JP6338878B2 - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber Download PDF

Info

Publication number
JP6338878B2
JP6338878B2 JP2014024750A JP2014024750A JP6338878B2 JP 6338878 B2 JP6338878 B2 JP 6338878B2 JP 2014024750 A JP2014024750 A JP 2014024750A JP 2014024750 A JP2014024750 A JP 2014024750A JP 6338878 B2 JP6338878 B2 JP 6338878B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
flow path
hydraulic oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024750A
Other languages
Japanese (ja)
Other versions
JP2015152052A (en
Inventor
大輔 池田
大輔 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2014024750A priority Critical patent/JP6338878B2/en
Publication of JP2015152052A publication Critical patent/JP2015152052A/en
Application granted granted Critical
Publication of JP6338878B2 publication Critical patent/JP6338878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、油圧緩衝器に関し、特に、減衰力発生時の応答性を良好にした油圧緩衝器に関する。   The present invention relates to a hydraulic shock absorber, and more particularly, to a hydraulic shock absorber that has good response when a damping force is generated.

従来、二輪車の油圧緩衝器には、特許文献1で開示されるように、シリンダ内に挿入したピストンロッドにピストンを取り付けて緩衝本体を構成し、ピストンによって区画された圧側油室と伸側油室との間を作動油が減衰力発生部位に流通可能なように構成されている油圧緩衝器がある。
この減衰力発生装置は、圧側行程で圧側油室から伸側油室へ、伸側行程で伸側油室から圧側油室へ移動する作動油に、減衰力を付与するように構成されている。すなわち、減衰力発生装置は、圧側行程で圧側油室の作動油を伸側油室に向けて流す圧側流路と、伸側行程で伸側油室の作動油を作動油室に向けて流す伸側流路とを備えており、圧側流路の上流側に圧側減衰バルブ、下流側に圧側チェック弁を設けて圧側行程の減衰力を発生させ、伸側流路の上流側に伸側減衰バルブ、下流側に伸側チェック弁を設けて伸側行程の減衰力を発生させるように構成されている。この場合、減衰力発生装置には、温度補償手段が付加されている。この温度補償手段は、圧力調整可能な油溜室が設けられており、この油溜室は、減衰力発生装置の減衰動作によって、ピストンロッドがシリンダ内へ進入することでシリンダ内の容積が減少したり、作動油の温度上昇により作動油の容積が膨張することで作動油の容積が増加したりするため、ピストンロッドの進入容積分を補う体積補償用や作動油の熱膨張分を吸収する温度補償用として設けられている。
2. Description of the Related Art Conventionally, as disclosed in Patent Document 1, a two-wheeled hydraulic shock absorber includes a piston body attached to a piston rod inserted into a cylinder to form a buffer body, and a compression side oil chamber and an extension side oil sectioned by the piston. There is a hydraulic shock absorber configured such that hydraulic oil can flow between the chambers and the damping force generation site.
This damping force generator is configured to apply a damping force to hydraulic fluid that moves from the compression side oil chamber to the extension side oil chamber in the compression side stroke and from the extension side oil chamber to the compression side oil chamber in the extension side stroke. . That is, the damping force generating device causes the hydraulic fluid in the compression side oil chamber to flow toward the expansion side oil chamber in the compression side stroke and the hydraulic fluid in the expansion side oil chamber to flow toward the hydraulic oil chamber in the expansion side stroke. The pressure side damping valve is provided on the upstream side of the pressure side flow path, and the pressure side check valve is provided on the downstream side to generate the damping force of the pressure side stroke, and the extension side damping is provided on the upstream side of the extension side flow path. The extension side check valve is provided on the downstream side of the valve so as to generate a damping force in the extension side stroke. In this case, temperature compensation means is added to the damping force generator. This temperature compensation means is provided with an oil reservoir chamber whose pressure can be adjusted, and the volume of the oil reservoir chamber is reduced by the piston rod entering the cylinder by the damping operation of the damping force generator. Or the volume of the hydraulic oil expands due to the increase in the temperature of the hydraulic oil, so that the volume of the hydraulic oil increases. Therefore, it compensates for the piston rod entry volume and absorbs the thermal expansion of the hydraulic oil. It is provided for temperature compensation.

特開2011−27255号公報JP 2011-27255 A

しかしながら、上記構成の油圧緩衝器では、減衰力発生装置の減衰動作時にも体積補償手段や温度補償手段の油溜室に不必要に作動油が流れてしまうため、減衰動作に稀に減衰不足状態が生じて減衰の応答性を悪化させてしまうという問題がある。すなわち、圧側行程では、作動油が伸側油室に十分に流れず流量不足となり、気泡が発生してキャビテーションが生じるため、次の伸側行程に悪影響を及ぼすとともに、所望の減衰力が得られず、減衰力の応答性の悪化を招くことがある。この問題は、圧側行程のみならず、伸側行程においても同様に生じ得る。   However, in the hydraulic shock absorber having the above configuration, the hydraulic oil flows unnecessarily into the oil reservoir chamber of the volume compensation means and the temperature compensation means even during the damping operation of the damping force generator, so that the damping operation is rarely in an insufficiently damped state. This causes a problem that the response of attenuation is deteriorated. That is, in the compression side stroke, the hydraulic oil does not sufficiently flow into the expansion side oil chamber and the flow rate becomes insufficient, and bubbles are generated and cavitation occurs, which adversely affects the next expansion side stroke and obtains a desired damping force. However, the responsiveness of the damping force may be deteriorated. This problem can occur not only in the compression side stroke but also in the extension side stroke.

本発明は、こうした問題を鑑みてなされたものであり、減衰力の発生において減衰力不足を生じさせず、減衰力発生時の応答性を向上させる油圧緩衝器を提供することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to provide a hydraulic shock absorber that does not cause a deficiency of the dampening force when generating the dampening force and improves the response when the dampening force is generated.

上記課題を解決するための本発明に係る油圧緩衝器の構成として、車体側チューブと、前記車体側チューブと互いに摺動自在に嵌合する車軸側チューブと、前記車軸側チューブの底部から立設された円筒状のシリンダチューブと、前記シリンダチューブに設けられ、前記車軸側チューブの内周と液密状態で密着し、車軸側チューブの内部空間の車体側を空気室、車軸側を作動油室となるように区画する区画部材と、前記車体側チューブと前記車軸側チューブの摺動動作において前記車体側チューブとともに移動可能に設けられ、前記シリンダチューブ内を前記作動油室の車体側を伸側油室、車軸側を圧側油室に区画するピストンと、前記ピストンに取り付けられ、前記シリンダチューブの軸線方向に沿ってシリンダチューブの内外に移動可能に設けられたロッドと、内周側が外気と連通するように前記車軸側チューブの底部から立設され、前記ピストンから前記車軸側チューブの底部に向けて延長する前記ロッドの外周を液密状態でガイドする円筒状のガイドチューブと、前記車軸側チューブの内周とシリンダチューブの外周との間に形成された空間と前記伸側油室とに連通して作動油の相互の流通を許容する流通孔と、前記圧側油室と前記伸側油室との間の作動油の流通を可能にする油室間流路と、前記作動油室の外部に設けられ、前記油室間流路を流れる作動油に抵抗を生じさせて減衰力を発生させる圧側減衰力発生部及び伸側減衰力発生部が流れ方向に沿って直列に設けられた減衰力発生装置と、前記圧側減衰力発生部と前記伸側減衰力発生部との間から作動油の一部を流入出させて、作動油に発生する温度膨張を吸収する圧力調整用油溜室を有する温度補償手段と、を備えた油圧緩衝器であって、前記油圧緩衝器の動作における圧側行程及び伸側行程において前記圧力調整用油溜室方向に流入する作動油の圧力に基づき、前記圧力調整用油溜室方向に流入する作動油の流量を圧側行程及び伸側行程以外のピストンの非動作時における作動油流出時よりも少量に制限する作動油流量制御手段をさらに備えたので、圧力調整用油溜室への作動油の流入が作動油流量制御手段により制限されるため、圧側行程での圧側油室流路側から伸側油室流路方向への作動油の流量や、伸側行程での上記方向とは反対方向の作動油の流量が不足しないので、減衰力発生装置による減衰力の発生において減衰力不足を生じさせず、減衰力発生時の応答性を向上させることができる。 As a configuration of the hydraulic shock absorber according to the present invention for solving the above-described problems, a vehicle body side tube, an axle side tube that is slidably fitted to the vehicle body side tube, and a bottom of the axle side tube are provided upright. A cylindrical cylinder tube formed in the cylinder tube and in close contact with the inner periphery of the axle side tube in a liquid-tight state, the vehicle body side of the inner space of the axle side tube is an air chamber, and the axle side is a hydraulic oil chamber A partition member that partitions the vehicle body side tube and the axle side tube so as to be movable together with the vehicle body side tube, and the inside of the cylinder tube extends toward the vehicle body side of the hydraulic oil chamber. A piston that divides the oil chamber and axle side into a pressure side oil chamber, and is attached to the piston and can move in and out of the cylinder tube along the axial direction of the cylinder tube A rod is provided, and the outer periphery of the rod is erected from the bottom of the axle-side tube so that the inner peripheral side communicates with the outside air, and extends from the piston toward the bottom of the axle-side tube in a liquid-tight state. A cylindrical guide tube, a space formed between an inner circumference of the axle side tube and an outer circumference of the cylinder tube, and a flow hole that allows mutual flow of the hydraulic oil in communication with the extension side oil chamber A fluid passage between oil chambers that allows the hydraulic oil to flow between the pressure side oil chamber and the extension side oil chamber, and an operation that is provided outside the fluid oil chamber and flows through the fluid passage between the oil chambers. A damping force generating device in which a compression side damping force generation unit and an extension side damping force generation unit that generate resistance by generating resistance in oil are provided in series along the flow direction; and the compression side damping force generation unit and the extension side Part of hydraulic oil flows in between the side damping force generation part And a temperature compensation means having a pressure adjusting oil reservoir that absorbs the temperature expansion generated in the hydraulic oil, in the pressure side stroke and the extension side stroke in the operation of the hydraulic buffer. Based on the pressure of the hydraulic oil flowing in the direction of the pressure adjusting oil reservoir chamber, the flow rate of the hydraulic oil flowing in the direction of the pressure adjusting oil reservoir chamber is changed to the hydraulic oil when the piston other than the pressure side stroke and the extension side stroke is not operating. Since the hydraulic oil flow rate control means for limiting the amount to a smaller amount than that at the time of outflow is further provided, the flow of the hydraulic oil into the pressure adjusting oil reservoir chamber is restricted by the hydraulic oil flow rate control means, so the pressure side oil chamber in the pressure side stroke Since there is no shortage of hydraulic oil flow rate from the flow path side to the extension side oil chamber flow direction or the flow direction of hydraulic oil in the opposite direction to the above-mentioned direction in the extension side stroke, the damping force is generated by the damping force generator. Damping force without causing power shortage Responsiveness at the time of occurrence can be improved.

また、本発明に係る油圧緩衝器の他の構成として、前記作動油流量制御手段は、前記減衰力発生装置側と前記圧力調整用油溜室との間を連通する戻り流路と、前記戻り流路より開口量が小さい圧力抑制流路と、前記圧力抑制流路を開口するとともに、前記戻り流路を閉塞するチェックバルブ機構とを有する流路切替装置により構成したので、簡単な構成で圧力抑制流路と戻り流路とを切り替えできる。   As another configuration of the hydraulic shock absorber according to the present invention, the hydraulic oil flow rate control means includes a return flow path that communicates between the damping force generator side and the pressure adjusting oil reservoir chamber, Since the flow switching device has a pressure suppression flow path having a smaller opening than the flow path and a check valve mechanism that opens the pressure suppression flow path and closes the return flow path, the pressure can be reduced with a simple configuration. The suppression channel and the return channel can be switched.

また、本発明に係る油圧緩衝器の他の構成として、前記戻り流路は、前記ピストンの非動作時に、前記圧力調整用油溜室からの作動油の流出圧力により開口するので、ピストンの非動作時には作動油を圧力調整用油溜室からスムーズに流出させることができる。   As another configuration of the hydraulic shock absorber according to the present invention, the return flow path is opened by the outflow pressure of the hydraulic oil from the pressure adjusting oil reservoir chamber when the piston is not in operation, During operation, the hydraulic oil can flow smoothly from the pressure adjusting oil reservoir.

また、本発明に係る油圧緩衝器の他の構成として、前記圧力抑制流路は、前記戻り流路の開口時に閉塞されるので、確実に作動油を戻り流路から流出させることができる。   Further, as another configuration of the hydraulic shock absorber according to the present invention, the pressure suppression flow path is closed when the return flow path is opened, so that the hydraulic oil can surely flow out from the return flow path.

また、本発明に係る油圧緩衝器の他の構成として、減衰力発生装置は、前記圧側減衰力発生部と前記伸側減衰力発生部との間に、圧側行程において圧側油室流路側から伸側油室流路方向に流れる作動油と伸側行程において伸側油室流路側から圧側油室流路側方向に流れる作動油とが通過する中間室を有し、戻り流路及び前記圧力抑制流路の一端が前記中間室側と連通するので、圧側行程及び伸側行程のいずれの行程においても圧力調整用油溜室に作動油を流入出させることができる。   As another configuration of the hydraulic shock absorber according to the present invention, the damping force generator extends between the compression side damping force generation unit and the extension side damping force generation unit from the compression side oil chamber flow path side in the compression side stroke. A hydraulic fluid flowing in the direction of the side oil chamber, and an intermediate chamber through which the hydraulic oil flowing in the direction of the pressure side oil chamber from the side of the expansion side oil chamber passes in the extension side stroke; Since one end of the passage communicates with the intermediate chamber side, the hydraulic oil can be flowed into and out of the pressure adjusting oil reservoir chamber in both the compression side stroke and the extension side stroke.

また、本発明に係る油圧緩衝器の他の構成として、前記チェックバルブ機構により開閉される前記圧力抑制流路の開口量は、前記減衰力発生装置内の作動油の温度上昇により膨張した分の作動油が前記中間室側より前記圧力調整用油溜室方向に流れることを許容するだけの開口量に設定されるので、作動油に温度膨張が生じたときの膨張分の作動油が圧力調整用油溜室方向に流入するため、油圧緩衝器の動作に対する温度補償が確実に得られる。   Further, as another configuration of the hydraulic shock absorber according to the present invention, the opening amount of the pressure suppression flow path opened and closed by the check valve mechanism is an amount corresponding to the expansion due to the temperature rise of the hydraulic oil in the damping force generator. Since the opening amount is set to allow the hydraulic oil to flow from the intermediate chamber side toward the pressure adjusting oil reservoir chamber, the hydraulic oil corresponding to the expansion when temperature expansion occurs in the hydraulic oil is pressure adjusted. Since it flows in the direction of the oil reservoir chamber, temperature compensation for the operation of the hydraulic shock absorber can be reliably obtained.

また、本発明に係る油圧緩衝器の他の構成として、前記温度補償手段の圧力調整用油溜室は、作動油の案内管を介して中間室に接続され、前記案内管の作動油流路内にチェックバルブ機構を設けたので、簡単な構成で作動油に温度膨張が生じたときに、圧側油室や伸側油室の内圧が上昇しないように確実に温度補償することができる。   As another configuration of the hydraulic shock absorber according to the present invention, a pressure adjusting oil reservoir chamber of the temperature compensation means is connected to an intermediate chamber via a hydraulic oil guide pipe, and the hydraulic oil passage of the guide pipe Since the check valve mechanism is provided inside, when temperature expansion occurs in the hydraulic oil with a simple configuration, temperature compensation can be reliably performed so that the internal pressure of the compression side oil chamber and the extension side oil chamber does not increase.

フロントフォークの断面図である。It is sectional drawing of a front fork. 減衰力発生装置の拡大図である。It is an enlarged view of a damping force generator. 減衰力調整部の拡大図及び伸側減衰力調整部の部分拡大図である。It is the enlarged view of a damping force adjustment part, and the elements on larger scale of the expansion side damping force adjustment part. 流路切替装置を示す図である。It is a figure which shows a flow-path switching apparatus. 流路切替装置の動作を示す図である。It is a figure which shows operation | movement of a flow-path switching apparatus. 減衰力発生装置内の作動油の流れを示す図である。It is a figure which shows the flow of the hydraulic oil in a damping force generator.

図1は、本発明に係る油圧緩衝本体を構成するフロントフォークの一実施形態を示す断面図である。同図に示すように、フロントフォーク10は、車体側チューブとしてのアウターチューブ11、車軸側チューブとしてのインナーチューブ12が配置される倒立型フロントフォークであって、アウターチューブ11の内周において軸線方向に離間して嵌合された軸受12A,12Bに、インナーチューブ12の外周が摺動自在に設けられる。フロントフォーク10の内部上方には、懸架スプリング14が介装されて、アウターチューブ11とインナーチューブ12とが離間する方向に付勢される。   FIG. 1 is a cross-sectional view showing an embodiment of a front fork constituting a hydraulic shock absorber main body according to the present invention. As shown in FIG. 1, the front fork 10 is an inverted front fork in which an outer tube 11 as a vehicle body side tube and an inner tube 12 as an axle side tube are arranged. The outer periphery of the inner tube 12 is slidably provided on the bearings 12A and 12B fitted to be spaced apart from each other. A suspension spring 14 is interposed above the front fork 10 and biased in a direction in which the outer tube 11 and the inner tube 12 are separated from each other.

アウターチューブ11の上端には、フロントフォーク10を封止するキャップ13が螺着される。キャップ13は、外周がアウターチューブ11の内周と気密状態で螺着されるベースナット24よりなり、このベースナット24の中央側の孔に気密状態でアジャストボルト21が介装される。アジャストボルト21は、当該アジャストボルト21を回転させても、ベースナット24に対して昇降しないように、図外の固定手段によりベースナット24に回転自在に取り付けられる。このアジャストボルト21は、下部に、インナーチューブ12に向けて延長する中空部21Bを有する小径軸部21Aを備える。小径軸部21Aの先端外周側は、アジャストボルト21の回転によりアジャストボルト21の軸線に沿って昇降する筒状の昇降ナット23の内周が螺入する。昇降ナット23は、外周に懸架スプリング14が着座するフランジからなる上ばね受部25を備える。   A cap 13 for sealing the front fork 10 is screwed to the upper end of the outer tube 11. The cap 13 is composed of a base nut 24 whose outer periphery is screwed in an airtight manner with the inner periphery of the outer tube 11, and an adjustment bolt 21 is interposed in a hole in the center side of the base nut 24 in an airtight state. The adjusting bolt 21 is rotatably attached to the base nut 24 by a fixing means (not shown) so that the adjusting bolt 21 does not move up and down with respect to the base nut 24 even if the adjusting bolt 21 is rotated. The adjustment bolt 21 includes a small-diameter shaft portion 21 </ b> A having a hollow portion 21 </ b> B extending toward the inner tube 12 at the lower portion. The inner periphery of a cylindrical lifting nut 23 that moves up and down along the axis of the adjusting bolt 21 by the rotation of the adjusting bolt 21 is screwed into the outer peripheral side of the tip of the small-diameter shaft portion 21A. The elevating nut 23 includes an upper spring receiving portion 25 formed of a flange on which the suspension spring 14 is seated on the outer periphery.

アジャストボルト21の回転操作により昇降ナット23を上下動させることによって上ばね受部25を軸線方向に昇降させ、この上ばね受部25と後述の区画部材60との距離を変化させることで、懸架スプリング14の初期ばね長を調整し、懸架スプリング14のばね力を調整する。なお、アジャストボルト21の小径軸部21Aは、中空部21Bとアウターチューブ11の内部空間とに連通する空気抜き孔21Cが設けられている。また、この中空部21Bの上端側には、アウターチューブ11と外部との連通を遮断する封止ねじ22等が取り付けられる。   By moving the elevating nut 23 up and down by rotating the adjusting bolt 21, the upper spring receiving portion 25 is moved up and down in the axial direction, and the distance between the upper spring receiving portion 25 and a partition member 60 described later is changed. The initial spring length of the spring 14 is adjusted, and the spring force of the suspension spring 14 is adjusted. The small-diameter shaft portion 21 </ b> A of the adjusting bolt 21 is provided with an air vent hole 21 </ b> C that communicates with the hollow portion 21 </ b> B and the inner space of the outer tube 11. Further, a sealing screw 22 or the like for blocking communication between the outer tube 11 and the outside is attached to the upper end side of the hollow portion 21B.

上述のねじ切りされた筒状の昇降ナット23の下側内周には、アウターチューブ11と同軸となるようにピストンロッド15の上端側外周が螺合して固定される。ピストンロッド15は、インナーチューブ12に向けて延長し、インナーチューブ12に立設された後述するシリンダチューブ51の内部空間に到達する長さを有する。このピストンロッド15の下端には、シリンダチューブ51内を摺動するピストン40が取り付けられる。   The outer periphery on the upper end side of the piston rod 15 is screwed and fixed to the lower inner periphery of the above-described threaded cylindrical lifting nut 23 so as to be coaxial with the outer tube 11. The piston rod 15 extends toward the inner tube 12 and has a length that reaches an inner space of a cylinder tube 51 (described later) provided upright on the inner tube 12. A piston 40 that slides in the cylinder tube 51 is attached to the lower end of the piston rod 15.

ピストン40は、ピストンロッド15に取り付けられることで、アウターチューブ11と、インナーチューブ12の摺動動作において、シリンダチューブ51内をアウターチューブ11とともに移動可能に構成される。
ピストン40は、壁部40Eにより上下に仕切られた筒体よりなり、上部内周には、ピストンロッド15の下端側外周が螺着する上側ロッド取付部40Aを、下部内周にはピストンロッド15を延長するための、延長ロッド16の上端側外周が螺着する下側ロッド取付部40Bを備える。延長ロッド16は、ピストンロッド15と同一の外径を有し、インナーチューブ12内に設けられたガイドチューブ52の内部に挿入される。このピストン40の下部外周にはシリンダチューブ51の内周との液密状態を維持するピストンリング40Cを備える。本実施形態におけるピストン40は、従来のようにシリンダチューブ51内での摺動に伴って、作動油Kを上下方向に流通させる流路孔を備えていないものとして説明する。
なお、ピストンロッド15と延長ロッド16は、上述したようにピストンロッド15と延長ロッド16とに分割せずに、一本のピストンロッドで構成しても良い。この場合、ピストンロッドが貫通可能となるようにピストンを構成し、ピストンロッドの外周にピストンを固定するための固定手段を設ければ良い。
The piston 40 is configured to be movable along with the outer tube 11 in the cylinder tube 51 in the sliding operation of the outer tube 11 and the inner tube 12 by being attached to the piston rod 15.
The piston 40 is formed of a cylindrical body that is vertically partitioned by a wall 40E. The upper rod mounting portion 40A to which the lower end side outer periphery of the piston rod 15 is screwed is formed on the upper inner periphery, and the piston rod 15 is disposed on the lower inner periphery. Is provided with a lower rod mounting portion 40B on which the outer periphery of the upper end side of the extension rod 16 is screwed. The extension rod 16 has the same outer diameter as the piston rod 15 and is inserted into a guide tube 52 provided in the inner tube 12. A piston ring 40 </ b> C that maintains a liquid-tight state with the inner periphery of the cylinder tube 51 is provided on the lower outer periphery of the piston 40. The piston 40 in the present embodiment will be described assuming that it does not include a flow path hole through which the hydraulic oil K flows in the vertical direction as the piston 40 slides in the cylinder tube 51 as in the prior art.
Note that the piston rod 15 and the extension rod 16 may be constituted by a single piston rod without being divided into the piston rod 15 and the extension rod 16 as described above. In this case, the piston may be configured so that the piston rod can penetrate, and a fixing means for fixing the piston may be provided on the outer periphery of the piston rod.

以下、インナーチューブ12について説明する。
インナーチューブ12は、上端から下端にかけて一定の外径で形成された所定長さの筒体であって、当該インナーチューブ12の底部を形成する車軸ホルダ50と、ピストン40の外周が摺動する円筒状のシリンダチューブ51と、ピストン40から延長された延長ロッド16をガイドするガイドチューブ52と、フロントフォーク10における減衰力を発生させる減衰力発生装置140とを備える。
Hereinafter, the inner tube 12 will be described.
The inner tube 12 is a cylinder of a predetermined length formed with a constant outer diameter from the upper end to the lower end, and a cylinder holder 50 that forms the bottom of the inner tube 12 and a cylinder on which the outer periphery of the piston 40 slides. A cylindrical tube 51, a guide tube 52 that guides the extension rod 16 extended from the piston 40, and a damping force generator 140 that generates a damping force in the front fork 10.

車軸ホルダ50は、下側が矩形状に成形され、上側が円筒状に成形された軸体であって、下側に車軸を支持する車軸支持部50Aと、インナーチューブ12に組み付けられる組付部50Bとを備える。
車軸支持部50Aは、車軸ホルダ50の軸線に対して直交方向に貫通する車軸貫通孔50aが形成される。車軸貫通孔50aには、内周から車軸ホルダ50の下端面に向けて切割部50bが延長する。切割部50bは、車軸貫通孔50aの下側において、この切割部50bの延長方向と直交するように形成されたねじ孔50cに螺合させた図外のボルトを締め付けて車軸を挟持固定する。
The axle holder 50 is a shaft body whose lower side is formed into a rectangular shape and whose upper side is formed into a cylindrical shape, and an axle support portion 50A that supports the axle on the lower side and an assembly portion 50B that is assembled to the inner tube 12. With.
The axle support portion 50 </ b> A is formed with an axle through hole 50 a that penetrates in the direction orthogonal to the axis of the axle holder 50. In the axle through hole 50a, a split portion 50b extends from the inner periphery toward the lower end surface of the axle holder 50. The cut portion 50b clamps and fixes the axle by tightening a bolt (not shown) screwed into a screw hole 50c formed so as to be orthogonal to the extending direction of the cut portion 50b below the axle through hole 50a.

組付部50Bは、ほぼ円筒状に形成され、外周に上述のインナーチューブ12の下端側内周と螺着するためのねじ部53aと、このねじ部53aの下側に車軸ホルダ50とインナーチューブ12とを組み付けたときの液密状態を維持するためのOリングなどのシール部材53bと、車軸ホルダ50にインナーチューブ12を螺着するときに、インナーチューブ12の先端を突き当てる環状の突当部53cを備える。
したがって、車軸ホルダ50は、インナーチューブ12の下端が突当部53cに突き当たるまで、ねじ部53aにインナーチューブ12を螺合させることで、インナーチューブ12の内周と車軸ホルダ50の外周とが上述のシール部材53bによりシールされて液密状態で車軸ホルダ50に固定される。
The assembly portion 50B is formed in a substantially cylindrical shape, and has a screw portion 53a to be screwed to the outer periphery on the lower end side of the inner tube 12 on the outer periphery, and the axle holder 50 and the inner tube on the lower side of the screw portion 53a. When the inner tube 12 is screwed onto the axle holder 50, an annular abutment that abuts against the tip of the inner tube 12 is maintained. A portion 53c is provided.
Therefore, the axle holder 50 has the inner circumference of the inner tube 12 and the outer circumference of the axle holder 50 described above by screwing the inner tube 12 into the threaded portion 53a until the lower end of the inner tube 12 abuts against the abutting portion 53c. And is fixed to the axle holder 50 in a liquid-tight state.

組付部50Bの内周側には、シリンダチューブ51の下端側及びガイドチューブ52の下端側を固定するシリンダチューブ固定部54a及びガイドチューブ固定部54bが設けられる。
上部側のシリンダチューブ固定部54a及び下部側のガイドチューブ固定部54bは、インナーチューブ12の軸心と同心円状に底部方向に縮径する階段状の穴として形成される。
シリンダチューブ固定部54aは、車軸ホルダ50の組付部50Bの内周面53dとシリンダチューブ51の外周51aとの間に隙間e1を有するように、車軸ホルダ50の内径よりも小さな寸法のねじ穴として形成される。
このねじ穴にシリンダチューブ51の一端側外周を螺着し、シリンダチューブ固定部54aとガイドチューブ固定部54bとの間において環状に形成された環状突当部54cに、下端を突き当てて車軸ホルダ50内に立設される。環状突当部54cは、上述した車軸ホルダ50の突当部53cよりも下側に位置するように形成される。
A cylinder tube fixing portion 54a and a guide tube fixing portion 54b for fixing the lower end side of the cylinder tube 51 and the lower end side of the guide tube 52 are provided on the inner peripheral side of the assembly portion 50B.
The upper cylinder tube fixing portion 54a and the lower guide tube fixing portion 54b are formed as stepped holes that are concentric with the axis of the inner tube 12 and reduce in diameter toward the bottom.
The cylinder tube fixing portion 54a is a screw hole having a size smaller than the inner diameter of the axle holder 50 so as to have a gap e1 between the inner peripheral surface 53d of the assembly portion 50B of the axle holder 50 and the outer periphery 51a of the cylinder tube 51. Formed as.
The outer periphery of one end of the cylinder tube 51 is screwed into this threaded hole, and the lower end is abutted against the annular abutting portion 54c formed in an annular shape between the cylinder tube fixing portion 54a and the guide tube fixing portion 54b. 50. The annular abutment portion 54c is formed so as to be positioned below the abutment portion 53c of the axle holder 50 described above.

ガイドチューブ固定部54bは、シリンダチューブ51の内周面とガイドチューブ52の外周との間に隙間e2を有するように、シリンダチューブ51の内径よりも小さな寸法のねじ穴として形成される。このねじ穴にガイドチューブ52の一端側外周を螺着し、端部を最下底部54dに突き当てて車軸ホルダ50内に立設される。最下底部54dは、上述した環状突当部54cよりも下側に位置するように形成される。   The guide tube fixing portion 54b is formed as a screw hole having a size smaller than the inner diameter of the cylinder tube 51 so as to have a gap e2 between the inner peripheral surface of the cylinder tube 51 and the outer periphery of the guide tube 52. The outer periphery of one end of the guide tube 52 is screwed into this screw hole, and the end is abutted against the lowermost bottom portion 54d and is erected in the axle holder 50. The lowermost bottom portion 54d is formed so as to be positioned below the above-described annular abutting portion 54c.

ガイドチューブ52の上端側には、延長ロッド16の貫通を許容するガイドカラー52Aが取り付けられる。ガイドカラー52Aの内周には、延長ロッド16の外周との液密状態での摺動を可能にする封止部材52aを備える。封止部材52aは、Oリング等のゴム製のシール部材よりなる。ガイドカラー52Aの外周は、断面視において花弁状をなし、シリンダチューブ51の内周に支持される。なお、上述の延長ロッド16は、シリンダチューブ51よりも短く、フロントフォーク10の最伸長時においてもガイドチューブ52から抜け出ない長さに設定される。   A guide collar 52 </ b> A that allows the extension rod 16 to penetrate is attached to the upper end side of the guide tube 52. On the inner periphery of the guide collar 52A, a sealing member 52a that enables sliding in a liquid-tight state with the outer periphery of the extension rod 16 is provided. The sealing member 52a is made of a rubber seal member such as an O-ring. The outer periphery of the guide collar 52 </ b> A has a petal shape in a sectional view and is supported on the inner periphery of the cylinder tube 51. The extension rod 16 is shorter than the cylinder tube 51 and is set to a length that does not come out of the guide tube 52 even when the front fork 10 is fully extended.

ガイドチューブ52の下端が突き当たる最下底部54d側には、ガイドチューブ52の内周側に開口する貫通孔55が形成される。この貫通孔55により、ガイドチューブ52の内周側は、フロントフォーク10外の外気と連通し、ガイドチューブ52内の圧力が、大気圧と同じ圧力となる。
すなわち、ガイドチューブ52に挿入された延長ロッド16がシリンダチューブ51の内外に貫通しているため、ピストン40がシリンダチューブ51内を移動しても、ピストンロッド15のシリンダチューブ51の内外への移動分だけ延長ロッド16もシリンダチューブ51の外内に移動するので、ピストン40の減衰動作に関わらずシリンダチューブ51内の容積が一定となり、作動油室内Aの圧力が変化しないことにより、減衰動作を安定させることができる。
A through hole 55 that opens to the inner peripheral side of the guide tube 52 is formed on the lowermost bottom portion 54d side where the lower end of the guide tube 52 abuts. Through the through hole 55, the inner peripheral side of the guide tube 52 communicates with the outside air outside the front fork 10, and the pressure in the guide tube 52 becomes the same pressure as the atmospheric pressure.
That is, since the extension rod 16 inserted into the guide tube 52 penetrates into and out of the cylinder tube 51, even if the piston 40 moves in the cylinder tube 51, the piston rod 15 moves in and out of the cylinder tube 51. Since the extension rod 16 also moves in and out of the cylinder tube 51 by the amount, the volume in the cylinder tube 51 becomes constant regardless of the damping operation of the piston 40, and the pressure in the hydraulic oil chamber A does not change, so that the damping operation is performed. It can be stabilized.

シリンダチューブ51の上端には、インナーチューブ12の内部を上側の空気室SAと下側の作動油室Aに区画する区画部材60が、シリンダチューブ51に対して不動に取り付けられる。区画部材60は、ベース部60Dと筒部60Cよりなり、ベース部60Dの中央孔の内周に上述のピストンロッド15が貫通するガイド部60Aを有し、ベース部60Dの外周にインナーチューブ12の内周面に沿って密着し、液密に封止する封止部60Bとを備える環状体を呈する。ガイド部60Aには、ピストンロッド15の外周と液密状態で摺動を許容するシール部材60aが設けられ、封止部60Bには、インナーチューブ12の内周との液密を維持するシール部材60bが設けられる。筒部60Cの上部側には、流通孔61が形成される。流通孔61は、区画部材60のベース部60D及びシリンダチューブ51で囲まれた空間からインナーチューブ12の内周及びシリンダチューブ51の外周で囲まれた空間に連通して作動油Kの相互の流通を許容する。なお、流通孔61は、ピストン40がシリンダチューブ51内を移動する移動範囲外、すなわちピストン40のストローク範囲よりも上側であれば、シリンダチューブ51に設けても良い。また、インナーチューブ12には、区画部材60よりも上側においてアウターチューブ11との隙間に開口する潤滑孔12aが設けられる。この潤滑孔12aは、上述の作動油Kとは別途空気室SA内に貯留される潤滑用油をアウターチューブ11とインナーチューブ12との間に流入出可能にする。   A partition member 60 that partitions the inside of the inner tube 12 into an upper air chamber SA and a lower hydraulic oil chamber A is fixedly attached to the upper end of the cylinder tube 51 with respect to the cylinder tube 51. The partition member 60 includes a base portion 60D and a cylindrical portion 60C. The partition member 60 includes a guide portion 60A through which the above-described piston rod 15 penetrates at the inner periphery of the center hole of the base portion 60D. An annular body is provided that includes a sealing portion 60B that closely adheres along the inner peripheral surface and seals liquid-tightly. The guide portion 60A is provided with a seal member 60a that allows sliding in a liquid-tight state with the outer periphery of the piston rod 15, and the sealing portion 60B has a seal member that maintains liquid-tightness with the inner periphery of the inner tube 12. 60b is provided. A flow hole 61 is formed on the upper side of the cylindrical portion 60C. The flow hole 61 communicates from the space surrounded by the base portion 60 </ b> D of the partition member 60 and the cylinder tube 51 to the space surrounded by the inner periphery of the inner tube 12 and the outer periphery of the cylinder tube 51, and the mutual flow of the hydraulic oil K. Is acceptable. The flow hole 61 may be provided in the cylinder tube 51 as long as it is outside the moving range in which the piston 40 moves in the cylinder tube 51, that is, above the stroke range of the piston 40. Further, the inner tube 12 is provided with a lubricating hole 12 a that opens in a gap with the outer tube 11 above the partition member 60. This lubricating hole 12 a allows lubricating oil stored in the air chamber SA separately from the above-described hydraulic oil K to flow between the outer tube 11 and the inner tube 12.

区画部材60は、筒部60Cの内周をシリンダチューブ51の上端側外周に螺着させることでシリンダチューブ51に固定される。この筒部60Cのベース部60Dの底面と、上述したピストン40との間には、フロントフォーク10の最伸長時に、ピストン40と区画部材60との衝突を緩衝するための緩衝材、例えば、リバウンドスプリング等が介挿される。   The partition member 60 is fixed to the cylinder tube 51 by screwing the inner periphery of the cylinder portion 60 </ b> C to the outer periphery on the upper end side of the cylinder tube 51. Between the bottom surface of the base portion 60D of the cylindrical portion 60C and the above-described piston 40, a buffer material for buffering the collision between the piston 40 and the partition member 60 when the front fork 10 is fully extended, for example, rebound A spring or the like is inserted.

したがって、シリンダチューブ51に区画部材60を取付け、シリンダチューブ51の内部空間を閉塞したことにより、作動油室Aは、シリンダチューブ51内部のピストン40よりも下側部分の圧側油室127Aと、インナーチューブ12の内周とシリンダチューブ51の外周で区画された部分、及びシリンダチューブ51内部のピストン40よりも上側部分からなる伸側油室127Bとに分けられる。
車軸ホルダ50の側部には、上記圧側油室127Aからの作動油Kを流通させる圧側油室流路57Aと、伸側油室127Bからの作動油Kを流通させる伸側油室流路57Bとが開口している。
圧側油室流路57A及び伸側油室流路57Bは、上述のシリンダチューブ51の外部において作動油の流通を可能にする外部流路の一部を構成する。
なお、本実施形態のフロントフォーク10では、作動油室A及び圧側油室流路57A、伸側油室流路57B間において作動油Kが封入されている。
Therefore, by attaching the partition member 60 to the cylinder tube 51 and closing the internal space of the cylinder tube 51, the hydraulic oil chamber A has a pressure side oil chamber 127 </ b> A at a lower portion than the piston 40 inside the cylinder tube 51 and an inner side. The cylinder 12 is divided into a portion defined by the inner periphery of the tube 12 and the outer periphery of the cylinder tube 51, and an extension side oil chamber 127 </ b> B that is an upper portion of the piston 40 inside the cylinder tube 51.
On the side of the axle holder 50, a pressure side oil chamber flow path 57A for flowing the working oil K from the pressure side oil chamber 127A and an extension side oil chamber flow path 57B for flowing the working oil K from the extension side oil chamber 127B are provided. And are open.
The pressure side oil chamber flow path 57A and the extension side oil chamber flow path 57B constitute a part of the external flow path that allows the working oil to flow outside the cylinder tube 51 described above.
In the front fork 10 of the present embodiment, the hydraulic oil K is sealed between the hydraulic oil chamber A, the pressure side oil chamber flow path 57A, and the extension side oil chamber flow path 57B.

減衰力発生装置140は、図2に示すように、圧側油室流路57Aに対応して車軸ホルダ50の側部から突出するように車軸ホルダ50と一体に形成された筒体Maと、伸側油室流路57Bに対応して車軸ホルダ50と一体に形成された連通路Mbと、減衰力発生ユニット140Aとよりなる。筒体Maには、一端開口の筒状のバルブ収容孔114Aが形成される。バルブ収容孔114Aは、底部114bにおいて圧側油室流路57Aと連通し、底部114bと反対側の開口端側の側部上側において伸側油室流路57Bを有する連通路Mbと接続される。つまり、圧側油室流路57Aと、バルブ収容孔114Aと、伸側油室流路57Bとで、圧側油室127Aと伸側油室127Bとを連通する油室間流路を構成する。   As shown in FIG. 2, the damping force generator 140 includes a cylinder Ma formed integrally with the axle holder 50 so as to protrude from the side of the axle holder 50 corresponding to the compression side oil chamber flow path 57 </ b> A, and an extension body. Corresponding to the side oil chamber flow path 57B, the communication path Mb is formed integrally with the axle holder 50, and a damping force generation unit 140A. The cylindrical body Ma is formed with a cylindrical valve accommodating hole 114A having one end opening. The valve housing hole 114A communicates with the pressure side oil chamber flow path 57A at the bottom 114b, and is connected to the communication path Mb having the extension side oil chamber flow path 57B at the upper side of the opening end side opposite to the bottom 114b. That is, the pressure side oil chamber flow path 57A, the valve housing hole 114A, and the extension side oil chamber flow path 57B constitute an oil chamber flow path that connects the pressure side oil chamber 127A and the extension side oil chamber 127B.

減衰力発生ユニット140Aは、フロントフォーク10の圧縮時及び伸長時に減衰力を発生するために、圧側油室127A側に設けられた圧側減衰力発生部250と、伸側油室127B側に設けられた伸側減衰力発生部260とが直列に配置され、圧縮時及び伸長時の減衰力の調整を可能にする減衰力調整部270とを備える。   The damping force generation unit 140A is provided on the compression side damping force generation unit 250 provided on the compression side oil chamber 127A side and on the extension side oil chamber 127B side in order to generate a damping force when the front fork 10 is compressed and extended. The extension side damping force generator 260 is disposed in series, and includes a damping force adjustment unit 270 that enables adjustment of the damping force during compression and extension.

減衰力発生ユニット140Aは、円筒状のバルブピース141を基体として、圧側減衰力発生部250及び伸側減衰力発生部260と、減衰力調整部270とが小組みされて構成される。
バルブピース141は、大径の筒体よりなる大径部142と、この大径部142の一端から同軸に突出する小径の筒体よりなる小径部143とを有する。なお、以下の説明において、バルブピース141の軸方向における大径部側を一端側、小径部143の先端側を他端側として説明する。
バルブピース141は、小径部143の先端から大径部142に至る貫通孔を備える。貫通孔は、小径部143の外周に設けられる後述の圧側減衰力発生部250及び伸側減衰力発生部260を迂回するバイパス流路141Aである。バルブピース141の大径部142には、円筒壁部の肉厚方向に貫通し、壁部を通した作動油Kの内外への流通を許容する複数の流路孔142Aが設けられ、小径部143には、軸方向の中途部に内外に貫通する複数の流路孔143Aと、内周側に後述の減衰力調整部270を構成するニードル孔143Bと、先端側外周にねじ部143Cとが設けられる。
The damping force generation unit 140A includes a cylindrical valve piece 141 as a base, and includes a compression side damping force generation unit 250, an extension side damping force generation unit 260, and a damping force adjustment unit 270.
The valve piece 141 has a large-diameter portion 142 made of a large-diameter cylinder and a small-diameter portion 143 made of a small-diameter cylinder that projects coaxially from one end of the large-diameter portion 142. In the following description, the large diameter portion side in the axial direction of the valve piece 141 will be described as one end side, and the distal end side of the small diameter portion 143 will be described as the other end side.
The valve piece 141 includes a through hole that extends from the tip of the small diameter portion 143 to the large diameter portion 142. The through hole is a bypass passage 141 </ b> A that bypasses a later-described compression-side damping force generation unit 250 and an extension-side damping force generation unit 260 provided on the outer periphery of the small-diameter portion 143. The large-diameter portion 142 of the valve piece 141 is provided with a plurality of flow passage holes 142A that penetrate in the thickness direction of the cylindrical wall portion and allow the hydraulic oil K to flow in and out through the wall portion. 143 includes a plurality of flow passage holes 143A penetrating inward and outward in the middle in the axial direction, a needle hole 143B constituting a later-described damping force adjusting portion 270 on the inner peripheral side, and a screw portion 143C on the outer periphery on the front end side. Provided.

小径部143の外周には、一端側に伸側減衰力発生部260、他端側に圧側減衰力発生部250が設けられる。なお、説明の便宜上、伸側減衰力発生部260から説明する。
伸側減衰力発生部260は、圧側行程や伸側行程での流量を規制する伸側流路160Aと圧側流路160Bとを有する円板状の伸側流量規制体160と、圧側行程において伸側流路160Aを塞ぎ、伸側行程において伸側流路160Aから流出する作動油Kの流量を制御して減衰力を発生する伸側減衰バルブ161と、伸側行程において圧側流路160Bを塞ぎ、圧側行程において圧側流路160Bから流出する作動油Kの流量を制御して圧側行程における減衰力を発生する圧側チェック弁152とを備える。
伸側流量規制体160、伸側減衰バルブ161、圧側チェック弁152は、バルブピース141の大径部142側から順に、圧側チェック弁152、伸側流量規制体160、伸側減衰バルブ161が小径部143の外周に装着される。
On the outer periphery of the small diameter portion 143, an extension side damping force generation unit 260 is provided on one end side, and a compression side damping force generation unit 250 is provided on the other end side. For convenience of explanation, the extension side damping force generator 260 will be described.
The extension-side damping force generator 260 includes a disk-like extension-side flow restricting body 160 having an extension-side channel 160A and a compression-side channel 160B that regulate the flow in the compression-side stroke and the extension-side stroke, and the extension-side damping unit 260 extends in the compression-side stroke. The side flow path 160A is blocked, the expansion side damping valve 161 that generates a damping force by controlling the flow rate of the hydraulic oil K flowing out from the expansion side flow path 160A in the expansion side stroke, and the pressure side flow path 160B is closed in the expansion side stroke. And a pressure side check valve 152 for controlling the flow rate of the hydraulic oil K flowing out from the pressure side flow path 160B in the pressure side stroke and generating a damping force in the pressure side stroke.
The expansion side flow regulating body 160, the expansion side damping valve 161, and the pressure side check valve 152 are arranged in order from the large diameter portion 142 side of the valve piece 141, and the pressure side check valve 152, the expansion side flow restriction body 160, and the expansion side damping valve 161 have a small diameter. It is attached to the outer periphery of the part 143.

伸側流量規制体160とバルブピース141の一端側の段差面141Cとの間には、カラー163と、スプリング164と、スプリングシート165とが設けられる。
カラー163は、円筒状の筒体からなり小径部143の外周に介挿され、圧側チェック弁152を貫通して、一端側が段差面141Cに当接し、他端側が伸側流量規制体160に当接することで、伸側流量規制体160の小径部143における位置を位置決めする。スプリング164は、一端側が圧側チェック弁152に着座し、他端がカラー163の外周に設けられたスプリングシート165を介して段差面141Cに着座して、圧側チェック弁152を伸側流量規制体160に向けて付勢する。
このスプリング164による圧側チェック弁152への付勢力は、圧側行程において伸側流量規制体160の圧側流路160Bを流れる作動油Kの抵抗となって、フロントフォーク10の動作における減衰力を発生させる。
A collar 163, a spring 164, and a spring seat 165 are provided between the extension side flow regulating body 160 and the stepped surface 141 </ b> C on one end side of the valve piece 141.
The collar 163 is a cylindrical tube and is inserted in the outer periphery of the small diameter portion 143. The collar 163 passes through the pressure side check valve 152, one end abuts against the step surface 141C, and the other end contacts the expansion side flow regulating body 160. By contacting, the position in the small diameter part 143 of the expansion side flow regulating body 160 is positioned. One end of the spring 164 is seated on the pressure side check valve 152, and the other end is seated on the step surface 141 </ b> C via a spring seat 165 provided on the outer periphery of the collar 163. Energize towards.
The urging force of the spring 164 to the pressure side check valve 152 becomes a resistance of the hydraulic oil K flowing through the pressure side flow passage 160B of the extension side flow regulating body 160 in the pressure side stroke, and generates a damping force in the operation of the front fork 10. .

伸側減衰バルブ161のバルブピース141の他端側に隣接してシム166が設けられる。シム166は、伸側減衰力発生部260に隣接して設けられるセンタープレート145が、伸側減衰バルブ161の動作を妨げないように撓みしろを確保する。シム166のバルブピース141の他端側には、センタープレート145が隣接して介挿される。   A shim 166 is provided adjacent to the other end side of the valve piece 141 of the extension side damping valve 161. The shim 166 secures a margin for bending so that the center plate 145 provided adjacent to the extension side damping force generator 260 does not hinder the operation of the extension side damping valve 161. A center plate 145 is inserted adjacent to the other end of the valve piece 141 of the shim 166.

センタープレート145は、小径部143の外周に介挿される環状部材であって、内周の厚さ方向中央部分に、外径方向に窪む環状凹部145Aと、環状凹部145Aから外周に連通する複数の流路孔145Bとを備える。このセンタープレート145は、内周側の環状凹部145Aが小径部143の複数の流路孔143Aを囲むように組み付けられる。この組み付け位置は、例えばシム166によって調整される。   The center plate 145 is an annular member that is inserted on the outer periphery of the small diameter portion 143. The center plate 145 has an annular recess 145A that is recessed in the outer diameter direction at the center portion in the thickness direction of the inner periphery, and a plurality that communicates from the annular recess 145A to the outer periphery. Channel passage hole 145B. The center plate 145 is assembled so that the annular recess 145A on the inner peripheral side surrounds the plurality of flow path holes 143A of the small diameter portion 143. This assembly position is adjusted by a shim 166, for example.

センタープレート145のバルブピース141の他端側には、センタープレート145に隣接してシム167が小径部143に介挿される。シム167は、圧側減衰力発生部250の圧側減衰バルブ151に対して、センタープレート145が圧側減衰バルブ151の動作を妨げないように圧側減衰バルブ151の撓みしろを確保する。このシム167のバルブピース141の他端側に隣接して圧側減衰力発生部250が設けられる。   A shim 167 is inserted into the small diameter portion 143 adjacent to the center plate 145 on the other end side of the valve piece 141 of the center plate 145. The shim 167 ensures a bending margin of the compression side damping valve 151 so that the center plate 145 does not interfere with the operation of the compression side damping valve 151 with respect to the compression side damping valve 151 of the compression side damping force generation unit 250. A compression-side damping force generator 250 is provided adjacent to the other end of the valve piece 141 of the shim 167.

圧側減衰力発生部250は、圧側行程や伸側行程での流量を規制する圧側流路150Aと伸側流路150Bとを有する円板状の圧側流量規制体150と、伸側行程において圧側流路150Aを塞ぎ、圧側行程において圧側流路150Aから流出する作動油Kの流量を制御して減衰力を発生する圧側減衰バルブ151と、圧側行程において伸側流路150Bを塞ぎ、伸側行程において伸側流路150Bから流出する作動油Kの流量を制御して伸側行程における減衰力を発生する伸側チェック弁162とを備える。
圧側減衰力発生部250は、センタープレート145の側から順に、シム167、圧側減衰バルブ151、圧側流量規制体150、伸側チェック弁162が装着される。
The compression-side damping force generation unit 250 includes a disk-shaped compression-side flow restricting body 150 having a compression-side flow path 150A and an expansion-side flow path 150B that restrict the flow rate in the compression-side stroke and the extension-side stroke, and a pressure-side flow in the extension-side stroke. The pressure-side damping valve 151 that generates a damping force by controlling the flow rate of the hydraulic oil K flowing out from the pressure-side flow path 150A in the pressure-side stroke, and the expansion-side flow path 150B in the pressure-side stroke are closed. And an extension check valve 162 that generates a damping force in the extension stroke by controlling the flow rate of the hydraulic oil K flowing out of the extension passage 150B.
The compression side damping force generator 250 is equipped with a shim 167, a compression side damping valve 151, a compression side flow regulating body 150, and an extension side check valve 162 in order from the center plate 145 side.

小径部143の圧側流量規制体150よりも先端側には、伸側チェック弁162を貫通する円筒状のカラー153が介挿され、カラー153の外周に被せるように設けられ、伸側チェック弁162に一端側が着座するスプリング154と、スプリング154の他端側が着座するスプリングシート155とが設けられる。そして、ねじ部143Cにナット200を螺合させ、ナット200をカラー153に当接するまで締め付けることで、圧側減衰力発生部250と伸側減衰力発生部260とがバルブピース141の外周側に一体に組み付けられる。このナット200の締付により、スプリング154が伸側チェック弁162を圧側流量規制体150に向けて付勢する付勢力が作用する。スプリング154による伸側チェック弁162への付勢力は、伸側行程において圧側流量規制体150の伸側流路150Bを流れる作動油Kの抵抗となって、フロントフォーク10の動作における減衰力を発生させる。   A cylindrical collar 153 penetrating the extension side check valve 162 is inserted on the distal end side of the pressure side flow regulating body 150 of the small diameter portion 143 and is provided so as to cover the outer periphery of the collar 153. A spring 154 on which one end side is seated and a spring seat 155 on which the other end side of the spring 154 is seated are provided. Then, the nut 200 is screwed into the screw portion 143C, and the nut 200 is tightened until it abuts against the collar 153, whereby the compression side damping force generation unit 250 and the extension side damping force generation unit 260 are integrated with the outer peripheral side of the valve piece 141. Assembled into. By the tightening of the nut 200, a biasing force is applied by which the spring 154 biases the extension side check valve 162 toward the compression side flow regulating body 150. The biasing force to the extension side check valve 162 by the spring 154 becomes a resistance of the hydraulic oil K flowing through the extension side flow path 150B of the pressure side flow regulating body 150 in the extension side stroke, and generates a damping force in the operation of the front fork 10. Let

上述のように小組みされた減衰力発生ユニット140Aは、ナット200をバルブ収容孔114Aの軸方向の底部114bに向けて収容される。バルブ収容孔114Aに減衰力発生ユニット140Aが収容されると、伸側流量規制体160の外周、及び圧側流量規制体150の外周に設けられたシール部材160C;150Cが、バルブ収容孔114Aの内周に密着する。したがって、圧側油室流路57A及び伸側油室流路57Bからバルブ収容孔114Aに流れた作動油Kのすべてが、伸側流量規制体160の伸側流路160A若しくは圧側流路160B、圧側流量規制体150の伸側流路150B若しくは圧側流路150A、及び後述のバイパス流路141Aを流通する。   The damping force generation unit 140A that is assembled as described above is accommodated with the nut 200 facing the bottom 114b in the axial direction of the valve accommodation hole 114A. When the damping force generating unit 140A is housed in the valve housing hole 114A, the seal member 160C; 150C provided on the outer periphery of the extension side flow restricting body 160 and the outer periphery of the pressure side flow restricting body 150 is inside the valve housing hole 114A. Close contact with the circumference. Accordingly, all of the hydraulic oil K flowing from the pressure side oil chamber flow path 57A and the expansion side oil chamber flow path 57B to the valve accommodating hole 114A is transferred to the expansion side flow path 160A or the pressure side flow path 160B of the expansion side flow regulating body 160. It flows through the expansion side flow path 150B or the pressure side flow path 150A of the flow regulating body 150 and a bypass flow path 141A described later.

本実施形態では、バルブ収容孔114Aにおける圧側流量規制体150と圧側油室流路57A側との空間を圧側油室127Aに連通する伸圧共用流路146Aとし、バルブ収容孔114Aにおける伸側流量規制体160と伸側油室流路57B側との空間を伸側油室127Bに連通する伸圧共用流路146Bとし、センタープレート145の周囲の環状空間を中間室149とする。この中間室149は、圧側減衰バルブ151と圧側チェック弁152との間の中間部と、伸側減衰バルブ161と伸側チェック弁162との間の中間部とに共通の空間である。中間室149には、作動油室Aの圧力を調整するための圧力調整用油溜室(以下、油溜室という)132と連通する作動油流路115mの一端側が開口する。この減衰力発生装置140内に形成された中間室149に圧側行程での圧側油室流路57A側から伸側油室流路57B方向への作動油Kと、伸側行程での上記方向とは反対方向の作動油Kとが共通に通過し、戻り流路T及び圧力抑制流路Sの一端が連通する。   In the present embodiment, the space between the pressure-side flow regulating body 150 and the pressure-side oil chamber passage 57A side in the valve housing hole 114A is defined as a pressure-extended flow passage 146A communicating with the pressure-side oil chamber 127A, and the extension-side flow rate in the valve housing hole 114A. The space between the regulating body 160 and the extension side oil chamber channel 57B side is defined as a pressure expansion common channel 146B communicating with the extension side oil chamber 127B, and the annular space around the center plate 145 is defined as an intermediate chamber 149. The intermediate chamber 149 is a space common to an intermediate portion between the compression side damping valve 151 and the compression side check valve 152 and an intermediate portion between the extension side attenuation valve 161 and the extension side check valve 162. In the intermediate chamber 149, one end side of a hydraulic oil passage 115m communicating with a pressure adjusting oil reservoir chamber (hereinafter referred to as an oil reservoir chamber) 132 for adjusting the pressure of the hydraulic oil chamber A is opened. In the intermediate chamber 149 formed in the damping force generator 140, the hydraulic oil K from the pressure side oil chamber channel 57A side in the compression side stroke to the extension side oil chamber channel 57B direction, and the above direction in the extension side stroke The hydraulic oil K in the opposite direction passes in common, and one end of the return flow path T and the pressure suppression flow path S communicates.

したがって、バルブ収容孔114A内には、圧側減衰力発生部250と伸側減衰力発生部260とによって圧側行程及び伸側行程で作動油Kが流れる外部流路としての圧側流路と伸側流路とが形成される。圧側行程で圧側油室127Aから伸側油室127Bに作動油Kを移動させるための圧側流路が伸圧共用流路146A、中間室149、圧側流路150A、圧側流路160B、伸圧共用流路146Bで形成され、伸側行程で伸側油室127Bから圧側油室127Aに作動油Kを移動させるための伸側流路が伸圧共用流路146B、伸側流路160A、中間室149、伸側流路150B、伸圧共用流路146Aで形成される。   Therefore, in the valve accommodating hole 114A, the pressure side flow path and the extension side flow as external flow paths through which the hydraulic oil K flows in the pressure side stroke and the extension side stroke by the pressure side damping force generation part 250 and the extension side damping force generation part 260. A road is formed. The pressure side flow path for moving the hydraulic oil K from the pressure side oil chamber 127A to the expansion side oil chamber 127B in the pressure side stroke is the pressure expansion common flow path 146A, the intermediate chamber 149, the pressure side flow path 150A, the pressure side flow path 160B, and the pressure expansion common use. The expansion side flow path formed by the flow path 146B and used to move the hydraulic oil K from the expansion side oil chamber 127B to the pressure side oil chamber 127A in the expansion side stroke is the pressure expansion common flow path 146B, the expansion side flow path 160A, and the intermediate chamber. 149, the expansion side flow path 150B, and the pressure expansion common flow path 146A.

図3(a),(b)は、減衰力発生装置140を構成する減衰力調整部の拡大図及び伸側減衰力調整部の部分拡大図を示す。同図に示すように、減衰力調整部270は、筒体よりなるバルブピース141の内周側に設けられる。バルブピース141は、大径部142に円筒状の中空部(大径中空部)142aと、小径部143に円筒状の中空部(小径中空部)143aとを備える。大径中空部142aには、小径部143側に形成された段部143Dに小径中空部143aの開口部144Bが形成される。このバルブピース141の大径中空部142a及び小径中空部143aは、圧側減衰力発生部250及び伸側減衰力発生部260を迂回して、圧側油室127Aと伸側油室127Bとに作動油Kを流通可能にするバイパス流路141Aを形成する。このバイパス流路141Aには、減衰力調整手段が設けられる。   FIGS. 3A and 3B show an enlarged view of the damping force adjusting unit and a partially enlarged view of the extension side damping force adjusting unit constituting the damping force generating device 140. FIG. As shown in the figure, the damping force adjusting portion 270 is provided on the inner peripheral side of a valve piece 141 made of a cylindrical body. The valve piece 141 includes a cylindrical hollow portion (large diameter hollow portion) 142 a in the large diameter portion 142 and a cylindrical hollow portion (small diameter hollow portion) 143 a in the small diameter portion 143. In the large-diameter hollow portion 142a, an opening 144B of the small-diameter hollow portion 143a is formed in a step portion 143D formed on the small-diameter portion 143 side. The large-diameter hollow portion 142a and the small-diameter hollow portion 143a of the valve piece 141 bypass the compression-side damping force generation unit 250 and the expansion-side damping force generation unit 260, and the hydraulic oil is supplied to the compression-side oil chamber 127A and the expansion-side oil chamber 127B. A bypass channel 141A that allows K to flow is formed. The bypass channel 141A is provided with damping force adjusting means.

減衰力調整部270は、小径中空部143a内に形成されるニードル孔143Bと、ニードル孔143Bに対して進退自在に設けられるニードル軸272とからなるニードルバルブ機構、及び大径中空部142a側に小径中空部143aが開口する開口部144Bと、開口部144Bに対して進退自在に設けられる流量調整体279とからなるニードルバルブ機構で構成される。ニードル孔143Bは、小径中空部143a内の中途部分から先端にかけて内径が小径中空部143aの内径よりも縮径する貫通孔として形成され、小径中空部143a内に開口部144Aが形成される。この開口部144Aとニードルバルブ機構を構成するニードル軸272が、大径部142側から小径中空部143a内に挿通される。ニードル軸272は、先端側にテーパー状に形成されたニードル弁272Aと、後端側にニードル軸272を支持するニードル軸支持体277とを備える。ニードル軸支持体277は、中央側に形成されたニードル軸貫通孔277Aにニードル軸272を貫通させ、ニードル軸272の一端に形成されたフランジ部274と係合溝275に嵌着された係合部材276との間で保持される。ニードル軸支持体277には、軸方向に貫通するねじ孔277B及びガイド孔277Cが形成される。このニードル軸272には、開口部144Bとニードルバルブ機構を構成する流量調整体279が介装される。流量調整体279は、封止部材280により液密状態を維持するとともに、摺動自在な隙間xをもってニードル軸272が貫通するニードル軸摺動孔279Aと、先端方向が細径となるテーパーよりなるテーパー面279Bとを外周に備え、開口部144Bとテーパー面279Bとの隙間n2を調整することで、大径部142側から小径中空部143a内に流入する流量が調整される。流量調整体279の後端側には、軸方向に貫通するねじ孔278B、及びガイド孔278Cを有する円板状の基部278が一体に設けられる。基部278のねじ孔278Bとニードル軸支持体277のガイド孔277Cの軸心、及び基部278のガイド孔278Cとニードル軸支持体277のねじ孔277Bの軸心とを一致させた状態で、圧側の減衰力の調整を可能にする圧側減衰力調整ボルト170及び伸側の減衰力の調整を可能にする伸側減衰力調整ボルト180が装着される。   The damping force adjuster 270 includes a needle valve mechanism formed of a needle hole 143B formed in the small-diameter hollow part 143a and a needle shaft 272 provided to be movable back and forth with respect to the needle hole 143B, and a large-diameter hollow part 142a. The needle valve mechanism is composed of an opening 144B in which the small-diameter hollow portion 143a is opened and a flow rate adjusting body 279 provided to be movable forward and backward with respect to the opening 144B. The needle hole 143B is formed as a through-hole whose inner diameter is smaller than the inner diameter of the small-diameter hollow portion 143a from the middle portion in the small-diameter hollow portion 143a to the tip, and an opening 144A is formed in the small-diameter hollow portion 143a. The opening 144A and the needle shaft 272 constituting the needle valve mechanism are inserted into the small diameter hollow portion 143a from the large diameter portion 142 side. The needle shaft 272 includes a needle valve 272A that is tapered on the front end side, and a needle shaft support 277 that supports the needle shaft 272 on the rear end side. The needle shaft support 277 has a needle shaft 272 passing through a needle shaft through hole 277A formed on the center side, and is engaged with a flange portion 274 formed at one end of the needle shaft 272 and an engagement groove 275. It is held between the members 276. The needle shaft support 277 is formed with a screw hole 277B and a guide hole 277C penetrating in the axial direction. The needle shaft 272 is provided with an opening 144B and a flow rate adjusting body 279 constituting a needle valve mechanism. The flow rate adjusting body 279 is formed of a needle shaft sliding hole 279A through which the needle shaft 272 penetrates with a slidable gap x while maintaining a liquid-tight state by the sealing member 280, and a taper whose tip direction is a small diameter. By providing the tapered surface 279B on the outer periphery and adjusting the gap n2 between the opening 144B and the tapered surface 279B, the flow rate flowing into the small-diameter hollow portion 143a from the large-diameter portion 142 side is adjusted. A disc-shaped base portion 278 having a screw hole 278B penetrating in the axial direction and a guide hole 278C is integrally provided on the rear end side of the flow rate adjusting body 279. In a state where the screw hole 278B of the base portion 278 and the shaft center of the guide hole 277C of the needle shaft support body 277 and the guide hole 278C of the base portion 278 and the shaft center of the screw hole 277B of the needle shaft support body 277 are aligned with each other, A compression side damping force adjustment bolt 170 that enables adjustment of the damping force and an extension side damping force adjustment bolt 180 that enables adjustment of the extension side damping force are mounted.

圧側減衰力調整ボルト170は、先端側に形成されたガイド軸171が基部278のガイド孔278Cに挿通され、ヘッド部170A側に形成されたねじ軸172がニードル軸支持体277のねじ孔277Bに螺入される。
伸側減衰力調整ボルト180は、先端側に形成されたねじ軸181が基部のねじ孔278Bに螺入され、ヘッド部180A側に形成されたガイド軸182がニードル軸支持体277のガイド孔278Cに挿通される。これにより、圧側減衰力調整ボルト170及び伸側減衰力調整ボルト180が、ニードル軸272及び流量調整体279と一体にされ、圧側減衰力調整ボルト170を回転させることでニードル軸272が軸方向に進退可能となり、伸側減衰力調整ボルト180を回転させることで流量調整体279がニードル軸272に沿って進退可能に構成される。
In the compression side damping force adjusting bolt 170, a guide shaft 171 formed on the distal end side is inserted into a guide hole 278C of the base portion 278, and a screw shaft 172 formed on the head portion 170A side is inserted into the screw hole 277B of the needle shaft support 277. Screwed.
In the extension side damping force adjusting bolt 180, a screw shaft 181 formed on the distal end side is screwed into a screw hole 278B of the base portion, and a guide shaft 182 formed on the head portion 180A side is a guide hole 278C of the needle shaft support 277. Is inserted. Thereby, the compression side damping force adjustment bolt 170 and the extension side damping force adjustment bolt 180 are integrated with the needle shaft 272 and the flow rate adjusting body 279, and the needle side shaft 272 is moved in the axial direction by rotating the compression side damping force adjustment bolt 170. The flow rate adjusting body 279 is configured to be able to advance and retract along the needle shaft 272 by rotating the extension side damping force adjusting bolt 180.

圧側減衰力調整ボルト170及び伸側減衰力調整ボルト180は、内側キャップ210及び外側キャップ220からなるキャップ205により保持される。内側キャップ210には圧側減衰力調整ボルト170のヘッド部170A及び伸側減衰力調整ボルト180のヘッド部180Aを個別に収容する収容孔211A;211Bとが形成される。内側キャップ210の収容孔211A;211Bは、中心軸を含む断面視において同一平面上に設けられている。圧側減衰力調整ボルト170のヘッド部170A及び伸側減衰力調整ボルト180のヘッド部180Aには、収容孔211A;211Bとの液密状態を維持する封止部材173;183がそれぞれ設けられる。この収容孔211A;211Bには、軸線方向に対して直交方向に内側キャップ210の外周から貫通する貫通孔212A乃至212Cが形成される。貫通孔212A乃至212Cには、それぞれスプリング213と、チェックボール214とが収容され、チェックボール214が収容孔211A;211Bの開口側に位置するようにそれぞれ設けられる。チェックボール214は、スプリング213の付勢力によって、圧側減衰力調整ボルト170のヘッド部170Aの外周及び伸側減衰力調整ボルト180のヘッド部180Aの外周に、円周方向に沿って形成された複数の凹部174;184のいずれかに嵌ることで、圧側減衰力調整ボルト170及び伸側減衰力調整ボルト180を支持するとともに、減衰力を調整するために圧側減衰力調整ボルト170や伸側減衰力調整ボルト180を回転させたときに、圧側減衰力調整ボルト170や伸側減衰力調整ボルト180の調整位置を維持するディテント機構を構成する。
このキャップ205と一体となった減衰力調整部270は、バルブピース141の小径中空部143aにニードル軸272を挿入しながら、内側キャップ210の内周をバルブピースの大径部142の外周ねじ部に螺合させてバルブピース141と一体に組みつけられる。このとき、ニードル軸272のニードル弁272Aがニードル孔143Bの開口部144Aに対し、流量調整体279のテーパー面279Bがバイパス流路141Aの開口部144Bに対して所定の隙間n1;n2が生じるように調整される。
この減衰力発生ユニット140Aは、上述したようにバルブ収容孔114Aに収容される。
The compression side damping force adjustment bolt 170 and the extension side damping force adjustment bolt 180 are held by a cap 205 including an inner cap 210 and an outer cap 220. The inner cap 210 is formed with accommodation holes 211A and 211B for individually accommodating the head portion 170A of the compression side damping force adjustment bolt 170 and the head portion 180A of the extension side damping force adjustment bolt 180. The accommodation holes 211A and 211B of the inner cap 210 are provided on the same plane in a sectional view including the central axis. The head portion 170A of the compression side damping force adjustment bolt 170 and the head portion 180A of the extension side damping force adjustment bolt 180 are respectively provided with sealing members 173 and 183 that maintain a liquid-tight state with the accommodation holes 211A and 211B. Through holes 212A to 212C that penetrate from the outer periphery of the inner cap 210 in a direction orthogonal to the axial direction are formed in the accommodation holes 211A and 211B. The through holes 212A to 212C accommodate the spring 213 and the check ball 214, respectively, and the check ball 214 is provided so as to be positioned on the opening side of the accommodation holes 211A and 211B. A plurality of check balls 214 are formed along the circumferential direction on the outer periphery of the head portion 170A of the compression side damping force adjustment bolt 170 and the outer periphery of the head portion 180A of the extension side damping force adjustment bolt 180 by the biasing force of the spring 213. By fitting in one of the recesses 174; 184, the compression side damping force adjustment bolt 170 and the extension side damping force adjustment bolt 180 are supported, and the compression side damping force adjustment bolt 170 and the extension side damping force are adjusted to adjust the damping force. When the adjustment bolt 180 is rotated, a detent mechanism that maintains the adjustment positions of the compression side damping force adjustment bolt 170 and the extension side damping force adjustment bolt 180 is configured.
The damping force adjusting portion 270 integrated with the cap 205 is inserted into the small diameter hollow portion 143a of the valve piece 141 while inserting the needle shaft 272 into the outer peripheral screw portion of the large diameter portion 142 of the valve piece. To be integrated with the valve piece 141. At this time, the needle valve 272A of the needle shaft 272 creates a predetermined gap n1; n2 with respect to the opening 144A of the needle hole 143B, and the tapered surface 279B of the flow rate adjusting body 279 with respect to the opening 144B of the bypass channel 141A. Adjusted to
The damping force generation unit 140A is accommodated in the valve accommodation hole 114A as described above.

したがって、減衰力発生ユニット140Aは、フロントフォーク10の伸長行程時にシリンダ内でピストン40により加圧された伸側油室127Bから圧側油室127Aに向かう流量は、ニードル軸272に介挿された流量調整体279のテーパー面279Bの開口部144Bに対する進退量を伸側減衰力調整ボルト180で調整することにより、テーパー面279Bと開口部144Bとの隙間n2を変化させて調整される。すなわち、流量調整体279のテーパー面279Bが小径部143の開口部144Bに近接することで両者の隙間が小さくなってバイパス流路141Aを流通する流量が少なくなり大きな減衰力が得られる。また、その逆に、流量調整体279のテーパー面279Bが小径部143の開口部144Bから離間することで両者の隙間が大きくなってバイパス流路141Aを流通する流量が多くなり、小さな減衰力が得られることになる。   Therefore, the damping force generation unit 140A is configured such that the flow rate from the extension side oil chamber 127B pressurized by the piston 40 in the cylinder during the extension stroke of the front fork 10 toward the compression side oil chamber 127A is the flow rate inserted in the needle shaft 272. By adjusting the advance / retreat amount of the tapered surface 279B of the adjusting body 279 with respect to the opening 144B with the expansion side damping force adjusting bolt 180, the adjustment is performed by changing the gap n2 between the tapered surface 279B and the opening 144B. That is, when the tapered surface 279B of the flow rate adjusting body 279 is close to the opening portion 144B of the small diameter portion 143, the gap between the two becomes small, the flow rate flowing through the bypass channel 141A is reduced, and a large damping force is obtained. On the other hand, the tapered surface 279B of the flow rate adjusting body 279 is separated from the opening 144B of the small diameter portion 143, so that the gap between the two becomes large and the flow rate flowing through the bypass channel 141A increases, and a small damping force is generated. Will be obtained.

減衰力発生ユニット140Aを収容したバルブ収容孔114Aの中間室149には、図2に示すように、
減衰力発生装置140側より下方に突出する作動油案内管115の一端が接続され、この作動油案内管115の作動油流路115mを介して中間室149と油溜室132とが連通される。
油溜室132は、作動油室Aやバルブ収容孔114Aとは別体に車軸ホルダ50に設けられたサブタンク130内に形成される。
As shown in FIG. 2, the intermediate chamber 149 of the valve accommodating hole 114A accommodating the damping force generating unit 140A is as shown in FIG.
One end of a hydraulic oil guide tube 115 projecting downward from the damping force generator 140 side is connected, and the intermediate chamber 149 and the oil reservoir chamber 132 are communicated with each other through the hydraulic oil flow passage 115m of the hydraulic oil guide tube 115. .
The oil reservoir chamber 132 is formed in a sub tank 130 provided in the axle holder 50 separately from the hydraulic oil chamber A and the valve housing hole 114A.

すなわち、サブタンク130は、作動油Kの作動油案内管115を介して中間室149と接続される。作動油案内管115は、中間室149から油溜室132方向への作動油Kの流入出を可能にする作動油流路115mを備える。作動油流路115mは、横孔115nを介して油溜室132に連通する。このサブタンク130により、温度補償手段Qが構成され、これは例えば円筒体よりなり、内部空間がシリンダ状に形成され、図外のキャップにより封止可能に構成される。サブタンク130の内部には、サブタンク130の内周面との液密状態を維持したまま、軸線方向に沿って移動可能なフリーピストン133が設けられる。フリーピストン133は、横孔115n側に油溜室132を、キャップ135側に加圧室134となるように円筒状のサブタンク130内を区画する。サブタンク130は、作動油Kの温度上昇にともなう膨張を吸収する。なお、作動油案内管115の下端は開口され、後述の流路切替装置300のシール部材306で封止される。
加圧室134は、フリーピストン133とキャップとの間で形成される閉空間であって、内部に所定圧のガスが封入される。
加圧室134に封入されたガスの圧力と、中間室149の圧力との圧力バランスによって変位する圧力調整用のフリーピストン133の位置によりサブタンク130における油溜室132の容積が変化する。この油溜室132は、容積変化による圧力調整機能を有するもので、フリーピストン133を介して加圧室134から加圧される圧力によって内部の圧力が正圧に維持される。これにより、油溜室132と連通する中間室149、作動油室A等も正圧が維持されるため、圧側行程や伸側行程での減衰動作時のキャビテーションが防止される。また、フロントフォーク10の動作時には、中間室149及び作動油室A内の作動油Kが温度上昇して作動油Kの容積が膨張する。この作動油Kの膨張による圧力が、加圧室134の圧力よりも高くなると、油溜室132に流れてフリーピストン133を押動して油溜室132の容積を増加させ、膨張分の作動油Kを吸収することで、動作時の温度補償がなされる。
また、フロントフォーク10の非動作時には、中間室149及び作動油室A内の作動油Kが温度下降して作動油Kの容積が収縮する。この作動油Kの収縮による圧力が、加圧室134の圧力よりも低くなると、フリーピストン133が油溜室132を加圧して油溜室132から中間室149へと作動油Kを流出することで、油溜室132の容積が減少する。作動油室A内の圧力が加圧室134の圧力よりも低圧となるが、フリーピストン133が、油溜室132の作動油Kを加圧しているため、中間室149、作動油室A内の作動油Kは、正圧状態を維持したまま、油溜室132の作動油Kが中間室149や作動油室Aに流れるので、作動油Kのキャビテーションの発生が常に抑制される。
That is, the sub tank 130 is connected to the intermediate chamber 149 through the hydraulic oil guide pipe 115 for the hydraulic oil K. The hydraulic oil guide pipe 115 includes a hydraulic oil flow path 115 m that allows the hydraulic oil K to flow in and out from the intermediate chamber 149 toward the oil reservoir chamber 132. The hydraulic oil flow path 115m communicates with the oil reservoir chamber 132 through the lateral hole 115n. The sub-tank 130 constitutes a temperature compensation means Q, which is made of, for example, a cylindrical body, has an internal space formed in a cylindrical shape, and can be sealed with a cap (not shown). Inside the sub tank 130, a free piston 133 is provided that is movable along the axial direction while maintaining a liquid-tight state with the inner peripheral surface of the sub tank 130. The free piston 133 partitions the inside of the cylindrical sub tank 130 so that the oil reservoir chamber 132 is formed on the side of the horizontal hole 115n and the pressurizing chamber 134 is formed on the cap 135 side. The sub tank 130 absorbs expansion associated with the temperature rise of the hydraulic oil K. The lower end of the hydraulic oil guide tube 115 is opened and sealed with a seal member 306 of the flow path switching device 300 described later.
The pressurizing chamber 134 is a closed space formed between the free piston 133 and the cap, and a gas having a predetermined pressure is sealed therein.
The volume of the oil reservoir chamber 132 in the sub tank 130 changes depending on the position of the pressure adjusting free piston 133 that is displaced by the pressure balance between the pressure of the gas sealed in the pressurizing chamber 134 and the pressure of the intermediate chamber 149. The oil reservoir chamber 132 has a pressure adjustment function based on a change in volume, and the internal pressure is maintained at a positive pressure by the pressure pressurized from the pressurizing chamber 134 via the free piston 133. As a result, the intermediate chamber 149 communicating with the oil reservoir chamber 132, the hydraulic oil chamber A, and the like are also maintained at positive pressure, thereby preventing cavitation during the damping operation in the compression side stroke and the extension side stroke. Further, when the front fork 10 is operated, the temperature of the hydraulic oil K in the intermediate chamber 149 and the hydraulic oil chamber A rises and the volume of the hydraulic oil K expands. When the pressure due to the expansion of the hydraulic oil K becomes higher than the pressure in the pressurizing chamber 134, it flows into the oil reservoir chamber 132 and pushes the free piston 133 to increase the volume of the oil reservoir chamber 132. By absorbing the oil K, temperature compensation during operation is performed.
Further, when the front fork 10 is not operating, the temperature of the hydraulic oil K in the intermediate chamber 149 and the hydraulic oil chamber A decreases, and the volume of the hydraulic oil K contracts. When the pressure due to the contraction of the hydraulic oil K becomes lower than the pressure in the pressurizing chamber 134, the free piston 133 pressurizes the oil reservoir chamber 132 and flows the hydraulic oil K from the oil reservoir chamber 132 to the intermediate chamber 149. Thus, the volume of the oil reservoir chamber 132 is reduced. Although the pressure in the hydraulic oil chamber A is lower than the pressure in the pressurizing chamber 134, the free piston 133 pressurizes the hydraulic oil K in the oil reservoir chamber 132. Since the hydraulic oil K in the oil reservoir chamber 132 flows into the intermediate chamber 149 and the hydraulic oil chamber A while maintaining a positive pressure state, the occurrence of cavitation of the hydraulic oil K is always suppressed.

作動油流路115mの内部には、中間室149から油溜室132への作動油Kの流れを許容する圧力抑制流路Sと、油溜室132から中間室149との間に連通して、作動油Kの流れを許容する戻り流路Tと、圧力抑制流路Sと戻り流路Tとの流れの方向を切り替える流路切替装置300が設けられる。この流路切替装置300は、圧側行程、伸側行程において、油溜室132方向に流入する作動油Kの圧力にもとづき、この作動油Kの流量を上記、圧側行程及び伸側行程以外のフロントフォークの非動作時における作動油流出時よりも少量に制限する作動油流量制御手段Zとして機能する。
作動油流量制御手段Zとしての流路切替装置300は、車軸ホルダ50の外部から作動油流路115mの途中において連通するように延長する流路切替装置収容孔116に設けられる。流路切替装置収容孔116の内周には、流路切替装置300を固定するためのねじ部116Aが形成される。
The hydraulic oil flow path 115m is communicated between a pressure suppression flow path S that allows the flow of the hydraulic oil K from the intermediate chamber 149 to the oil reservoir chamber 132, and the oil reservoir chamber 132 to the intermediate chamber 149. A flow path switching device 300 that switches the flow direction between the return flow path T that allows the flow of the hydraulic oil K and the pressure suppression flow path S and the return flow path T is provided. The flow path switching device 300 is configured to control the flow rate of the hydraulic oil K in front of other than the pressure side stroke and the extension side stroke based on the pressure of the hydraulic oil K flowing in the direction of the oil reservoir 132 in the pressure side stroke and the extension side stroke. It functions as hydraulic fluid flow rate control means Z that restricts the amount of hydraulic fluid when the fork is not operating to a smaller amount than when hydraulic fluid flows out .
The flow path switching device 300 as the hydraulic oil flow control means Z is provided in the flow path switching device accommodation hole 116 that extends from the outside of the axle holder 50 so as to communicate with the hydraulic oil flow path 115m. A threaded portion 116 </ b> A for fixing the flow path switching device 300 is formed on the inner periphery of the flow path switching device accommodation hole 116.

図4(a),(b)は、作動油流量制御手段Zとしての流路切替装置300の一実施形態の分解斜視図及び組み立て断面図である。
流路切替装置300は、圧力抑制流路Sと戻り流路Tとを切り替えるチェックバルブ機構を備える。チェックバルブ機構は、中間室149の圧力と油溜室132の圧力差に応じて、中間室149から油溜室132に向かう圧力抑制流路Sを介した作動油Kの流れと、油溜室132から中間室149に向かう戻り流路Tを介した作動油Kの流れとを切り替える。
流路切替装置300は、チェックバルブ機構を収容するバルブケース301と、チェックバルブ機構を構成するスプリング302、チェックバルブ303、チェックバルブ303の動作をガイドするガイドピン304、バルブケース301とともにスプリング302、チェックバルブ303、ガイドピン304を内部に収容するとともに当該流路切替装置300を流路切替装置収容孔116に取り付ける取付部材として機能するバルブボルト305とを備える。
4A and 4B are an exploded perspective view and an assembled cross-sectional view of an embodiment of the flow path switching device 300 as the hydraulic oil flow control means Z. FIG.
The channel switching device 300 includes a check valve mechanism that switches between the pressure suppression channel S and the return channel T. The check valve mechanism includes a flow of hydraulic oil K through the pressure suppression flow path S from the intermediate chamber 149 toward the oil reservoir chamber 132 in accordance with the pressure difference between the intermediate chamber 149 and the oil reservoir chamber 132, and the oil reservoir chamber. The flow of the hydraulic oil K through the return flow path T from 132 to the intermediate chamber 149 is switched.
The flow path switching device 300 includes a valve case 301 that houses a check valve mechanism, a spring 302 that constitutes the check valve mechanism, a check valve 303, a guide pin 304 that guides the operation of the check valve 303, a spring 302 together with the valve case 301, A check valve 303 and a guide pin 304 are housed therein, and a valve bolt 305 that functions as an attachment member for attaching the flow path switching device 300 to the flow path switching device housing hole 116 is provided.

バルブケース301は、バルブケース301の天孔301Cを中間室149方向を向くように上下方向に延長する作動油Kの作動油案内管115内に嵌着された円筒状の筒体であって、開口端側の内周に雌ねじ部301Aを、天部301Bの中央側に内外に貫通する天孔301Cを備える。スプリング302は、上端が天部301Bに着座し、下端側は、チェックバルブ303の鍔部303Bに着座する。   The valve case 301 is a cylindrical tubular body fitted in a hydraulic oil guide tube 115 of hydraulic oil K that extends the top hole 301C of the valve case 301 in the vertical direction so as to face the intermediate chamber 149. A female screw part 301A is provided on the inner periphery on the opening end side, and a top hole 301C is provided on the center side of the top part 301B. The upper end of the spring 302 is seated on the top portion 301 </ b> B, and the lower end side is seated on the flange portion 303 </ b> B of the check valve 303.

チェックバルブ303は、スプリング302の内周側に収容可能な外径を有する円筒状の筒部303Aの下端から外方に突出する鍔部303Bを設けたものである。
天部303Dの中央側には、ガイドピン304が通過不能の径の孔303Cが設けられる。
鍔部303Bの下端は、チェックバルブ機構のシール面303bとして形成される。シール面303bは、テーパー状、若しくは球面状に形成される。鍔部303Bの外周面303dは、円周方向に沿って周期的に凹凸を繰り返す花弁状に形成され、凹部により戻り流路Tが形成される。図4(a),(c)に示すように、この鍔部303Bの凹部の戻り流路Tは、ピストン40の非動作時に、油溜室132から中間室149に流出する作動油Kの流出圧力により開口し、油溜室132から中間室149に向かう作動油Kが流れる絞り流路として形成される。上述のように鍔部303Bを軸線方向視したときの外周面303dの輪郭を花弁状に形成しておくことで、ガイドピン304の外周とチェックバルブ303の内周面303aとの間の微小隙間Jにより形成される、圧力抑制流路Sを流れる作動油Kの流量よりも、戻り流路Tに流れる作動油Kを多くすることができる。上記シール面303bは、着座筒319の上部内周縁319Aに着座する。
The check valve 303 is provided with a flange portion 303B that protrudes outward from the lower end of a cylindrical tube portion 303A having an outer diameter that can be accommodated on the inner peripheral side of the spring 302.
A hole 303C having a diameter through which the guide pin 304 cannot pass is provided on the center side of the top portion 303D.
The lower end of the flange 303B is formed as a seal surface 303b of the check valve mechanism. The seal surface 303b is formed in a tapered shape or a spherical shape. The outer peripheral surface 303d of the collar portion 303B is formed into a petal shape that periodically repeats unevenness along the circumferential direction, and the return flow path T is formed by the recessed portion. As shown in FIGS. 4 (a) and 4 (c), the return flow path T of the recessed portion of the flange 303B causes the hydraulic oil K to flow out from the oil reservoir chamber 132 to the intermediate chamber 149 when the piston 40 is not operating. It is formed as a throttle channel that is opened by pressure and through which hydraulic oil K flows from the oil reservoir chamber 132 toward the intermediate chamber 149. As described above, the outline of the outer peripheral surface 303d when the collar portion 303B is viewed in the axial direction is formed in a petal shape, so that a minute gap between the outer periphery of the guide pin 304 and the inner peripheral surface 303a of the check valve 303 is formed. The hydraulic oil K flowing in the return flow path T can be made larger than the flow rate of the hydraulic oil K flowing through the pressure suppression flow path S formed by J. The sealing surface 303b is seated on the upper inner peripheral edge 319A of the seating cylinder 319.

ガイドピン304は、外周面304aとチェックバルブ303の内周面303aとの間で所定厚さの環状の微小隙間Jを形成する。この微小隙間Jは、戻り流路Tの流路断面よりも開口量が小さく設定され、ピストン40の動作によって中間室149に発生した圧力が油溜室132にあまり伝達されないように流量を制限して、圧力の伝達を抑制する圧力抑制流路Sを構成する。この微小隙間Jからなる圧力抑制流路Sは、チェックバルブ303の開閉により、静的な圧力では中間室149から油溜室132に向けて流れ、動的な圧力では中間室149から油溜室132に向けて流れないように微小隙間Jの断面積や微小隙間Jの軸線方向の長さが設定される。静的な圧力とは、例えば、作動油室Aや中間室149の作動油Kが温度上昇し、作動油Kの容積膨張分の圧力をいう。また、動的な圧力差とは、ピストン40の動作により中間室149に伝達された圧力をいう。よって、中間室149側は作動油Kの温度変化による体積変化が、この微小隙間J内の作動油Kを介して油溜室132に伝達されることになる。   The guide pin 304 forms an annular minute gap J having a predetermined thickness between the outer peripheral surface 304 a and the inner peripheral surface 303 a of the check valve 303. The minute gap J is set to have an opening smaller than the flow passage cross section of the return flow passage T, and restricts the flow rate so that the pressure generated in the intermediate chamber 149 by the operation of the piston 40 is not transmitted to the oil reservoir chamber 132. Thus, a pressure suppression channel S that suppresses the transmission of pressure is configured. The pressure suppression flow path S formed by the minute gap J flows from the intermediate chamber 149 toward the oil reservoir chamber 132 at a static pressure by opening and closing the check valve 303, and from the intermediate chamber 149 to the oil reservoir chamber at a dynamic pressure. The cross-sectional area of the minute gap J and the length of the minute gap J in the axial direction are set so as not to flow toward 132. The static pressure refers to, for example, the pressure corresponding to the volume expansion of the hydraulic oil K when the hydraulic oil K in the hydraulic oil chamber A or the intermediate chamber 149 rises in temperature. Further, the dynamic pressure difference refers to the pressure transmitted to the intermediate chamber 149 by the operation of the piston 40. Therefore, on the intermediate chamber 149 side, the volume change due to the temperature change of the hydraulic oil K is transmitted to the oil reservoir chamber 132 via the hydraulic oil K in the minute gap J.

上記着座筒319は、外周上部の雄ねじ部312が、バルブケース301の雌ねじ部301Aに螺入され、この着座筒319の外周中段にバルブケース301の下端に当接する当接部317が形成され、着座筒319の当接部317よりも下部側に半径方向に貫通するとともに、前述の横孔115nに対向する貫通孔318が形成される。この着座筒319の底部316は、バルブボルト305の先端に固定される。バルブボルト305は、作動油案内管115の下部開口側のねじ部116Aに螺入され、かつ着座筒319を支持する取付ねじ部315と、シール溝314と、フランジ部313と、シール部材306とナット部311とを全体として作動油案内管115の中心軸方向に突出する如く形成される。
この場合、底部316の内部上面は、錘状に窪んでおり、その中心側にガイドピン304の下端が当接して保持される。着座筒319の円形穴の内周は、ガイドピン304の外周との間で十分な間隙をもって挿入可能な寸法に形成される。
着座筒319の上部内周縁319A(図4(b))は、円形形状を有し、チェックバルブ303のシール面303bが密着可能となっている。
なお、着座筒319の円形穴の奥行き方向の断面形状は、例えば円形や花弁状などいずれの形状で合っても良く、少なくとも着座筒319の上部内周縁319Aがチェックバルブ303のシール面303bとシール可能なように円形に形成されていれば良い。
In the seating cylinder 319, a male thread part 312 at the upper outer periphery is screwed into a female thread part 301A of the valve case 301, and an abutting part 317 that abuts the lower end of the valve case 301 is formed in the middle part of the outer periphery of the seating cylinder 319. A through hole 318 that penetrates in the radial direction below the contact portion 317 of the seating cylinder 319 and faces the above-mentioned lateral hole 115n is formed. The bottom 316 of the seating cylinder 319 is fixed to the tip of the valve bolt 305. The valve bolt 305 is screwed into the screw portion 116A on the lower opening side of the hydraulic oil guide tube 115 and supports the seating cylinder 319, a seal groove 314, a flange portion 313, and a seal member 306. The nut portion 311 as a whole is formed so as to protrude in the central axis direction of the hydraulic oil guide tube 115.
In this case, the inner upper surface of the bottom portion 316 is recessed in a weight shape, and the lower end of the guide pin 304 is held in contact with the center side thereof. The inner periphery of the circular hole of the seating cylinder 319 is formed to have a dimension that allows insertion with a sufficient gap from the outer periphery of the guide pin 304.
The upper inner peripheral edge 319A (FIG. 4B) of the seating cylinder 319 has a circular shape, and the seal surface 303b of the check valve 303 can be in close contact therewith.
The cross-sectional shape in the depth direction of the circular hole of the seating cylinder 319 may be any shape such as a circle or a petal shape, and at least the upper inner peripheral edge 319A of the seating cylinder 319 is sealed with the seal surface 303b of the check valve 303. It suffices if it is formed in a circular shape as possible.

作動油流量制御手段Zとしての流路切替装置300は一例として次のように組立てられる。
まず、バルブケース301の天部301Bにスプリング302の上端側を着座させて収容する。次に、バルブケース301に収容されたスプリング302の下端側に筒部303Aをスプリング302の内周側に内挿して、スプリング302の他端をチェックバルブ303の鍔部303Bを着座させる。次に、チェックバルブ303の内周にガイドピン304を挿入し、チェックバルブ303から突き出たガイドピン304をバルブボルト305の着座筒319に挿入しつつ、バルブボルト305の雄ねじ部312をバルブケース301の雌ねじ部301Aに螺入することで、流路切替装置300として一体に組立てられる。このように流路切替装置300として一体に組立てられた状態において、チェックバルブ303は、スプリング302の付勢力によりシール面303bがバルブボルト305の先端の上部内周縁319Aに押し付けられてチェックバルブ機構が閉じた状態となる。また、ガイドピン304は、チェックバルブ303の内部及びバルブボルト305の内部空間内において、チェックバルブ303の軸線方向に所定の遊びを有する。
The flow path switching device 300 as the hydraulic fluid flow control means Z is assembled as follows as an example.
First, the upper end side of the spring 302 is seated and accommodated in the top portion 301 </ b> B of the valve case 301. Next, the cylindrical portion 303 </ b> A is inserted into the inner peripheral side of the spring 302 at the lower end side of the spring 302 accommodated in the valve case 301, and the flange portion 303 </ b> B of the check valve 303 is seated at the other end of the spring 302. Next, the guide pin 304 is inserted into the inner periphery of the check valve 303, and the male pin portion 312 of the valve bolt 305 is inserted into the valve case 301 while the guide pin 304 protruding from the check valve 303 is inserted into the seating cylinder 319 of the valve bolt 305. The flow path switching device 300 is integrally assembled by screwing into the female thread portion 301A. When the check valve 303 is integrally assembled as the flow path switching device 300 as described above, the check valve 303 is pressed against the upper inner peripheral edge 319A of the tip of the valve bolt 305 by the biasing force of the spring 302. Closed state. The guide pin 304 has a predetermined play in the axial direction of the check valve 303 in the check valve 303 and in the internal space of the valve bolt 305.

図5(a),(b)は、流路切替装置300の動作図である。以下、同図を用いて流路切替装置300の動作を説明する。
流路切替装置収容孔116に収容された流路切替装置300は、先端側が作動油案内管115内に進入し、バルブケース301の外周が作動油案内管115内の内周に密着する。このとき作動油案内管115内において、作動油案内管115の中間室149側にバルブケース301の天孔301Cが開口し、作動油案内管115の油溜室132側にバルブボルト305の貫通孔318が開口し、中間室149と油溜室132との間を流れる作動油Kのすべてが流路切替装置300の内部の圧力抑制流路S又は戻り流路Tを流れることになる。
5A and 5B are operation diagrams of the flow path switching device 300. FIG. Hereinafter, the operation of the flow path switching device 300 will be described with reference to FIG.
In the flow path switching device 300 accommodated in the flow path switching device accommodating hole 116, the distal end side enters the hydraulic oil guide tube 115, and the outer periphery of the valve case 301 is in close contact with the inner periphery of the hydraulic oil guide tube 115. At this time, in the hydraulic oil guide pipe 115, the top hole 301C of the valve case 301 opens on the intermediate chamber 149 side of the hydraulic oil guide pipe 115, and the through hole of the valve bolt 305 on the oil reservoir chamber 132 side of the hydraulic oil guide pipe 115. The hydraulic oil K flowing between the intermediate chamber 149 and the oil reservoir chamber 132 flows through the pressure suppression flow path S or the return flow path T inside the flow path switching device 300.

圧側行程や伸側行程において、中間室149の圧力が油溜室132の圧力よりも高いとき、すなわち、中間室149から油溜室132に作動油Kが流れるときについて説明する。
図5(a)に示すように、圧側行程や伸側行程におけるピストン40の動作により押し出された圧側油室127Aや伸側油室127Bから流れた作動油Kは、圧側減衰バルブ151や伸側減衰バルブ161を押し開いて中間室149に流れる。圧側行程や伸側行程における圧側減衰バルブ151や伸側減衰バルブ161の下流側に位置する圧側チェック弁152や伸側チェック弁162が開くまでの間、中間室149の圧力が上昇して油溜室132に向かう流れが生じる。中間室149から油溜室132に向かう一部の作動油Kは、中間室149側の作動油案内管115へ流れ、流路切替装置300のチェックバルブ機構に到達する。
流路切替装置300のチェックバルブ機構に到達した作動油Kは、図中矢印u1に示すように、バルブケース301の天孔301Cから流路切替装置300内に流入することで、スプリング302の付勢力とともにチェックバルブ303をバルブボルト305方向に押し付ける。つまり、チェック弁が閉じた状態(戻り流路Tを閉塞した状態)となり、圧力抑制流路Sのみを開口した状態となる。すなわち、チェックバルブ303の孔303Cから流入した作動油Kは、図中矢印u2に示すように、チェックバルブ303の内周面303aと、ガイドピン304の外周面304aとの隙間で形成された圧力抑制流路Sのみを介して温度補償手段Qの油溜室132方向に流入しようとする。この圧力抑制流路Sは、流入部分の開口が後述するように小さく設定されているため流入抵抗が高い。このため圧力抑制流路Sには、中間室149の高い圧力を維持したまま流れることができず、わずかな作動油Kしか流れ込むことができない。この圧力抑制流路Sの流出側からは、油溜室132の圧力が負荷されているため、実際に圧力抑制流路Sを流れることができる作動油Kは、油溜室132及び作動油室Aや中間室149の圧力を一定に保つ分が流れることになる。すなわち、作動油室Aや中間室149側の作動油Kの温度上昇により膨張した分の作動油Kが、油溜室132との均衡を保つために図中矢印u2で示すように圧力抑制流路Sを流れることになり、減衰動作時の作動油室A内の圧力を一定に維持するための温度補償がなされる。このように作動油Kに対し、油溜室132に流入する作動湯量が少量に制限されて、温度補償がなされる。
この圧力抑制流路Sの流入量制限機能により、温度膨張を吸収しつつピストン40の動作により生じたままの圧力がほとんど中間室149に維持されるため、この圧力により圧側チェック弁152や伸側チェック弁162がスムーズに押し開かれて、圧側行程や伸側行程の中間室149よりも下流側に位置する圧側油室127Aや伸側油室127Bに移動することになる。
In the pressure side stroke and the extension side stroke, the case where the pressure of the intermediate chamber 149 is higher than the pressure of the oil reservoir chamber 132, that is, the case where the hydraulic oil K flows from the intermediate chamber 149 to the oil reservoir chamber 132 will be described.
As shown in FIG. 5 (a), the hydraulic oil K that has flowed out of the pressure side oil chamber 127A and the extension side oil chamber 127B by the operation of the piston 40 in the pressure side stroke and the extension side stroke is the compression side damping valve 151 and the extension side. The damping valve 161 is pushed open and flows into the intermediate chamber 149. The pressure in the intermediate chamber 149 increases until the pressure side check valve 152 and the extension side check valve 162 located downstream of the pressure side damping valve 151 and the extension side damping valve 161 in the compression side stroke and the extension side stroke are opened, and the oil reservoir A flow toward the chamber 132 occurs. Part of the hydraulic oil K from the intermediate chamber 149 toward the oil reservoir chamber 132 flows to the hydraulic oil guide tube 115 on the intermediate chamber 149 side and reaches the check valve mechanism of the flow path switching device 300.
The hydraulic oil K that has reached the check valve mechanism of the flow path switching device 300 flows into the flow path switching device 300 from the top hole 301C of the valve case 301, as indicated by an arrow u1 in the figure, so that the spring 302 is attached. The check valve 303 is pressed toward the valve bolt 305 together with the force. That is, the check valve is closed (the return channel T is closed), and only the pressure suppression channel S is opened. That is, the hydraulic oil K that has flowed from the hole 303C of the check valve 303 is a pressure formed by a gap between the inner peripheral surface 303a of the check valve 303 and the outer peripheral surface 304a of the guide pin 304, as indicated by an arrow u2 in the figure. It tries to flow in the direction of the oil reservoir chamber 132 of the temperature compensation means Q only through the suppression channel S. This pressure suppression channel S has a high inflow resistance because the opening of the inflow portion is set small as will be described later. For this reason, the pressure suppression flow path S cannot flow while maintaining the high pressure of the intermediate chamber 149, and only a small amount of hydraulic oil K can flow. Since the pressure of the oil reservoir chamber 132 is loaded from the outflow side of the pressure suppression channel S, the hydraulic oil K that can actually flow through the pressure suppression channel S is the oil reservoir chamber 132 and the hydraulic oil chamber. A portion that keeps the pressure of A and the intermediate chamber 149 constant flows. That is, the hydraulic oil K that has expanded due to the temperature rise of the hydraulic oil K on the side of the hydraulic oil chamber A or the intermediate chamber 149 has a pressure suppression flow as shown by an arrow u2 in the drawing in order to maintain a balance with the oil reservoir chamber 132. Thus, temperature compensation is performed to maintain a constant pressure in the hydraulic oil chamber A during the damping operation. In this way, the amount of operating hot water flowing into the oil reservoir chamber 132 is limited to a small amount with respect to the operating oil K, and temperature compensation is performed.
Due to the inflow amount limiting function of the pressure suppression passage S, the pressure generated by the operation of the piston 40 while absorbing the temperature expansion is almost maintained in the intermediate chamber 149. The check valve 162 is smoothly pushed and opened, and moves to the pressure side oil chamber 127A and the extension side oil chamber 127B located on the downstream side of the intermediate chamber 149 in the pressure side stroke and the extension side stroke.

一方、圧側行程や伸側行程以外でのフロントフォーク10の非動作時における中間室149の圧力が油溜室132の圧力よりも低いときについて、すなわち、油溜室132から中間室149に作動油Kが流れるときについて説明する。
図5(b)に示すように、圧側行程や伸側行程の動作がないフロントフォーク10の非動作状態、すなわち、車両が停止した場合には、減衰力発生装置140の作動油Kの温度が低下して作動油Kの容積が収縮することになる。作動油室Aや中間室149では圧力が低下して負圧状態となる一方で、油溜室132ではフリーピストン133の加圧によって常に正圧が維持されている。このように油溜室132の圧力が中間室149の圧力よりも高くなると、油溜室132と中間室149との圧力差により、流路切替装置300のチェックバルブ303が、押し上げられて、シール面303bが、上部内周縁319Aより離れ、このときガイドピン304の上端面が孔303Cを塞ぐので、圧力抑制流路Sが閉塞され、戻り流路Tが開口されて、流路が圧力抑制流路Sから戻り流路Tに切り替えられる。すなわち、この流路の切り替えは、油溜室132の作動油Kが横孔115nから流路切替装置300の貫通孔318を経て着座筒319に流れることで行なわれる。すなわち、図中矢印v1のように着座筒319に流れた作動油Kは、スプリング302の付勢力により着座筒319側に押し付けられていたチェックバルブ303を、図中矢印v3で示すように着座筒319の内周とガイドピン304の外周との隙間を流れてチェックバルブ303を押し開き、矢印v4で示すように鍔部303Bの外周を流れる。矢印v3;v4で示す作動油Kの流れにともない図中矢印v2で示す流れが生じて、ガイドピン304をチェックバルブ303方向に押し付け、チェックバルブ303の孔303Cを閉塞した状態を維持しつつチェックバルブ303をバルブケース301の天部301B側に押動する。これによりガイドピン304がチェックバルブ303の孔303Cを塞いで圧力抑制流路Sを閉塞するとともにチェックバルブ303が開放された状態となって、油溜室132と中間室149とを連通する作動油流路115mが、圧力抑制流路Sから油溜室132から中間室149に向かう戻り流路Tに切り替えられる。
流量の多い戻り流路Tに切り替えられたことで、図中矢印v4で示すように、バルブボルト305の着座筒319の内周とガイドピン304の外周との隙間を油溜室132から中間室149に向かって作動油Kが流れ、バルブケース301の天孔301Cから作動油流路115mを介して中間室149に流れることにより、作動油室Aや中間室149の圧力が油溜室132の圧力と同圧となる。
したがって、フロントフォーク10が動作していない状態(非動作状態)では、作動油室Aを構成する圧側油室127A及び伸側油室127B、圧側油室127Aと伸側油室127Bとを連通する外部流路、及び中間室149、油溜室132の圧力が一定となる。
On the other hand, when the pressure in the intermediate chamber 149 is lower than the pressure in the oil reservoir chamber 132 when the front fork 10 is not in operation other than the compression side stroke and the extension side stroke, that is, the hydraulic oil is supplied from the oil reservoir chamber 132 to the intermediate chamber 149. The case where K flows will be described.
As shown in FIG. 5B, when the front fork 10 does not operate in the compression stroke or extension stroke, that is, when the vehicle stops, the temperature of the hydraulic oil K of the damping force generator 140 is As a result, the volume of the hydraulic oil K contracts. In the hydraulic oil chamber A and the intermediate chamber 149, the pressure is reduced to a negative pressure state, while in the oil reservoir chamber 132, the positive pressure is always maintained by the pressurization of the free piston 133. When the pressure in the oil reservoir chamber 132 becomes higher than the pressure in the intermediate chamber 149 in this way, the check valve 303 of the flow path switching device 300 is pushed up due to the pressure difference between the oil reservoir chamber 132 and the intermediate chamber 149, and the seal The surface 303b is separated from the upper inner peripheral edge 319A, and at this time, the upper end surface of the guide pin 304 closes the hole 303C, so that the pressure suppression flow path S is closed, the return flow path T is opened, and the flow path The path S is switched to the return path T. That is, the switching of the flow path is performed by the hydraulic oil K in the oil reservoir chamber 132 flowing from the lateral hole 115 n to the seating cylinder 319 through the through hole 318 of the flow path switching device 300. That is, the hydraulic oil K that has flowed into the seating cylinder 319 as indicated by the arrow v1 in the figure causes the check valve 303 that has been pressed against the seating cylinder 319 by the biasing force of the spring 302 to the seating cylinder as indicated by the arrow v3 in the figure. The check valve 303 is pushed open through the gap between the inner periphery of 319 and the outer periphery of the guide pin 304, and flows on the outer periphery of the flange 303B as indicated by the arrow v4. With the flow of the hydraulic oil K indicated by arrows v3 and v4, the flow indicated by the arrow v2 in the figure is generated, the guide pin 304 is pressed toward the check valve 303, and the check valve 303 is maintained while the hole 303C is closed. The valve 303 is pushed to the top portion 301 </ b> B side of the valve case 301. As a result, the guide pin 304 closes the hole 303 </ b> C of the check valve 303 to close the pressure suppression passage S and the check valve 303 is opened, so that the hydraulic oil that communicates the oil reservoir 132 and the intermediate chamber 149. The flow path 115m is switched from the pressure suppression flow path S to the return flow path T from the oil reservoir chamber 132 toward the intermediate chamber 149.
By switching to the return flow path T with a large flow rate, the gap between the inner periphery of the seating cylinder 319 of the valve bolt 305 and the outer periphery of the guide pin 304 is changed from the oil reservoir chamber 132 to the intermediate chamber as indicated by an arrow v4 in the figure. 149 flows into the intermediate chamber 149 from the top hole 301C of the valve case 301 through the hydraulic oil flow path 115m, so that the pressure in the hydraulic oil chamber A and the intermediate chamber 149 is increased in the oil reservoir chamber 132. The same pressure as the pressure.
Therefore, when the front fork 10 is not operating (non-operating state), the pressure side oil chamber 127A and the extension side oil chamber 127B constituting the hydraulic oil chamber A, and the pressure side oil chamber 127A and the extension side oil chamber 127B are communicated. The pressures in the external flow path, the intermediate chamber 149, and the oil reservoir chamber 132 are constant.

図6(a),(b)は、フロントフォーク10の圧側行程及び伸側行程における減衰力発生装置140内の作動油Kの流れを示す図である。以下、同図を用いて、フロントフォーク10の圧側行程及び伸側行程における動作について説明する。
[圧側行程]
フロントフォーク10が収縮する圧側行程では、ピストン40の圧側動作により加圧された圧側油室127Aの作動油Kが、圧側油室流路57Aを介して減衰力発生装置140内の伸圧共用流路146Aに押し出され、図6(a)の実線矢印f1及び破線矢印f4で示すように、伸圧共用流路146Aから圧側減衰力発生部250とバイパス流路141Aに向けて流れる。
圧側減衰力発生部250に流れた作動油Kは、圧側流量規制体150の圧側流路150A側に、圧側流量規制体150と伸側チェック弁162との間にあらかじめ設けた隙間から圧側流路150Aに流れ込み、圧側減衰バルブ151を押し開いて中間室149に流出する。
また、バルブピース141の先端からバイパス流路141Aに流入した作動油Kは、ニードル孔143B及びニードル弁272Aで形成された隙間n1を経てニードル軸272に沿って流れ、主としてバルブピース141の小径部143の中途に設けられた流路孔143Aからセンタープレート145の流路孔145Bを経て破線矢印f5で示すように中間室149に流出して圧側流路150Aを経由した作動油Kと合流する。中間室149において合流した作動油Kは、センタープレート145の外周を回り込み、図中実線矢印f2,f3で示すように作動油流路115mと伸側流量規制体160の圧側流路160Bとに流れる。
一方の作動油流路115mに流れた作動油Kは、流路切替装置300の機能によって、温度膨張分だけが流路切替装置300の圧力抑制流路Sを通じて油溜室132に流れる。
他方の伸側流量規制体160の圧側流路160Bに流れた作動油Kは、圧力抑制流路Sによって流れが規制され、ピストン40により加圧された分が流れることで、圧側流路160Bの圧側チェック弁152を押し開いて伸圧共用流路146B、伸側油室流路57Bを経て伸側油室127Bに流出する。この圧側行程において圧側油室127Aから伸側油室127Bに移動した作動油Kは、ピストン40の移動分の容積とほぼ等しくなり、ピストン40の移動に伴なった応答遅れのない圧側行程の減衰力が得られる。
FIGS. 6A and 6B are views showing the flow of the hydraulic oil K in the damping force generator 140 in the compression side stroke and the extension side stroke of the front fork 10. Hereinafter, the operation of the front fork 10 in the compression side stroke and the extension side stroke will be described with reference to FIG.
[Pressure side stroke]
In the pressure-side stroke in which the front fork 10 contracts, the hydraulic oil K in the pressure-side oil chamber 127A pressurized by the pressure-side operation of the piston 40 flows through the pressure-sharing shared flow in the damping force generator 140 via the pressure-side oil chamber flow path 57A. As shown by the solid line arrow f1 and the broken line arrow f4 in FIG. 6A, it is pushed out to the path 146A, and flows from the pressure expansion common flow path 146A toward the compression side damping force generator 250 and the bypass flow path 141A.
The hydraulic oil K that has flowed into the pressure-side damping force generator 250 flows from the gap provided in advance between the pressure-side flow regulating body 150 and the extension-side check valve 162 to the pressure-side flow path 150A side of the pressure-side flow regulating body 150. Then, the pressure side damping valve 151 is pushed open and flows out into the intermediate chamber 149.
The hydraulic oil K that has flowed into the bypass channel 141A from the tip of the valve piece 141 flows along the needle shaft 272 through the gap n1 formed by the needle hole 143B and the needle valve 272A, and mainly has a small diameter portion of the valve piece 141. As shown by the broken line arrow f5 from the channel hole 143A provided in the middle of 143 through the channel hole 145B of the center plate 145, it flows into the intermediate chamber 149 and merges with the hydraulic oil K via the pressure side channel 150A. The hydraulic oil K merged in the intermediate chamber 149 wraps around the outer periphery of the center plate 145 and flows into the hydraulic oil flow path 115m and the pressure side flow path 160B of the extension side flow regulating body 160 as indicated by solid line arrows f2 and f3 in the figure. .
With the function of the flow path switching device 300, the hydraulic oil K that has flowed into one hydraulic fluid flow path 115 m flows to the oil reservoir chamber 132 through the pressure suppression flow path S of the flow path switching device 300 only by the temperature expansion.
The hydraulic oil K that has flowed into the pressure side flow path 160B of the other extension side flow restriction body 160 is restricted in flow by the pressure suppression flow path S, and the amount pressurized by the piston 40 flows, so that the pressure side flow path 160B The pressure side check valve 152 is pushed open and flows out to the expansion side oil chamber 127B through the expansion pressure common flow path 146B and the expansion side oil chamber flow path 57B. The hydraulic oil K that has moved from the pressure-side oil chamber 127A to the expansion-side oil chamber 127B in this pressure-side stroke becomes substantially equal to the volume of the movement of the piston 40, and the pressure-side stroke is attenuated without a response delay accompanying the movement of the piston 40. Power is obtained.

[伸側行程]
フロントフォーク10が伸長する伸側行程では、ピストン40の伸側動作により加圧された伸側油室127Bの作動油Kが、伸側油室流路57Bを介して減衰力発生装置140の伸圧共用流路146Bに押し出され、図6(b)の実線矢印g1及び破線矢印g4で示すように、伸圧共用流路146Bから伸側減衰力発生部260とバイパス流路141Aに向けて流れる。
伸圧共用流路146Bから伸側減衰力発生部260に流れた作動油Kは、伸側流量規制体160の伸側流路160Aと圧側チェック弁152との間にあらかじめ設けた隙間から伸側流路160Aに流れ込み、伸側減衰バルブ161を押し開いて中間室149に流出する。
また、伸圧共用流路146Bからバルブピース141の大径部142の流路孔142Aを経ての大径部142側からバイパス流路141Aに流入した作動油Kは、流量調整体279のテーパー面279Bと、小径部143の内周側の開口部144Bとの隙間n2を経てニードル軸272に沿って流れる。この隙間n2を経てニードル軸272に沿って流れた作動油Kは、主としてバルブピース141の中途に設けられた流路孔143Aからセンタープレート145の流路孔145Bを経て破線矢印g5で示すように中間室149に流出して、伸側減衰力発生部260の伸側流路160Aを経由した作動油Kと合流する。中間室149において合流した作動油Kは、センタープレート145の周りを回り込み、図中実線矢印g2,g3で示すように、作動油流路115mと圧側流量規制体150の伸側流路150Bとに流れる。
一方の作動油流路115mに流れた作動油Kは、流路切替装置300の機能によって、温度膨張分の作動油Kだけが流路切替装置300の圧力抑制流路Sを通じて油溜室132に流れる。
他方の伸側流量規制体160の圧側流路160Bに流れた作動油Kは、圧力抑制流路Sによって流れが規制され、ピストン40により加圧された分が流れることで、圧側流路160Bの圧側チェック弁152を押し開いて伸圧共用流路146B、伸側油室流路57Bを経て伸側油室127Bに流出する。この伸側行程において伸側油室127Bから圧側油室127Aに移動した作動油Kは、ピストン40の移動分の容積とほぼ等しい。
[Stretching process]
In the extension side stroke in which the front fork 10 extends, the hydraulic oil K in the extension side oil chamber 127B pressurized by the extension side operation of the piston 40 is extended by the damping force generator 140 through the extension side oil chamber channel 57B. As shown by the solid line arrow g1 and the broken line arrow g4 in FIG. 6B, the pressure is shared by the pressure common flow path 146B and flows from the pressure common flow path 146B toward the extension side damping force generation unit 260 and the bypass flow path 141A. .
The hydraulic oil K that has flowed from the pressure expansion common flow path 146B to the expansion side damping force generation unit 260 extends from the gap provided in advance between the expansion side flow path 160A of the expansion side flow regulating body 160 and the pressure side check valve 152. It flows into the flow path 160 </ b> A, pushes open the expansion side damping valve 161, and flows out into the intermediate chamber 149.
Further, the hydraulic oil K that has flowed into the bypass flow path 141A from the large diameter portion 142 side through the flow passage hole 142A of the large diameter portion 142 of the valve piece 141 from the pressure expansion common flow path 146B is a tapered surface of the flow rate adjusting body 279. It flows along the needle shaft 272 through a gap n2 between 279B and the opening 144B on the inner peripheral side of the small diameter portion 143. The hydraulic oil K that has flowed along the needle shaft 272 through the gap n2 mainly passes through the flow path hole 143A provided in the middle of the valve piece 141 through the flow path hole 145B of the center plate 145, as indicated by a broken line arrow g5. It flows into the intermediate chamber 149 and merges with the hydraulic oil K that passes through the expansion side flow path 160A of the expansion side damping force generation unit 260. The hydraulic oil K merged in the intermediate chamber 149 wraps around the center plate 145 and enters the hydraulic oil flow path 115m and the expansion side flow path 150B of the pressure side flow regulating body 150 as indicated by solid line arrows g2 and g3 in the figure. Flowing.
As for the hydraulic oil K that has flowed into one hydraulic oil flow path 115 m, due to the function of the flow path switching device 300, only the hydraulic oil K for the temperature expansion is transferred to the oil reservoir chamber 132 through the pressure suppression flow path S of the flow path switching device 300. Flowing.
The hydraulic oil K that has flowed into the pressure side flow path 160B of the other extension side flow restriction body 160 is restricted in flow by the pressure suppression flow path S, and the amount pressurized by the piston 40 flows, so that the pressure side flow path 160B The pressure side check valve 152 is pushed open and flows out to the expansion side oil chamber 127B through the expansion pressure common flow path 146B and the expansion side oil chamber flow path 57B. The hydraulic oil K that has moved from the expansion side oil chamber 127B to the compression side oil chamber 127A in this expansion side stroke is substantially equal to the volume of the movement of the piston 40.

以上説明したように、中間室149から油溜室132への作動油Kの流れを許容するとともに、ピストン40の動作によって中間室149に発生した圧力を油溜室132に伝達しないように、作動油Kの作動油案内管115を流通する作動油Kの圧力を抑制する圧力抑制流路Sを備えたことにより、作動油室Aや中間室149における作動油Kの温度膨張分の作動油Kだけが圧力抑制流路Sを通じて中間室149から油溜室132へと流れるため、ピストン40の動作によって圧側油室127Aから伸側油室127Bに、又は伸側油室127Bから圧側油室127Aに移動すべき作動油Kが遅滞無く移動するので、圧側行程や伸側行程において応答遅れを生じさせることなく減衰力が発生するので、減衰動作時の応答性を向上させることができる。   As described above, the hydraulic oil K is allowed to flow from the intermediate chamber 149 to the oil reservoir chamber 132, and the pressure generated in the intermediate chamber 149 by the operation of the piston 40 is not transmitted to the oil reservoir chamber 132. By providing the pressure suppression passage S that suppresses the pressure of the hydraulic oil K flowing through the hydraulic oil guide pipe 115 of the hydraulic oil K, the hydraulic oil K corresponding to the temperature expansion of the hydraulic oil K in the hydraulic oil chamber A and the intermediate chamber 149 Since only the flow from the intermediate chamber 149 to the oil reservoir chamber 132 flows through the pressure suppression flow path S, the operation of the piston 40 causes the compression side oil chamber 127A to the extension side oil chamber 127B, or the extension side oil chamber 127B to the pressure side oil chamber 127A. Since the hydraulic oil K to be moved moves without delay, a damping force is generated without causing a response delay in the compression side stroke and the extension side stroke, so that the responsiveness during the damping operation can be improved. That.

なお、上記実施形態では、フロントフォーク10を用いて本発明にかかる油圧緩衝器について説明したが、フロントフォーク10に限定されず、二輪車のリアクッションに用いても良い。
また、圧力抑制流路Sは、戻り流路Tの開口時に閉塞するとして説明したが、開口したままとしても良い。
また、中間室149と油溜室132とを連通する作動油流路115mを作動油案内管115により接続するとして説明したが、車軸ホルダ50内において中間室149と油溜室132とに連通する孔として形成しても良い。
In the above-described embodiment, the hydraulic shock absorber according to the present invention has been described using the front fork 10, but the present invention is not limited to the front fork 10 and may be used for a rear cushion of a motorcycle.
Further, the pressure suppression channel S has been described as being closed when the return channel T is opened, but may remain open.
Further, the hydraulic oil flow passage 115m that connects the intermediate chamber 149 and the oil reservoir chamber 132 is described as being connected by the hydraulic oil guide tube 115, but the intermediate chamber 149 and the oil reservoir chamber 132 communicate with each other in the axle holder 50. You may form as a hole.

10 フロントフォーク、11 アウターチューブ、15 ピストンロッド、
40 ピストン、51 シリンダチューブ、52 ガイドチューブ、
60 区画部材、115 作動油案内管、115m 作動油流路、115n 横孔、
116 流路切替装置収容孔、
127A 圧側油室、127B 伸側油室、
140 減衰力発生装置、250 圧側減衰力発生部、260 伸側減衰力発生部、
300 流路切替装置、303 チェックバルブ、S 圧力抑制流路、T 戻り流路、
Q 温度補償手段、Z 作動油流量制御手段。
10 front fork, 11 outer tube, 15 piston rod,
40 piston, 51 cylinder tube, 52 guide tube,
60 partition members, 115 hydraulic oil guide tube, 115 m hydraulic oil flow path, 115 n lateral hole,
116 channel switching device accommodation hole,
127A compression side oil chamber, 127B extension side oil chamber,
140 damping force generator, 250 compression side damping force generator, 260 extension side damping force generator,
300 channel switching device, 303 check valve, S pressure suppression channel, T return channel,
Q Temperature compensation means, Z hydraulic fluid flow control means.

Claims (7)

車体側チューブと、
前記車体側チューブと互いに摺動自在に嵌合する車軸側チューブと、
前記車軸側チューブの底部から立設された円筒状のシリンダチューブと、
前記シリンダチューブに設けられ、前記車軸側チューブの内周と液密状態で密着し、車軸側チューブの内部空間の車体側を空気室、車軸側を作動油室となるように区画する区画部材と、
前記車体側チューブと前記車軸側チューブの摺動動作において前記車体側チューブとともに移動可能に設けられ、前記シリンダチューブ内を前記作動油室の車体側を伸側油室、車軸側を圧側油室に区画するピストンと、
前記ピストンに取り付けられ、前記シリンダチューブの軸線方向に沿ってシリンダチューブの内外に移動可能に設けられたロッドと、
内周側が外気と連通するように前記車軸側チューブの底部から立設され、前記ピストンから前記車軸側チューブの底部に向けて延長する前記ロッドの外周を液密状態でガイドする円筒状のガイドチューブと、
前記車軸側チューブの内周とシリンダチューブの外周との間に形成された空間と前記伸側油室とに連通して作動油の相互の流通を許容する流通孔と、
前記圧側油室と前記伸側油室との間の作動油の流通を可能にする油室間流路と、
前記作動油室の外部に設けられ、前記油室間流路を流れる作動油に抵抗を生じさせて減衰力を発生させる圧側減衰力発生部及び伸側減衰力発生部が流れ方向に沿って直列に設けられた減衰力発生装置と、
前記圧側減衰力発生部と前記伸側減衰力発生部との間から作動油の一部を流入出させて、作動油に発生する温度膨張を吸収する圧力調整用油溜室を有する温度補償手段と、を備えた油圧緩衝器であって、
前記油圧緩衝器の動作における圧側行程及び伸側行程において前記圧力調整用油溜室方向に流入する作動油の圧力に基づき、前記圧力調整用油溜室方向に流入する作動油の流量を圧側行程及び伸側行程以外のピストンの非動作時における作動油流出時よりも少量に制限する作動油流量制御手段をさらに備えたことを特徴とする油圧緩衝器。
Body side tube,
An axle side tube that is slidably fitted to the vehicle body side tube; and
A cylindrical cylinder tube erected from the bottom of the axle side tube;
A partition member provided in the cylinder tube, in close contact with the inner periphery of the axle-side tube in a liquid-tight state, and partitioning the vehicle body side of the inner space of the axle-side tube so as to serve as an air chamber and the axle side as a hydraulic oil chamber; ,
In the sliding movement of the vehicle body side tube and the axle side tube, it is provided so as to be movable together with the vehicle body side tube. Inside the cylinder tube, the vehicle body side of the hydraulic oil chamber is an extension side oil chamber, and the axle side is a pressure side oil chamber. A partitioning piston;
A rod attached to the piston and provided movably in and out of the cylinder tube along the axial direction of the cylinder tube;
A cylindrical guide tube that stands upright from the bottom of the axle-side tube so that the inner peripheral side communicates with the outside air, and that guides the outer periphery of the rod extending from the piston toward the bottom of the axle-side tube in a liquid-tight state. When,
A flow hole communicating with the space formed between the inner periphery of the axle side tube and the outer periphery of the cylinder tube and the extension side oil chamber and allowing mutual flow of hydraulic oil;
A fluid passage between oil chambers that enables the flow of hydraulic oil between the pressure side oil chamber and the extension side oil chamber;
A compression-side damping force generation unit and an extension-side damping force generation unit that are provided outside the hydraulic oil chamber and generate a damping force by generating resistance in the hydraulic oil flowing through the flow path between the oil chambers are arranged in series along the flow direction. A damping force generator provided in
Temperature compensation means having a pressure adjusting oil reservoir that absorbs temperature expansion generated in the hydraulic oil by allowing a part of the hydraulic oil to flow in and out between the compression-side damping force generator and the extension-side damping force generator. A hydraulic shock absorber comprising:
Based on the pressure of the hydraulic oil flowing in the direction of the pressure adjusting oil reservoir in the pressure side stroke and the extension side stroke in the operation of the hydraulic shock absorber, the flow rate of the hydraulic oil flowing in the direction of the pressure adjusting oil reservoir chamber is changed to the pressure side stroke. The hydraulic shock absorber further comprises hydraulic fluid flow rate control means for limiting the amount to a smaller amount than when the hydraulic fluid flows out when the piston other than the extension stroke is not operating.
前記作動油流量制御手段は、前記減衰力発生装置側と前記圧力調整用油溜室との間を連通する戻り流路と、
前記戻り流路より開口量が小さい圧力抑制流路と、
前記圧力抑制流路を開口するとともに、前記戻り流路を閉塞するチェックバルブ機構と、を有する流路切替装置により構成したことを特徴とする請求項1に記載の油圧緩衝器。
The hydraulic oil flow rate control means includes a return flow path communicating between the damping force generator side and the pressure adjusting oil reservoir chamber;
A pressure suppression channel having a smaller opening than the return channel;
2. The hydraulic shock absorber according to claim 1, wherein the hydraulic shock absorber is configured by a flow path switching device having a check valve mechanism that opens the pressure suppression flow path and closes the return flow path.
前記戻り流路は、前記ピストンの非動作時に、前記圧力調整用油溜室からの作動油の流出圧力により開口することを特徴とする請求項2に記載の油圧緩衝器。   3. The hydraulic shock absorber according to claim 2, wherein the return flow path is opened by a hydraulic oil outflow pressure from the pressure adjusting oil reservoir chamber when the piston is not operating. 4. 前記圧力抑制流路は、前記戻り流路の開口時に閉塞されることを特徴とする請求項3に記載の油圧緩衝器。   4. The hydraulic shock absorber according to claim 3, wherein the pressure suppression channel is closed when the return channel is opened. 前記減衰力発生装置は、
前記圧側減衰力発生部と前記伸側減衰力発生部との間に、
圧側行程において圧側油室流路側から伸側油室流路方向に流れる作動油と伸側行程において伸側油室流路側から圧側油室流路側方向に流れる作動油とが通過する中間室を有し、
前記戻り流路及び前記圧力抑制流路の一端が前記中間室側と連通することを特徴とする請求項2又は請求項3に記載の油圧緩衝器。
The damping force generator is
Between the compression side damping force generation part and the extension side damping force generation part,
There is an intermediate chamber through which the hydraulic oil flowing from the pressure side oil chamber flow path side to the expansion side oil chamber flow path direction in the compression side stroke and the hydraulic oil flowing from the expansion side oil chamber flow path side to the pressure side oil chamber flow path direction in the expansion side stroke pass. And
The hydraulic shock absorber according to claim 2 or 3, wherein one end of the return flow path and the pressure suppression flow path communicates with the intermediate chamber side.
前記チェックバルブ機構により開閉される前記圧力抑制流路の開口量は、前記減衰力発生装置内の作動油の温度上昇により膨張した分の作動油が前記中間室側より前記圧力調整用油溜室方向に流れることを許容するだけの開口量に設定されることを特徴とする請求項5に記載の油圧緩衝器。   The amount of opening of the pressure suppression channel that is opened and closed by the check valve mechanism is such that the hydraulic oil that has expanded due to a rise in the temperature of the hydraulic oil in the damping force generator is from the intermediate chamber side to the pressure adjusting oil reservoir chamber. The hydraulic shock absorber according to claim 5, wherein the hydraulic shock absorber is set to an opening amount that allows the flow in the direction. 前記温度補償手段の圧力調整用油溜室は、作動油の案内管を介して中間室に接続され、前記案内管の作動油流路内にチェックバルブ機構を設けたことを特徴とする請求項5又は請求項6に記載の油圧緩衝器。
The pressure adjusting oil reservoir chamber of the temperature compensation means is connected to an intermediate chamber through a hydraulic oil guide pipe, and a check valve mechanism is provided in the hydraulic oil flow path of the guide pipe. The hydraulic shock absorber according to claim 5 or claim 6.
JP2014024750A 2014-02-12 2014-02-12 Hydraulic shock absorber Active JP6338878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024750A JP6338878B2 (en) 2014-02-12 2014-02-12 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024750A JP6338878B2 (en) 2014-02-12 2014-02-12 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JP2015152052A JP2015152052A (en) 2015-08-24
JP6338878B2 true JP6338878B2 (en) 2018-06-06

Family

ID=53894557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024750A Active JP6338878B2 (en) 2014-02-12 2014-02-12 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP6338878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111242A (en) * 2019-01-15 2020-07-27 株式会社ショーワ Steering damper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046095A (en) * 1998-07-28 2000-02-15 Tokico Ltd Hydraulic shock absorber
JP2006131119A (en) * 2004-11-05 2006-05-25 Showa Corp Front fork of motorcycle
JP4965490B2 (en) * 2008-03-26 2012-07-04 株式会社ショーワ Hydraulic shock absorber
JP5506451B2 (en) * 2010-02-25 2014-05-28 株式会社ショーワ Hydraulic shock absorber

Also Published As

Publication number Publication date
JP2015152052A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US7322449B2 (en) Hydraulic shock absorber
JP4244171B2 (en) Hydraulic buffer
US9291229B2 (en) Shock absorber
US11448282B2 (en) Shock absorber assembly
JP5639870B2 (en) Hydraulic shock absorber for vehicles
JP2006038098A (en) Hydraulic shock absorber
KR20150136488A (en) Damper and vehicle using same
JP2005054854A (en) Relief valve and hydraulic damper with car height adjusting function
JP6338878B2 (en) Hydraulic shock absorber
JP2009156348A (en) Hydraulic shock absorber
JP6214227B2 (en) Hydraulic shock absorber
JP2017180706A (en) Shock absorber and attenuation force generation device
JP6464036B2 (en) Damping valve and shock absorber
JP6173132B2 (en) Hydraulic shock absorber
JP2010101417A (en) Front fork
JP5759362B2 (en) Hydraulic shock absorber
JP2013113425A (en) Hydraulic shock absorber
JP6148547B2 (en) Front fork
JP5452372B2 (en) Fluid pressure buffer
JP2016194339A (en) Damping force generating device
WO2018029874A1 (en) Front fork
JP2020133715A (en) Relief valve
JP2008298135A (en) Hydraulic shock absorber
JP2008298137A (en) Hydraulic shock absorber
JP2010038171A (en) Hydraulic shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6338878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250