JP6338015B2 - Cell mass culture vessel - Google Patents
Cell mass culture vessel Download PDFInfo
- Publication number
- JP6338015B2 JP6338015B2 JP2017516541A JP2017516541A JP6338015B2 JP 6338015 B2 JP6338015 B2 JP 6338015B2 JP 2017516541 A JP2017516541 A JP 2017516541A JP 2017516541 A JP2017516541 A JP 2017516541A JP 6338015 B2 JP6338015 B2 JP 6338015B2
- Authority
- JP
- Japan
- Prior art keywords
- culture
- cell mass
- partition wall
- culture solution
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004027 cell Anatomy 0.000 claims description 288
- 238000005192 partition Methods 0.000 claims description 152
- 238000004891 communication Methods 0.000 claims description 88
- 238000012258 culturing Methods 0.000 claims description 34
- 239000001963 growth medium Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 23
- 238000012136 culture method Methods 0.000 claims description 16
- 210000000130 stem cell Anatomy 0.000 claims description 8
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 6
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 143
- 229920005989 resin Polymers 0.000 description 38
- 239000011347 resin Substances 0.000 description 38
- 239000007788 liquid Substances 0.000 description 36
- 230000015572 biosynthetic process Effects 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 8
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- -1 polymethacrylamide Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000004936 stimulating effect Effects 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920002689 polyvinyl acetate Polymers 0.000 description 5
- 239000011118 polyvinyl acetate Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920001342 Bakelite® Polymers 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004637 bakelite Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000021164 cell adhesion Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 210000002242 embryoid body Anatomy 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZSZRUEAFVQITHH-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CC(=C)C(=O)OCCOP([O-])(=O)OCC[N+](C)(C)C ZSZRUEAFVQITHH-UHFFFAOYSA-N 0.000 description 1
- NJNWCIAPVGRBHO-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-[(oxo-$l^{5}-phosphanylidyne)methyl]azanium Chemical group OCC[N+](C)(C)C#P=O NJNWCIAPVGRBHO-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 101700004678 SLIT3 Proteins 0.000 description 1
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical class CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 231100000987 absorbed dose Toxicity 0.000 description 1
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000001058 brown pigment Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000009421 cellmass formation Effects 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000004388 gamma ray sterilization Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000010102 injection blow moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
Landscapes
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Clinical Laboratory Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本開示は、細胞塊用培養容器及びこれを用いた細胞塊の培養方法に関する。本願は、2015年9月29日に、日本に出願された特願2015−192045号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to a cell mass culture vessel and a cell mass culture method using the same. This application claims priority on September 29, 2015 based on Japanese Patent Application No. 2015-192045 for which it applied to Japan, and uses the content for it here.
胚性幹細胞(ES細胞)は、様々な組織細胞に分化する多分化能を有する。このため、病気や事故等で失われた細胞を補修し、組織を修復する、いわゆる再生医療の分野での応用に向けて様々な研究が行われている(例えば、特許文献1)。 Embryonic stem cells (ES cells) have multipotency to differentiate into various tissue cells. For this reason, various studies have been conducted for application in the field of so-called regenerative medicine, in which cells lost due to illness or accidents are repaired and tissues are repaired (for example, Patent Document 1).
ES細胞は種々の細胞に分化しうる多様性を持つ。種々の細胞に分化させる手法の一つとして胚様体(embryonic body:EB)と呼ばれる細胞塊の形成がある。この細胞塊は、ES細胞やiPS細胞などを浮遊培養することにより形成され、細胞塊が形成された状態で2週間程度培養すると様々な細胞種への分化が観察される。このため、胚様体の形成は、細胞の分化多能性を調べる一般的な方法の一つとして用いられている。 ES cells have diversity that can be differentiated into various cells. One technique for differentiating into various cells is the formation of a cell mass called an embryonic body (EB). This cell mass is formed by suspension culture of ES cells, iPS cells, and the like, and when cultured for about 2 weeks in a state where the cell mass is formed, differentiation into various cell types is observed. For this reason, the formation of embryoid bodies is used as one of the general methods for examining the pluripotency of cells.
ES細胞を浮遊状態で培養する、最も広く用いられている方法として、ハンギングドロップ培養がある。ハンギングドロップ培養は、水滴状に垂れ下げた培養液の中で細胞を培養する方法である。しかしながらこの方法は、胚様体形成の成功率が低い、顕微鏡観察ができない、操作が煩雑である等といった問題がある。この問題を解決するために、例えば、容器内面に水溶性樹脂被膜を硬化させて非水溶性硬化被膜が形成された培養容器が提案されている(例えば、特許文献2)。 The most widely used method for culturing ES cells in a suspended state is hanging drop culture. The hanging drop culture is a method of culturing cells in a culture solution suspended in a water droplet shape. However, this method has problems such as a low success rate of embryoid body formation, inability to observe with a microscope, and complicated operation. In order to solve this problem, for example, a culture container in which a water-soluble resin film is cured on the inner surface of the container to form a water-insoluble cured film has been proposed (for example, Patent Document 2).
臨床応用を視野に入れると、ヒトES細胞を用いた研究及び開発が必要となるが、ヒトES細胞は、マウスES細胞と比較して細胞死を起こしやすく、胚様体が得られにくいという問題がある。この問題を解決するために、例えば、ウェル底部の形状を開き角度が60〜100度である漏斗形状とし、その中心部に凹状の丸みをもたせた培養容器が提案されている(例えば、特許文献3)。ヒトiPS細胞を用いた研究及び開発についても同様の培養容器が提案されている。 From the perspective of clinical application, research and development using human ES cells is required, but human ES cells are more susceptible to cell death than mouse ES cells, and it is difficult to obtain embryoid bodies. There is. In order to solve this problem, for example, a culture vessel has been proposed in which the shape of the bottom of the well has a funnel shape with an opening angle of 60 to 100 degrees and a concave roundness is provided at the center (for example, Patent Documents). 3). Similar culture vessels have been proposed for research and development using human iPS cells.
上述の特許文献1(特開2008−99662号公報)、特許文献2(特開2008−178367号公報)、及び特許文献3(国際公開第2013/183777号)は、参照により本明細書に組み込まれる。 Patent Document 1 (Japanese Patent Laid-Open No. 2008-99662), Patent Document 2 (Japanese Patent Laid-Open No. 2008-178367), and Patent Document 3 (International Publication No. 2013/183777) are incorporated herein by reference. It is.
上記の培養容器等を用いて形成された細胞塊は、更なる培養を行うために、シャーレ等に移設される場合がある(非特許文献1)。一般的に細胞から排出される尿酸や炭酸ガス等の老廃物により培養液は酸性にかたよっていくため、シャーレ内の培養液は定期的に交換する必要がある。しかし、培養液の定期的な交換に伴いシャーレを揺動させると、細胞塊がシャーレの中央部に集まり、細胞塊同士が接触し、融合して、細胞塊が大きくなりすぎ、又は細胞塊が歪な形状となって、細胞塊を構成する細胞に、酸素や栄養が十分に供給されず、当該細胞が死んでしまう恐れがある。また、当該死細胞が放出する酵素等によって正常な細胞についてもダメージを受ける。従って、培養を行う上で、細胞塊にダメージや刺激を極力与えずに培養液の交換を行うことは、培養を経て良質な細胞塊を得る上で重要である。また、例えば、ヒト胚性幹細胞(ヒトES細胞)、ヒト多能性幹細胞、ヒトiPS細胞等の幹細胞は代謝がよいため、培養液の交換頻度が他の細胞の場合と比較して高い。故に、特に、これらの細胞に対しては、培養液の交換が適切に行えることが望まれる。 The cell mass formed using the above culture container or the like may be transferred to a petri dish or the like for further culture (Non-patent Document 1). In general, since the culture solution is made acidic by wastes such as uric acid and carbon dioxide discharged from the cells, the culture solution in the petri dish needs to be periodically replaced. However, if the petri dish is shaken with periodic exchange of the culture solution, the cell mass collects in the center of the petri dish, the cell masses come into contact with each other and fuse together, the cell mass becomes too large, or the cell mass There is a possibility that oxygen and nutrients are not sufficiently supplied to the cells constituting the cell mass due to the distorted shape, and the cells die. Also, normal cells are damaged by the enzyme released by the dead cells. Therefore, in culturing, exchanging the culture solution without damaging or stimulating the cell mass as much as possible is important for obtaining a high-quality cell mass through culture. In addition, for example, stem cells such as human embryonic stem cells (human ES cells), human pluripotent stem cells, and human iPS cells have good metabolism, so the frequency of culture medium exchange is higher than that of other cells. Therefore, especially for these cells, it is desired that the culture medium can be exchanged appropriately.
本開示は、一又は複数の実施形態において、細胞塊にダメージや刺激を極力与えずに培養液の交換を行うことができ、且つ、細胞塊の生産性も向上できる細胞塊用培養容器、及び当該細胞塊用培養容器を用いた細胞塊の培養方法を提供する。 In one or a plurality of embodiments, the present disclosure is capable of exchanging a culture solution without damaging or stimulating the cell mass as much as possible, and improving the productivity of the cell mass, A method for culturing a cell mass using the culture vessel for the cell mass is provided.
本開示は、一又は複数の実施形態において、細胞塊を培養するための細胞塊用培養容器に関する。本開示の細胞塊用培養容器は、前記細胞塊と培養液とを収容可能とする空間を囲う隔壁部と、前記隔壁部の外側に配置された側壁とを含み、前記隔壁部に、前記空間内外への前記培養液の流入出を許容する1個以上の連通部が形成されている。培養の対象とされる前記細胞塊を鉛直方向から見た投影図から測定される前記細胞塊の最短径をRとし、前記隔壁部の前記空間に面する面から見た、前記連通部の、上下方向の長さを縦方向長とし、上下方向と直交する長さを横方向長とすると、前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方が0.7R以下である。 In one or a plurality of embodiments, the present disclosure relates to a cell mass culture container for culturing a cell mass. The cell mass culture container of the present disclosure includes a partition wall that surrounds a space in which the cell mass and the culture solution can be accommodated, and a side wall that is disposed outside the partition wall. One or more communication portions that allow the culture solution to flow in and out are formed. The shortest diameter of the cell mass measured from a projected view of the cell mass to be cultured as viewed from the vertical direction is R, and the communication part is seen from the surface facing the space, If the length in the vertical direction is the vertical length and the length orthogonal to the vertical direction is the horizontal length, one of the maximum length in the vertical direction and the maximum length in the horizontal direction is 0.7R or less. is there.
本開示は、一又は複数の実施形態において、本開示の細胞塊用培養容器を用いて細胞塊を培養する培養方法である。前記細胞塊の培養方法は、前記隔壁部により囲われた空間内に培養液を流入させ、前記空間内の培養液中で1つの細胞塊を培養した後、前記空間内の培養液の一部を、前記連通部から前記隔壁部の外側に流出させる工程を、含む。 In one or a plurality of embodiments, the present disclosure is a culture method for culturing a cell mass using the cell mass culture container of the present disclosure. In the cell mass culture method, a culture solution is allowed to flow into a space surrounded by the partition wall, and after culturing one cell mass in the culture solution in the space, a part of the culture solution in the space A step of causing the fluid to flow out from the communication part to the outside of the partition part.
本開示にかかる細胞塊用培養容器及び細胞塊の培養方法によれば、細胞塊にダメージや刺激を極力与えずに培養液の交換を行え、且つ、細胞塊の生産性も向上できる。 According to the cell mass culture container and the cell mass culture method according to the present disclosure, the culture solution can be exchanged without damaging or stimulating the cell mass as much as possible, and the productivity of the cell mass can be improved.
本開示の細胞塊用培養容器(以下、「培養容器」と略称する場合もある。)は、細胞塊と培養液とを収容可能とする空間(以下「培養空間」と呼ぶ場合がある。)を囲う隔壁部と、前記隔壁部の外側に配置された側壁とを含む。本開示の培養容器では、前記隔壁部に、前記空間内外への前記培養液の流入出を許容する1個以上の連通部が形成されている。前記連通部のサイズを、培養の対象とされる細胞塊のサイズ、例えば、培養容器に移設される直前の細胞塊のサイズよりも小さくすれば、培養液のみを隔壁部の外に流出させることができると考えられる。しかし、実際のところ、連通部のサイズが細胞塊のサイズより小さい場合でも、細胞塊が、連通部を通過して隔壁部の外側に流出したり、連通部に細胞塊が嵌ったりすることがあった。 The cell mass culture container of the present disclosure (hereinafter sometimes abbreviated as “culture container”) is a space (hereinafter also referred to as “culture space”) that can accommodate the cell mass and the culture solution. And a side wall disposed outside the partition wall. In the culture container of the present disclosure, one or more communication portions that allow the culture solution to flow into and out of the space are formed in the partition wall. If the size of the communication portion is smaller than the size of the cell mass to be cultured, for example, the size of the cell mass immediately before being transferred to the culture vessel, only the culture solution is allowed to flow out of the partition wall. It is thought that you can. However, actually, even when the size of the communication portion is smaller than the size of the cell mass, the cell mass may flow out of the partition wall through the communication portion, or the cell mass may fit into the communication portion. there were.
本開示の培養容器では、培養対象である細胞塊を鉛直方向から見た投影図から測定できる細胞塊の最短径をRとし、前記隔壁部の前記空間に面する面から見た、前記連通部の、上下方向の長さを縦方向長とし、上下方向と直交する長さを横方向長とすると、前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方が0.7R以下である。この構成により、本開示の培養容器では、隔壁部によって囲われる空間から隔壁部の外への培養液の流出の際に、細胞塊が、前記連通部に嵌ったり、前記連通部を通過したりする事が、抑制される。また、本開示の培養容器では、前記連通部を利用して培養液の交換が行えるので、従来のようにピペット等を用いた吸引による培養液の流出時に起こり得る、細胞塊の吸引による損失も防止できる。故に、本開示の培養容器及び本開示の培養容器を用いた細胞塊の培養方法によれば、細胞塊にダメージや刺激を極力与えずに培養液を交換でき、且つ、細胞塊の生産性も向上できる。 In the culture container according to the present disclosure, the communication portion as viewed from the surface facing the space of the partition wall, where R is the shortest diameter of the cell mass that can be measured from a projection when the cell mass to be cultured is viewed from the vertical direction. When the length in the vertical direction is the vertical length and the length perpendicular to the vertical direction is the horizontal length, either the maximum length in the vertical direction or the maximum length in the horizontal direction is 0.7R. It is as follows. With this configuration, in the culture container of the present disclosure, when the culture solution flows out from the space surrounded by the partition wall to the outside of the partition wall, the cell mass fits into the communication part or passes through the communication part. It is suppressed to do. Further, in the culture container of the present disclosure, since the culture medium can be exchanged using the communication part, there is a loss due to the suction of the cell mass that may occur when the culture liquid flows out by suction using a pipette or the like as in the past. Can be prevented. Therefore, according to the culture vessel of the present disclosure and the cell mass culture method using the culture vessel of the present disclosure, the culture solution can be exchanged without damaging or stimulating the cell mass as much as possible, and the productivity of the cell mass is also improved. Can be improved.
本開示の培養容器は、1つの細胞塊と培養液とを収容可能とする培養空間を複数有し、当該複数の培養空間の各々を囲う隔壁部と、複数の前記隔壁部の外側に配置された側壁とを備えていてもよい。この態様の本開示の培養容器を用いれば、例えば、当該培養容器を傾けるという簡単な操作により、短時間で、複数の培養空間内の培養液を、連通部を介して前記隔壁部の外側に流出させることができる。 The culture container of the present disclosure has a plurality of culture spaces that can accommodate one cell mass and a culture solution, and is arranged outside the plurality of partition walls and a partition wall that surrounds each of the plurality of culture spaces. And a side wall. If the culture container of the present disclosure of this embodiment is used, for example, the culture solution in the plurality of culture spaces can be transferred to the outside of the partition wall via the communication part in a short time by a simple operation of tilting the culture container. Can be drained.
上記複数の培養空間を有する本開示の培養容器の培養対象とされる複数の細胞塊の大きさは、少なからず互いに異なる。そのため、培養に伴い各細胞塊から排出される老廃物の量も異なる。この培養容器では、複数の培養空間の各々を囲う隔壁部に前記連通部が設けられているため、培養最中における、連通部を介した前記隔壁部の内外への培養液の拡散による流入出が可能である。そのため、培養最中の、各培養空間内の培養液の質が均質化されるため、得られる細胞塊の均質化も期待できる。 The size of the plurality of cell masses to be cultured in the culture container of the present disclosure having the plurality of culture spaces is not a little different from each other. For this reason, the amount of waste discharged from each cell mass during culture varies. In this culture vessel, since the communication part is provided in the partition part surrounding each of the plurality of culture spaces, inflow and outflow due to diffusion of the culture solution into and out of the partition part through the communication part during culture Is possible. Therefore, since the quality of the culture solution in each culture space during the culture is homogenized, the resulting cell mass can be expected to be homogenized.
従って、複数の培養空間を有する本開示の培養容器を用いれば、従来技術として記載した方法と比較して、細胞塊にダメージや刺激を極力与えずに培養液の交換を行え、且つ、細胞塊の生産性も向上できることに加え、培養液の交換を効率的に行える。また、均質な細胞塊を得ることが期待できる。 Therefore, if the culture vessel of the present disclosure having a plurality of culture spaces is used, the culture solution can be exchanged without damaging or stimulating the cell mass as much as possible as compared with the method described as the prior art, and the cell mass In addition to improving productivity, the culture medium can be exchanged efficiently. It can also be expected to obtain a homogeneous cell mass.
細胞のなかでも、ヒト胚性幹細胞(ヒトES細胞)、ヒト多能性幹細胞、ヒトiPS細胞等の幹細胞は、代謝がよく、僅かな刺激により分化してしまう可能性があり、培養液の交換頻度が他の細胞の場合と比較して高い。従って、細胞塊にダメージや刺激等の影響が及ぶことを抑制しながら培養液を効率的に交換できる本開示の培養容器は、これらの幹細胞の細胞塊の培養に適している。 Among cells, stem cells such as human embryonic stem cells (human ES cells), human pluripotent stem cells, and human iPS cells are well metabolized and may be differentiated by slight stimulation. The frequency is high compared to other cells. Therefore, the culture vessel of the present disclosure that can efficiently exchange the culture solution while suppressing the influence of damage, stimulation, etc. on the cell mass is suitable for culturing the cell mass of these stem cells.
本開示の培養容器の一又は複数の実施態様において、「上下方向」及び「縦方向」は、隔壁部の中心軸方向と同方向である。前記隔壁部の前記空間に面する面から見た、前記連通部の、前記上下方向と直交する長さを「横方向長」とするが、当該横方向長を決する仮想線と同方向を「横方向」とする。 In one or more embodiments of the culture container of the present disclosure, the “vertical direction” and “vertical direction” are the same direction as the central axis direction of the partition wall. The length of the communicating portion perpendicular to the vertical direction as viewed from the surface of the partition wall facing the space is referred to as a “lateral length”, but the same direction as the virtual line that determines the horizontal length is “ Horizontal direction ".
本開示の培養容器の一又は複数の実施態様において、「細胞塊を鉛直方向から見た投影図から測定される細胞塊の最短径R」とは、本開示の細胞塊培養容器にて培養を開始する直前から、培養を終了するまでの間の細胞塊の最短径のうち最も小さくなった際の径であり、一般的には培養開始直前が最も径が小さい。ここで、「培養開始直前」とは、例えば、培養を開始する2時間前迄の間であり、2時間であれば、「細胞塊の最短径R」はほとんど変動せず、例えば±10μmである。「細胞塊の最短径R」は、実施例に記載の方法により測定できる。「細胞塊を鉛直方向から見た投影図」は、細胞塊を培養液に浮遊させた状態で、例えば位相差顕微鏡を用いて撮像されたものを用いる。 In one or a plurality of embodiments of the culture vessel of the present disclosure, “the shortest diameter R of the cell mass measured from a projection when the cell mass is viewed from the vertical direction” refers to culturing in the cell mass culture vessel of the present disclosure. This is the diameter at the time of the smallest diameter of the cell cluster from just before the start to the end of the culture, and the diameter is generally the shortest immediately before the start of the culture. Here, “immediately before the start of culturing” is, for example, until 2 hours before the start of culturing, and if it is 2 hours, “the shortest diameter R of the cell mass” hardly changes, for example, ± 10 μm. is there. The “shortest diameter R of the cell mass” can be measured by the method described in the examples. As the “projection view of the cell mass viewed from the vertical direction”, a cell mass suspended in a culture solution and imaged using, for example, a phase contrast microscope is used.
本開示の培養容器の一又は複数の実施態様において、隔壁部の前記培養空間に面する面から見た、前記連通部の上下方向の長さである「縦方向長」が、当該連通部のいずれの位置においても同じ場合は、当該その長さを縦方向長の最大長とする。 In one or a plurality of embodiments of the culture container according to the present disclosure, the “longitudinal length” that is the length in the vertical direction of the communication portion viewed from the surface of the partition wall facing the culture space is the communication portion. When the position is the same at any position, the length is the maximum length in the vertical direction.
本開示の培養容器の一又は複数の実施態様において、隔壁部の培養空間に面する面から見た、前記連通部の上下方向と直交する長さである「横方向長」が、隔壁部の上下方向に渡って一定である場合は、当該その長さを横方向長の「最大長」とする。 In one or a plurality of embodiments of the culture container of the present disclosure, the “lateral length”, which is a length perpendicular to the vertical direction of the communication portion, viewed from the surface of the partition portion facing the culture space, If it is constant in the vertical direction, the length is set as the “maximum length” in the horizontal direction.
本開示の培養容器の一又は複数の実施態様において、連通部の、前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方は、培養液の交換に伴って細胞塊が受けるダメージや刺激を低減する観点から、0.7R以下であるが、好ましくは0.6R以下であり、培養液の流出効率の向上の観点から、0.2R以上が好ましく、0.4R以上がより好ましく、0.5R以上が更に好ましい。一つの隔壁部に、複数の連通部が形成されている場合、前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方が0.7R以下を具備するかぎり、複数の連通部の縦方向長の最大長及び/又は横方向長の最大長は、同一又は異なっていてもよい。 In one or a plurality of embodiments of the culture container according to the present disclosure, one of the maximum length in the longitudinal direction and the maximum length in the lateral direction of the communication portion is received by the cell mass as the culture medium is exchanged. From the viewpoint of reducing damage and irritation, it is 0.7R or less, preferably 0.6R or less. From the viewpoint of improving the outflow efficiency of the culture solution, 0.2R or more is preferable, and 0.4R or more is more preferable. 0.5R or more is more preferable. In the case where a plurality of communication portions are formed in one partition wall portion, a plurality of communication portions are provided as long as either one of the maximum length in the longitudinal direction and the maximum length in the lateral direction has 0.7R or less. The maximum length in the longitudinal direction and / or the maximum length in the lateral direction may be the same or different.
本開示は、更に、以下の一又は複数の実施形態に関しうる。
[1] 細胞塊を培養するための容器であって、
前記細胞塊と培養液とを収容可能とする空間を囲う隔壁部と、前記隔壁部の外側に配置された側壁とを含み、
前記隔壁部に、前記空間内外への前記培養液の流入出を許容する1個以上の連通部が形成されており、
前記細胞塊を鉛直方向から見た投影図から測定される前記細胞塊の最短径をRとし、
前記隔壁部の前記空間に面する面から見た、前記連通部の、上下方向の長さを縦方向長とし、上下方向と直交する長さを横方向長とすると、
前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方が0.7R以下である、細胞塊用培養容器。
[2] 前記細胞塊用培養容器は、前記空間と前記隔壁とを複数有し、前記複数の空間は各々前記隔壁部により囲われている、前記[1]に記載の細胞塊用培養容器。
[3] 前記隔壁部は、筒状部を含む、前記[1]又は[2]に記載の細胞塊用培養容器。
[4] 前記隔壁部は、前記筒状部の下方に配置され、底部に向かって徐々に径が小さくなる部分を含むウェル部を更に含む、前記[3]に記載の細胞塊用培養容器。
[5] 前記空間と前記隔壁とを複数有し、複数の隔壁部を相互に連結する板状体を含み、
少なくとも前記隔壁部のうちの前記隔壁部の底部から遠い底部遠位部分が、前記板状体の一方の主面よりも上方に配置されており、
前記隔壁部のうちの前記板状体の一方の主面よりも上方に配置された部分に、前記連通部が形成されている、前記[1]から[4]のいずれかに記載の細胞塊用培養容器。
[6] 前記空間と前記隔壁とを複数有し、
複数の前記隔壁部と、複数の隔壁部を相互に連結する板状体を含み、前記隔壁部のうちの少なくとも前記隔壁部の底部が前記板状体よりも下方に配置された培養容器本体部と、
前記板状体の下側から前記培養容器本体部に対して装脱着可能であり、前記隔壁部のうちの前記板状体よりも下方に配置された部分を収容する、培養液受け容器と、を含み、
前記連通部が、前記隔壁部のうちの前記板状体よりも下方に配置された部分に形成されている、前記[1]から[4]のいずれかに記載の細胞塊用培養容器。
[7] 前記隔壁部に複数の前記連通部が形成されている、前記[1]から[6]のいずれかに記載の細胞塊用培養容器。
[8] 前記連通部が、スリット及び前記隔壁部を厚み方向に貫通する貫通孔から選ばれる少なくとも1種である、前記[1]から[7]のいずれかに記載の細胞塊用培養容器。[9] 前記細胞塊の最短径Rは、200μm以上1000μm以下である、前記[1]から[8]のいずれかに記載の細胞塊用培養容器。
[10] 前記細胞塊が幹細胞の細胞塊である、前記[1]から[9]のいずれかに記載の細胞塊用培養容器。
[11] 前記幹細胞が、ヒト胚性幹細胞(ヒトES細胞)、ヒト多能性幹細胞又はヒトiPS細胞である、前記[10]に記載の細胞塊用培養容器。
[12] 前記[1]から[11]のいずれかに記載の細胞塊用培養容器を用いて細胞塊を培養する培養方法であって、
前記隔壁部により囲われた空間内に培養液を流入させ、前記空間内の前記培養液中で1つの細胞塊を培養した後、前記空間内の培養液の一部を、前記連通部から前記隔壁部の外側に流出させる工程を含む細胞塊の培養方法。
[13] 前記工程において、前記細胞塊が培養液面より露出しないように、前記空間内の培養液の一部を、前記連通部から前記隔壁部の外側に流出させる、前記[12]に記載の細胞塊の培養方法。
[14] 前記細胞塊用培養容器が、前記空間と前記隔壁とを複数有し、前記複数の空間は各々前記隔壁部により囲われており、前記工程において、前記細胞塊用培養容器を傾けることにより、複数の前記空間内の培養液の一部を、各々、前記連通部から前記隔壁部の外側に流出させる、前記[12]又は[13]に記載の細胞塊の培養方法。
[15] 前記工程を複数回繰り返す、前記[12]から[14]のいずれかに記載の細胞塊の培養方法。The present disclosure may further relate to one or more of the following embodiments.
[1] A container for culturing a cell mass,
Including a partition wall that surrounds the space that can accommodate the cell mass and the culture solution, and a side wall disposed outside the partition wall,
One or more communication portions that allow the culture medium to flow into and out of the space are formed in the partition wall,
R is the shortest diameter of the cell mass measured from a projected view of the cell mass viewed from the vertical direction,
When viewed from the surface of the partition wall facing the space, the length of the communicating portion in the vertical direction is the vertical length, and the length orthogonal to the vertical direction is the horizontal length.
One of the maximum length in the longitudinal direction and the maximum length in the lateral direction is 0.7R or less, and the cell mass culture vessel.
[2] The cell mass culture container according to [1], wherein the cell mass culture container includes a plurality of the spaces and the partition walls, and each of the plurality of spaces is surrounded by the partition walls.
[3] The cell mass culture container according to [1] or [2], wherein the partition wall includes a cylindrical portion.
[4] The cell mass culture container according to [3], wherein the partition wall portion further includes a well portion that is disposed below the cylindrical portion and includes a portion that gradually decreases in diameter toward the bottom.
[5] A plate-like body that includes a plurality of the spaces and the partition walls and connects the plurality of partition walls to each other,
At least a bottom portion distal portion of the partition wall portion far from the bottom of the partition wall portion is disposed above one main surface of the plate-like body,
The cell mass according to any one of [1] to [4], wherein the communication portion is formed in a portion of the partition wall portion disposed above one main surface of the plate-like body. Culture container.
[6] Having a plurality of the spaces and the partition walls,
A culture vessel main body including a plurality of the partition walls and a plate-like body connecting the plurality of partition walls to each other, wherein at least a bottom of the partition walls is disposed below the plate-like body. When,
A culture medium receiving container that is detachable from the lower side of the plate-like body and can be attached to and detached from the culture vessel main body, and contains a portion of the partition wall that is disposed below the plate-like body; Including
The culture vessel for a cell mass according to any one of [1] to [4], wherein the communication portion is formed in a portion of the partition wall portion disposed below the plate-like body.
[7] The culture vessel for a cell mass according to any one of [1] to [6], wherein a plurality of the communication portions are formed in the partition wall.
[8] The cell mass culture container according to any one of [1] to [7], wherein the communication portion is at least one selected from a through hole penetrating the slit and the partition wall in the thickness direction. [9] The culture vessel for a cell mass according to any one of [1] to [8], wherein the shortest diameter R of the cell mass is 200 μm or more and 1000 μm or less.
[10] The cell mass culture container according to any one of [1] to [9], wherein the cell mass is a cell mass of a stem cell.
[11] The cell mass culture vessel according to [10], wherein the stem cells are human embryonic stem cells (human ES cells), human pluripotent stem cells, or human iPS cells.
[12] A culture method for culturing a cell mass using the cell mass culture container according to any one of [1] to [11],
After flowing the culture solution into the space surrounded by the partition wall and culturing one cell mass in the culture solution in the space, a part of the culture solution in the space is transferred from the communication portion to the A method for culturing a cell mass, comprising a step of allowing the cell mass to flow outside the partition wall.
[13] The method according to [12], wherein in the step, a part of the culture solution in the space is allowed to flow out from the communication portion to the outside of the partition wall so that the cell mass is not exposed from the surface of the culture solution. Cell mass culture method.
[14] The cell mass culture vessel includes a plurality of the spaces and the partition walls, and each of the plurality of spaces is surrounded by the partition wall, and in the step, the cell mass culture container is tilted. The method of culturing a cell mass according to [12] or [13], wherein a part of the culture solution in the plurality of spaces is caused to flow out from the communication part to the outside of the partition part.
[15] The method for culturing a cell mass according to any one of [12] to [14], wherein the step is repeated a plurality of times.
(実施形態1)
図1Aは、実施形態1の細胞塊用培養容器の平面図であり、図1Bは、図1Aの部分拡大図である。図2は、図1AのII−II’線に沿った矢視断面図であり、図3は、図1AのIII−III’線に沿った矢視断面図であり、図4は、図2の部分拡大図である。(Embodiment 1)
1A is a plan view of the cell mass culture vessel of Embodiment 1, and FIG. 1B is a partially enlarged view of FIG. 1A. 2 is a cross-sectional view taken along the line II-II ′ in FIG. 1A, FIG. 3 is a cross-sectional view taken along the line III-III ′ in FIG. 1A, and FIG. FIG.
図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1は、細胞塊を培養するための容器である。培養容器1は、複数の隔壁部12を含む。複数の隔壁部12は、主平面が隔壁部12の中心軸12a(図4参照)と直交する板状体2を介して連結されており一体化されている。各隔壁部12は、筒状部3と、筒状部3の下方に配置され、底部に向かって徐々に径が小さくなる部分を含むウェル部21とを含む(図4等参照)。各隔壁部12は、中心軸12aから筒状部3の内面までの距離を半径とする円筒面と、ウェル部21の内面とによって囲われる培養空間13内に、細胞塊と培養液とを収容可能とする。以下の説明の便宜のために、板状体2の主平面と直行する方向を「上下方向」、筒状部3側を「上方」、ウェル部21側を「下方」という。隔壁部の中心軸12aに垂直に交差する直線の方向を「半径方向」といい、中心軸12aの周りを回転する方向を「周方向」という。半径方向において、中心軸に近い側を「内側」といい、中心軸から遠い側を「外側」という。
The culture container 1 of Embodiment 1 demonstrated using FIG. 1A, FIG. 1B, and FIGS. 2-4 is a container for culturing a cell mass. The culture vessel 1 includes a plurality of
実施形態1の培養容器1は、複数のウェル部21の開口よりも上方に突出し、各隔壁部12のうちの筒状部3を囲う側壁4と、複数のウェル部21の開口よりも下方に突出した台座5を含む。側壁4は隔壁部12の外側に配置されているともいえる。図1Aに示されるように、培養容器1を平面視した時に見える側壁4の外面及び内面の形状は各々略矩形である。台座5は、ウェル部21よりも、より板状体2から遠くまで突出しているので、培養容器1を水平面上に置いた時、台座5の端面が水平面に接する。
The culture container 1 of Embodiment 1 protrudes upward from the openings of the plurality of
図2等に示されるように、隔壁部12を構成する筒状部3の形状は、略円筒状である。筒状部3の筒壁3bには、複数の連通部3aが、筒状部3の周方向に沿って等間隔で形成されている。連通部3aは、隔壁部12の中心軸12a(図4参照)と平行で筒状部3の先端3eから基端3dに達するスリットである。尚、隔壁部12の中心軸12aは、筒状体3の中心軸と平行である。
As shown in FIG. 2 and the like, the shape of the
図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1の一例では、スリット3aの両端のうちのウェル部21により近い一方の端が筒状部3の基端3dと一致し、ウェル部21から遠い他方の端が筒状部3の先端3eと一致している。しかし、例えば、培養空間13内の培養液の一部を隔壁部12の外側へ流出させるために培養容器1を傾けた際に、細胞塊が隔壁部12の外側に出てしまうことなく、且つ、培養液の一部の流出が良好に行えるかぎり、連通部は、上記の一例に限定されない。例えば、連通部の一例であるスリット3aは、筒状部3の基端3dよりも上方のいずれかの位置から、筒状部3の先端3eに達するまで或いは先端3eよりも下方のいずれかの位置まで形成されていてもよい。
In the example of the culture container 1 of Embodiment 1 described with reference to FIGS. 1A, 1B, and 2 to 4, one end closer to the
図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1の一例では、連通部3a(スリット)の数は8個であるが、連通部3aの数について特に制限はない。しかし、各隔壁部12で囲われる培養空間13から隔壁部12の外側へ培養液を効率的に排出させ易く、後述する新鮮培養液が、各培養空間13内に均一に行き渡り易いという理由から、2個以上が好ましく、4個以上がより好ましく、6個以上が更に好ましく、8個以上が更により好ましい。また、各隔壁部12が2個以上の連通部3aを含む場合、培養液を効率的に排出させるという理由から、2個以上の連通部3aから選択される1対の連通部3aは、周方向に90°以上離れていると好ましく、180°以上離れているとより好ましい。
In the example of the culture container 1 according to Embodiment 1 described with reference to FIGS. 1A, 1B, and 2 to 4, the number of
図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1の一例では、8個の連通部3aは、いずれも、その上下方向が隔壁部12の中心軸12a(図4参照)と平行で、周方向に沿って縦方向長W2(図4参照)が一定であり、筒状部3の基端3dから先端3eに達するまで横方向長W1(図1B参照)が一定の、スリットである。しかも8個の連通部3aの縦方向長W2及び横方向長W1は同じである。そのため、隔壁部12の空間13に面する面12bから見た、縦方向長W2の最大長はいずれの隔壁12についても筒状部3の高さH1(図4参照)と等しい。隔壁部12の空間13に面する面12bから見た、横方向長W1の最大長は、8個の連通部3aから任意に選択される連通部3aについての、基端3dから先端3eに達するまでの任意の位置における横方向長と等しい。尚、図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1の一例では、連通部3aの横方向長W1は、連通部3aの横方向の幅と言うこともできる。
In the example of the culture container 1 according to Embodiment 1 described with reference to FIGS. 1A, 1B, and 2 to 4, the eight communicating
図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1の一例では、連通部3aの縦方向長W2の最大長は、細胞塊の最短径Rの0.7倍よりも大きいが、横方向長W1の最大長は0.7R以下である。そのため、隔壁部12によって囲われる培養空間13から隔壁部12の外側への培養液の流出の際に、細胞塊が、連通部3aに嵌ったり、連通部3を通過したりする事が、抑制される。
In the example of the culture container 1 of Embodiment 1 described using FIGS. 1A, 1B, and 2 to 4, the maximum length of the longitudinal length W2 of the
細胞塊培養容器にて培養を開始する直前、例えば、培養容器1に移設される直前の細胞塊の顕微鏡観察により測定される直径は、通常500μm以上1000μm以下である。当該直径は、培養液に浮遊する細胞塊を鉛直方向から見た投影図の面積と等しい面積の円の直径であり、実施例に記載の方法により得られる値である。 The diameter measured by microscopic observation of the cell mass immediately before the start of culturing in the cell mass culture vessel, for example, just before being transferred to the culture vessel 1 is usually 500 μm or more and 1000 μm or less. The diameter is a diameter of a circle having an area equal to the area of the projected view of the cell mass floating in the culture medium as viewed from the vertical direction, and is a value obtained by the method described in the examples.
細胞塊の最短径Rは、通常200μm以上1000μm以下であるが、細胞塊の最短径Rが、例えば、500μm以上700μm以下である場合、スリット3aの横方向長W1の最大値は、細胞塊の嵌合及び通過の抑制の観点から、350μm以下、好ましくは300μm以下であり、培養液の流出効率の向上の観点から、100μm以上が好ましく、200μm以上がより好ましく、250μm以上が更に好ましい。
The shortest diameter R of the cell mass is usually 200 μm or more and 1000 μm or less, but when the shortest diameter R of the cell mass is, for example, 500 μm or more and 700 μm or less, the maximum value of the lateral length W1 of the
スリット3aの縦方向長W2(図4参照)の最大値は、細胞塊の隔壁部12の外側への流出抑制の観点から、2mm以上が好ましく、3mm以上がより好ましく、5mm以上が更に好ましく、培養液の流出入速度の調整の容易化の観点から、10mm以下が好ましく、8mm以下がより好ましく、6mm以下が更に好ましい。
The maximum value of the longitudinal length W2 of the
後述する本開示の細胞塊の培養方法では、複数の培養空間13内の培養液の質を、連通部3aを利用した拡散により均一化する観点から、培養液の液面は、筒状部3の基端3dよりも上方(板状体2の一方の主面2aよりも上方)とされることが好ましい。当該培養方法において、細胞塊が培養液中を浮遊し筒状部3の先端を越えて筒状部3の外側や、隣接する隔壁部12内に移動することが起こらないよう、筒状部3の高さH1は、1〜7mmであると好ましく、3〜5mmであるとより好ましい。
In the cell mass culturing method of the present disclosure to be described later, from the viewpoint of uniformizing the quality of the culture solution in the plurality of
複数のウェル部21の開口は、複数のウェル部21を連結する板状体2の一方の主面2a(図2参照)と同一平面内にある。筒状部3は、当該主面2a上に配置されているが、連通部3aであるスリットは、培養液の排出効率の向上の観点から、筒状体3の基端3d(図4参照)から形成されていると好ましい。
The openings of the plurality of
培養液の流出最中に、細胞塊に物理的な刺激やダメージが加わることを抑制する観点から、筒状部3とウェル部21とを含む隔壁部12の内面には段差がないと好ましく、具体的には、筒状部3の中心軸とウェル部21の中心軸とが一致しており、筒状部3の内周面である円筒面の半径と、ウェル部21の開口における半径とが等しいと好ましい。また、例えば、ウェル部21が筒状の胴部21a(図4参照)を含み、胴部21aの内面が円筒面である場合、筒状部3の中心軸とウェル部21の中心軸とが一致しており、筒状部3の内周面である円筒面の半径と、胴部21aの内周面である円筒面の半径とが等しいと好ましい。
From the viewpoint of suppressing physical stimulation and damage to the cell mass during the outflow of the culture solution, it is preferable that there is no step on the inner surface of the
図4からよくわかるように、各ウェル部21は、筒状の胴部21aと、胴部21aの一端に設けられた漏斗形状の底部21bとを含む。底部21bでは、培養空間がウェル部21の先端(開口とは反対側)に向かって縮径している。ウェル部21の培養空間に面する内面のうち、底部の中心部21cでは曲面である。即ち、底部21bの内面は、頂点部分が曲面の逆円錐面ということができる。胴部21aは、例えば、略円筒状であってもよい。一又は複数の実施形態において、ウェル部21をその中心軸を含む平面で切断した場合の断面図(図4参照)では、底部21bの内面が、略V字形状であり、その中心部21cでは弧状である。一又は複数の実施形態において、各ウェル部21の内面のうち、胴部21aと底部21bとの接続部分は、曲面であると好ましい。
As can be clearly understood from FIG. 4, each
また、ウェル部21の内面は、一又は複数の実施形態において、ウェル部21をその中心軸を含む平面で切断して平面的にみた場合、胴部21aではウェル部21の中心軸と略平行であり、漏斗形状の底部21bでは、ウェル部21の内面の頂点21d(最深部)を通る中心軸に向かって傾斜する1対の傾斜面21eを含み、底部21bの中心部21cでは弧状面21fを含む。
Further, in one or a plurality of embodiments, the inner surface of the
図4に示されるように、底部21bの開き角度θは、細胞塊の培養が効率的に行えるという理由から、60度を超え100度以下が好ましく、70〜100度がより好ましく、さらに好ましくは80〜90度である。本開示における「開き角度」とは、前記1対の傾斜面21eがなす角をいい、例えば、図4においてθで示す角度である。
As shown in FIG. 4, the opening angle θ of the bottom 21b is preferably more than 60 degrees and not more than 100 degrees, more preferably 70 to 100 degrees, even more preferably, because the cell mass can be cultured efficiently. 80 to 90 degrees. The “opening angle” in the present disclosure refers to an angle formed by the pair of
底部21bの中心部内面における曲率半径Rは、培養液の交換の際、細胞塊が培養液面より露出せず、且つ、細胞塊に刺激が加わることを抑制できるという理由から、0.5〜2.5mmが好ましく、細胞塊の光学顕微鏡による観察が行い易いという理由から、1.0〜2.0mmがより好ましい。尚、本開示における「中心部内面の曲率半径R」とは、ウェル部21の底部21bの先端部の曲率が1/Rの曲面を含む円周に対応する半径である。中心部内面の曲率半径Rは、レーザー距離計、または成型品の切断断面の実測により測定できる。
The radius of curvature R on the inner surface of the center portion of the bottom 21b is 0.5 to 0.5 because the cell mass is not exposed from the culture solution surface and the cell mass can be prevented from being stimulated when the culture solution is exchanged. 2.5 mm is preferable, and 1.0 to 2.0 mm is more preferable because the cell mass can be easily observed with an optical microscope. Note that the “curvature radius R of the inner surface of the central portion” in the present disclosure is a radius corresponding to a circumference including a curved surface having a curvature of 1 / R at the tip of the
ウェル部21と筒状部3とを含む隔壁部12(図4参照)を、その中心軸12aを含む平面で切断して平面的にみた場合、スリット3aの上下方向両端のうちのウェル部21により近い一方の端からウェル部21の最深部21dまでの長さH2(図4参照)は、培養液の交換のために培養液の一部が除去された後、新しい培養液が添加される前の細胞塊が培養液面より露出せず、培養液の除去に伴って細胞塊が受けるダメージや刺激を低減するという理由から、3.0〜6.0mmが好ましく、更に細胞塊に対して十分な量の栄養及び酸素を供給するという理由から、3.0〜5.0mmがより好ましい。
When the partition wall portion 12 (see FIG. 4) including the
ウェル部21の深さは、培養液の交換のために培養液の一部が除去された後、新しい培養液が添加される前の細胞塊が培養液面より露出せず、培養液の除去に伴って細胞塊が受けるダメージや刺激を低減するという理由から、スリット3aが筒状部3の基端3dから筒状部3の先端3eに向かって形成されている場合、3.0〜6.0mmが好ましく、更に細胞塊に対して十分な量の栄養及び酸素を供給するという理由から、3.0〜5.0mmがより好ましい。
The depth of the
隔壁部12の開口及びウェル部21の開口における直径は、マルチディスペンサーを使用する場合の操作性に優れるという理由から、例えば、4.0mm以上が好ましく、培養容器一つ当たりの培養空間13の数を増やす点から、11.0mm以下が好ましい。
The diameter at the opening of the
ウェル部21と筒状部3とを含む隔壁部12(図4参照)の内側空間の1個当たりの容量、換言すると、ウェル部21の内側空間の容量と筒状部3の内側空間の容量の合計は、特に制限されるものではないが、細胞塊の培養のために十分な量の培養液や試薬を添加できる点から、例えば、50〜500μLが好ましく、培養液や試薬の使用量を低減する点から、50〜200μLがより好ましい。
The capacity per one inner space of the partition wall 12 (see FIG. 4) including the
尚、本実施形態の培養容器のウェル部の形態は上記した胴部21aと漏斗形状の底部21bとを含むものに限定されない。例えば、内面が半球状である形態であってもよいし、胴部と底部とを含み底部が半球状である形態であってもよい。
In addition, the form of the well part of the culture container of this embodiment is not limited to what contains the above-mentioned trunk | drum 21a and the funnel-shaped
一又は複数の実施形態において、隔壁部12の内面、少なくともウェル部21の底部21bの内面は、細胞低接着性処理が行われていることが好ましい。本開示における「細胞低接着性処理」とは、細胞に対する隔壁部12の内面の接着性を低減するための処理をいう。接着性が低減するとは、例えば、隔壁部12の内面と細胞とが接着しにくくなること、及び隔壁部12の内面と細胞とが接着しなくなることを含む。
In one or a plurality of embodiments, it is preferable that the inner surface of the
細胞低接着性処理としては、例えば、隔壁部12の内面の親水化処理が挙げられる。親水化処理としては、例えば、水溶性樹脂を用いた被覆層の形成、及び親水性樹脂を用いた被覆層の形成等が挙げられる。本開示における「水溶性樹脂」とは、水分子とのイオン結合又は水素結合により水和して水に溶解するものであって、25℃の水100gに対して1.0g以上溶解可能なものをいう。また、水溶性樹脂としては、水に溶解するために分子内の主鎖に対して必要充分な量のイオン性又は極性の側鎖を有するものが挙げられる。
Examples of the low cell adhesion treatment include hydrophilic treatment of the inner surface of the
水溶性樹脂としては、例えば、ポリ酢酸ビニルのケン化物、ポリビニルピロリドン、ポリエチレングリコール、ポリアクリルアミド、ポリメタアクリルアミド、ポリヒドロキシエチルメタアクリレート、ポリペンタエリスリトールトリアクリレート、ポリペンタエリスリトールテトラアクリレート、ポリジエチレングリコールジアクリレート、及びそれらを構成するモノマー同士の共重合体、2−メタクリロイルオキシエチルホスホリルコリンと他のモノマー(例えばブチルメタクリレート等)との共重合体等が挙げられる。これらの中でもポリ酢酸ビニルのケン化物、ポリビニルピロリドン、及びポリエチレングリコールの中から選ばれる1種以上と後述する官能基とからなる構造が好ましい。これにより、種々の細胞に対する刺激を抑制し、細胞塊の成長率、及び成長した細胞塊の質を向上することができる。 Examples of water-soluble resins include saponified polyvinyl acetate, polyvinyl pyrrolidone, polyethylene glycol, polyacrylamide, polymethacrylamide, polyhydroxyethyl methacrylate, polypentaerythritol triacrylate, polypentaerythritol tetraacrylate, polydiethylene glycol diacrylate. And a copolymer of monomers constituting them, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and another monomer (for example, butyl methacrylate), and the like. Among these, the structure which consists of 1 or more types chosen from the saponified material of polyvinyl acetate, polyvinylpyrrolidone, and polyethyleneglycol, and the functional group mentioned later is preferable. Thereby, the stimulation with respect to various cells can be suppressed, and the growth rate of the cell mass and the quality of the grown cell mass can be improved.
ポリ酢酸ビニルのケン化物としては、例えば、ポリビニルアルコール又はビニルアルコールと他の化合物との共重合体、親水基変性、疎水基変性、アニオン変性、カチオン変性、アミド基変性又はアセトアセチル基のような反応基変性させた変性酢酸ビニルとビニルアルコールとのケン化物等が挙げられる。重合体の平均重合度は、特に限定されないが、培養容器の内面に均一な被膜が形成しやすく、かつ作業性が良好となる点から、100〜10,000が好ましく、200〜5,000がより好ましい。ポリ酢酸ビニルのケン化物のケン化度は、特に限定されないが、該ポリ酢酸ビニル全体の20〜100mol%が好ましく、50〜95mol%がより好ましい。 Examples of the saponified product of polyvinyl acetate include polyvinyl alcohol or a copolymer of vinyl alcohol and other compounds, hydrophilic group modification, hydrophobic group modification, anion modification, cation modification, amide group modification or acetoacetyl group. Examples thereof include a saponified product of a modified vinyl acetate modified with a reactive group and vinyl alcohol. The average degree of polymerization of the polymer is not particularly limited, but is preferably from 100 to 10,000, more preferably from 200 to 5,000, from the viewpoint that a uniform film is easily formed on the inner surface of the culture vessel and the workability is good. More preferred. The saponification degree of the saponified product of polyvinyl acetate is not particularly limited, but is preferably 20 to 100 mol%, more preferably 50 to 95 mol% of the whole polyvinyl acetate.
水溶性樹脂は、硬化させるための官能基を側鎖に有する水溶性樹脂が好ましい。硬化させるための官能基としては、例えば、放射線反応性、感光性、熱反応性の官能基等が挙げられる。感光性の官能基としては、例えば、ジアゾ基、アジド基、シンモナイル基等が挙げられる。熱反応性及び放射線反応性の官能基としては、例えば、ビニル基、エポキシ基等を挙げることができる。これらの官能基を有する水溶性樹脂の中でも硬化処理を迅速におこなうことができ、簡易な設備で硬化させることができる点から、感光性の官能基を有する水溶性樹脂が好ましい。 The water-soluble resin is preferably a water-soluble resin having a functional group for curing in the side chain. Examples of the functional group for curing include radiation-reactive, photosensitive, and heat-reactive functional groups. Examples of the photosensitive functional group include a diazo group, an azide group, and a simmonyl group. Examples of thermally reactive and radiation reactive functional groups include vinyl groups and epoxy groups. Among these water-soluble resins having a functional group, a water-soluble resin having a photosensitive functional group is preferable from the viewpoint that curing treatment can be performed quickly and curing can be performed with simple equipment.
水溶性樹脂としては、300〜500nmの波長の光の照射により均一な被覆層が形成でき、細胞の接着量を低減して細胞塊の成長効率を向上できることから、アジド基を有する水溶性樹脂が好ましく、より好ましくは下記式(Ia)又は(Ib)で表される水溶性樹脂である。
式(Ia)及び(Ib)において、Rはカルボニルとアミンとを有するアルキル基を示し、極性の側鎖の合成が容易となる点から、下記式(II)で表される基が好ましい。
式(Ia)において、r1は1〜1000、r2は40〜4995、r3は0〜4000、nは1、2又は3を示す。式(Ib)においてr1は1〜1000、r2は40〜4995、r3は0〜4000を示す。 In the formula (Ia), r1 is 1-1000, r2 is 40-4995, r3 is 0-4000, and n is 1, 2 or 3. In the formula (Ib), r1 is 1-1000, r2 is 40-4949, and r3 is 0-4000.
親水性樹脂としては、特に限定されるものではないが、例えば、ポリ−2−ヒドロキシエチルメタクリレート(ポリ−HEMA)、ホスホリルコリン基含有高分子化合物、ポリエチレングリコール鎖含有高分子化合物等が挙げられる。 The hydrophilic resin is not particularly limited, and examples thereof include poly-2-hydroxyethyl methacrylate (poly-HEMA), a phosphorylcholine group-containing polymer compound, and a polyethylene glycol chain-containing polymer compound.
被覆層の厚みとしては、特に限定されるものではないが、細胞が基材(隔壁部)から受ける物理的な刺激を低減しつつ、被覆層に取り込まれるタンパク質量を低減してタンパク質を介した細胞の隔壁部への接着を抑制できる点から、例えば、100〜5,000nmが好ましく、150〜1,000nmがより好ましい。 The thickness of the coating layer is not particularly limited, but the amount of protein taken into the coating layer is reduced and protein is mediated while reducing physical stimulation that the cells receive from the base material (partition wall). From the point which can suppress the adhesion to the partition part of a cell, 100-5,000 nm is preferred, for example, and 150-1,000 nm is more preferred.
本開示にかかる培養容器の材質は特に制限されるものではないが、培養容器をディスポーザルタイプとすることができ、かつ成形が容易である点から、樹脂が好ましい。樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン−プロピレン共重合体等のポリオレフィン系樹脂または環状ポリオレフィン系樹脂、ポリスチレン、アクリロニトリル−ブタジエン−スチレン系樹脂等のポリスチレン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリメチルペンテン樹脂、ポリアクリロニトリル等のアクリル系樹脂、プロピオネート樹脂等の繊維素系樹脂等が挙げられる。これらの中でも、培養容器に求められる成形性、及び滅菌性の点から、ポリスチレン樹脂が好ましい。 The material of the culture container according to the present disclosure is not particularly limited, but a resin is preferable because the culture container can be a disposable type and can be easily molded. Examples of the resin include polypropylene resins, polyethylene resins, polyolefin resins such as ethylene-propylene copolymers or cyclic polyolefin resins, polystyrene resins such as polystyrene and acrylonitrile-butadiene-styrene resins, polycarbonate resins, and polyethylene terephthalate resins. Methacrylic resins such as polymethyl methacrylate resin, vinyl chloride resin, polybutylene terephthalate resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherimide resin, polytetrafluoroethylene, etc. Examples thereof include acrylic resins such as fluorine resins, polymethylpentene resins and polyacrylonitrile, and fibrous resins such as propionate resins. Among these, polystyrene resin is preferable from the viewpoints of moldability and sterility required for the culture container.
本開示にかかる培養容器における培養空間13及び隔壁部12の数は特に制限されるものではないが、例えば、6、12、24、48、96、又は384個である。
The number of the
本開示にかかる培養容器は、以下のようにして製造することができる。 The culture container according to the present disclosure can be manufactured as follows.
まず、上述の樹脂材料を用いて、射出成形、ブロー成形、インジェクションブロー成形等によって所望の形状に成形する。図1A、図1B、図2〜図4を用いて説明される実施形態1の培養容器1は、板状体2と、板状体2に形成された複数のウェル部21と、側壁4と、台座5とを含むマルチウェルプレート本体11と、複数の筒状部3とが、射出成形法により同一金型内で成型できる。
First, using the resin material described above, it is molded into a desired shape by injection molding, blow molding, injection blow molding or the like. The culture container 1 of Embodiment 1 described using FIG. 1A, FIG. 1B, and FIGS. 2-4 is the plate-shaped
次に、成形した容器に細胞低接着性処理を行う。細胞低接着性処理は、例えば、国際公開第2013/183777号に記載の方法で行える。 Next, cell low adhesion treatment is performed on the molded container. The cell low adhesion treatment can be performed, for example, by the method described in International Publication No. 2013/183777.
上述の細胞低接着性処理を行った後、滅菌する。滅菌は、例えば、エチレンオキサイドガス滅菌、乾熱滅菌、蒸気滅菌、放射線滅菌等が挙げられ、γ線又は電子線を用いた放射線滅菌が好ましく、大量生産を行う点からは、放射線透過性の点でγ線滅菌がより好ましい。 After performing the above-mentioned cell low adhesion treatment, sterilization is performed. Sterilization includes, for example, ethylene oxide gas sterilization, dry heat sterilization, steam sterilization, radiation sterilization, etc., and radiation sterilization using γ rays or electron beams is preferable. And γ-ray sterilization is more preferable.
[細胞塊の培養方法]
次に、本開示の培養容器を用いて細胞塊を培養する方法について説明する。本開示の細胞塊の培養方法(以下「本開示の培養方法」と略称する場合もある。)では、一又は複数の実施形態において、本開示の培養容器を用いるため、細胞塊にダメージや刺激を極力与えずに培養液の交換を行え、且つ、細胞塊の生産性も向上できる。複数の培養空間を有する本開示の培養容器を用いる本開示の培養方法では、一又は複数の実施形態において、本開示の培養容器を用いるため、細胞塊にダメージや刺激を極力与えずに培養液の交換を行え、且つ、細胞塊の生産性も向上できることに加え、培養液の交換を効率的に行える。また、均質な細胞塊を得ることが期待できる。[Cell culture method]
Next, a method for culturing a cell mass using the culture container of the present disclosure will be described. In the cell mass culture method of the present disclosure (hereinafter sometimes abbreviated as “culture method of the present disclosure”), in one or a plurality of embodiments, the culture container of the present disclosure is used. The medium can be exchanged without giving as much as possible, and the productivity of the cell mass can be improved. In the culture method of the present disclosure using the culture container of the present disclosure having a plurality of culture spaces, in one or a plurality of embodiments, the culture container of the present disclosure is used, so that the culture solution is not damaged or stimulated as much as possible. In addition to improving the productivity of cell masses, the culture medium can be exchanged efficiently. It can also be expected to obtain a homogeneous cell mass.
本開示の培養方法は、一又は複数の実施形態において、隔壁部により囲われた培養空間内に培養液を流入させ、前記培養空間内の培養液中で前記細胞塊を培養した後、前記培養空間内の培養液の一部を、前記連通部から前記隔壁部の外側に流出させる工程を、1回以上行い又は2回以上繰り返す。 In one or a plurality of embodiments, the culture method of the present disclosure allows a culture solution to flow into a culture space surrounded by a partition wall, and after culturing the cell mass in the culture solution in the culture space, the culture The step of allowing a part of the culture solution in the space to flow out from the communicating part to the outside of the partition wall part is performed once or more times or repeated twice or more times.
初回の前記工程では、隔壁部12により囲われた培養空間13内に、隔壁部12の開口から培養液を供給してもよいし、連通部から供給してもよい。
In the first step, the culture solution may be supplied from the opening of the
培養液の流出は、例えば、本開示にかかる培養容器1を、傾けることにより、培養空間13内の培養液の一部を、連通部3aを通過させて筒状部3の外側に流出させ、次いで、それを培養容器1から除去することにより行える。
The outflow of the culture solution is caused, for example, by tilting the culture vessel 1 according to the present disclosure to allow a part of the culture solution in the
本開示の培養方法の培養対象が、例えば、ヒト胚性幹細胞(ヒトES細胞)、ヒト多能性幹細胞又はヒトiPS細胞の細胞塊である場合、例えば、細胞塊形成用マルチウェルプレートで形成された細胞塊を培養液全量とともに、本開示の培養容器に移設し、当該細胞塊に本開示の培養方法を適用してもよい。細胞塊形成用マルチウェルプレートで形成され、本開示の培養容器にて培養を開始する直前、例えば、本開示の培養容器に移設される直前の細胞塊(即ち、本開示の培養容器を用いた培養の対象となる細胞塊)の顕微鏡観察により観察される直径は、本開示の培養容器において細胞塊への栄養供給が十分に行えるという理由から、500μm以上1,000μm以下が好ましい。本開示の培養容器への細胞塊の移設は、各培養空間13に対して1つの細胞塊が配置されるように行う。
When the culture target of the culture method of the present disclosure is, for example, a cell cluster of human embryonic stem cells (human ES cells), human pluripotent stem cells, or human iPS cells, for example, it is formed in a multiwell plate for cell cluster formation. The cell mass together with the total amount of the culture solution may be transferred to the culture container of the present disclosure, and the culture method of the present disclosure may be applied to the cell mass. A cell mass formed with a multiwell plate for cell mass formation and immediately before starting culture in the culture container of the present disclosure, for example, immediately before being transferred to the culture container of the present disclosure (ie, using the culture container of the present disclosure) The diameter observed by microscopic observation of the cell mass to be cultured is preferably 500 μm or more and 1,000 μm or less because the nutrient container can be sufficiently supplied with nutrients in the culture container of the present disclosure. The transfer of the cell mass to the culture container of the present disclosure is performed such that one cell mass is arranged in each
前記工程における培養時間は、細胞の種類、培養空間13内の容量、培養の目的等に応じて異なっていてもよいし、前記工程毎に異なっていてもよい。例えば、培養初期の前記工程における培養時間の方が、培養後期の前記工程における培養時間よりも長くてもよい。また、前記工程の繰り返し回数についても、細胞の種類、前記空間13の容量、培養の目的等に応じて適宜決定される。
The culture time in the step may be different depending on the type of cell, the capacity in the
培養液の前記隔壁部12の外側への流出に伴って細胞塊が受けるダメージや刺激を低減するという理由から、各空間13内の培養液の一部を、連通部を通過させて隔壁部12の外側に排出させる。培養液の一部が除去された後、新しい培養液が添加される前の細胞塊は、培養液中に細胞塊全体が沈んだ状態に保たれていると好ましい。
For the reason of reducing the damage and irritation that the cell mass undergoes as the culture fluid flows out of the
前記工程において、培養容器から除去される培養液の量及び添加される新鮮培養液の量は、培養液の交換の際に細胞塊が培養液面より露出せず、且つ、新鮮培養液の添加により細胞塊に対して十分な量の栄養及び酸素を供給するという理由から、培養液が除去される直前の培養容器中の培養液を100質量部とすると、50質量部以上99質量部以下が好ましく、75質量部以上99質量部以下がより好ましい。 In the above step, the amount of the culture solution removed from the culture vessel and the amount of the fresh culture solution to be added are determined so that the cell mass is not exposed from the culture solution surface when the culture solution is replaced, and the addition of the fresh culture solution is performed. From the reason that a sufficient amount of nutrients and oxygen are supplied to the cell mass, the amount of the culture solution in the culture vessel immediately before the culture solution is removed is 100 parts by mass. Preferably, 75 parts by mass or more and 99 parts by mass or less are more preferable.
新鮮培養液を培養容器に添加した後は、新鮮培養液が、各培養空間13内に均一に行き渡るように、培養容器を揺動すると好ましい。
After the fresh culture solution is added to the culture vessel, it is preferable to rock the culture vessel so that the fresh culture solution spreads uniformly in each
培養液は、細胞の種類、ウェルの容量、培養の目的等に応じて、従来から公知の培養液を用いればよい。 A conventionally known culture solution may be used as the culture solution depending on the type of cell, the volume of the well, the purpose of the culture, and the like.
本開示の培養方法において、細胞塊が浮き上がりすぎて隔壁部12の外に出てしまわない限り、各隔壁部12により囲われる空間13内の培養液の質を、連通部3を利用した拡散により均一化するという理由から、培養液は、ウェル部21内の空間のみならず、ウェル部21の開口よりも上方であって側壁4により囲われる空間内にも供給されていると好ましい。換言すると、培養液は、その一部が複数のウェル部21からあふれ、筒状部3の内腔のうちの基端側にも充填されるように供給されると好ましい。培養液の液面は、例えば、スリット3aの両端のうちのウェル部21により近い一方の端よりも上方にあると好ましい。
In the culturing method of the present disclosure, the quality of the culture solution in the
本開示の培養容器を用いた細胞塊の培養方法を経た細胞塊は、別の培養容器に移設され当該培養容器でさらに培養されてもよい。 The cell mass that has undergone the cell mass culture method using the culture vessel of the present disclosure may be transferred to another culture vessel and further cultured in the culture vessel.
(実施形態2)
図5は実施形態2の培養容器6の平面図である。図6は図5のVI−VI’線に沿った矢視拡大断面図であり。図7は、図5のVII−VII’線に沿って切断した拡大端面図である。図8は、実施形態2の培養容器6を構成するマルチウェルプレート本体61の平面図であり、図9は図8のIX−IX’線に沿った矢視断面図である。図10は、実施形態2の培養容器6を構成する液流制御体800の平面図であり、図11は図10に示した液流制御体800の底面図であり、図12は、図10のXII−XII’線に沿った矢視拡大断面図であり、図13は図10の拡大側面図であり、図14は図11に示した液流制御体800の拡大斜視図である。(Embodiment 2)
FIG. 5 is a plan view of the
図5〜図14を用いて説明される実施形態2の培養容器6は、実施形態1の培養容器1と同様に、板状体7に形成された複数のウェル部71と、各ウェル部71の上方に配置された筒状部81と、複数のウェル部71の開口よりも上方に突出して複数のウェル部71を囲う側壁9と、複数のウェル部71の開口よりも下方に突出した台座10とを含む。
The
しかし、実施形態2の培養容器6では、筒状部81は複数の筒状部81の連結体80(図10及び図11参照)を含む液流制御体800を構成しており、連通部81bが筒状部81の周方向に沿ったスリットである点で、実施形態1の培養容器1と相違する。
However, in the
実施形態2の培養容器6は、マルチウェルプレート本体61(図8及び図9参照)と、液流制御体800(図10〜図14参照)とを含む。マルチウェルプレート本体61は、板状体7に形成された複数のウェル部71と、複数のウェル部71の開口よりも上方に突出して複数のウェル部71を囲う側壁9と、複数のウェル部71の開口よりも下方に突出した台座10とを含む。以下の説明の便宜のために、板状体7の主平面と直行する方向を「上下方向」(Z軸方向)、筒状体81側を「上方」、ウェル71側を「下方」という。尚、隔壁部14の中心軸14a(図7参照)は、前記上下方向及び前記Z軸方向と平行であり、ウェル部71の中心軸及び筒状部81の中心軸と一致する。
The
実施形態2の培養容器6において、液流制御体800は、マルチウェルプレート本体61に接合されておらずマルチウェルプレート本体61と別体であってもよし、マルチウェルプレート本体61と、接合により一体化されていてもよい。液流制御体800が、マルチウェルプレート本体61に接合されていない場合は、隔壁部14を構成するウェル部71と筒状部81は一体化されていない。
In the
図14からよく分かるように、液流制御体800を構成する各筒状部81のウェル部71側の端面(底面)84には、少なくとも1つの溝84bが形成されており、好ましくは周方向に沿って複数の溝84bが形成されており、より好ましくは周方向に沿って複数の溝84bが等間隔で形成されている。図7からよく分かるように、液流制御体800が板状体7の一方の面7a上に配置された状態では、この溝84bは、筒状体81の外側に細胞塊を通過させることなく培養液を排出させうる連通部81bを構成し、各筒状部81のウェル部71側の端面(底面)84のうちの溝84bが形成されていない部分84aは、各々、板状体7の一方の面7aと接する。即ち、液流制御体800が板状体7の一方の面7a上に配置された状態では、筒状部81とウェル部71は隔壁部14を構成し、溝84bは、隔壁部14に形成され、隔壁部14の周方向に沿った連通部(スリット)81bを構成する。
As can be seen from FIG. 14, at least one
図5〜図14を用いて説明される実施形態2の培養容器6の一例では、隔壁部14で囲われる空間15内の培養液を隔壁部14の外側に流出させうる連通部81bが、筒状部81のウェル部71側の端面(底面)84のうちの溝84bを構成する面と板状体7の一方の面7aのうちの当該溝84bと対向する部分とによって形成されるスリットであるが、隔壁部14に形成された連通部の形態はこれに限定されない。隔壁部14は、培養液の一部の排出を行うために培養容器1を傾けた際に、細胞塊が隔壁部14の外側に出てしまうことなく、空間15内の培養液の一部の排出が良好に行えるかぎり、例えば、筒状部81の筒壁をその厚み方向に貫通し、その長手方向が筒状部81の周方向に沿った貫通孔であってもよい。
In an example of the
図5〜図14を用いて説明される実施形態2の培養容器1の一例では、4個の連通部81bは、隔壁部14の周方向に沿って形成されており、いずれも縦方向長W2(図7参照)は周方向に沿って一定である。隔壁部14の培養空間15に面する面15bから見た、連通部81bの横方向長W1(図7参照)は、上下方向に沿って一定である。連通部81bの横方向長W1の最大長は、細胞塊の最短径Rの0.7倍よりも大きいが、縦方向長W2の最大長は0.7R以下である。そのため、隔壁部14によって囲われる培養空間15から隔壁部14の外側への培養液の流出の際に、細胞塊が、連通部81bに嵌ったり、連通部81bを通過する事が、抑制される。
In the example of the culture vessel 1 of
本開示の培養容器6にて培養を開始する直前、例えば、培養容器6に移設される直前の細胞塊の顕微鏡観察により測定される直径は、実施例1のそれと同じである。
The diameter measured by microscopic observation of the cell mass immediately before starting the culture in the
細胞塊の最短径Rは、通常200μm以上1000μm以下であるが、例えば、スリット81bの縦方向長W2の最大値は、細胞塊の嵌合、通過の抑制の観点から、350μm以下、好ましくは300μm以下であるが、培養液の流出効率の向上の観点から、100μm以上が好ましく、200μm以上がより好ましく、250μm以上が更に好ましい。
The shortest diameter R of the cell mass is usually 200 μm or more and 1000 μm or less. For example, the maximum value of the longitudinal length W2 of the
スリット81bの横方向長W1の最大値は、細胞塊の隔壁部の外側への流出抑制の観点から、1mm以上が好ましく、2mm以上がより好ましく、4mm以上が更に好ましく、培養液の流出入速度の調整の容易化の観点から、7mm以下が好ましく、6mm以下がより好ましく、5mm以下が更に好ましい。
The maximum value of the lateral length W1 of the
図5〜図14を用いて説明される実施形態2の培養容器6では、連通部81bの数は4個であるが、連通部81bの数について特に制限はない。しかし、ウェル部71内から培養液を効率的に排出させ易く、前述の新鮮培養液が、各ウェル部71内に均一に行き渡り易いという理由から、2個以上が好ましく、4個以上がより好ましい。また、実施形態2の培養容器6が2個以上の連通部81bを含む場合、培養液を効率的に排出させる観点から、2個以上の連通部81bから選択される1対の連通部81bは、周方向に90°以上離れていると好ましい。
In the
図5〜図14を用いて説明される実施形態2の培養容器6では、ウェル部71の内面の形状は、半球状であるが、実施形態2の培養容器6において、ウェル部71の形態はこれに限定されず、実施形態1の培養容器1のそれと同形態であってもよい。ウェル部71の開口における直径、ウェル部71の深さ、ウェル部71と筒状部81とを含む隔壁部14の内側空間15の1個当たりの容量、及びウェル部71の1個当たりの容量等も、実施形態1の培養容器1のそれと同じであってもよい。
In the
図10及び図11からよく分かるように、液流制御体800は、複数の筒状部81が架橋部82によって連結された連結体80と、位置規制部83とを含む。液流制御体800において、複数の筒状部81は、隣り合う筒状部81の間に配置された架橋部82によって連結されている。図7等に示されるように、架橋部82は、各々、その板状体7に対向する面82aが、板状体7の一方の面7aと接しないように、筒状部81の外周面の上下方向の中央部で筒状体81と連結しているので、架橋部82と板状体7の一方の面7aとの間には隙間C1が存在する。また、図10及び図11からよく分かるように、複数の筒状部81のうちの連結体80の外縁に配置された筒状部81’には、各々、位置規制部83が連結されている。図6に示されるように、位置規制部83の一端83aは、筒状部81の外周面の上下方向の中央部で筒状部81と連結しており、位置規制部83の他端の端面83bは、側壁9の内面9aと当接している。そのため、例えば、液流制御体800がマルチウェルプレート本体61と別体である場合は、板状体7の一方の面7a上に配置された液流制御体800の、X軸と平行な方向及びY軸と平行な方向への移動が防止され(図5参照)、各筒状部81が常に対応するウェル部71の上方の所定の位置に配置されることが保証されており、液流制御体800が、マルチウェルプレート本体61に接合されている場合は、その接合の際の液流制御体800の位置決めが容易となっている。
As can be clearly understood from FIGS. 10 and 11, the liquid
図6に示されるように、位置規制部83の板状体7に対向する面のうちの少なくとも筒状部81に近い部分83cは、板状体7の一方の面7aと接しないように、筒状部81の外周面の上下方向の中央部で筒状部81と連結しているので、位置規制部83と板状体7の一方の面7aとの間には隙間C2が存在する。そのため、培養容器6を傾けることにより連通部(スリット)81bを通ってウェル部71内から排出された培養液は、隙間C1及び隙間C2を通って、例えば、培養容器の角に集めることができる。
As shown in FIG. 6, at least a
一方、位置規制部83の筒状部81から離れた端部(他方の端部)では、側壁9の内面9aのみならず、板状体7の一方の面7aと接していると、マルチウェルプレート本体61内における液流制御体800の位置決めが容易であるという理由から、好ましい。
On the other hand, when the end portion (the other end portion) of the
図5〜図14を用いて説明される実施形態2の培養容器6では、複数の筒状部81のうちの連結体80の外縁に配置された筒状部81’の全てに位置規制部83が連結されている。しかしながら、実施形態2の培養容器6は、これに限定されない。例えば、液流制御体800は、一方の端部が連結体80に連結され他方の端部が側壁9の内面と当接する少なくとも1対の位置規制部83とを含み、互いに向かい合う側壁9の内面9aの一方に、一方の位置規制部83が当接し、互いに向かい合う側壁9の内面9aの他方に、他方の位置規制部83が当接していればよい。これにより、液流制御体800が、マルチウェルプレート本体61に接合されている場合には、その接合の際の液流制御体800の板状体7の一方の面7a上における位置決めを容易に行うことができる。また、液流制御体800が、マルチウェルプレート本体61と別体である場合には、液流制御体800の板状体7の一方の面7a上における移動を抑制することができる。同様の観点から、液流制御体800は、前記1対の位置規制部83を2つ含み、図5に示されるように、Y軸方向に互いに向かい合う側壁9の内面の一方に、1対の位置規制部83’のうちの一方の位置規制部が当接し、Y軸方向に互いに向かい合う側壁9の内面の他方に、他方の位置規制部83’が当接し、X軸方向に互いに向かい合う側壁9の内面の一方に、もう一方の1対の位置規制部83”のうちの一方の位置規制部83”が当接し、X軸方向に互いに向かい合う側壁9の内面の他方に、他方の位置規制部83”が当接していると好ましい。
In the
実施形態2の培養容器6の材料は実施形態1の培養容器1のそれと同様でよい。実施形態2の培養容器6は、マルチウェルプレート本体61と液流制御体800とを各々、別々に成型した後、例えば、これらを接合、又はマルチウェルプレート本体61内に液流制御体800を配置させることにより製造できる。
The material of the
実施形態2の培養容器6を、上記[細胞塊の培養方法]に用いれば、細胞塊への影響が少なく、培養液を効率的に交換できるので、細胞塊の培養が効率的に行える。
If the
(実施形態3)
図15は、実施形態3の培養容器16の部分拡大断面図である。実施形態3の培養容器16は、連通部3aが、筒状部3の基端3dから先端3eに向かって横方向長W1が徐々に大きくなったスリットであること以外は、実施形態1の培養容器1と同構成であり、図15において、実施形態1と共通する要素については、同じ符号を付して、その説明を省略する。本実施形態では、横方向長W1は、筒状部3の先端3eで最大である。本実施形態でも、縦方向長の最大長は0.7Rよりも大きいが、横方向長W1の最大長さが0.7R以下であるので、隔壁部によって囲われる空間から連通部3aを介して隔壁部の外への培養液の流出の際に、細胞塊が、前記連通部3aに嵌ったり、前記連通部3aを通過したりする事が、抑制される。(Embodiment 3)
FIG. 15 is a partially enlarged cross-sectional view of the
(実施形態4)
図16は、実施形態4の培養容器17の部分拡大断面図である。実施形態4の培養容器17は、連通部3aが、長手方向が筒状部3の上下方向に沿った貫通孔であること以外は、実施形態1の培養容器1と同構成であり、図16において、実施形態1と共通する要素については、同じ符号を付して、その説明を省略する。本実施形態でも、縦方向長W2の最大長は0.7Rよりも大きいが、横方向長W1の最大長さが0.7R以下であるので、隔壁部によって囲われる空間から連通部3aを介して隔壁部の外への培養液の流出の際に、細胞塊が、前記連通部3aに嵌ったり、前記連通部3aを通過したりする事が、抑制される。尚、本開示の培養容器において、連通部3aは、直径が0.7Rよりも小さい円であってもよい。(Embodiment 4)
FIG. 16 is a partially enlarged cross-sectional view of the
(実施形態5)
図17は、実施形態5の培養容器18の部分拡大断面図である。実施形態5の培養容器18は、板状体2から筒状部3とは反対側に突出したウェル部を含まず、隔壁部が筒状部3からなること以外は、実施形態1の培養容器1と同構成であり、図16において、実施形態1と共通する要素については、同じ符号を付して、その説明を省略する。(Embodiment 5)
FIG. 17 is a partially enlarged cross-sectional view of the
(実施形態6)
図18は、実施形態6の細胞塊用培養容器19の拡大断面図であり、図19は、図18の部分拡大図である。実施形態6の培養容器19は、隔壁部が板状体2からウェル部21とは反対側に突出した筒状部を含まないこと、連通部がウェル部21に形成されていること、及び、複数の隔壁部と当該隔壁部を相互に連結する板状体とを含む培養容器本体部22に対して装脱着可能な培養液受け容器23を含むこと以外は、実施形態1の培養容器1と同構成であり、図18及び図19において、実施形態1と共通する要素については、同じ符号を付して、その説明を省略する。本実施形態の培養容器においては、ウェル部21が隔壁部であるということができる。また、台座5又は培養液受け容器23が隔壁部の外側に配置された側壁であるということができる。以下の説明の便宜のために、板状体2の主平面と直行する方向を「上下方向」、ウェル部21側を「下方」という。(Embodiment 6)
FIG. 18 is an enlarged cross-sectional view of the cell
上記培養容器本体部22では、隔壁部であるウェル部21の底部21bが板状体2よりも下方に配置されている。培養液受け容器23は、板状体2の下側から培養容器本体部22に対して装脱着可能であり、ウェル部21を収容可能な深さを有する。本実施形態6の培養容器では、培養容器本体部22を培養液受け容器23に対して装脱着することにより、培養液の交換を行う。具体的には、細胞塊の培養最中、培養容器本体部22に対して培養液受け容器23が装着されており、培養液はウェル部21だけでなく培養液受け容器23内にも充填されている。各ウェル部21内で、細胞塊の培養を所定時間行った後、培養容器本体部22を培養液受け容器23から取り外し、培養液受け容器23内の使用済み培養液を新鮮培養液に交換し、再度当該培養液受け容器23を培養容器本体部22することにより、培養空間内の培養液の交換を行う。培養液の交換は、使用済み培養液を新鮮培養液に入れ代えた培養液受け容器23を用いてもよいし、新鮮培養液が充填された別の培養液受け容器23を用いてもよい。
In the culture vessel
培養液受け容器23は、ウェル部21のみならず台座5も収容可能であると好ましい。この場合、培養液の交換の際、培養容器本体部22に対する培養液受け容器23の装着が行い易く好ましい。尚、図18〜図19を用いて説明する培養容器19は、例えば、培養容器本体部22のみを把持しても培養液受け容器23から培養容器本体部22が離脱しないように、培養液受け容器23の培養容器本体部22への装着状態を保持する機構を備えていてもよい。前記機構は、従来から公知の、係合機構、嵌合手段機構等が挙げられる。
It is preferable that the culture
ウェル部21の形状は、実施形態1の培養容器のそれと同じでよいが、細胞塊の培養のために十分な量の培養液や試薬を添加できる点から、胴部の上下方向の長さは、実施形態1の培養容器のそれより長いと好ましい。各ウェル部21の容量は、特に制限されるものではないが、細胞塊の培養のために十分な量の培養液や試薬を添加できる点から、例えば、50〜500μLが好ましく、培養液や試薬の使用量を低減する点から、50〜200μLがより好ましい。
The shape of the
ウェル部21における連通部の形成位置は、培養液の交換がスムーズに行えれば特に制限はないが、前記細胞塊が培養液面より露出しないように、ウェル部21内の培養液の一部を連通部からウェル部21の外側に流出させる観点、及び、培養液の使用量を低減する観点から、胴部21aが好ましく、胴部21aの底部21bの近傍が好ましい。
There is no particular limitation on the formation position of the communication part in the
本実施形態の培養容器19において、連通部21gの形態は、ウェル部21を厚み方向に貫通する孔であるが、これに限定されず、実施形態1〜実施形態5と同様、スリット及び隔壁部を厚み方向に貫通する貫通孔から選ばれる少なくとも1種が挙げられる。また、本実施形態の培養容器19において、連通部21gである孔は、円であるため、縦方向長の最大長と横方向長さの最大長さは、ともに、0.7R以下であるが、本開示の培養容器の一又は複数の実施態様において、縦方向長の最大長と横方向長さの最大長さの一方が、0.7R以下である場合、他方は、培養液の交換効率の向上の観点から、好ましくは1.0R以上、より好ましくは1.5R以上、更に好ましくは2.0R以上である。
In the
前記実施形態1〜4の培養容器は、いずれも、複数の隔壁部と、複数の隔壁部を相互に連結する板状体を含み、少なくとも隔壁部の底部から遠い底部遠位部分(筒状部)が、板状体よりも上方に配置されており、少なくとも底部遠位部分(筒状部)に連通部が形成された形態であるが、このような形態は、例えば、実施形態5の培養容器よりも、培養液の交換時に細胞塊が培養液面から露出し辛いという点で好ましく、実施形態6の培養容器よりも、培養液の拡散性に優れているという点で好ましい。
Each of the culture containers of Embodiments 1 to 4 includes a plurality of partition walls and a plate-like body that interconnects the plurality of partition walls, and at least a bottom distal portion (tubular section) far from the bottom of the partition walls. ) Is arranged above the plate-like body, and a communication part is formed at least at the bottom distal part (cylindrical part). Such a form is, for example, the culture of
以下、本開示を以下の実施例及び比較例に基いて説明するが、本開示はこれに限定されるものではない。 Hereinafter, although this indication is explained based on the following examples and a comparative example, this indication is not limited to this.
(実施例1)
[細胞塊の培養容器の製造]
ポリスチレン樹脂(PSジャパン社製、商品名:HF77)を用いて、射出成形により24ウェルマルチウェルプレート(横:65.0mm、縦:50.0mm、高さ:20.5mm)を成形した。本実施例における培養容器の形状は図1〜図3に示す形状とし、ウェル部の形状は図4に示す形状とし、底部の開き角度(図4におけるθ)は85度、底部中心部における内面の曲率半径Rは2.0mmとした。各ウェル部の、開口における直径は6.2mm、深さは5.0mm、胴部の深さは2.6mmとした。また、各筒状部の、内径は6.2mm、高さは5.0mm、側壁の厚みは0.8mmとし、ウェル部と筒状部とからなる隔壁部の内側空間の1個当たりの容量は、約250μLとした。筒状部には約45度おきに幅が上下方向に沿って一定のスリットを連通部として計8ヶ所設けた。スリットの横方向長W1およびその最大長は0.3mm、スリットの縦方向長W2およびその最大長は5.0mmとした。Example 1
[Production of cell culture vessel]
A 24-well multiwell plate (horizontal: 65.0 mm, vertical: 50.0 mm, height: 20.5 mm) was molded by injection molding using a polystyrene resin (manufactured by PS Japan, trade name: HF77). The shape of the culture vessel in this example is the shape shown in FIGS. 1 to 3, the shape of the well portion is the shape shown in FIG. 4, the opening angle of the bottom (θ in FIG. 4) is 85 degrees, and the inner surface in the center of the bottom The radius of curvature R was set to 2.0 mm. The diameter of each well portion at the opening was 6.2 mm, the depth was 5.0 mm, and the body portion depth was 2.6 mm. Each cylindrical part has an inner diameter of 6.2 mm, a height of 5.0 mm, a side wall thickness of 0.8 mm, and a capacity per one of the inner space of the partition wall part composed of the well part and the cylindrical part. Was about 250 μL. The cylindrical portion was provided with a total of eight slits having a constant width along the vertical direction at intervals of about 45 degrees as communication portions. The slit length W1 and its maximum length were 0.3 mm, and the slit length W2 and its maximum length were 5.0 mm.
得られた筒状体付き24ウェルマルチウェルプレートにプラズマ処理装置(BRANSON/IPC社製 SERIES7000)を用いてプラズマ処理(酸素プラズマ10分)を行った。これにより、前処理としてプレート表面に濡れ性を付与した。
The obtained 24-well multiwell plate with a cylindrical body was subjected to plasma treatment (
(水溶性樹脂を用いた表面処理)
次に、ウェル部の表面処理を行うために、水溶性樹脂として側鎖にアジド基を有するポリビニルアルコール(東洋合成工業社製 AWP(Azide−unit pendant Water soluble Photopolymer、r1=1〜1000、r2=4〜4995、r3=0〜4000、n=1,2、または3、Rはカルボニルとアミンを有するアルキル基):下記式(Ia)で表される化合物(水溶性樹脂の平均重合度1600、感光基の導入率0.65mol%))を茶色顔料で着色した遮光ポリプロプレン容器中で、25体積%エタノール水溶液に溶解し、0.5重量%の水溶性樹脂溶液を調製した。
Next, in order to perform the surface treatment of the well portion, polyvinyl alcohol having an azide group in the side chain as a water-soluble resin (AWP (Azide-unit pendant water soluble photopolymer, manufactured by Toyo Gosei Co., Ltd., r1 = 1 to 1000, r2 = 4-4995, r3 = 0-4000, n = 1, 2, or 3, R is an alkyl group having a carbonyl and an amine): a compound represented by the following formula (Ia) (average polymerization degree of water-soluble resin 1600, The photosensitive group introduction rate 0.65 mol%)) was dissolved in a 25% by volume ethanol aqueous solution in a light-blocking polypropylene container colored with a brown pigment to prepare a 0.5% by weight water-soluble resin solution.
上記0.5重量%の水溶性樹脂溶液を、プラズマ処理した筒状体付き24ウェルマルチウェルプレートに、1ウェル部につき50μL加えて1分間静置した後、プレートを裏返して余分な溶液を廃棄した。ついで、40℃で60分一次乾燥した後、UVランプで250nmのUV光を1.0mW/cm2×30秒間照射して水溶性樹脂を硬化させた。次いで、筒状体付き24ウェルマルチウェルプレートを超純水で3回繰り返し洗浄し、乾燥させた後、γ線を吸収線量10kGyで照射(ラジエ工業株式会社製装置)して実施例1の培養容器を得た。50 μL of the above 0.5 wt% water-soluble resin solution is added to a plasma-treated 24-well multiwell plate with a cylindrical body and left to stand for 1 minute, then the plate is turned over and the excess solution is discarded. did. Next, after primary drying at 40 ° C. for 60 minutes, the water-soluble resin was cured by irradiating UV light of 250 nm with a UV lamp at 1.0 mW / cm 2 × 30 seconds. Next, the 24-well multiwell plate with a cylindrical body was repeatedly washed with ultrapure water three times, dried, and then irradiated with γ-rays with an absorbed dose of 10 kGy (Radier Kogyo Co., Ltd. apparatus). A container was obtained.
[HepG2(ヒト肝癌由来細胞)を用いた細胞塊(スフェロイド)の形成]
HepG2を培養液(ダルベッコ改変MEM+10体積%ウシ胎児血清)に3×104cells/mLの濃度で分散させた細胞懸濁液を調製し、PrimeSurface(登録商標)96Vプレート(住友ベークライト、MS−9096V)に、100μL/ウェルずつ分注し、5%炭酸ガス、湿度99%、温度37℃の雰囲気下で、細胞の培養を行った。6日後に各ウェルに、1個の細胞塊(スフェロイド)が形成されていることを、位相差顕微鏡下で確認した。前記細胞塊の直径は、細胞塊を真球と仮定し、培養液に浮遊する細胞塊を鉛直方向から見た投影図の面積と等しい面積の円の直径であり、96個の細胞塊の直径は約700μm(597μm以上727μm以下の範囲内の値であり、平均672μm)であった。96個の細胞塊の最短径Rは538μm以上633μm以下の範囲内の値、平均598μmであり、96個の細胞塊の最短径Rのうちの最小値は538μmであった。細胞塊の直径及び最短径Rの測定には、位相差顕微鏡を用いて撮像された投影図を用いた。[Formation of cell clusters (spheroids) using HepG2 (human liver cancer-derived cells)]
A cell suspension was prepared by dispersing HepG2 in a culture solution (Dulbecco's modified MEM + 10 vol% fetal bovine serum) at a concentration of 3 × 10 4 cells / mL, and PrimeSurface® 96V plate (Sumitomo Bakelite, MS-9096V). 100 μL / well, and the cells were cultured in an atmosphere of 5% carbon dioxide, 99% humidity, and 37 ° C. After 6 days, it was confirmed under a phase contrast microscope that one cell mass (spheroid) was formed in each well. The diameter of the cell mass is a diameter of a circle having an area equal to the area of the projection when the cell mass is assumed to be a true sphere and the cell mass floating in the culture medium is viewed from the vertical direction. Was about 700 μm (value in the range of 597 μm or more and 727 μm or less, average 672 μm). The shortest diameter R of the 96 cell clusters was a value in the range of 538 μm or more and 633 μm or less, and the average was 598 μm, and the minimum value of the 96 cell clusters was 538 μm. For the measurement of the diameter of the cell mass and the shortest diameter R, a projection image captured using a phase contrast microscope was used.
次いで、PrimeSurface(登録商標)96Vプレート(住友ベークライト、MS−9096V)を用いて形成した細胞塊を、ART200Gピペットチップ(MBP、2069G)を使用して、90μL/ウェルずつ培養液ごと吸引し、4枚の実施例1の培養容器に、培養液ごと各ウェル部内に入れた後、培養液(ダルベッコ改変MEM+10体積%ウシ胎児血清)を、各培養容器へ1.84mL加え、各培養容器全体の培養液量を4mlとした。その後、5%炭酸ガス、湿度99%、温度37℃の雰囲気下で、3日間培養した。尚、上述の、細胞塊の実施例1の培養容器への移設及び培養液1.84mLの追加は、1つ目の細胞塊の最短径Rの測定後30分以内に行った。 Subsequently, the cell mass formed using the PrimeSurface (registered trademark) 96V plate (Sumitomo Bakelite, MS-9096V) was aspirated with 90 μL / well of each culture solution using an ART200G pipette tip (MBP, 2069G). After putting the whole culture solution in each well part in one culture vessel of Example 1, 1.84 mL of the culture solution (Dulbecco's modified MEM + 10 vol% fetal bovine serum) is added to each culture vessel, and the whole culture vessel is cultured. The liquid volume was 4 ml. Thereafter, the cells were cultured for 3 days in an atmosphere of 5% carbon dioxide gas, 99% humidity and a temperature of 37 ° C. In addition, the above-mentioned transfer of the cell mass to the culture vessel of Example 1 and addition of 1.84 mL of the culture solution were performed within 30 minutes after the measurement of the shortest diameter R of the first cell mass.
次いで、実施例1の培養容器を様々な方向に傾けて、各ウェル内部の培養液の一部を培養容器の隅に集め、当該培養液を、アスピレーションピペットを用いて約3mL吸引した後、新しい培養液(新鮮培養液)約3mlを実施例1の培養容器に入れた。以降3日毎に同様な操作により培養液の交換を行った。ただし、培養液の交換の際、細胞塊が乾燥しないように注意した。培養液の交換操作を5回行った後、各ウェル部内の細胞塊を位相差顕微鏡で観察したところ、いずれのウェル部内の細胞塊も順調に成長しており、細胞塊の直径は平均1100μmであった。尚、実施例1の培養容器の横方向長W1の最大長は0.3mmであり、当該横方向長W1の最大長は、培養対象である細胞塊の最短径R(538μm)と0.7との積よりも小さかった。 Next, the culture vessel of Example 1 is tilted in various directions, a part of the culture solution inside each well is collected at the corner of the culture vessel, and the culture solution is aspirated with an aspiration pipette after about 3 mL. About 3 ml of a new culture solution (fresh culture solution) was placed in the culture vessel of Example 1. Thereafter, the culture medium was exchanged by the same operation every 3 days. However, care was taken not to dry the cell mass when exchanging the culture solution. After the culture medium was exchanged five times, the cell mass in each well was observed with a phase-contrast microscope. The cell mass in each well was growing smoothly and the diameter of the cell mass averaged 1100 μm. there were. In addition, the maximum length of the lateral length W1 of the culture container of Example 1 is 0.3 mm, and the maximum length of the lateral length W1 is 0.7 with the shortest diameter R (538 μm) of the cell mass to be cultured. It was smaller than the product.
(比較例1)
実施例1の[HepG2(ヒト肝癌由来細胞)を用いた細胞塊(スフェロイド)の形成]に従って、直径が約700μmのサイズの1個の細胞塊(スフェロイド)を96個形成した。次いで、各ウェル中の細胞塊を培養液ごと実施例1と同様に回収し、1枚につき24個の細胞塊を、4枚のPrimaSuface60mmシャーレ(MS−9060X、住友ベークライト社製)に移し替えた。96ウェル全ての細胞塊(スフェロイド)をシャーレに移し替えた後、新しい培養液をシャーレ1枚につき1.84mLに加えて、シャーレ内の培養液量を4mLとした。(Comparative Example 1)
According to [Formation of cell mass (spheroid) using HepG2 (human liver cancer-derived cell)] in Example 1, 96 cell masses (spheroids) having a diameter of about 700 μm were formed. Subsequently, the cell mass in each well was collected together with the culture solution in the same manner as in Example 1, and 24 cell masses per plate were transferred to 4 Prima Surface 60 mm dishes (MS-9060X, manufactured by Sumitomo Bakelite). . After all the cell masses (spheroids) in 96 wells were transferred to the petri dish, a new culture solution was added to 1.84 mL per petri dish to make the volume of the culture solution in the petri dish 4 mL.
細胞塊(スフェロイド)をシャーレに移し替えた後、3日後に培養液の交換を行った。培養液の交換は、培養液の上清を3ml吸引した後、新しい培養液3mlをシャーレに加えることで行った。培養液の交換後、シャーレを揺動し、細胞塊を培養液中に分散させた。以降3日毎に同様な操作により培養液の交換を行った。4枚のシャーレについて、培養液の交換操作を5回行った。培養液の交換操作を5回行ううちに、ピペットによる吸引により9つの細胞塊が失われ、残った細胞塊のうち、28個の細胞塊について融合が発生し、独立した1個の細胞塊として培養できた細胞塊は59個であった。尚、上述の、細胞塊のシャーレへの移設及び培養液1.84mLの追加は、1つ目の細胞塊の最短径Rの測定後30分以内に行った。 After the cell mass (spheroid) was transferred to a petri dish, the culture medium was replaced 3 days later. The culture medium was exchanged by aspirating 3 ml of the culture supernatant and adding 3 ml of a new culture medium to the petri dish. After exchanging the culture solution, the petri dish was shaken to disperse the cell mass in the culture solution. Thereafter, the culture medium was exchanged by the same operation every 3 days. The culture medium was exchanged five times for the four petri dishes. Nine cell clumps were lost by pipetting as the culture medium was exchanged five times. Of the remaining cell clumps, 28 cell clumps were fused, resulting in an independent single cell clump. There were 59 cell masses that could be cultured. The transfer of the cell mass to the petri dish and the addition of 1.84 mL of the culture solution were performed within 30 minutes after the measurement of the shortest diameter R of the first cell mass.
(比較例2)
スリットの横方向長W1およびその最大長を0.5mmとしたこと以外は、実施例1と同様にして細胞塊用の培養容器を作成し、これを用いて実施例1と同条件で細胞塊の培養を行った。培養液交換時に、細胞塊の連通部を介した流出が発生し、当該細胞塊が別のウェルに入り込んだ結果、細胞塊のないウェルが32個、複数個の細胞塊が同一ウェルに存在し、融合したウェルが28個であった。単一細胞塊として培養できたウェルは36個であった。尚、比較例2の培養容器の縦方向長W2と横方向長W1の最大長はともに0.5mmであり、これらの最大長は、培養対象である細胞塊の最短径R(542μm)と0.7の積よりも大きかった。(Comparative Example 2)
A cell container for cell mass was prepared in the same manner as in Example 1 except that the lateral length W1 of the slit and the maximum length thereof were 0.5 mm, and the cell mass was used under the same conditions as in Example 1 using this. Was cultured. When the culture medium is exchanged, an outflow occurs through the communication part of the cell mass, and the cell mass enters another well. As a result, 32 wells without cell mass and a plurality of cell masses exist in the same well. There were 28 fused wells. There were 36 wells that could be cultured as a single cell mass. Note that the maximum lengths of the longitudinal length W2 and the lateral length W1 of the culture container of Comparative Example 2 are both 0.5 mm, and these maximum lengths are 0 and the shortest diameter R (542 μm) of the cell mass to be cultured. It was greater than the product of .7.
以上の通り、実施例1の培養容器を用いた場合、比較例1〜2の培養容器を用いるよりも、細胞塊にダメージや刺激を極力与えずに培養液の交換を行うことができ、且つ、細胞塊の生産性も向上できた。 As described above, when the culture container of Example 1 is used, the culture medium can be exchanged without damaging or stimulating the cell mass as much as possible, rather than using the culture containers of Comparative Examples 1-2. Moreover, the productivity of the cell mass was also improved.
本開示は、例えば、ヒトES細胞の研究、再生医療等といった医療分野等で有用である。 The present disclosure is useful, for example, in medical fields such as human ES cell research and regenerative medicine.
本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本開示の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in other forms than the above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present disclosure is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are intended to be covered by the claims. It is included.
1,6,16,17,18,19…細胞塊用培養容器、2,7…板状体、21,71…ウェル部、21a…胴部、21b…底部、21c…底部の中心部、21g…貫通孔(連通部)、22…培養容器本体部、23…培養液受け容器、3,81…筒状部、3a…スリット(連通部)、4,9…側壁、9a…側壁の内面、5,10…台座、11,61…マルチウェルプレート本体、12,14…隔壁部、12a…隔壁部の中心軸、12b,15b…隔壁部の空間に面する面、13,15…空間、80…連結体、800…液流制御体、82…架橋部、83…位置規制部、81b…連通部(スリット)、84b…溝、W1…縦方向長、W2…横方向長。 1, 6, 16, 17, 18, 19 ... cell culture vessel, 2, 7 ... plate-like body, 21, 71 ... well part, 21a ... trunk part, 21b ... bottom part, 21c ... center part of bottom part, 21g DESCRIPTION OF SYMBOLS ... Through-hole (communication part), 22 ... Culture container main-body part, 23 ... Culture solution receptacle, 3,81 ... Cylindrical part, 3a ... Slit (communication part), 4,9 ... Side wall, 9a ... Inner surface of side wall, 5, 10 ... pedestal, 11, 61 ... multiwell plate body, 12, 14 ... partition wall, 12a ... central axis of the partition wall, 12b, 15b ... surface facing the space of the partition wall, 13, 15 ... space, 80 DESCRIPTION OF SYMBOLS ... Connection body, 800 ... Liquid flow control body, 82 ... Bridging part, 83 ... Position control part, 81b ... Communication part (slit), 84b ... Groove, W1 ... Longitudinal direction length, W2 ... Longitudinal direction length.
Claims (12)
前記細胞塊と培養液とを収容可能とする空間を囲う隔壁部と、前記隔壁部の外側に配置された側壁とを含み、
前記隔壁部は、筒状部を含み、
前記筒状部に、前記空間内外への前記培養液の流入出を許容する1個以上の連通部が形成されており、
前記細胞塊を鉛直方向から見た投影図から測定される前記細胞塊の最短径をRとし、
前記筒状部の前記空間に面する面からみた、前記連通部の、上下方向の長さを縦方向長とし、上下方向と直交する長さを横方向長とすると、
前記Rは、200μm以上1000μm以下であり、
前記縦方向長の最大長及び前記横方向長の最大長のいずれか一方が0.2R以上0.7R以下であり、
前記隔壁部は、前記筒状部の下方に配置され、底部に向かって徐々に径が小さくなる部分を含むウェル部を更に含む、細胞塊用培養容器。 A container for culturing a cell mass,
Including a partition wall that surrounds the space that can accommodate the cell mass and the culture solution, and a side wall disposed outside the partition wall,
The partition part includes a cylindrical part,
Said tubular portion, said one or more communicating portion that allows the inflow and out of the culture solution is formed into the space and out,
R is the shortest diameter of the cell mass measured from a projected view of the cell mass viewed from the vertical direction,
When viewed from the surface of the cylindrical portion facing the space, the length of the communicating portion in the vertical direction is the vertical length, and the length orthogonal to the vertical direction is the horizontal length.
R is 200 μm or more and 1000 μm or less,
Either one of the maximum length of the longitudinal length and the maximum length of the lateral length is 0.2R or more and 0.7R or less ,
Before Symbol partition wall is disposed below the cylindrical portion, toward the bottom further comprising a well portion including a portion whose diameter gradually decreases, cell mass for culture vessels.
少なくとも前記隔壁部のうちの前記隔壁部の底部から遠い底部遠位部分が、前記板状体の一方の主面よりも上方に配置されており、
前記隔壁部のうちの前記板状体の一方の主面よりも上方に配置された部分に、前記連通部が形成されている、請求項1又は2に記載の細胞塊用培養容器。 A plurality of the spaces and the partition walls, including a plate-like body that interconnects the partition walls;
At least a bottom portion distal portion of the partition wall portion far from the bottom of the partition wall portion is disposed above one main surface of the plate-like body,
The culture vessel for cell masses according to claim 1 or 2, wherein the communication portion is formed in a portion of the partition wall portion disposed above one main surface of the plate-like body.
複数の前記隔壁部と、複数の隔壁部を相互に連結する板状体を含み、前記隔壁部のうちの少なくとも前記隔壁部の底部が前記板状体よりも下方に配置された培養容器本体部と、
前記板状体の下側から前記培養容器本体部に対して装脱着可能であり、前記隔壁部のうちの前記板状体よりも下方に配置された部分を収容する、培養液受け容器と、を含み、
前記連通部が、前記隔壁部のうちの前記板状体よりも下方に配置された部分に形成されている、請求項1又は2に記載の細胞塊用培養容器。 A plurality of the space and the partition;
A culture vessel main body including a plurality of the partition walls and a plate-like body connecting the plurality of partition walls to each other, wherein at least a bottom of the partition walls is disposed below the plate-like body. When,
A culture medium receiving container that is detachable from the lower side of the plate-like body and can be attached to and detached from the culture vessel main body, and contains a portion of the partition wall that is disposed below the plate-like body; Including
The culture vessel for cell masses according to claim 1 or 2, wherein the communication part is formed in a part of the partition part that is disposed below the plate-like body.
前記隔壁部により囲われた空間内に培養液を流入させ、前記空間内の前記培養液中で1つの前記細胞塊を培養した後、前記空間内の培養液の一部を、前記連通部から前記隔壁部の外側に流出させる工程を含む細胞塊の培養方法。 A culture method for culturing a cell mass using the cell mass culture container according to any one of claims 1 to 8,
After flowing a culture solution into the space surrounded by the partition wall and culturing one cell mass in the culture solution in the space, a part of the culture solution in the space is removed from the communication portion. A method for culturing a cell mass, which comprises a step of flowing out of the partition wall.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015192045 | 2015-09-29 | ||
JP2015192045 | 2015-09-29 | ||
PCT/JP2016/077832 WO2017057126A1 (en) | 2015-09-29 | 2016-09-21 | Cell mass culture container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017057126A1 JPWO2017057126A1 (en) | 2017-10-05 |
JP6338015B2 true JP6338015B2 (en) | 2018-06-06 |
Family
ID=58423531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017516541A Active JP6338015B2 (en) | 2015-09-29 | 2016-09-21 | Cell mass culture vessel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6338015B2 (en) |
WO (1) | WO2017057126A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7247520B2 (en) * | 2018-10-30 | 2023-03-29 | 東洋製罐グループホールディングス株式会社 | Culture vessel, culture method, and transportation method |
US20240150693A1 (en) * | 2021-03-16 | 2024-05-09 | Sumitomo Bakelite Co., Ltd. | Sterile container for cell culture |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2049179B1 (en) * | 1992-09-16 | 1994-11-01 | Univ Santiago Compostela | PLATE FOR CELL CROPS WITH A SYSTEM OF SIDE DIFFUSION OF MOLECULES THROUGH THE BARRIER MEMBRANE. |
US20130029412A1 (en) * | 2010-04-15 | 2013-01-31 | Christian Reis | Cell culture system |
EP2860239B1 (en) * | 2012-06-08 | 2019-11-13 | Riken | Vessel for culturing human es cells |
KR101756051B1 (en) * | 2014-05-22 | 2017-07-07 | 스미또모 베이크라이트 가부시키가이샤 | Cell mass culture vessel |
-
2016
- 2016-09-21 WO PCT/JP2016/077832 patent/WO2017057126A1/en active Application Filing
- 2016-09-21 JP JP2017516541A patent/JP6338015B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2017057126A1 (en) | 2017-10-05 |
WO2017057126A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5950055B2 (en) | Cell mass culture vessel | |
JP6365717B2 (en) | Culture vessel for cell aggregate formation | |
TWI390039B (en) | Cell culture vessel | |
EP2860239B1 (en) | Vessel for culturing human es cells | |
WO2012133514A1 (en) | Culture vessel for forming embryoid body | |
JP6338015B2 (en) | Cell mass culture vessel | |
JP6123963B1 (en) | Cell processing container | |
WO2013047655A1 (en) | CULTURE VESSEL FOR iPS CELL | |
US20210292707A1 (en) | Method for the culturing of cells | |
JP5151892B2 (en) | Multiwell plate | |
CN113462566B (en) | Nerve bundle construction stent and nerve bundle construction method | |
KR102145842B1 (en) | Rapid Cell Culture Device With Accurate Observation | |
EP4222246A1 (en) | Culture vessels containing 3d cell culture substrates with diffusion structures | |
WO2015101702A1 (en) | Sample holder, cell culture system and mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170808 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6338015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |