筐体1の盤面1aに対峙している。   Next, with respect to the conventional wiring structure of the main circuit conductor laid in the panel of the closed type distribution board, and the behavior of the arc ignited between the lines of the main circuit conductor based on the phase short circuit accident of the main circuit, FIG. 5 will be described. In the figure, 1 is a panel housing of a closed type switchboard (busbar panel), 1a is a wall surface of the panel housing 1, 2 is arranged in parallel in the vertical direction and laid inside the panel housing 1, and a power supply side cable (not shown) The main circuit conductor 2a is composed of a bare bar conductor (copper bar) corresponding to each of the R, S, and T phases connected to), and is directed from the middle of the main circuit conductor 2 of each phase toward the load side equipment of the lower system Branch circuit conductors 2b branched in a substantially right-angle direction are conductor terminal portions opposite to the power supply side of the main circuit conductor 2. The tip of the conductor terminal portion 2b is opposed to the board surface 1a of the board casing 1 with an air insulation distance L (for example, conforming to the standard of “Japan Switchboard Industry Association”).

上記の配線構造で、配電盤の受電中に盤内の主回路導体2に不測の相間短絡事故が発生し、この短絡事故が基で主回路導体2の線間にアークarcが発生すると、このアークは電源側からアーク発弧点に向けて主回路導体2に流れる電流の磁界とアーク電流との間に作用するローレンツ力Fを受けて次記のように挙動する。   With the above wiring structure, if an unexpected inter-phase short-circuit accident occurs in the main circuit conductor 2 in the panel during power reception by the switchboard, and an arc arc occurs between the lines of the main circuit conductor 2 based on this short-circuit accident, this arc Behaves as follows by receiving the Lorentz force F acting between the magnetic field of the current flowing in the main circuit conductor 2 and the arc current from the power source side toward the arc firing point.

すなわち、主回路導体2の線間に発弧したアークarcは、フリーアークとしてアークスポット,およびアークスポットの間に伸長したアーク柱が図4で表すように電源側(図の左側)から右方向に向けて高速伝搬される。なお、このアークの伝搬過程で分岐回路導体2aの分岐位置に伝搬したアークは、主回路導体2の長手方向に働くローレンツ力Fの駆動により分岐回路導体2aの分岐箇所を通過してそのまま直進し、主回路導体の導体終端部2bの先端に到達したところでアークスポットがこの位置に停滞するようになる。   That is, the arc arc ignited between the lines of the main circuit conductor 2 is an arc spot as a free arc and an arc column extending between the arc spots as shown in FIG. Propagated at high speed. The arc propagated to the branch position of the branch circuit conductor 2a in the arc propagation process passes through the branch point of the branch circuit conductor 2a by the driving of the Lorentz force F acting in the longitudinal direction of the main circuit conductor 2 and proceeds straight as it is. The arc spot stagnates at this position when it reaches the tip of the conductor terminal portion 2b of the main circuit conductor.

なお、このアーク伝搬過程でアークが主回路導体の途中から負荷側の設備に向けて分岐した分岐回路導体に伝搬すると、該分岐回路導体に接続した負荷側機器、およびその周辺に配置されている計測,制御機器がアークに曝されて焼損、損傷するおそれがあるが、前述のよう主回路導体2に導体終端部2bを設けておけば、アークは分岐回路導体2aの分岐箇所を横切るように通過して導体終端部2bへ直進的に伝搬するので、分岐回路導体2aに接続した負荷側機器がアークに晒されることはない。   In this arc propagation process, when the arc propagates from the middle of the main circuit conductor to the branch circuit conductor branched to the load side equipment, the load side equipment connected to the branch circuit conductor and the periphery thereof are arranged. The measurement and control equipment may be burned and damaged by exposure to the arc. However, if the main circuit conductor 2 is provided with the conductor termination portion 2b as described above, the arc crosses the branch point of the branch circuit conductor 2a. Since it passes through and propagates straight to the conductor terminal portion 2b, the load side device connected to the branch circuit conductor 2a is not exposed to the arc.

一方、前記した盤内の配線構造とは別に、主回路導体の線間に発生したアークが負荷側機器に伝搬するのを防止する対策として、盤内に敷設した主回路導体の途中の要所に、アークを主回路導体から側方に逸らすように誘導するアークホーン状の補助導体を設けておき、主回路導体の線間に短絡アークが発生した場合に、このアークを主回路導体から前記の補助導体に誘導した上で、この補助導体の先端にアークを停滞させて負荷側機器へのアーク伝搬を防ぐようにした閉鎖型配電盤の配線構造も知られている(例えば、特許文献1参照)。   On the other hand, in addition to the above-mentioned wiring structure in the panel, as a measure for preventing the arc generated between the lines of the main circuit conductor from propagating to the load side equipment, a key point in the middle of the main circuit conductor laid in the panel In addition, an arc horn-shaped auxiliary conductor that guides the arc to the side away from the main circuit conductor is provided, and when a short-circuit arc occurs between the lines of the main circuit conductor, the arc is removed from the main circuit conductor. There is also known a wiring structure of a closed type switchboard in which an arc is stagnated at the end of the auxiliary conductor to prevent arc propagation to a load side device after being guided to the auxiliary conductor (see, for example, Patent Document 1). ).

特開平6−38315号公報JP-A-6-38315

ところで、図3,図4に示した閉鎖型配電盤の従来における盤内配線構造では次記のような問題点がある。すなわち、主回路の相間短絡事故が基で主回路導体2の線間に発弧したアークarcが主回路導体2の導体終端部2bまで伝搬してこの位置に停滞し、電源側の遮断器が動作して主回路の電路を断路するまでこのアークが継続していると、アークスポット間に伸長したアーク柱はクーロン力Fを受けて前方に向けアーチ状に湾曲してさらに伸長するようになる。   By the way, the conventional in-panel wiring structure of the closed type switchboard shown in FIGS. 3 and 4 has the following problems. That is, the arc arc generated between the lines of the main circuit conductor 2 due to the short circuit between the phases of the main circuit propagates to the conductor terminal portion 2b of the main circuit conductor 2 and stays at this position, and the circuit breaker on the power source side When this arc continues until it operates and disconnects the circuit of the main circuit, the arc column extended between the arc spots receives a coulomb force F, curves forward, and further extends. .

この場合に、主回路導体2の導体終端部2bと盤筐体の盤面1aとの間に予め設定しておいた絶縁距離Lが十分でないと、図5で表すように導体終端部2bの先端に停滞したアークarcのアーク柱が伸長して盤筐体の盤面1aに直接触れるようになる。そのために、盤筐体の壁面1aが高温のアークに晒されて損傷(バーン・スルー)し、高温,高圧のアークフラッシュが盤外に噴出する二次的災害に波及するおそれがある。   In this case, if the insulation distance L set in advance between the conductor terminal end 2b of the main circuit conductor 2 and the panel surface 1a of the panel housing is not sufficient, the tip of the conductor terminal end 2b as shown in FIG. The arc column of the arc arc stagnated in the position extends to directly touch the panel surface 1a of the panel casing. For this reason, the wall surface 1a of the panel casing is exposed to a high-temperature arc and is damaged (burn-through), and there is a risk that a high-temperature, high-pressure arc flash will blow out to a secondary disaster.

したがって、主回路導体2の線間に発弧して導体終端部2bまで伝搬したアークが盤筐体に直接触れてその壁面1aが損傷するアーク事故を未然に防ぐには、主回路導体2の導体終端部2bと盤筐体の壁面1aとの間に前記したアークの伸長分を見込んだ十分な絶縁距離Lを設定確保しておく必要がある。   Therefore, in order to prevent an arc accident in which the arc that is ignited between the lines of the main circuit conductor 2 and propagates to the conductor end portion 2b directly touches the panel casing and damages the wall surface 1a, the main circuit conductor 2 It is necessary to set and secure a sufficient insulation distance L in consideration of the above-described arc extension between the conductor terminal portion 2b and the wall surface 1a of the panel housing.

しかしながら、この絶縁距離Lを拡大すると、盤筐体1の外形サイズが必要以上に大形化して盤の小形化が困難となる。そのほか、主回路導体2の導体終端部2b/筐体の壁面1a間の絶縁距離Lを拡大すると、主回路導体2の導体終端部2bにアークが停滞した状態から前方に向けて伸長するアーク長さも増加することから、このアーク電圧が高まって周囲に放出するアークエネルギーも増大し、このために盤内の圧力が急激上昇して盤筐体の損傷危険度が一層高まる問題もある。なお、このような盤筐体の損傷問題は特許文献1に開示されているアーク誘導用の補助導体においても同様に起こり得る。   However, when the insulation distance L is increased, the outer size of the panel housing 1 becomes larger than necessary, and it becomes difficult to reduce the size of the panel. In addition, when the insulation distance L between the conductor terminal end 2b of the main circuit conductor 2 / the wall surface 1a of the housing is increased, the arc length that extends forward from the state where the arc stagnates in the conductor terminal end 2b of the main circuit conductor 2 Since the arc voltage increases, the arc energy released to the surroundings also increases, which causes a problem that the pressure inside the panel is rapidly increased and the risk of damage to the panel casing is further increased. It should be noted that such a problem of damage to the panel housing can also occur in the arc guiding auxiliary conductor disclosed in Patent Document 1.

本発明は上記の点に鑑みなされたものであり、盤内に敷設した主回路導体の導体終端部と盤筐体の盤面との間に設定する気中絶縁距離Lを必要以上に拡大することなしに、相間短絡事故が基で主回路導体間に発弧して導体終端部に伝搬したアークが盤筐体に直接触れないようにそのアークの伸長を最小アーク長に規制して盤筐体の耐アーク性向上、および盤筐体の小形化が図れるように主回路導体に対する盤内の配線構造を改良した閉鎖型配電盤を提供することを目的とする。   The present invention has been made in view of the above points, and the air insulation distance L set between the conductor terminal portion of the main circuit conductor laid in the board and the board surface of the board casing is increased more than necessary. None, the arc extension between the main circuit conductors due to a short circuit between the phases and the propagation of the arc propagated to the terminal end of the conductor is restricted to the minimum arc length so that the arc does not directly touch the enclosure. It is an object of the present invention to provide a closed type switchboard with an improved wiring structure in the board for the main circuit conductor so as to improve the arc resistance of the board and to reduce the size of the board housing.

上記目的を達成するために、本発明によれば、盤筐体の内部に電源の各相に対応した裸バー導体になる主回路導体を平行に並べて敷設した閉鎖型配電盤において、前記各相の主回路導体と、電源側と反対側の盤筐体の壁面との間に、前記主回路導体の導体終端部の端面,および盤筐体に対して空隙を隔てて浮き電極を非接地状態に介挿配置するものとし(請求項1)、その浮き電極は具体的に次記のような態様で構成することができる。
(1)前記の浮き電極は、各相の主回路導体の導体終端部端面を一括して囲う対向面域を有し、かつその外周面域には主回路導体の導体終端部に向けて凹状の湾曲面を形成する(請求項2)。
(2)前記浮き電極の外周縁部に円弧状の湾曲面を形成する(請求項3)。
(3)前記浮き電極の表面と主回路導体の導体終端部端面との間の空間距離を、主回路導体の相間絶縁距離の約1/2に設定する(請求項4)。
(4)前項(1)〜(3)に記載の浮き電極は、碍子を介して盤筐体の壁面に絶縁支持する(請求項5)。
In order to achieve the above object, according to the present invention, in a closed type distribution board in which main circuit conductors that become bare bar conductors corresponding to respective phases of a power supply are laid in parallel inside the panel casing, Between the main circuit conductor and the wall surface of the board casing opposite to the power supply side, the floating electrode is ungrounded with a gap from the end face of the main circuit conductor conductor and the board casing. It is assumed that they are interposed (Claim 1), and the floating electrode can be specifically configured in the following manner.
(1) The floating electrode has an opposing surface area that collectively surrounds the conductor terminal end face of the main circuit conductor of each phase, and the outer peripheral surface area is concave toward the conductor terminal end of the main circuit conductor. (Claim 2).
(2) An arcuate curved surface is formed on the outer peripheral edge of the floating electrode.
(3) The spatial distance between the surface of the floating electrode and the end surface of the conductor terminal portion of the main circuit conductor is set to about ½ of the interphase insulation distance of the main circuit conductor.
(4) The floating electrode described in the preceding items (1) to (3) is insulatively supported on the wall surface of the panel housing via an insulator (claim 5).

上記構成によれば,次記効果を奏することができる。
(1)主回路の相間短絡事故が基で主回路導体の線間に発弧したアークが該導体の導体終端部まで伝搬してこの位置に停滞した状態になると、そのアーク柱が主回路導体の導体終端部と盤筐体の壁面との間に介挿した浮き電極に転流してアークがこの位置に停滞保持される。これにより、浮き電極がアークバリアの役目を果たして主回路導体の導体終端部に伝搬したアークが盤筐体の壁面に直接触れることがなくなり、これにより盤筐体をアークとの接触による損傷(バーン・スルー)から安全に保護できる。
(2)また、前記の浮き電極については、各相導体の導体終端部端面を一括して囲う対向面域を有し、かつその外周面域には主回路導体の導体終端部に向けて凹状の湾曲面を形成するとともに、その外周縁部に円弧状の湾曲面を形成することで、充電部である主回路導体と電気的に浮遊(非接地)した状態にある浮き電極との間の局部的な電界集中を避けつつ、両者間の電界を平等電界分布に近づけて平時の受電時に主回路導体/浮き電極間の不要な閃絡が発生するのを防ぐことができる。
(3)さらに、前記浮き電極の表面と主回路導体の導体終端部端面との間の空間距離を、主回路導体の相間絶縁距離の約1/2に設定することにより、導体終端部/浮き電極間の絶縁強度を主回路導体の相間絶縁強度と同等な絶縁強度に確保しつつ、主回路導体の導体終端部から浮き電極に転流したアークのアーク長を最小長に規制してそのアーク電圧を低めに抑えることができ、これにより周囲に放出するアークエネルギーの増加を抑制して盤内圧力の急激上昇に伴う盤筐体の損傷危険度を軽減できる。
(4)また、浮き電極は、碍子を介して盤筐体の壁面に絶縁支持することで、主回路の相間短絡が地絡事故に進展するのを防止できる。
According to the said structure, there can exist the following effect.
(1) When an arc ignited between the lines of the main circuit conductor is propagated to the end of the conductor of the main circuit due to the short circuit accident between the main circuits, the arc column becomes the main circuit conductor. The arc is stagnated and held at this position by commutation to a floating electrode interposed between the conductor terminal portion and the wall surface of the panel casing. As a result, the floating electrode serves as an arc barrier and the arc propagated to the conductor end of the main circuit conductor does not directly touch the wall surface of the board casing, thereby damaging the panel casing due to contact with the arc (burning).・ Through-through) can be safely protected.
(2) Further, the floating electrode has an opposing surface area that collectively encloses the end surface of the conductor terminal of each phase conductor, and the outer peripheral surface thereof has a concave shape toward the conductor terminal of the main circuit conductor. By forming an arcuate curved surface at the outer peripheral edge portion, the main circuit conductor that is the charging unit and the floating electrode that is in an electrically floating (non-grounded) state are formed. While avoiding local electric field concentration, it is possible to prevent the occurrence of unnecessary flashing between the main circuit conductor and the floating electrode during power reception by bringing the electric field between the two close to the equal electric field distribution.
(3) Furthermore, by setting the spatial distance between the surface of the floating electrode and the end surface of the conductor terminal of the main circuit conductor to about 1/2 of the interphase insulation distance of the main circuit conductor, the conductor terminal / floating The arc length of the arc commutated from the conductor end of the main circuit conductor to the floating electrode is restricted to the minimum length while ensuring the insulation strength between the electrodes to be equivalent to the interphase insulation strength of the main circuit conductor. It is possible to suppress the voltage to a low level, thereby suppressing an increase in arc energy released to the surroundings and reducing the risk of damage to the panel housing due to a rapid increase in the pressure in the panel.
(4) In addition, the floating electrode can be insulated and supported on the wall surface of the panel housing through the insulator, thereby preventing the phase short circuit of the main circuit from progressing to a ground fault.

これらの効果から、閉鎖型配電盤の従来における配線構造と較べて、盤筐体の耐アーク性能を高めて閉鎖型配電盤の小形化が可能となる。   From these effects, compared with the conventional wiring structure of the closed type switchboard, the arc-proof performance of the panel casing can be improved and the closed type switchboard can be downsized.

本発明の実施例による盤内敷設の主回路導体の配線構造図であって、主回路導体の導体終端部に対向して盤筐体の壁面との中間に介挿配置した浮き電極の構造を表す斜視図である。FIG. 4 is a wiring structure diagram of a main circuit conductor laid in a panel according to an embodiment of the present invention, and shows a structure of a floating electrode that is disposed in the middle of the wall surface of the panel casing so as to face the conductor terminal portion of the main circuit conductor. FIG. 図1において主回路導体の相間短絡時に発生したアークの挙動を表す説明図であって、(a),(b)はそれぞれ導体終端部に伝搬したアークの挙動,伸長の様子を模式的に表した斜視断面図,および側視断面図である。FIG. 2 is an explanatory diagram showing the behavior of an arc generated when the main circuit conductor is short-circuited between phases, and (a) and (b) schematically show the behavior of the arc propagated to the conductor termination and the state of extension, respectively. They are a perspective sectional view and a side view sectional view. 閉鎖型配電盤の盤内敷設した主回路導体の従来における配線構造を表す模式斜視図である。It is a model perspective view showing the conventional wiring structure of the main circuit conductor laid in the panel of a closed type switchboard. 図3の主回路導体に生じた相間短絡アークの挙動,伝搬経路を表す模式説明図である。FIG. 4 is a schematic explanatory diagram showing the behavior and propagation path of a short-circuit arc between phases generated in the main circuit conductor of FIG. 3. 図4で主回路導体の導体終端部に伝搬したアークがさらに伸長して盤筐体の壁面に接触した状態を表す模式図である。FIG. 5 is a schematic diagram illustrating a state in which an arc propagated to the conductor terminal end portion of the main circuit conductor is further extended and is in contact with the wall surface of the board housing in FIG. 4.

以下、本発明による閉鎖型配電盤の実施の形態を図1,図2に示す実施例に基づいて説明する。なお、実施例の図中で図3,図4に対応する部材には同じ符号を付してその詳細な説明は省略する。   Hereinafter, an embodiment of a closed type switchboard according to the present invention will be described based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 3, FIG. 4, and the detailed description is abbreviate | omitted.

すなわち、図1,図2に示す閉鎖型配電盤においては、盤筐体の内部に上下平行に並べて敷設したR,S,T各相に対応する主回路導体2の電源側と反対側の導体終端部2bの先端に対向して、盤筐体の壁面1aとの間に主回路導体2,および盤筐体の壁面1aからそれぞれ空隙を隔てて対向する浮き電極3を介挿配置し、この浮き電極3は支持碍子4を介して接地されている盤筐体の壁面1aに絶縁支持している。   That is, in the closed type switchboard shown in FIGS. 1 and 2, the conductor termination on the opposite side to the power supply side of the main circuit conductor 2 corresponding to the R, S, and T phases arranged in parallel in the vertical direction inside the panel housing. The main circuit conductor 2 and the floating electrode 3 facing each other with a gap from the wall surface 1a of the panel housing are interposed between the wall surface 1a of the panel housing and facing the tip of the part 2b. The electrode 3 is insulatively supported on the wall surface 1a of the panel casing which is grounded via the support insulator 4.

ここで、浮き電極3は、例えばタングステン合金などの耐アーク性金属板で次記のような形状に形成されている。すなわち、浮き電極3は上下に並ぶR,S,T各相の導体終端部2bの先端を一括して囲う楕円状の対向面域を有し、かつその外周面域には導体終端部2bの端面に向けて凹状の湾曲面を形成したトレー状体からなり、この浮き電極3の表面と主回路導体終端部2bの端面との間の空間距離d2は、主回路導体2の相間絶縁距離をd1としてその約1/2に設定して配置されている。   Here, the floating electrode 3 is formed in an arc-resistant metal plate such as a tungsten alloy in the following shape. In other words, the floating electrode 3 has an elliptical opposing surface area that collectively surrounds the ends of the conductor termination portions 2b of the R, S, and T phases arranged in the vertical direction, and the outer peripheral surface area of the conductor termination portion 2b. It consists of a tray-like body having a concave curved surface toward the end face, and the spatial distance d2 between the surface of the floating electrode 3 and the end face of the main circuit conductor terminal portion 2b is the interphase insulation distance of the main circuit conductor 2. d1 is set to about 1/2 of that.

また、浮き電極3の外周面域に形成した凹状湾曲面の曲率は、導体終端部2bの先端面を中心とする曲率半径Rが前記の空間距離d2と略同じになるように設定し、さらにその外周縁部には円弧状湾曲面Rを形成して主回路導体2との間の電界集中を緩和するようにしている。なお、図2(b)の図中に表したd3は盤筐体の壁面1aと支持碍子4を介して支持した浮き電極3との間の気中絶縁距離、d4は主回路導体2の導体終端部2bと盤筐体の壁面1aとの間の空隙距離である。   The curvature of the concave curved surface formed in the outer peripheral surface area of the floating electrode 3 is set so that the radius of curvature R centered on the tip surface of the conductor terminal portion 2b is substantially the same as the spatial distance d2. An arcuate curved surface R is formed on the outer peripheral edge so as to alleviate electric field concentration with the main circuit conductor 2. Note that d3 shown in FIG. 2B is the air insulation distance between the wall surface 1a of the panel housing and the floating electrode 3 supported via the support insulator 4, and d4 is the conductor of the main circuit conductor 2. This is the gap distance between the end portion 2b and the wall surface 1a of the panel casing.

次に、主回路導体2の導体終端部2bと盤筐体の壁面1aとの間に介挿配置した前記浮き電極3の機能、およびこの浮き電極3に転流した短絡アークの挙動を図2(a),(b)により説明する。なお、図示には3相電源回路に3相短絡が発生した状態を表している。   Next, the function of the floating electrode 3 interposed between the conductor terminal portion 2b of the main circuit conductor 2 and the wall surface 1a of the panel housing, and the behavior of the short-circuit arc commutated to the floating electrode 3 are shown in FIG. This will be described with reference to (a) and (b). In the drawing, a state where a three-phase short circuit has occurred in the three-phase power supply circuit is shown.

すなわち、主回路の相間短絡事故が基で主回路導体2の線間に発弧したアークarcがローレンツ力Fの電磁駆動により電源側から導体終端部2bに伝搬しこの位置に停滞すると、その発弧点(アークスポット)から前方に向けアーチ状に伸長するアーク柱が導体終端部2bと間隙を隔てて対向する浮き電極3に転移し、電流Iが図示のように主回路導体2から浮き電極3に転流して流れるようになる。また、この転流状態ではアークarcが電流Iの往路側と復路側に分断され、その分断アークが導体終端部2bの先端と浮き電極3の板面との間に伸長してこの位置に停滞保持されるようになる。   That is, when the arc arc ignited between the lines of the main circuit conductor 2 due to the short circuit between the main circuit phases propagates from the power source side to the conductor terminal portion 2b by the electromagnetic drive of the Lorentz force F and stops at this position, An arc column extending in an arch shape forward from the arc point (arc spot) is transferred to the floating electrode 3 opposed to the conductor terminal portion 2b with a gap therebetween, and the current I is floated from the main circuit conductor 2 as illustrated. 3 to commutate and flow. Further, in this commutation state, the arc arc is divided into the forward path side and the return path side of the current I, and the divided arc extends between the tip of the conductor terminal portion 2b and the plate surface of the floating electrode 3 and stays at this position. It will be retained.

したがって、主回路導体2の導体終端部2bから浮き電極3に転流したアークは、浮き電極3の裏面側に回り込んでその背後に対峙する盤筐体の壁面1aに接触するようなことがなく、これによりアークとの直接接触によって盤筐体の壁面1aが損傷(バーン・スルー)を受けるアーク事故の発生を防いで盤筐体を防護できる。   Therefore, the arc commutated from the conductor terminal portion 2b of the main circuit conductor 2 to the floating electrode 3 may wrap around the back surface side of the floating electrode 3 and contact the wall surface 1a of the board housing facing the back. Thus, it is possible to protect the panel casing by preventing the occurrence of an arc accident in which the wall surface 1a of the panel casing is damaged (burn-through) by direct contact with the arc.

また、この場合に図示の3相短絡状態では、S相の主回路導体2と浮き電極3の間に発弧した分断アークは略直線状に伸長するのに対して、上下端に並ぶR,T相の主回路導体2と浮き電極3の間に発弧した分断アークは、電流の向き,および電流磁界との関係からS相のアークから離間するように浮き電極3の外周側に向けてアーチ状に伝搬するようになる。この場合に、導体終端部2bと浮き電極3の表面との間の空間距離d2は、前述のように主回路導体2の相間絶縁距離d1 の約1/2に設定し、さらに浮き電極3の外周側面域が曲率半径R(R≒d2)の凹状湾曲面であることから、図示のようにR,S,T各相の導体終端部2bから浮き電極3に転流して分断したアーク長Laは各相で略同じアーク長となる。また、そのアーク電流の往路,および復路側に伸長する分断アークを合計したアーク長,およびそのアーク電圧も、主回路導体2の線間に発弧したアークと略同じとなる。つまり、主回路導体2の線間に発弧したアークが浮き電極3に転流して往路,復路側に分断された状態でも、その実効的なアーク長,アーク電圧は主回路導体2の線間に発生したアークと略同じ値に制限されることになる。   In this case, in the illustrated three-phase short-circuited state, the split arc generated between the S-phase main circuit conductor 2 and the floating electrode 3 extends substantially linearly, whereas R, The divided arc that is generated between the T-phase main circuit conductor 2 and the floating electrode 3 is directed toward the outer peripheral side of the floating electrode 3 so as to be separated from the S-phase arc due to the relationship between the current direction and the current magnetic field. Propagates in an arch shape. In this case, the spatial distance d2 between the conductor terminal portion 2b and the surface of the floating electrode 3 is set to about ½ of the interphase insulation distance d1 of the main circuit conductor 2 as described above. Since the outer peripheral side surface area is a concave curved surface having a radius of curvature R (R≈d2), the arc length La is divided by commutation from the conductor terminal portion 2b of each phase R, S, T to the floating electrode 3 as shown in the figure. Are approximately the same arc length in each phase. Further, the arc length obtained by summing the divided arcs extending toward the forward path and the return path of the arc current, and the arc voltage thereof are substantially the same as the arc generated between the lines of the main circuit conductor 2. In other words, even when the arc generated between the lines of the main circuit conductor 2 commutates to the floating electrode 3 and is divided to the forward and return paths, the effective arc length and arc voltage are the same between the lines of the main circuit conductor 2. Is limited to substantially the same value as that of the arc generated.

しかも、主回路導体2の導体終端部2bと浮き電極3との間の距離d2は、主回路導体2の相間絶縁距離d1の約1/2に設定しているので、主回路導体2の導体終端部2bから浮き電極3を経由する経路の耐圧強度を主回路導体2の相間と同じ耐圧強度に維持できるし、浮き電極3の外周縁部をR形状に面取りして局部的な電界集中を緩和するようにしているので、平時の受電状態に主回路導体2と浮き電極との間に閃絡が発生するおそれはない。   In addition, since the distance d2 between the conductor terminal portion 2b of the main circuit conductor 2 and the floating electrode 3 is set to about ½ of the interphase insulation distance d1 of the main circuit conductor 2, the conductor of the main circuit conductor 2 The withstand voltage strength of the path from the terminal portion 2b through the floating electrode 3 can be maintained at the same withstand voltage strength as between the phases of the main circuit conductor 2, and the outer peripheral edge of the floating electrode 3 is chamfered into an R shape to localize electric field concentration. Since relaxation is performed, there is no possibility that a flashing will occur between the main circuit conductor 2 and the floating electrode in the normal power receiving state.

そのほか、前記浮き電極3は支持碍子4を介して盤筐体の壁面1aに対し、電気的に浮遊状態に絶縁支持しているので、主回路導体2の線間に発弧したアークarcが浮き電極3に転流した際に、地絡事故に進展するのを防止できる。   In addition, since the floating electrode 3 is electrically supported in a floating state with respect to the wall surface 1a of the panel housing via the support insulator 4, the arc arc generated between the lines of the main circuit conductor 2 is floated. When commutating to the electrode 3, it is possible to prevent a ground fault from progressing.

以上の説明から明らかなように、図示実施例の盤内配線構造によれば、主回路の相間短絡が基で主回路導体2の線間に発弧して導体終端部2bに伝搬したアークが盤筐体の壁面1aに直接触れて盤筐体が損傷(バーン・スルー)するおそれがなく、これにより盤筐体の耐アーク性能が向上する。   As is clear from the above description, according to the in-panel wiring structure of the illustrated embodiment, the arc that is ignited between the lines of the main circuit conductor 2 and propagates to the conductor terminal portion 2b based on the short circuit between the phases of the main circuit. There is no risk of the panel casing being damaged (burn-through) by directly touching the wall surface 1a of the panel casing, thereby improving the arc resistance performance of the panel casing.

したがって、従来の配線構造(図5参照)で述べたように、発生アークが盤筐体の壁面1aに直接接触するのを避けるよう主回路導体2の導体終端部2bと壁面1aとの間に設定する絶縁距離Lを、予めアークの伸長分を見込んで規格の規定距離以上に拡大する必要がなく、図2(b)の図中に表した導体終端部2b/浮き電極3間の間隔距離d2、および浮き電極3/盤筐体の壁面1a間の絶縁距離d3を含めた導体終端部2b/盤筐体の壁面1a間の距離d4を縮減して閉鎖型配電盤の外形小形化が可能となる。   Therefore, as described in the conventional wiring structure (see FIG. 5), the generated arc is prevented from directly contacting the wall surface 1a of the panel housing between the conductor terminal portion 2b of the main circuit conductor 2 and the wall surface 1a. The insulation distance L to be set does not need to be expanded in advance beyond the standard specified distance in anticipation of the extension of the arc, and the distance between the conductor terminal portion 2b and the floating electrode 3 shown in FIG. It is possible to reduce the external size of the closed type switchboard by reducing d2 and the distance d4 between the conductor terminal portion 2b / the wall surface 1a of the panel housing including the insulation distance d3 between the floating electrode 3 / the wall surface 1a of the panel housing. Become.

さらに、主回路導体2の導体終端部2bと浮き電極3との間の間隔距離d2を、主回路導体2の相間絶縁距離d1の約1/2に設定して、浮き電極3に転流したアークのアーク長を最小長に抑えるようにしたことで、アーク電圧の増加、および周囲に放出するアークエネルギーの増大を抑制して盤内圧力の急激な上昇に伴う盤筐体の損傷危険度を軽減できる。   Further, the distance d2 between the conductor terminal portion 2b of the main circuit conductor 2 and the floating electrode 3 is set to about 1/2 of the interphase insulation distance d1 of the main circuit conductor 2, and the commutation to the floating electrode 3 occurs. By suppressing the arc length of the arc to the minimum length, the increase in arc voltage and the increase in arc energy released to the surroundings are suppressed, and the risk of damage to the panel casing due to a sudden rise in the panel pressure is reduced. Can be reduced.

1:閉鎖型配電盤の盤筐体
1a:壁面
2:主回路導体
2a:分岐回路導体
2b:導体終端部
3:浮き電極
4:絶縁支持碍子
arc:アーク
1: Panel housing of closed type switchboard 1a: Wall surface 2: Main circuit conductor 2a: Branch circuit conductor 2b: Conductor termination 3: Floating electrode 4: Insulation support insulator arc: Arc

Claims (5)

盤筐体の内部に電源の各相に対応した裸バー導体になる主回路導体を平行に並べて敷設した閉鎖型配電盤において、
前記各相の主回路導体と、電源側と反対側の盤筐体の壁面との間に、前記主回路導体の導体終端部の端面,および盤筐体に対して空隙を隔てて浮き電極を非接地状態に介挿配置したことを特徴とする閉鎖型配電盤。
In a closed type switchboard in which main circuit conductors that become bare bar conductors corresponding to each phase of the power supply are laid in parallel inside the panel housing,
A floating electrode is provided between the main circuit conductor of each phase and the wall surface of the board casing opposite to the power supply side with a gap between the end face of the conductor terminal of the main circuit conductor and the board casing. A closed type switchboard that is placed in an ungrounded state.
請求項1に記載の閉鎖型配電盤において、浮き電極は各相の主回路導体の導体終端部端面を一括して囲う対向面域を有し、かつその外周面域には主回路導体の導体終端部に向けて凹状の湾曲面を形成したことを特徴とする閉鎖型配電盤。   2. The closed type switchboard according to claim 1, wherein the floating electrode has an opposing surface region that collectively surrounds the end surface of the conductor terminal of the main circuit conductor of each phase, and the outer surface of the floating electrode has a conductor terminal of the main circuit conductor. A closed type switchboard characterized in that a concave curved surface is formed toward the part. 請求項1または2に記載の閉鎖型配電盤において、浮き電極の外周縁部に円弧状の湾曲面を形成したことを特徴とする閉鎖型配電盤。   3. The closed type switchboard according to claim 1 or 2, wherein an arcuate curved surface is formed on the outer peripheral edge of the floating electrode. 請求項1ないし3のいずれかに記載の閉鎖型配電盤において、浮き電極の表面と主回路導体の導体終端部端面との間の空間距離を主回路導体の相間絶縁距離の約1/2に設定したことを特徴とする閉鎖型配電盤。 The closed type switchboard according to any one of claims 1 to 3, wherein a spatial distance between the surface of the floating electrode and an end surface of the conductor end portion of the main circuit conductor is set to about 1/2 of an interphase insulation distance of the main circuit conductor. Closed type switchboard characterized by that. 請求項1ないし4のいずれかに記載の閉鎖型配電盤において、浮き電極が碍子を介して盤筐体の壁面に絶縁支持されていることを特徴とする閉鎖型配電盤。   5. The closed type switchboard according to any one of claims 1 to 4, wherein the floating electrode is insulated and supported on the wall surface of the board casing through an insulator.
JP2014166644A 2014-08-19 2014-08-19 Closed switchboard Active JP6340991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166644A JP6340991B2 (en) 2014-08-19 2014-08-19 Closed switchboard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166644A JP6340991B2 (en) 2014-08-19 2014-08-19 Closed switchboard

Publications (2)

Publication Number Publication Date
JP2016042777A JP2016042777A (en) 2016-03-31
JP6340991B2 true JP6340991B2 (en) 2018-06-13

Family

ID=55592281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166644A Active JP6340991B2 (en) 2014-08-19 2014-08-19 Closed switchboard

Country Status (1)

Country Link
JP (1) JP6340991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2924653T3 (en) * 2018-12-20 2022-10-10 Abb Schweiz Ag Electric arc absorber system, a switchgear having an electric arc absorber system and method for operating a switchgear

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880714U (en) * 1981-11-28 1983-06-01 富士電機株式会社 Arc protection devices for closed electrical equipment
JP3118969B2 (en) * 1992-07-20 2000-12-18 株式会社日立製作所 switchboard
JP5202480B2 (en) * 2009-09-03 2013-06-05 株式会社東芝 Metal closed switchgear
JP6082240B2 (en) * 2012-12-10 2017-02-15 富士電機株式会社 Closed switchboard

Also Published As

Publication number Publication date
JP2016042777A (en) 2016-03-31

Similar Documents

Publication Publication Date Title
US8284541B2 (en) Method and apparatus to move an arcing fault to a different location in an electrical enclosure
EP2728686B1 (en) Structure of three-phase integrated bus in gas insulated switchgear
CA2725941C (en) Method and apparatus to reduce internal pressure caused by an arcing fault in an electrical enclosure
JP5719202B2 (en) Plasma generator
US10141725B2 (en) Arc fault resistant electric equipment
JP2014204632A (en) Bus line support structure of distribution board
JP6340991B2 (en) Closed switchboard
CN104541589B (en) For being connected to the device of power network and method for protecting this device
JP6082240B2 (en) Closed switchboard
AU2018264092B2 (en) Device for reducing fault arcs in an electric distribution unit
JP6714948B2 (en) Circuit breaker and switchgear
KR100987156B1 (en) A distribution panel with harmonic wave resistance
JP2014236519A (en) Closed switchboard
US1735179A (en) Electrical apparatus
KR102066227B1 (en) Gas Insulated Switchgear
JP2017022029A (en) Arc horn and distribution panel
JP5241593B2 (en) Energizer
SU1348931A1 (en) Cable inlet compartment of cabinet of complete switchgear
KR20110134133A (en) Busbar geometry of switchboard
KR200465381Y1 (en) Ring main unit
JPH0638315A (en) Switchboard
CN112652472A (en) Anti zero sequence current's of paralleling reactor insulation system
KR20210083969A (en) Drawable truck of ultra fast earthing switch with epoxy insulator
KR20130038584A (en) Vacuum circuit breaker
CN107805421A (en) A kind of machine shell of electric equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R150 Certificate of patent or registration of utility model

Ref document number: 6340991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250