JP6339426B2 - Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition - Google Patents

Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition Download PDF

Info

Publication number
JP6339426B2
JP6339426B2 JP2014134884A JP2014134884A JP6339426B2 JP 6339426 B2 JP6339426 B2 JP 6339426B2 JP 2014134884 A JP2014134884 A JP 2014134884A JP 2014134884 A JP2014134884 A JP 2014134884A JP 6339426 B2 JP6339426 B2 JP 6339426B2
Authority
JP
Japan
Prior art keywords
glyceroglycolipid
extraction
containing composition
extract
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134884A
Other languages
Japanese (ja)
Other versions
JP2016011400A (en
Inventor
知基 足立
知基 足立
奥原 康英
康英 奥原
政稔 本城
政稔 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
Original Assignee
Fancl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp filed Critical Fancl Corp
Priority to JP2014134884A priority Critical patent/JP6339426B2/en
Publication of JP2016011400A publication Critical patent/JP2016011400A/en
Application granted granted Critical
Publication of JP6339426B2 publication Critical patent/JP6339426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Edible Oils And Fats (AREA)

Description

本発明は、グリセロ糖脂質を含有する組成物に関する。   The present invention relates to a composition containing a glyceroglycolipid.

糖脂質は、分子内に糖と脂質の両者を含む物質群をいう。糖脂質はさらにスフィンゴ糖脂質、グリセロ糖脂質、その他のものに分類される。グリセロ糖脂質は親水性基として炭水化物を持ち、脂溶性(非極性)基としてジアシルグリセロール、アルキルアシルグリセロール、あるいはアルケニルアシルグリセロールを持つ糖脂質の一群の総称である(非特許文献1)。
グリセロ糖脂質は動植物から微生物に至るまで広く分布している。上記のように親水基と脂溶性基が存在するため、天然の界面活性剤として利用されている。また脳機能改善などの生理活性が知られている。このため、医薬品、食品、毛髪ケア、皮膚化粧品などに利用されており、さらに新しい用途が開発されている。
特許文献1には、アブラナ科植物であるケール由来グリセロ糖脂質のインターロイキン4産生抑制作用やメラニン産生抑制効果が記載されている。
グリセロ糖脂質を得るためには、特定の化合物を化学的に反応させて合成する方法(特許文献2)、植物から抽出する方法が知られている。植物から抽出する方法としては、例えば、茶葉に水を加え、水溶性成分を抽出した後に生じる茶殻に、エタノールなどの有機溶媒を加え、グリセロ糖脂質を抽出する方法が知られている(特許文献3)。
しかし、植物から抽出する方法は、グリセロ糖脂質が両親媒性の化合物であることから抽出効率(溶媒分配)が低く、高含有のグリセロ糖脂質抽出物を得ることは困難である。また、あらかじめ水抽出などで水溶性成分を除かずに、エタノールなどの溶媒で抽出を行うと、グルコースやフルクトースといった還元糖が、目的とするグリセロ糖脂質と同様の挙動を示すため、これらの混入した抽出物が得られる。抽出物中の還元糖はメイラード反応により、抽出物を褐変化させてしまう。
また、グリセロ糖脂質を製剤化するに際して、ゼラチン製などのソフトカプセル製剤に封入する技術が普及している。しかし、還元糖は、カプセル中で結晶化しやすく、結晶化によりカプセル皮膜内面に析出する。そして、カプセルの崩壊遅延を引き起こす要因になることが指摘されている。従って、植物からグリセロ糖脂質を抽出する場合は、還元糖含有量をできるだけ少なくすることが求められている。
さらにまた、植物中のグリセロ糖脂質の含有量は極めて少ないため、効率よく抽出する技術が求められている。
Glycolipid refers to a group of substances containing both sugar and lipid in the molecule. Glycolipids are further classified into glycosphingolipids, glyceroglycolipids, and others. Glyceroglycolipid is a general term for a group of glycolipids having a carbohydrate as a hydrophilic group and diacylglycerol, alkylacylglycerol, or alkenylacylglycerol as a fat-soluble (nonpolar) group (Non-patent Document 1).
Glyceroglycolipids are widely distributed from animals and plants to microorganisms. Since hydrophilic groups and fat-soluble groups exist as described above, they are used as natural surfactants. In addition, physiological activities such as brain function improvement are known. For this reason, it is used for pharmaceuticals, foods, hair care, skin cosmetics, and the like, and new uses are being developed.
Patent Document 1 describes the interleukin 4 production inhibitory action and melanin production inhibitory effect of kale-derived glyceroglycolipid, which is a cruciferous plant.
In order to obtain glyceroglycolipid, a method of synthesizing a specific compound by chemical reaction (Patent Document 2) and a method of extracting from a plant are known. As a method for extracting from a plant, for example, a method is known in which water is added to tea leaves and an organic solvent such as ethanol is added to tea leaves generated after extraction of water-soluble components to extract glyceroglycolipid (Patent Document). 3).
However, the method of extracting from a plant has a low extraction efficiency (solvent partition) because glyceroglycolipid is an amphiphilic compound, and it is difficult to obtain a glyceroglycolipid extract with a high content. In addition, when extraction is performed with a solvent such as ethanol without removing water-soluble components in advance by water extraction or the like, reducing sugars such as glucose and fructose behave in the same manner as the target glyceroglycolipid. Extract is obtained. The reducing sugar in the extract browns the extract by the Maillard reaction.
In addition, when formulating glyceroglycolipid, a technique of encapsulating in a soft capsule formulation made of gelatin or the like has become widespread. However, the reducing sugar is easily crystallized in the capsule, and is precipitated on the inner surface of the capsule film by the crystallization. And it is pointed out that it becomes a factor which causes the capsule disintegration delay. Therefore, when extracting glyceroglycolipid from a plant, it is calculated | required to reduce reducing sugar content as much as possible.
Furthermore, since the content of glyceroglycolipid in plants is extremely small, a technique for efficient extraction is required.

特許第4749696号公報Japanese Patent No. 4749696 特許第2939649号公報Japanese Patent No. 2939649 特許第4308714号公報Japanese Patent No. 4308714

生化学辞典、東京化学同人刊、1989年 363ページ、860ページBiochemical Dictionary, Tokyo Chemical Doujinshi, 1989, 363 pages, 860 pages

本発明は、植物から還元糖の含有量の少ないグリセロ糖脂質含有組成物及びその製造方法を提供することを課題とする。また本発明は、保存中の褐変化が抑制され、崩壊遅延が起こりにくいグリセロ糖脂質を内包するソフトカプセル製剤を提供することを課題とする。   An object of the present invention is to provide a glyceroglycolipid-containing composition having a low reducing sugar content from plants and a method for producing the same. Moreover, this invention makes it a subject to provide the soft capsule formulation which encloses the glyceroglycolipid by which the brown change during a preservation | save is suppressed and decay | disintegration delay does not occur easily.

(1)二段階の超臨界抽出法により植物体からグリセロ糖脂質を抽出してグリセロ糖脂質含有組成物を製造する方法であって、第一段階の抽出として、超臨界二酸化炭素を抽出溶媒として抽出した後の抽出残渣のみを回収し、この抽出残渣に対して第二段階の抽出として、超臨界二酸化炭素とエタノールを抽出溶媒として抽出することを特徴とする、グリセロ糖脂質含有組成物を製造する方法。
(2)植物体がケール、大麦若葉、ヨモギ、コマツナから選択される1又は2以上の植物体である(1)に記載の方法。
)植物体から抽出された還元糖とグリセロ糖脂質を含むグリセロ糖脂質含有組成物であって、還元糖の含有率が1%以下である、(1)または(2)に記載の方法で得た抽出物からなるグリセロ糖脂質含有組成物。
(3)に記載のグリセロ糖脂質含有組成物を内包するソフトカプセル製剤。
(1) A method for producing a glyceroglycolipid-containing composition by extracting glyceroglycolipid from a plant body by a two-stage supercritical extraction method, wherein supercritical carbon dioxide is used as an extraction solvent in the first stage of extraction. only extraction residue after extracting Te was recovered, as extracted for this extraction residue of the second stage, and extracts as a extraction solvent supercritical carbon dioxide and ethanol, glyceroglycolipid-containing composition A method of manufacturing things.
(2) The method according to (1), wherein the plant is one or more plants selected from kale, barley young leaves, mugwort, and komatsuna.
( 3 ) The method according to (1) or (2), wherein the composition is a glyceroglycolipid-containing composition comprising a reducing sugar extracted from a plant and a glyceroglycolipid, wherein the content of the reducing sugar is 1% or less. A glyceroglycolipid-containing composition comprising the extract obtained in 1 .
( 4 ) A soft capsule formulation containing the glyceroglycolipid-containing composition according to (3) .

本発明により、植物体から還元糖含有量の低いグリセロ糖脂質含有組成物を製造する方法が提供される。本発明の方法は、従来の技術で使用していた有機溶媒を使用しないため、安全な組成物を得ることができる。そして製造工程が簡単であり、溶媒抽出法のような複雑な操作を必要としない。
また、本発明のグリセロ糖脂質含有組成物は、還元糖含有率が低く、メイラード反応による褐変を抑制し、ソフトカプセル製剤の崩壊遅延を引き起こしにくくする。
The present invention provides a method for producing a glyceroglycolipid-containing composition having a low reducing sugar content from a plant. Since the method of the present invention does not use the organic solvent used in the prior art, a safe composition can be obtained. And a manufacturing process is simple and does not require complicated operation like a solvent extraction method.
In addition, the glyceroglycolipid-containing composition of the present invention has a low reducing sugar content, suppresses browning due to the Maillard reaction, and makes it difficult to delay the collapse of the soft capsule preparation.

実施例1で得られた抽出物を分析したHPLCクロマトグラフィーのチャートを示す。The chart of the HPLC chromatography which analyzed the extract obtained in Example 1 is shown. 実施例2で得られた抽出物を分析したHPLCクロマトグラフィーのチャートを示す。The chart of the HPLC chromatography which analyzed the extract obtained in Example 2 is shown. 比較例1で得られた抽出物を分析したHPLCクロマトグラフィーのチャートを示す。The chart of the HPLC chromatography which analyzed the extract obtained in comparative example 1 is shown. 比較例2で得られた抽出物を分析したHPLCクロマトグラフィーのチャートを示す。The chart of the HPLC chromatography which analyzed the extract obtained by the comparative example 2 is shown. 比較例3で得られた抽出物を分析したHPLCクロマトグラフィーのチャートを示す。The chart of the HPLC chromatography which analyzed the extract obtained by the comparative example 3 is shown.

本発明は、超臨界抽出法により植物体からグリセロ糖脂質を抽出してグリセロ糖脂質含有組成物を製造する方法であって、超臨界二酸化炭素を抽出溶媒とすることを特徴とする、グリセロ糖脂質含有組成物を製造する方法である。また本発明は、植物体から抽出された還元糖とグリセロ糖脂質を含むグリセロ糖脂質含有組成物であって、還元糖の含有率が10%以下であるグリセロ糖脂質含有組成物に係る発明である。   The present invention relates to a method for producing a glyceroglycolipid-containing composition by extracting glyceroglycolipid from a plant body by a supercritical extraction method, characterized by using supercritical carbon dioxide as an extraction solvent, A method for producing a lipid-containing composition. The present invention also relates to a glyceroglycolipid-containing composition comprising a reducing sugar extracted from a plant and a glyceroglycolipid, wherein the reducing sugar content is 10% or less. is there.

(1)原料
本発明の方法の原料としては、グリセロ糖脂質を含む植物であればどのようなものでも使用できるが、好ましくは食用又は薬用とされている植物が好ましい。次の植物を例示できる。
アーモンド、アオサ、アオノリ、アカザ、アカシア、アカネ、アカブドウ、アカマツ(松ヤニ、琥珀、コーパルを含む。以下マツ類については同じ)、アガリクス、アキノノゲシ、アケビ、アサガオ、アザレア、アジサイ、アシタバ、アズキ、アスパラガス、アセロラ、アセンヤク、アニス、アボガド、アマチャ、アマチャヅル、アマリリス、アルテア、アルニカ、アロエ、アンジェリカ、アンズ、アンソッコウ、イグサ、イザヨイバラ、イチイ、イチジク、イチョウ、イランイラン、ウイキョウ、ウーロン茶、ウコン、ウスベニアオイ、ウツボグサ、ウド、ウメ、ウラジロガシ、温州ミカン、エイジツ、エシャロット、エゾウコギ、エニシダ、エルダーフラワー、エンドウ、オーキッド、オオバコ、オオヒレアザミ、オオムギ、オクラ、オケラ、オスマンサス、オトギリソウ、オドリコソウ、オニドコロ、オリーブ、オレガノ、オレンジ(オレンジピールも含む)、カーネーション、カカオ、カキ、カキドオシ、カッコン、カシワ、カタクリ、カボチャ、カミツレ、カムカム、カモミール、カラスウリ、カラマツ、カリン、ガルシニア、カルダモン、キイチゴ、キウイ、キキョウ、キャベツ(ケールを含む)、キャラウェイ、キュウリ、キンカン、ギンナン、グァバ、クコ、クズ、クチナシ、クミン、クランベリー、クルミ、グレープフルーツ、クローブ、クロマツ、クロマメ、ケール、ケツメイシ、ゲンノショウコ、コケモモ、コショウ、コスモス、ゴボウ、コムギ(小麦胚芽も含む)、ゴマ、コマツナ、コメ(米糠も含む)、コリアンダー、コンニャク芋(コンニャクトビ粉も含む)、コンブ、サーモンベリー、サイプレス、ザクロ、サツマ芋、サト芋、サトウキビ、サトウダイコン、サフラン、ザボン、サンザシ、サンショウ、シクラメン、シソ、シメジ、ジャガ芋、シャクヤク、ジャスミン、ジュズダマ、シュンギク、ショウガ、ショウブ、シラカシ、ジンチョウゲ、シンナモン、スイカ、スイトピー、スギナ、スターアニス、スターアップル、スダチ、ステビア、スモモ、セージ(サルビア)、ゼニアオイ、セロリ、センキュウ、センブリ、ソバ、ソラマメ、ダイコン、ダイズ(おからを含む)、ダイダイ、タイム、タケノコ、タマネギ、タラゴン、タロイモ、タンジン、タンポポ、チコリ、ツキミソウ、ツクシ、ツバキ、ツボクサ、ツメクサ、ツルクサ、ツルナ、ツワブキ、ディル、テンジクアオイ(ゼラニウム)、トウガ、トウガラシ、トウキ、トウモロコシ、ドクダミ、トコン、トチュウ、トネリコ、ナガイモ、ナズナ、ナツメグ、ナンテン、ニガウリ、ニガヨモギ、ニラ、ニンジン、ニンニク、ネギ、ノコギリソウ、ノコギリヤシ、ノビル、バーベナ、パーム、パイナップル、ハイビスカス、ハコベ、バジル、パセリ、ハダカムギ、ハッカ、ハトムギ、バナナ、バナバ、バニラ、パプリカ、ハマメリス、ビート、ピーマン、ヒガンバナ、ヒシ、ピスタチオ、ヒソップ(ヤナギハッカ)、ヒナギク、ヒナゲシ、ヒノキ、ヒバ、ヒマシ、ヒマワリ、ビワ、ファレノプシス、フェネグリーク、フキノトウ、ブラックベリー、プラム、ブルーベリー(ビルベリーを含む)、プルーン、ヘチマ、ベニバナ、ベラドンナ、ベルガモット、ホウセンカ、ホウレンソウ、ホオズキ、ボダイジュ、ボタン、ホップ、ホホバ、マオウ、マカ、マカデミアンナッツ、マタタビ、マリーゴールド、マンゴー、ミツバ、ミモザ、ミョウガ、ミルラ、ムラサキ、メース、メリッサ、メリロート、メロン、メン(綿実油粕も含む)、モヤシ、ヤグルマソウ、ヤマ芋、ヤマユリ、ヤマヨモギ、ユーカリ、ユキノシタ、ユズ、ユリ、ヨクイニン、ヨメナ(アスター)、ヨモギ、ライム、ライムギ、ライラック、ラズベリー、ラッカセイ、ラッキョウ、リンゴ、リンドウ、レタス、レモン、レンゲソウ、レンコン、ローズヒップ、ローズマリー、ローリエ、ワケギ、ワサビ(セイヨウワサビも含む)。これらの植物の全体、葉、あるいは果実などが使用可である。なかでもケール、大麦若葉、ヨモギ、コマツナが好ましく、ケールが特に好ましい。
植物体は、乾燥させた後、粉砕することが好ましい。ケール、大麦若葉、ヨモギ、コマツナにあっては、青汁飲料用として収穫後、搾汁した搾汁残渣であっても良い。
(1) Raw material As a raw material of the method of the present invention, any plant containing glyceroglycolipid can be used, but a plant that is preferably edible or medicinal is preferable. The following plants can be exemplified.
Almond, Aosa, Aonori, Akaza, Acacia, Akane, Aka grape, Red pine (including pine crab, cocoon, copal), Agaricus, Akinonogeshi, Akebi, Asagao, Azalea, Hydrangea, Ashitaba, Azuki, Asparagus Gas, Acerola, Asenyaku, Anise, Avocado, Achacha, Achacharu, Amaryllis, Altea, Arnica, Aloe, Angelica, Apricot, Ansocco, Igusa, Izayoi Rose, Ichii, Fig, Ginkgo, Iran Iran, Fritillaria, Ukrainian, Wolves , Udo, Ume, Vulture, Wenzhou mandarin, Ages, Shallot, Ezokogi, Enishi, Elderflower, Pea, Orchid, Plantain, Great white thistle, Barley, Okra, O La, Osmanthus, Hypericum, Odoricho, Onidokoro, Olive, Oregano, Orange (including orange peel), Carnation, Cacao, Oyster, Oyster, Cuckoo, Kashiwa, Katakuri, Pumpkin, Chamomile, Camcam, Chamomile, Oxalis, Larch, Karin, Garcinia, Cardamom, Raspberry, Kiwi, Koki, Cabbage (including Kale), Caraway, Cucumber, Kumquat, Ginnan, Guava, Cuco, Kudzu, Gardenia, Cumin, Cranberry, Walnut, Grapefruit, Clove, Black Pine, Black Bean, Kale, Ketsumeishi, Gennoshoko, Cowberry, Pepper, Cosmos, Burdock, Wheat (including wheat germ), Sesame, Komatsuna, Rice (Including rice bran), Coriander, Konjac koji (Konjac powder) ), Kombu, salmon berry, cypress, pomegranate, sweet potato, sugarcane, sugarcane, sugar beet, saffron, pomelo, hawthorn, salamander, cyclamen, perilla, shimeji, jaguar, peony, jasmine, juzudama, shungiku, ginger , Shabu, Syringe, Ginkgo biloba, Cinnamon, Watermelon, Sweet pea, Horsetail, Star anise, Star apple, Sudachi, Stevia, Plum, Sage (Salvia), Zenia mushroom, Celery, Cyprus, Assembly, Buckwheat, Broad bean, Daikon, Soybean (Okara) Daidai, thyme, bamboo shoot, onion, tarragon, taro, tanjin, dandelion, chicory, camellia, camellia, camellia, camellia, clover, clover, tuna, camellia, dill, pearl oyster (gelani) Um), chili, capsicum, cypress, corn, dodami, tocon, eucommia, ash, Chinese yam, natsuna, nutmeg, nanten, bitter gourd, mugwort, leek, carrot, garlic, leek, yarrow, saw palmetto, nobil, paver, palm , Hibiscus, Octopus, Basil, Parsley, Hadakamugi, Hakka, Barley, Banana, Banaba, Vanilla, Paprika, Hamelis, Beet, Bell Pepper, Hydrangea, Hashi, Pistachio, Hyssop (Ceramic), Daisies, Daisies, Hinoki Sunflower, loquat, phalaenopsis, phenegrigree, cypress, blackberry, plum, blueberry (including bilberry), prunes, loofah, safflower, belladonna, bergamot, spinach Noodles, physalis, body bream, buttons, hops, jojoba, maou, maca, macadamia nuts, matatabi, marigold, mango, honey bees, mimosa, mioga, myrrh, murasaki, mace, melissa, merilot, melon, men ), Bean sprouts, cornflower, mountain bream, mountain lily, porcupine, eucalyptus, yukinoshita, yuzu, lily, yokuinin, yomena (aster), mugwort, lime, rye, lilac, raspberry, peanut, radish, apple, gentian, lettuce, lemon , Lotus root, lotus root, rose hips, rosemary, bay leaf, bamboo grass, wasabi (including horseradish). The whole of these plants, leaves, or fruits can be used. Of these, kale, young barley leaves, mugwort and komatsuna are preferred, and kale is particularly preferred.
The plant body is preferably dried and then pulverized. In kale, barley young leaves, mugwort, and komatsuna, it may be a squeezed residue squeezed after harvesting for a green juice drink.

(2)超臨界抽出操作
本発明には、超臨界抽出装置であれば、特に制限はない。
抽出操作に当たっては、原料を超臨界抽出装置内の抽出槽に収納し、抽出溶媒として二酸化炭素を用いて、各々の抽出条件にて抽出操作を行う。適切な抽出条件は、例えば、二酸化炭素流量10〜100g/分、抽出圧力10〜100MPaおよび抽出温度32〜100℃である。より好ましくは二酸化炭素流量65g/分、抽出圧力25MPaおよび抽出温度40℃である。抽出時間が長いほど多くのグリセロ糖脂質を得ることができるが、好ましくは0.5〜1時間である。また、エントレーナーとしてエタノールやメタノールなどの極性有機溶媒を使用することが好ましい。特に好ましい極性溶媒はエタノールである。極性溶媒をエントレーナーとして使用することで、さらに還元糖含有量の少ないグリセロ糖脂質含有組成物を得ることができる。
かくして得られる抽出組成物は、グリス状を呈し、グリセロ糖脂質を含有しており、還元糖含有率が10%以下である。この組成物をカラムクロマトグラフィーや分取型高速液体クロマトグラフィー装置(HPLC)にかけてさらにグリセロ糖脂質含有率を高めた原料とすることもできる。
(2) Supercritical extraction operation The present invention is not particularly limited as long as it is a supercritical extraction apparatus.
In the extraction operation, the raw material is stored in an extraction tank in a supercritical extraction apparatus, and carbon dioxide is used as an extraction solvent to perform the extraction operation under each extraction condition. Suitable extraction conditions are, for example, a carbon dioxide flow rate of 10-100 g / min, an extraction pressure of 10-100 MPa, and an extraction temperature of 32-100 ° C. More preferably, the carbon dioxide flow rate is 65 g / min, the extraction pressure is 25 MPa, and the extraction temperature is 40 ° C. The longer the extraction time, the more glyceroglycolipid can be obtained, but preferably 0.5 to 1 hour. Moreover, it is preferable to use polar organic solvents, such as ethanol and methanol, as an entrainer. A particularly preferred polar solvent is ethanol. By using a polar solvent as an entrainer, a glyceroglycolipid-containing composition having a lower reducing sugar content can be obtained.
The extract composition thus obtained is in the form of a grease, contains glyceroglycolipid, and has a reducing sugar content of 10% or less. This composition can be subjected to column chromatography or preparative high performance liquid chromatography (HPLC) to obtain a raw material having a further increased glyceroglycolipid content.

(3)グリセロ糖脂質の確認方法
得られた抽出物中のグリセロ糖脂質は以下に示す方法で分析を行い確認することができる。
1)グリセロ糖脂質含有抽出物の前処理方法
i) 得られた抽出物を適量秤取し、ジメチルスルホキシドを加え、溶解させる。
ii) i)で得られた溶液は成分濃度に応じてジメチルスルホキシドで適宜希釈し、分析用試料とする。
2)分析方法
i)高速液体クロマトグラフ質量分析器(LC-MS)による分析

LC-MS分析条件は次のとおり
検出器:LCMS-2000(株式会社島津製作所)
イオン化条件:(+/-)-ESI
移動相A:0.5mMギ酸アンモニウム、0.1%ギ酸水溶液
移動相B:0.5mMギ酸アンモニウム、0.1%ギ酸アセトニトリル:メタノール=1:1溶液
分析カラム:Merck Select B 250×4mm, 5μm
Injection Volume:10μL
カラムオーブン:25℃
分析時間:100分
流速:0.5mL/分
グラジエント条件は以下に示すとおり
(1)0−30分
移動相A:85% → 0%、移動相B:15% → 100%
(2)30―80分
移動相A:0% 、移動相B:100%
(3)80―90分
移動相A:0→85%、移動相B:100%→15%
(4)90−100分
移動相A:85% 、移動相B:15%
本分析条件により、下記のイオン化パターンを示すピークの有無を確認する。ここでは特許文献1の下記IUPAC名のケール由来グリセロ糖脂質のピークを確認し、指標とすることができる。他の構造をしたグリセロ糖脂質も同様の挙動を示すことから、下記IUPAC名の化合物を含有することはその他の構造のグリセロ糖脂質も同様に含有していることを示す。
(+)-ESI: 699[M+NH4]+, 515[M-Gal+H]+, 353[M-2Gal+H]+,
261[C18H29O]+
(-)-ESI: 721[M+HCOO]- ,675[M-H]- , 277[C18H29O2]-

IUPAC名
(9Z,12Z,15Z)-2-hydroxy-3-((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)methyl)-tetrahydro-2H-pyran-2-yloxy)propyl octadeca-9,12,15-trienoate


ii)HPLCによる分析
HPLC分析条件は以下の通り
分析装置:Ultimate 3000 HPLC System (サーモフィッシャーサイエンティフィック株式会社)
検出器:荷電化粒子検出器 (サーモフィッシャーサイエンティフィック株式会社)
その他、条件はLC-MSの条件と同じ
(3) Confirmation method of glyceroglycolipid The glyceroglycolipid in the obtained extract can be confirmed by analyzing by the following method.
1) Pretreatment method of glyceroglycolipid-containing extract
i) Weigh the appropriate amount of the extract obtained, add dimethyl sulfoxide and dissolve.
ii) The solution obtained in i) is appropriately diluted with dimethyl sulfoxide according to the component concentration to prepare a sample for analysis.
2) Analysis method
i) Analysis by high performance liquid chromatograph mass spectrometer (LC-MS)

LC-MS analysis conditions are as follows. Detector: LCMS-2000 (Shimadzu Corporation)
Ionization condition: (+/-)-ESI
Mobile phase A: 0.5 mM ammonium formate, 0.1% formic acid aqueous solution Mobile phase B: 0.5 mM ammonium formate, 0.1% formic acid acetonitrile: methanol = 1: 1 solution Analytical column: Merck Select B 250 × 4 mm, 5 μm
Injection Volume: 10μL
Column oven: 25 ° C
Analysis time: 100 minutes Flow rate: 0.5 mL / min Gradient conditions are as shown below
(1) 0-30 minutes
Mobile phase A: 85% → 0%, mobile phase B: 15% → 100%
(2) 30-80 minutes
Mobile phase A: 0%, mobile phase B: 100%
(3) 80-90 minutes
Mobile phase A: 0 → 85%, mobile phase B: 100% → 15%
(4) 90-100 minutes
Mobile phase A: 85%, mobile phase B: 15%
The presence or absence of a peak showing the following ionization pattern is confirmed according to the analysis conditions. Here, the peak of kale-derived glyceroglycolipid of the following IUPAC name in Patent Document 1 can be confirmed and used as an index. Since glyceroglycolipids having other structures also exhibit the same behavior, inclusion of a compound having the following IUPAC name indicates that glyceroglycolipids having other structures are also contained.
(+)-ESI: 699 [M + NH 4 ] + , 515 [M-Gal + H] + , 353 [M-2Gal + H] + ,
261 [C 18 H 29 O] +
(-)-ESI: 721 [M + HCOO] - , 675 [MH] - , 277 [C 18 H 29 O 2 ] -

IUPAC name
(9Z, 12Z, 15Z) -2-hydroxy-3-((2R, 3R, 4S, 5R, 6R) -3,4,5-trihydroxy-6-(((2R, 3R, 4S, 5R, 6R) -3,4,5-trihydroxy-6- (hydroxymethyl) -tetrahydro-2H-pyran-2-yloxy) methyl) -tetrahydro-2H-pyran-2-yloxy) propyl octadeca-9,12,15-trienoate


ii) Analysis by HPLC
HPLC analysis conditions are as follows Analyzer: Ultimate 3000 HPLC System (Thermo Fisher Scientific Co., Ltd.)
Detector: Charged particle detector (Thermo Fisher Scientific Co., Ltd.)
Other conditions are the same as those for LC-MS

(4)還元糖の確認方法
本発明組成物中の還元糖の確認及び含有量は以下の方法で分析可能である。
i)LC-MSによる分析
上記条件にて、グルコース、フルクトース及びスクロースの標準品と各抽出物のイオン化パターンを比較した。還元糖であるグルコースおよびフルクトースを含む抽出物には質量電荷比225,297,367のピークが検出される。

ii)HPLCによる分析
上記条件にて、グルコース、フルクトース及びスクロースの標準品と各抽出物のクロマトグラフを比較する。
(4) Method for Confirming Reducing Sugar The confirmation and content of the reducing sugar in the composition of the present invention can be analyzed by the following method.
i) Analysis by LC-MS Ionization patterns of glucose, fructose and sucrose standards and each extract were compared under the above conditions. In the extract containing the reducing sugars glucose and fructose, peaks with a mass-to-charge ratio of 225,297,367 are detected.

ii) Analysis by HPLC Under the above conditions, the standard products of glucose, fructose and sucrose are compared with chromatographs of each extract.

以下に実施例、比較例を示し、本発明をさらに詳細に説明する。
(実施例1)
ケール乾燥粉末を約1g採取し、これを超臨界抽出装置(三菱化工機株式会社)の耐圧容器(抽出槽,0.5L容器)に移した。次いで抽出溶媒として二酸化炭素を用いて、昇温・昇圧操作を行い、40℃、25MPaの条件下で1時間(CO2流速:65g/分)、超臨界二酸化炭素を抽出槽に通して抽出操作を行った。
抽出物は回収槽に移し、秤量した。本条件での抽出操作により、秤量した原料の約8%が抽出された。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1
About 1 g of dry kale powder was sampled and transferred to a pressure-resistant container (extraction tank, 0.5 L container) of a supercritical extraction device (Mitsubishi Chemical Corporation). Next, using carbon dioxide as the extraction solvent, the temperature is increased and the pressure is increased. The extraction operation is performed by passing supercritical carbon dioxide through the extraction tank for 1 hour under the conditions of 40 ° C. and 25 MPa (CO 2 flow rate: 65 g / min). Went.
The extract was transferred to a collection tank and weighed. About 8% of the weighed raw materials were extracted by the extraction operation under these conditions.

(実施例2)
実施例1で得られた超臨界抽出残渣に対して、40℃、25MPaの条件下で1時間(CO2流速:65g/分)、超臨界二酸化炭素を抽出槽に通して抽出操作を行った。このときエントレーナーとしてエタノールを使用した(流速:3mL/分)。
抽出物は回収槽に移し、秤量した。本条件での抽出操作により、秤量した原料の約35%が抽出された。
(Example 2)
The supercritical extraction residue obtained in Example 1 was subjected to an extraction operation by passing supercritical carbon dioxide through an extraction tank under the conditions of 40 ° C. and 25 MPa for 1 hour (CO 2 flow rate: 65 g / min). . At this time, ethanol was used as an entrainer (flow rate: 3 mL / min).
The extract was transferred to a collection tank and weighed. About 35% of the weighed raw materials were extracted by the extraction operation under these conditions.

(比較例1)
ケール乾燥粉末を約1g採取し、約50mLのエタノールを加えて室温にて、1時間の振盪抽出を行った。ろ紙を使用して抽出液と抽出残渣を分離した後、減圧処理により溶媒を除去し、抽出物を得た。本条件での抽出操作により、秤量した原料の約10%が抽出された。
(Comparative Example 1)
About 1 g of dry kale powder was collected, about 50 mL of ethanol was added, and shake extraction was performed at room temperature for 1 hour. After separating the extract from the extraction residue using filter paper, the solvent was removed by vacuum treatment to obtain an extract. About 10% of the weighed raw materials were extracted by the extraction operation under these conditions.

(比較例2)
ケール乾燥粉末を約1g採取し、約50mLのメタノールを加えて室温にて、1時間の振盪抽出を行った。ろ紙を使用して抽出液と抽出残渣を分離した後、減圧処理により溶媒を除去し、抽出物を得た。本条件での抽出操作により、秤量した原料の約30%が抽出された。
(Comparative Example 2)
About 1 g of the dry kale powder was collected, about 50 mL of methanol was added, and shake extraction was performed at room temperature for 1 hour. After separating the extract from the extraction residue using filter paper, the solvent was removed by vacuum treatment to obtain an extract. About 30% of the weighed raw materials were extracted by the extraction operation under these conditions.

(比較例3)
ケール乾燥粉末を約1g採取し、約50mLの2:1=クロロホルム:メタノール混液を加えて室温にて、1時間の振盪抽出を行った。ろ紙を使用して抽出液と抽出残渣を分離した後、減圧処理により溶媒を除去し、抽出物を得た。本条件での抽出操作により、秤量した原料の約20%が抽出された。
(Comparative Example 3)
About 1 g of the dry kale powder was collected, and about 50 mL of 2: 1 = chloroform: methanol mixture was added, followed by extraction with shaking at room temperature for 1 hour. After separating the extract from the extraction residue using filter paper, the solvent was removed by vacuum treatment to obtain an extract. About 20% of the weighed raw materials were extracted by the extraction operation under these conditions.

[抽出効率の評価]
表1に実施例、比較例の抽出された組成物の、原料に対する回収率を示す。
[Evaluation of extraction efficiency]
Table 1 shows the recovery rates of the extracted compositions of Examples and Comparative Examples with respect to raw materials.

溶媒抽出と超臨界抽出による抽出量には大きな相違はなかった。   There was no big difference between the extraction amount by solvent extraction and supercritical extraction.

[グリセロ糖脂質含有組成物の評価]
実施例、比較例で得た組成物のグリセロ糖脂質の存在確認結果及び還元糖の含有率の概算値を表2に示す。なお組成物中の還元糖含有率は、クロマトチャートのピーク面積からの推計値である。
[Evaluation of glyceroglycolipid-containing composition]
Table 2 shows the results of confirming the presence of glyceroglycolipid in the compositions obtained in Examples and Comparative Examples, and the approximate value of the content of reducing sugar. In addition, the reducing sugar content rate in a composition is an estimated value from the peak area of a chromatograph.

本発明の実施例1、2の組成物はいずれも比較例1〜3に比して還元糖含有率が低いことが確認された。   It was confirmed that the compositions of Examples 1 and 2 of the present invention had a low reducing sugar content as compared with Comparative Examples 1 to 3.

(実施例3)
実施例2、比較例1の組成物を用いて、これを10%含有する中鎖脂肪酸トリグリセリドに分散させた溶液を常法によりゼラチン製ソフトカプセルに内包させたソフトカプセル製剤を調製した。この製剤を温度40℃、湿度75%に調整した恒温恒湿槽に1ヶ月保管した後内容物の褐変状態、及び崩壊性試験を行った。
実施例2のグリセロ糖脂質含有組成物を内包したソフトカプセル製剤は内容物の変色も、崩壊時間の遅延も観察されなかった。
一方、比較例2のグリセロ糖脂質含有組成物を内包したソフトカプセル製剤は、内容物が褐変化し、さらに崩壊時間が遅延した。
(Example 3)
Using the composition of Example 2 and Comparative Example 1, a soft capsule formulation was prepared by encapsulating a solution in 10% of a medium chain fatty acid triglyceride containing gelatin in a gelatin soft capsule by a conventional method. The preparation was stored for 1 month in a constant temperature and humidity chamber adjusted to a temperature of 40 ° C. and a humidity of 75%, and then the browned state of the contents and a disintegration test were performed.
In the soft capsule preparation containing the glyceroglycolipid-containing composition of Example 2, neither discoloration of contents nor delay of disintegration time was observed.
On the other hand, in the soft capsule preparation encapsulating the glyceroglycolipid-containing composition of Comparative Example 2, the content changed brown and the disintegration time was further delayed.

Claims (4)

二段階の超臨界抽出法により植物体からグリセロ糖脂質を抽出してグリセロ糖脂質含有組成物を製造する方法であって、第一段階の抽出として、超臨界二酸化炭素を抽出溶媒として抽出した後の抽出残渣のみを回収し、この抽出残渣に対して第二段階の抽出として、超臨界二酸化炭素とエタノールを抽出溶媒として抽出することを特徴とする、グリセロ糖脂質含有組成物を製造する方法。 A method of manufacturing a glyceroglycolipid-containing composition to extract glyceroglycolipid from plant by two stages of supercritical extraction, the extraction of the first step was extracted by the extraction solvent supercritical carbon dioxide extraction residue only was recovered after, as extracted for this extraction residue of the second stage, and extracts as a extraction solvent supercritical carbon dioxide and ethanol, producing a glyceroglycolipid-containing composition how to. 植物体がケール、大麦若葉、ヨモギ、コマツナから選択される1又は2以上の植物体である請求項1に記載の方法。   The method according to claim 1, wherein the plant is one or more plants selected from kale, barley young leaves, mugwort, and komatsuna. 植物体から抽出された還元糖とグリセロ糖脂質を含むグリセロ糖脂質含有組成物であって、還元糖の含有率が1%以下である、請求項1または2に記載の方法で得た抽出物からなるグリセロ糖脂質含有組成物。 A glyceroglycolipid-containing composition comprising a reducing sugar extracted from a plant and a glyceroglycolipid , wherein the extract obtained by the method according to claim 1 or 2 having a reducing sugar content of 1% or less . A glyceroglycolipid-containing composition comprising: 請求項3に記載のグリセロ糖脂質含有組成物を内包するソフトカプセル製剤。   A soft capsule preparation containing the glyceroglycolipid-containing composition according to claim 3.
JP2014134884A 2014-06-30 2014-06-30 Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition Active JP6339426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134884A JP6339426B2 (en) 2014-06-30 2014-06-30 Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134884A JP6339426B2 (en) 2014-06-30 2014-06-30 Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition

Publications (2)

Publication Number Publication Date
JP2016011400A JP2016011400A (en) 2016-01-21
JP6339426B2 true JP6339426B2 (en) 2018-06-06

Family

ID=55228319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134884A Active JP6339426B2 (en) 2014-06-30 2014-06-30 Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition

Country Status (1)

Country Link
JP (1) JP6339426B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016299A1 (en) * 1996-11-08 2002-02-07 Takeshi Sakai Apoptosis inducers
JP2003129081A (en) * 2001-10-25 2003-05-08 Unitika Ltd Method for purifying solvent-extracted component
WO2003043613A2 (en) * 2001-11-21 2003-05-30 Danmarks Jordbrugsforskning Use of glycosides of mono- and diacylglycerol as anti-inflammatory agents
JP4308714B2 (en) * 2004-06-02 2009-08-05 日新製糖株式会社 Process for producing natural product-derived glyceroglycolipid
JP2006117582A (en) * 2004-10-21 2006-05-11 Fancl Corp Interleukin-4 production inhibitor and its utilization
JP2006122014A (en) * 2004-10-29 2006-05-18 Jiro Doi Method for producing health pet food, and finished goods

Also Published As

Publication number Publication date
JP2016011400A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
Ferrentino et al. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction
Wijngaard et al. Techniques to extract bioactive compounds from food by-products of plant origin
Cao et al. Well-designed hydrophobic deep eutectic solvents as green and efficient media for the extraction of artemisinin from Artemisia annua leaves
Desai et al. Extraction of natural products using microwaves as a heat source
Dai et al. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L.
Xu et al. Recent advances on supercritical fluid extraction of essential oils
Spinelli et al. Supercritical carbon dioxide extraction of brewer's spent grain
Esposito et al. Isolation of premyrsinane, myrsinane, and tigliane diterpenoids from euphorbia pithyusa using a chikungunya virus cell-based assay and analogue annotation by molecular networking
Chen et al. Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography
CN106978267B (en) Food-grade tea saponin detergent containing oxidized tea polyphenol
Osorio-Tobón et al. Recent applications of pressurized fluid extraction: curcuminoids extraction with pressurized liquids.
Castro-Muñoz et al. Up-to-date strategies and future trends towards the extraction and purification of Capsaicin: A comprehensive review
Jiang et al. Composition comparison of essential oils extracted by classical hydro distillation and microwave-assisted hydrodistillation from Pimenta dioica
Peruga et al. Development of a fast analytical method for the individual determination of pyrethrins residues in fruits and vegetables by liquid chromatography–tandem mass spectrometry
Wang et al. HPLC–DAD–ESI–MS2 analysis of phytochemicals from Sichuan red orange peel using ultrasound-assisted extraction
Chen et al. An overview of supercritical fluid extraction in Chinese herbal medicine: from preparation to analysis
Kim et al. Comparison of different extraction solvents and sonication times for characterization of antioxidant activity and polyphenol composition in mulberry (Morus alba L.)
JP6339426B2 (en) Method for producing composition containing glyceroglycolipid and glyceroglycolipid-containing composition
JP2003221592A (en) Method for purifying sphingoglycolipid
Smolskaite et al. Volarization of saffron industry by-products: bioactive compounds from leaves.
Skalicka-Woźniak et al. Efficient isolation of dihydropyranocoumarins and simple coumarins from Mutellina purpurea fruits
Švarc-Gajić et al. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems
Ribeiro et al. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana) and Juá (Ziziphus joazeiro)
Hu et al. Optimization of supercritical CO2 extraction and characterization of antifungal activity of essential oils in'Cuminum cyminum'L.
Mukhopadhyay et al. Pressurised hot water as a novel extractant of natural products: a review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180510

R150 Certificate of patent or registration of utility model

Ref document number: 6339426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250