JP6337496B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6337496B2
JP6337496B2 JP2014027661A JP2014027661A JP6337496B2 JP 6337496 B2 JP6337496 B2 JP 6337496B2 JP 2014027661 A JP2014027661 A JP 2014027661A JP 2014027661 A JP2014027661 A JP 2014027661A JP 6337496 B2 JP6337496 B2 JP 6337496B2
Authority
JP
Japan
Prior art keywords
bushing
corner portion
outer corner
battery case
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014027661A
Other languages
Japanese (ja)
Other versions
JP2015153660A (en
Inventor
智宏 今村
智宏 今村
弘典 洲脇
弘典 洲脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2014027661A priority Critical patent/JP6337496B2/en
Publication of JP2015153660A publication Critical patent/JP2015153660A/en
Application granted granted Critical
Publication of JP6337496B2 publication Critical patent/JP6337496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、蓋部材のひび割れを抑制する技術に関する。   The present invention relates to a technique for suppressing cracks in a lid member.

例えば、自動車用などに用いられる鉛蓄電池は、合成樹脂製の電槽と、電槽を封口する合成樹脂製の蓋部材とを備えている。そして、蓋部材に対して端子部を形成している。端子部は、インサート成形により蓋部材に一体化された鉛合金製の筒型のブッシングと、ブッシング内に挿通される極柱とで構成されている。   For example, a lead storage battery used for automobiles and the like includes a synthetic resin battery case and a synthetic resin lid member that seals the battery case. And the terminal part is formed with respect to the cover member. The terminal portion is constituted by a cylindrical bushing made of lead alloy integrated with the lid member by insert molding, and a pole column inserted into the bushing.

ブッシングや極柱は、電槽内の電解液により腐食され、膨張することが知られている。ブッシングや極柱の膨張は蓋部材のひび割れの原因になることから、下記特許文献1では、蓋部材に形成された筒状部とブッシングの間に設けた膨張吸収材によって、ブッシングの膨張を吸収することにより、蓋部材のひび割れを抑制している。   It is known that the bushing and the pole column are corroded and expanded by the electrolytic solution in the battery case. Since the expansion of the bushing and the pole column causes cracking of the lid member, in Patent Document 1 below, the expansion of the bushing is absorbed by the expansion absorber provided between the cylindrical portion formed on the lid member and the bushing. By doing so, the crack of the lid member is suppressed.

実用新案登録第3005437号公報Utility Model Registration No. 3005437

しかしながら、上記の構造では、膨張吸収部材を専用に設ける必要があり、部品点数が増加するという問題があった。
本発明は上記のような事情に基づいて完成されたものであって、新たな部品を追加せずに、蓋部材のひび割れを抑制することを目的とする。
However, in the above structure, it is necessary to provide the expansion absorbing member exclusively, and there is a problem that the number of parts increases.
This invention is completed based on the above situations, Comprising: It aims at suppressing the crack of a cover member, without adding a new component.

本明細書によって開示される鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽を封口する基部及び前記基部から前記電槽内に向かって延在する装着部を有する蓋部材と、前記装着部に設けられた筒型のブッシングと、前記発電要素に接続され、前記ブッシングの筒内に挿入された極柱とを含み、前記装着部は、前記ブッシングの前記電槽内を向いた下方端面と外周面とで形成される外側コーナ部を覆う被覆部を有し、前記ブッシングの外側コーナ部は、前記ブッシングの前記下方端面と内周面とで形成された内側コーナ部と異なり、面取り形状である。   The lead storage battery disclosed by this specification has a power generation element, a battery case that houses the power generation element, a base part that seals the battery case, and a mounting part that extends from the base part toward the inside of the battery case. A lid member, a cylindrical bushing provided in the mounting portion, and a pole column connected to the power generation element and inserted into the bushing cylinder, wherein the mounting portion is the battery case of the bushing An inner corner formed by the lower end surface and the inner peripheral surface of the bushing, the outer corner portion of the bushing having a covering portion that covers the outer corner portion formed by the lower end surface and the outer peripheral surface facing inward; Unlike the part, it has a chamfered shape.

尚、「面取り形状」とは、対象となるコーナ部を、曲面や斜面として「角が無い形状」にすることを意味する。   The “chamfered shape” means that the target corner portion is made into a “shape with no corners” as a curved surface or a slope.

本発明によれば、新たな部品を追加せずに、蓋部材のひび割れを抑制することが出来る。   According to the present invention, it is possible to suppress cracking of the lid member without adding new parts.

本発明の実施形態1に係る鉛蓄電池の斜視図The perspective view of the lead acid battery which concerns on Embodiment 1 of this invention. 図1中のA−A線断面図AA line sectional view in FIG. ブッシングの斜視図Bushing perspective view 図2のB部を拡大した図The figure which expanded the B section of FIG. 装着部のひび割れを説明するため、下面外側コーナ部を非面取り形状とした比較例を示す図(図2のB部に相当)The figure which shows the comparative example which made the lower surface outside corner part non-chamfered shape in order to explain the crack of a mounting part (equivalent to B part of Drawing 2) 装着部のひび割れを説明するため、下面外側コーナ部を非面取り形状とした比較例を示す図(図2のB部に相当)The figure which shows the comparative example which made the lower surface outside corner part non-chamfered shape in order to explain the crack of a mounting part (equivalent to B part of Drawing 2) ブッシングの断面図Cross section of bushing 図2中のC部を拡大した図The figure which expanded the C section in FIG. 蓋部材を成形する金型の断面図(装着部の成形部分を示す)Sectional drawing of the metal mold | die which shape | molds a cover member (The molding part of a mounting part is shown) 本発明の実施形態2に係るブッシングの断面図Sectional drawing of the bushing which concerns on Embodiment 2 of this invention 図10のC部を拡大した図The figure which expanded the C section of FIG. 本発明の実施形態3に係るブッシングの断面図(下面外側コーナ部を示す)Sectional drawing of the bushing which concerns on Embodiment 3 of this invention (a lower surface outer corner part is shown) 他の実施形態に係るブッシングの断面図(下面外側コーナ部を示す)Sectional drawing of the bushing which concerns on other embodiment (a lower surface outer corner part is shown) 他の実施形態に係るブッシングの断面図Cross-sectional view of a bushing according to another embodiment

(本実施形態の概要)
初めに、本実施形態の鉛蓄電池の概要について説明する。本鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽を封口する基部及び前記基部から前記電槽内に向かって延在する装着部を有する蓋部材と、前記装着部に設けられた筒型のブッシングと、前記発電要素に接続され、前記ブッシングの筒内に挿入された極柱とを含み、前記装着部は、前記ブッシングの前記電槽内を向いた下方端面と外周面とで形成される外側コーナ部を覆う被覆部を有し、前記ブッシングの外側コーナ部は、前記ブッシングの前記下方端面と内周面とで形成された内側コーナ部と異なり、面取り形状である。
(Outline of this embodiment)
First, an outline of the lead storage battery of the present embodiment will be described. The lead storage battery includes a power generation element, a battery case that houses the power generation element, a base member that seals the battery case, and a lid member that has a mounting part that extends from the base part toward the inside of the battery case. A cylindrical bushing provided in a portion, and a pole column connected to the power generation element and inserted into the bushing tube, wherein the mounting portion is a lower end surface facing the inside of the battery case of the bushing The outer corner portion of the bushing is chamfered unlike the inner corner portion formed by the lower end surface and the inner peripheral surface of the bushing. It is.

この構成では、ブッシングの外側コーナ部を面取り形状とすることで、外側コーナ部の腐食にともなう膨張により、外側コーナ部を覆う被覆部にかかる応力を分散させて局所的に応力が集中するのを抑制することができる。そして、装着部が割れて、ひびが装着部の外面に達するのを抑制することができる。これにより、仮に、ひびが装着部の外面に達することで、そこから電解液が侵入するのを抑制するとともに、ブッシングと装着部との隙間が広がりやすくなるのを抑制して、この隙間に沿って電解液が這い上がってゆくことを遅らせて、ブッシングの腐食にともなう膨張を遅らせることが出来る。さらに、内側コーナ部を面取り形状としないことで、ブッシングと極柱との隙間への電解液の侵入起点を狭くして、電解液を侵入しづらくすることができる。よって、ブッシング及び極柱の腐食にともなう膨張を遅くすることが可能となり、蓋部材のひび割れを抑制できる。しかも、この構成では、ブッシングの形状変更により、蓋部材のひび割れを抑制するため、新たに追加される部品がなく、部品増にならない。   In this configuration, the outer corner portion of the bushing is chamfered, so that the stress applied to the covering portion covering the outer corner portion is dispersed and the stress is locally concentrated due to the expansion caused by the corrosion of the outer corner portion. Can be suppressed. And it can suppress that a mounting part cracks and a crack reaches the outer surface of a mounting part. As a result, if the crack reaches the outer surface of the mounting portion, it is possible to prevent the electrolyte from entering from the crack and to prevent the gap between the bushing and the mounting portion from being easily expanded. Thus, it is possible to delay the expansion of the electrolyte due to corrosion of the bushing by delaying the creeping of the electrolyte. Furthermore, since the inner corner portion is not chamfered, the entry point of the electrolyte into the gap between the bushing and the pole column can be narrowed to make it difficult for the electrolyte to enter. Therefore, it becomes possible to slow the expansion accompanying the corrosion of the bushing and the pole column, and the crack of the lid member can be suppressed. Moreover, in this configuration, since the cracking of the lid member is suppressed by changing the shape of the bushing, there are no newly added parts, and the number of parts does not increase.

本鉛蓄電池では、前記ブッシングの外側コーナ部は、前記下方端面と前記外周面とを接続する曲面を有する。これにより、外側コーナ部を覆う被覆部にかかる応力をより均等に分散させて局所的に応力が集中するのをより一層抑制することができる。   In the lead storage battery, the outer corner portion of the bushing has a curved surface connecting the lower end surface and the outer peripheral surface. Thereby, the stress concerning the coating | coated part which covers an outer side corner part can be disperse | distributed more uniformly, and it can suppress further that a stress concentrates locally.

本鉛蓄電池では、前記ブッシングは、前記外周面から突出して環状に形成され、筒の延在方向に間隔をあけて配置された複数の突起を有しており、前記突起のコーナ部の前記装着部と対向する沿面距離の長さは、前記外側コーナ部の前記装着部と対向する沿面距離の長さよりも、長い。これにより、ブッシングの外周面に沿った沿面距離を長くして、装着部とブッシングとの隙間から電解液が蓋部材の表面側へ浸み出るのを抑制しつつ、蓋部材の割れを抑制することができる。   In the lead storage battery, the bushing protrudes from the outer peripheral surface, has an annular shape, and has a plurality of protrusions arranged at intervals in the extending direction of the cylinder, and the mounting of the corner portion of the protrusion is performed. The length of the creeping distance facing the portion is longer than the length of the creeping distance facing the mounting portion of the outer corner portion. Thereby, the creeping distance along the outer peripheral surface of the bushing is lengthened, and the cracking of the lid member is suppressed while suppressing the electrolyte from seeping out from the gap between the mounting portion and the bushing to the surface side of the lid member. be able to.

本鉛蓄電池では、前記複数の突起のうち最も下方の突起は、前記下方端面に配置されている。これによると、被覆部の割れの起点になりやすい部分までの距離を長くすることができ、ブッシングの腐食にともなう膨張をより遅らせることができる。   In the lead storage battery, the lowermost protrusion of the plurality of protrusions is disposed on the lower end surface. According to this, it is possible to increase the distance to the portion that tends to be the starting point of the crack of the covering portion, and it is possible to further delay the expansion accompanying the corrosion of the bushing.

本鉛蓄電池では、前記ブッシングの前記下方端面は、平面である。平面を設けておけば、ブッシングをインサートした金型に樹脂を流して蓋部材を一体成形する時に、ブッシングの軸孔側に樹脂が周り込み難くなる。そのため、被覆部の先端にバリが発生することを抑制できる。   In this lead storage battery, the lower end surface of the bushing is a flat surface. If a flat surface is provided, it is difficult for the resin to enter the shaft hole side of the bushing when the lid member is integrally formed by pouring the resin into the mold in which the bushing is inserted. Therefore, it can suppress that a burr | flash generate | occur | produces at the front-end | tip of a coating | coated part.

尚、本明細書中、「面取り形状」とは、対象となるコーナ部を、曲面や斜面として「角が無い形状」にすることを意味する。一方、「非面取り形状」とは、対象となるコーナ部が、「角を有する角形状、又は角形状と実質的に等しい形状」であることを意味する。角形状と実質的に等しい形状とは、例えばコーナ部を斜面や円弧面にして角を無くした場合でも、斜面の一辺の長さや半径が「0.1mm以下」など十分に小さい場合等である。   In the present specification, the “chamfered shape” means that a target corner portion is a “shape having no corners” as a curved surface or a slope. On the other hand, the “non-chamfered shape” means that the target corner portion is “an angular shape having a corner or a shape substantially equal to the angular shape”. The shape substantially equal to the square shape is, for example, a case where the length or radius of one side of the slope is sufficiently small, such as “0.1 mm or less”, even when the corner portion is sloped or arcuate and the corner is eliminated. .

<実施形態1>
本発明の実施形態1を図1ないし図9によって説明する。
1.鉛蓄電池の構造
鉛蓄電池10は、図1、図2に示すように電槽20と、発電要素である極板群30と、蓋部材50と、端子部60N、60Pとを備える。尚、以下の説明において、電槽20の横幅方向(端子部60N、60Pの並び方向)をX方向とし、高さ方向をY方向、電槽20の奥行方向をZ方向とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.
1. Lead Acid Battery Structure The lead acid battery 10 includes a battery case 20, an electrode plate group 30 that is a power generation element, a lid member 50, and terminal portions 60N and 60P as shown in FIGS. In the following description, the width direction of the battery case 20 (the arrangement direction of the terminal portions 60N and 60P) is the X direction, the height direction is the Y direction, and the depth direction of the battery case 20 is the Z direction.

電槽20は合成樹脂製であって、4枚の外壁21と底壁22を有し、上面が開放した箱型をなす。電槽20の内部は、隔壁(図略)により複数のセル室23に仕切られている。各セル室23は電槽20の横幅方向(図1のX方向)に並んで設けられており、各セル室23には、希硫酸からなる電解液Uと共に極板群30が収容されている。   The battery case 20 is made of a synthetic resin and has a box shape having four outer walls 21 and a bottom wall 22 and an open top surface. The inside of the battery case 20 is partitioned into a plurality of cell chambers 23 by partition walls (not shown). Each cell chamber 23 is provided side by side in the width direction (X direction in FIG. 1) of the battery case 20, and the electrode plate group 30 is accommodated in each cell chamber 23 together with the electrolyte U made of dilute sulfuric acid. .

極板群30は、正極板30Pと、負極板30Nと、両極板30P、30Nを仕切るセパレータ30Cとから構成されている。各極板30P、30Nは、格子体に活物質が充填されて構成されており、上部には耳部31P、31Nが設けられている。耳部31P、31Nは、ストラップ32を介して、同じ極性の極板30P、30Nを各セル室23内にて連結するために設けられている。   The electrode plate group 30 includes a positive electrode plate 30P, a negative electrode plate 30N, and a separator 30C that partitions both the electrode plates 30P and 30N. Each of the electrode plates 30P and 30N is configured by filling a lattice with an active material, and ears 31P and 31N are provided at the upper part. The ears 31 </ b> P and 31 </ b> N are provided to connect the electrode plates 30 </ b> P and 30 </ b> N having the same polarity through the strap 32 in each cell chamber 23.

蓋部材50は合成樹脂製であって、図1に示すように、電槽20の上面を封口する基部51と、基部51のX方向両側に一体成形された一対の装着部55と、基部51の外周縁に沿って形成された外周壁53とを備える。外周壁53は、基部51の外周縁から下向きに延びており、電槽20を構成する外壁21の上端部を囲う構造となっている。蓋部材50は、電槽20への組み付け後、電槽20に対して熱溶着等により、全周を溶着される。   The lid member 50 is made of synthetic resin, and as shown in FIG. 1, a base portion 51 that seals the upper surface of the battery case 20, a pair of mounting portions 55 that are integrally formed on both sides of the base portion 51 in the X direction, And an outer peripheral wall 53 formed along the outer peripheral edge. The outer peripheral wall 53 extends downward from the outer peripheral edge of the base portion 51, and has a structure that surrounds the upper end portion of the outer wall 21 constituting the battery case 20. After assembling the lid member 50 to the battery case 20, the entire periphery is welded to the battery case 20 by heat welding or the like.

蓋部材50のX方向両側には、図1に示すように、正極側の端子部60Pと、負極側の端子部60Nが設けられている   As shown in FIG. 1, a positive terminal portion 60P and a negative terminal portion 60N are provided on both sides of the lid member 50 in the X direction.

図2に示すように、負極側の端子部60Nは、ブッシング70Nと、極柱90Nとを含む。ブッシング70Nは鉛合金等の金属製であり、中心部に極柱90Nが貫通する軸孔を有する中空の円筒状をなす。ブッシング70Nは、図3、図7に示すように、端子接続部73と本体部75とを含む。端子接続部73と本体部75は上下に形成されており、両部73、75の境には鍔部74が形成されている。本体部75の外周面76には、環状をなす環状突起77A〜77Dが形成されている。環状突起77A〜77Dは、ブッシング70Nの軸方向(Y方向)に等間隔で、複数段(この例では、4段)設けられている。環状突起77A〜77Dは、ブッシング70Nの周方向の全周に形成されている。環状突起77A〜77Dのうち、最下方に位置する環状突起77Dは、ブッシング70の下方端面78に配置されており、図7や図8に示すように、環状突起77Dの下面が下方端面78と一致している。また、鍔部74は、ブッシング70Nの外周面76から外向きに張り出しており、円環状をしている。   As shown in FIG. 2, the negative terminal portion 60N includes a bushing 70N and a pole 90N. The bushing 70N is made of a metal such as a lead alloy, and has a hollow cylindrical shape having an axial hole through which the pole column 90N passes in the center. As shown in FIGS. 3 and 7, the bushing 70 </ b> N includes a terminal connection portion 73 and a main body portion 75. The terminal connection portion 73 and the main body portion 75 are formed vertically, and a flange portion 74 is formed at the boundary between both the portions 73 and 75. On the outer peripheral surface 76 of the main body 75, annular projections 77A to 77D having an annular shape are formed. The annular protrusions 77A to 77D are provided at a plurality of stages (four stages in this example) at equal intervals in the axial direction (Y direction) of the bushing 70N. The annular protrusions 77A to 77D are formed on the entire circumference of the bushing 70N in the circumferential direction. Of the annular protrusions 77 </ b> A to 77 </ b> D, the annular protrusion 77 </ b> D positioned at the lowermost position is disposed on the lower end surface 78 of the bushing 70, and the lower surface of the annular protrusion 77 </ b> D is connected to the lower end surface 78 as shown in FIGS. Match. Moreover, the collar part 74 protrudes outward from the outer peripheral surface 76 of the bushing 70N, and has an annular shape.

ブッシング70Nは、図2に示すように、蓋部材50の基部51をY方向に貫通しており、端子接続部73が蓋部材50の基部上面から突出して露出する。端子接続部73には、ハーネス端子などの外部の接続端子(図略)が組み付けされる。また、本体部75は、蓋部材50の基部51に形成された装着部55の内側に位置している。   As shown in FIG. 2, the bushing 70 </ b> N penetrates the base 51 of the lid member 50 in the Y direction, and the terminal connection portion 73 protrudes from the upper surface of the base of the lid member 50 and is exposed. An external connection terminal (not shown) such as a harness terminal is assembled to the terminal connection portion 73. The main body 75 is located inside the mounting portion 55 formed on the base 51 of the lid member 50.

装着部55は、図2に示すように、基部51の裏面から電槽内側、すなわち下方に延びている。装着部55は筒型であり、蓋部材50の基部51を上下に貫通している。蓋部材50は、ブッシング70Nをインサートした金型に樹脂を流して一体成形することにより製造されることから、樹脂がブッシング70Nの外周面を覆いつつ各段の環状突起77の間に隙間なく埋まるため、装着部55の内周面は、環状突起77と凹凸嵌合する。   As shown in FIG. 2, the mounting portion 55 extends from the back surface of the base portion 51 to the inside of the battery case, that is, downward. The mounting portion 55 has a cylindrical shape and penetrates the base portion 51 of the lid member 50 vertically. Since the lid member 50 is manufactured by pouring resin into a die having the bushing 70N inserted therein and integrally molding the resin, the resin covers the outer peripheral surface of the bushing 70N and is buried between the annular protrusions 77 of each step without any gap. Therefore, the inner peripheral surface of the mounting portion 55 is unevenly fitted with the annular protrusion 77.

また、装着部55の下端には、被覆部57が全周に亘って形成されている。被覆部57は、図4に示すように、最下方に位置する環状突起77Dの下面外側コーナ部83の外面を覆いつつ、更に下方端面78を覆っている。被覆部57の先端57Aは、内周面(軸孔)71の孔縁に達している。被覆部57は、装着部55と環状突起77の隙間に電解液Uが侵入するのを抑制する。   A covering portion 57 is formed at the lower end of the mounting portion 55 over the entire circumference. As shown in FIG. 4, the covering portion 57 covers the lower end surface 78 while covering the outer surface of the lower outer corner portion 83 of the annular protrusion 77 </ b> D positioned at the lowermost position. The front end 57 </ b> A of the covering portion 57 reaches the hole edge of the inner peripheral surface (shaft hole) 71. The covering portion 57 suppresses the electrolyte U from entering the gap between the mounting portion 55 and the annular protrusion 77.

極柱90Nは鉛合金等の金属製であり、概ね円柱形状をしている。極柱90Nはブッシング70Nの筒内に位置している。極柱90Nのうち、上端部91はブッシング70Nの端子接続部73と溶接により接合され、基端部93は極板群30のストラップ32Nに接合されている。尚、極柱90Nの外周面と、ブッシング70Nの内周面71には、上方に向かって細くなるテーパが付いており、ブッシング70の内周面71に対する極柱の挿入性を向上させている。   The pole column 90N is made of a metal such as a lead alloy and has a generally cylindrical shape. The pole 90N is located in the cylinder of the bushing 70N. Of the pole 90N, the upper end 91 is joined to the terminal connection 73 of the bushing 70N by welding, and the base end 93 is joined to the strap 32N of the electrode plate group 30. The outer peripheral surface of the pole column 90N and the inner peripheral surface 71 of the bushing 70N are tapered toward the upper side to improve the insertion property of the polar column with respect to the inner peripheral surface 71 of the bushing 70. .

正極側の端子部60Pは、負極側の端子部60Nと同様に、ブッシング70Pと、極柱90Pとを含む。正極側の端子部60Pの基本的な構造は、負極側の端子部60Nと同一であるため、説明は省略する。   Similarly to the negative terminal portion 60N, the positive terminal portion 60P includes a bushing 70P and a pole 90P. Since the basic structure of the positive terminal portion 60P is the same as that of the negative terminal portion 60N, description thereof is omitted.

2.蓋部材50の割れ対策
ブッシング70(70P、70Nの総称)と極柱90(90P、90Nの総称)との間には隙間があるため、電槽20内の電解液Uが、その隙間を這い上がり、ブッシング70の内面や極柱90の外面に付着する。また、ブッシング70の下方端面78と装着部55に形成された被覆部57との間にも電解液が侵入し、ブッシング70の下方端面78にも、電解液が付着する。
2. Measures against cracking of the lid member 50 Since there is a gap between the bushing 70 (generic name for 70P and 70N) and the pole 90 (generic name for 90P and 90N), the electrolyte U in the battery case 20 crawls the gap. It rises and adheres to the inner surface of the bushing 70 and the outer surface of the pole column 90. Further, the electrolytic solution also enters between the lower end surface 78 of the bushing 70 and the covering portion 57 formed on the mounting portion 55, and the electrolytic solution adheres to the lower end surface 78 of the bushing 70.

ブッシング70や極柱90は電解液Uによる腐食により膨張することが知られており、仮に、図5に示すように、最下方の環状突起77Dの下面外側コーナ部83を非面取り形状とすると、膨張したブッシング170は、装着部155を外方と下方に押し広げる。つまり、図5に示す矢印Fで示すように、内側から斜め下方向に力が加わるため、限界を超えると、装着部155に対して、ブッシング170の下端部分から斜めにひびK1が入る。尚、図5、図6は、装着部155のひび割れを説明するため、最下方の環状突起77Dの下面外側コーナ部83を非面取り形状とした比較例を示す図である。   The bushing 70 and the pole 90 are known to expand due to corrosion by the electrolytic solution U. As shown in FIG. 5, if the lower outer corner portion 83 of the lowermost annular projection 77D has a non-chamfered shape, The expanded bushing 170 pushes the mounting portion 155 outward and downward. That is, as indicated by an arrow F shown in FIG. 5, a force is applied obliquely downward from the inside. Therefore, when the limit is exceeded, a crack K1 enters the attachment portion 155 obliquely from the lower end portion of the bushing 170. 5 and 6 are diagrams showing a comparative example in which the lower outer corner portion 83 of the lowermost annular projection 77D has a non-chamfered shape in order to explain cracks in the mounting portion 155. FIG.

装着部155に入ったひびK1は、ブッシング170の膨張により外側に進行するため、ひびK1の先端が装着部155の外面に達すると、そこから電解液Uの侵入がおきる。そして、ブッシング170と装着部155との隙間に電解液Uが入りやすくなり、その結果、図6にて示すように、装着部155と環状突起77の隙間を電解液Uが這い上がり易くなる。そのため、ブッシング170の腐食が進んで、ブッシング170が基部51に近い位置においても膨張する。そして、ブッシング170の膨張により、端子部60(60P、60Nの総称)に無理な力が加わる結果、蓋部材50はひび割れを起こす。   Since the crack K1 that has entered the mounting portion 155 advances outward due to the expansion of the bushing 170, when the tip of the crack K1 reaches the outer surface of the mounting portion 155, the electrolyte U enters from there. Then, the electrolyte U easily enters the gap between the bushing 170 and the mounting portion 155. As a result, as shown in FIG. 6, the electrolyte U easily rises through the gap between the mounting portion 155 and the annular projection 77. Therefore, corrosion of the bushing 170 proceeds and the bushing 170 expands even at a position close to the base 51. As the bushing 170 expands, an excessive force is applied to the terminal portion 60 (a general term for 60P and 60N), and as a result, the lid member 50 is cracked.

そこで、鉛蓄電池10では、図7、図8の断面図に示すように、ブッシング70のうち、下方端面78と内周面71とで形成される下面内側コーナ部81は、面取りを行わない「非面取り形状」とした。下面内側コーナ部81を「非面取り形状」とすることで、ブッシング70と極柱90との隙間への電解液Uの侵入起点を狭くして、電解液Uを侵入しづらくすることができる。よって、ブッシング70及び極柱90の腐食にともなう膨張を遅くすることが可能となり、蓋部材50のひび割れを抑制できる。また、振動での極柱90の揺れを抑制して、ブッシング70と極柱90との溶接部分における亀裂、破損等を防止することができる。   Therefore, in the lead storage battery 10, as shown in the cross-sectional views of FIGS. 7 and 8, the lower inner corner portion 81 formed by the lower end surface 78 and the inner peripheral surface 71 of the bushing 70 does not chamfer. “Non-chamfered shape”. By setting the lower surface inner corner portion 81 to the “non-chamfered shape”, it is possible to narrow the entry point of the electrolyte solution U into the gap between the bushing 70 and the pole column 90 and make it difficult for the electrolyte solution U to enter. Therefore, it becomes possible to slow the expansion accompanying the corrosion of the bushing 70 and the pole 90, and the crack of the lid member 50 can be suppressed. Further, the vibration of the pole 90 due to vibration can be suppressed, and cracks, breakage, etc. at the welded portion between the bushing 70 and the pole 90 can be prevented.

一方、ブッシング70のうち、最下方に位置する環状突起77Dの外周面79と下方端面78とで形成される下面外側コーナ部83は、下面内側コーナ部81とは異なり、「面取り形状」とした。具体的には、下面外側コーナ部83を、円弧面による曲面形状としており、両面78、79を半径が「2mm」の円弧面により接続している。   On the other hand, unlike the lower surface inner corner portion 81, the lower surface outer corner portion 83 formed by the outer peripheral surface 79 and the lower end surface 78 of the annular projection 77D positioned at the lowermost portion of the bushing 70 has a “chamfered shape”. . Specifically, the lower outer corner portion 83 has a curved surface shape with an arc surface, and both surfaces 78 and 79 are connected by an arc surface having a radius of “2 mm”.

下面外側コーナ部83を「面取り形状」にすれば、腐食にともなう下面外側コーナ部83の膨張により被覆部57にかかる応力を、分散させることが可能で、被覆部57に対して局所的(例えば、コーナ部の角)に応力が集中するのを抑制することができる。そして、装着部55に対してひびK1が入ることを抑制できることから、仮に装着部55が割れて、ひびが装着部55の外面に達することや、端子部60の周辺部にひび割れが発生することを抑制できる。   If the lower surface outer corner portion 83 has a “chamfered shape”, it is possible to disperse stress applied to the covering portion 57 due to expansion of the lower surface outer corner portion 83 due to corrosion. It is possible to suppress the stress from being concentrated on the corners of the corners). And since it can control that crack K1 enters into attachment part 55, attachment part 55 is cracked temporarily, a crack reaches the outer surface of attachment part 55, and a crack occurs in a peripheral part of terminal part 60. Can be suppressed.

しかも、下面外側コーナ部83は、曲面(具体的には、円弧面)であるため、下面外側コーナ部83を覆う被覆部57にかかる応力を、より均等に分散させることが可能であり、局所的に応力が集中するのをより一層抑制することができる。   In addition, since the lower outer corner portion 83 is a curved surface (specifically, a circular arc surface), the stress applied to the covering portion 57 covering the lower outer corner portion 83 can be more evenly distributed. Therefore, the concentration of stress can be further suppressed.

加えて、最下方の環状突起77Dを、ブッシング70Nの下方端面78に配置している。そのため、下方端面78に環状突起77がない場合に比べて、被覆部57の先端57Aから被覆部57の割れの起点になりやすい部分までの距離が長くなる。そのため、被覆部57の先端57Aから侵入する電解液Uが割れの起点に対応する下面外側コーナ部83に到達するのを遅らせることが可能となり、腐食にともなう、下面外側コーナ部83の膨張を遅らせることが可能となる。そのため、装着部155に対してひびK1が入ることを、一層抑制できる   In addition, the lowermost annular projection 77D is disposed on the lower end surface 78 of the bushing 70N. Therefore, the distance from the tip 57A of the covering portion 57 to the portion where the covering portion 57 is likely to start cracking is longer than when the lower end surface 78 has no annular protrusion 77. Therefore, it is possible to delay the electrolyte U entering from the front end 57A of the covering portion 57 from reaching the lower outer corner portion 83 corresponding to the starting point of cracking, and to delay the expansion of the lower outer corner portion 83 due to corrosion. It becomes possible. Therefore, it is possible to further suppress the crack K1 from entering the mounting portion 155.

また、下面外側コーナ部83を「面取り形状」にすることで、図4に示すように、下面外側コーナ部83から装着部55の外面までの距離L1が、図5中の距離L2に比べて長くなり、装着部55のうち、ひびK1が入る部分の厚さが増す。そのため、被覆部57が割れ難くなる。   Further, by making the lower surface outer corner portion 83 “chamfered”, as shown in FIG. 4, the distance L1 from the lower surface outer corner portion 83 to the outer surface of the mounting portion 55 is larger than the distance L2 in FIG. It becomes longer and the thickness of the portion of the mounting portion 55 where the crack K1 enters increases. Therefore, the covering portion 57 is difficult to break.

また、ブッシング70Nのうち、最下方に位置する環状突起77Dの下面外側コーナ部83を除くそれ以外のコーナ部、例えば、環状突起77Dの上面外側コーナ部84、端子接続部73の上面コーナ部85や、鍔部74のコーナ部87、環状突起77A〜77Cのコーナ部89はいずれも、面取りを行わない非面取り形状となっている。   Further, in the bushing 70N, other corner portions excluding the lower surface outer corner portion 83 of the annular projection 77D positioned at the lowermost position, for example, the upper surface outer corner portion 84 of the annular projection 77D, and the upper surface corner portion 85 of the terminal connection portion 73. In addition, the corner portion 87 of the flange portion 74 and the corner portion 89 of the annular protrusions 77A to 77C have a non-chamfered shape that is not chamfered.

尚、ブッシング70には、正極用のブッシング70Pと負極用のブッシング70Nがある。本鉛蓄電池1では、両極のブッシング70P、70Nとも、下面内側コーナ部81は「非面取り形状」としている。一方、下面外側コーナ部83は、負極用のブッシング70Nだけ「面取り形状」とし、正極用のブッシング70Pは、「非面取り形状」としている。   The bushing 70 includes a positive bushing 70P and a negative bushing 70N. In the lead storage battery 1, the lower inner corner portion 81 has a “non-chamfered shape” in both the bushings 70 </ b> P and 70 </ b> N. On the other hand, the lower outer corner portion 83 has a “chamfered shape” only for the negative electrode bushing 70N, and the positive electrode bushing 70P has a “non-chamfered shape”.

また、ブッシング70の下方端面78は平面である。具体的には、内周面(軸孔)71の縁部にあたる、図8に示す点(a)から点(b)までの間が平面となっている。   The lower end surface 78 of the bushing 70 is a flat surface. Specifically, a plane from point (a) to point (b) shown in FIG. 8 corresponding to the edge of the inner peripheral surface (shaft hole) 71 is a flat surface.

このようにすることで、被覆部57の先端部57Aにバリが発生することを抑制できる。具体的に説明すると、図9は、蓋部材50を成形する成形型の一部を示したものであり、成形型100は、装着部55を成形する成形面111を有する金型110と、成形時、ブッシング70の内周面(軸孔)71に挿入される中子ピン120を備えている。   By doing in this way, it can suppress that a burr | flash generate | occur | produces in the front-end | tip part 57A of the coating | coated part 57. FIG. More specifically, FIG. 9 shows a part of a mold for molding the lid member 50. The mold 100 includes a mold 110 having a molding surface 111 for molding the mounting portion 55, and a molding. At this time, a core pin 120 inserted into the inner peripheral surface (shaft hole) 71 of the bushing 70 is provided.

ブッシング70の下方端面78が平面だと、成形型100に樹脂を充填して蓋部材50を射出成形する時に、成形型100に充填された樹脂が、図9に示す破線矢印の経路で、内周面(軸孔)71と中子ピン120の隙間に周り込み難くなる。そのため、被覆部57の先端部57Aにバリが発生することを抑制できる。   If the lower end surface 78 of the bushing 70 is a flat surface, when the lid 100 is injection molded by filling the mold 100 with resin, the resin filled in the mold 100 passes through the path indicated by the broken line arrow shown in FIG. It becomes difficult to go around the gap between the peripheral surface (shaft hole) 71 and the core pin 120. Therefore, it is possible to suppress the occurrence of burrs at the tip portion 57 </ b> A of the covering portion 57.

2.効果説明
鉛蓄電池10によれば、下面外側コーナ部83の形状変更により、蓋部材50のひび割れを抑制するため、新たに追加される部品がなく、部品増にならない。
2. Description of Effect According to the lead storage battery 10, since the crack of the lid member 50 is suppressed by changing the shape of the lower outer corner portion 83, there is no newly added component and the number of components is not increased.

<実施形態2>
次に、本発明の実施形態2を図10、図11によって説明する。
実施形態1では、負極側のブッシング70Nの、下面内側コーナ部81を「非面取り形状」とし、下面外側コーナ部83を、「円弧面による面取り形状」とした。実施形態2では、図10、図11に示すように、負極側のブッシング270Nの、下面内側コーナ部81を「非面取り形状」とし、下面外側コーナ部83を、「斜面による面取り形状」とする。具体的には、下面外側コーナ部83を、一辺の長さLcが「2mm」で45°の斜面形状としている。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the first embodiment, the lower inner corner portion 81 of the bushing 70N on the negative electrode side has a “non-chamfered shape”, and the lower outer corner portion 83 has a “chamfered shape by an arc surface”. In the second embodiment, as shown in FIGS. 10 and 11, the lower surface inner corner portion 81 of the bushing 270N on the negative electrode side has a “non-chamfered shape”, and the lower surface outer corner portion 83 has a “chamfered shape by an inclined surface”. . Specifically, the lower outer corner portion 83 has a slope shape of 45 ° with a side length Lc of “2 mm”.

下面外側コーナ部83を、「斜面による面取り形状」とした場合も、実施形態1と同様に、下面外側コーナ部83の腐食にともなう膨張により、下面外側コーナ部83を覆う被覆部57にかかる応力を分散させて、局所的に応力が集中するのを抑制することができる。そして、装着部55に対してひびK1が入ることを抑制できることから、仮に装着部55が割れ落ちて、ひびが装着部55の外面に達することや、端子部60の周辺部にひび割れが発生することを抑制できる。   Even when the lower surface outer corner portion 83 has a “chamfered shape by an inclined surface”, the stress applied to the covering portion 57 that covers the lower surface outer corner portion 83 due to the expansion caused by the corrosion of the lower surface outer corner portion 83 is the same as in the first embodiment. It is possible to suppress the concentration of stress locally by dispersing. Since the crack K1 can be prevented from entering the mounting portion 55, the mounting portion 55 is broken down and the crack reaches the outer surface of the mounting portion 55, or a crack occurs in the peripheral portion of the terminal portion 60. This can be suppressed.

<実施形態3>
次に、本発明の実施形態3を図12によって説明する。
実施形態1では、最下方の環状突起77Dの下面外側コーナ部83を、半径が「2mm」の円弧面により、面取りした例を示した。実施形態3では、最下方の環状突起77Dの下面外側コーナ部83を、半径が「1mm」の円弧面により、面取りしている。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described with reference to FIG.
In the first embodiment, an example in which the lower outer corner portion 83 of the lowermost annular projection 77D is chamfered with an arc surface having a radius of “2 mm” is shown. In the third embodiment, the lower outer corner portion 83 of the lowermost annular projection 77D is chamfered with an arc surface having a radius of “1 mm”.

実施形態3のように、下面外側コーナ部83を、半径「1mm」の円弧面で面取りした場合も、実施形態1と同様、下面外側コーナ部83の腐食にともなう膨張により、下面外側コーナ部83を覆う被覆部57にかかる応力を分散させて局所的に応力が集中するのを抑制することができる。尚、面取りの深さ(円弧の半径)は、少なくとも、R=0.5mm以上であることが好ましい。   As in the third embodiment, even when the lower outer corner portion 83 is chamfered with an arc surface having a radius of “1 mm”, the lower outer corner portion 83 is expanded due to the corrosion of the lower outer corner portion 83 as in the first embodiment. It is possible to disperse the stress applied to the covering portion 57 that covers the surface to suppress local concentration of the stress. The chamfering depth (arc radius) is preferably at least R = 0.5 mm.

また、装着部55と対向するコーナ部の沿面距離は、面取りが深くなるにつれ短くなり、面取りしないと長くなる。   Further, the creepage distance of the corner portion facing the mounting portion 55 becomes shorter as the chamfer becomes deeper and becomes longer if the chamfer becomes deeper.

実施形態3のブッシング370Nは、実施形態1と同様、外周面76に環状突起77A〜77Dを設けており、最下方に位置する環状突起77Dを除く、それ以外の環状突起77A〜77Cは、コーナ部89を面取りしていない。そのため、環状突起77A〜77Cと、環状突起77Dとの間で、装着部55と対向するコーナ部の沿面距離を比較すると、面取りをしていない環状突起77A〜77Cの方が、沿面距離が長くなる。   The bushing 370N of the third embodiment is provided with annular projections 77A to 77D on the outer peripheral surface 76 as in the first embodiment, and the other annular projections 77A to 77C except the annular projection 77D positioned at the lowermost portion are corners. The part 89 is not chamfered. Therefore, when the creeping distance of the corner portion facing the mounting portion 55 is compared between the annular protrusions 77A to 77C and the annular protrusion 77D, the annular protrusions 77A to 77C that are not chamfered have a longer creepage distance. Become.

例えば、環状突起77Dの下面外側コーナ部83の沿面距離は、図12中の「Lce」である。一方、コーナ部の大きさを同じ条件(Lcd=Lfg、Lde=Lgh)とすれば、環状突起77Cの下面側のコーナ部89の沿面距離は、図12中の「Lfg」+「Lgh」であることから、環状突起77Cのコーナ部89の方が、沿面距離が長い。   For example, the creeping distance of the lower outer corner portion 83 of the annular protrusion 77D is “Lce” in FIG. On the other hand, if the size of the corner portion is the same (Lcd = Lfg, Lde = Lgh), the creepage distance of the corner portion 89 on the lower surface side of the annular protrusion 77C is “Lfg” + “Lgh” in FIG. Therefore, the corner portion 89 of the annular protrusion 77C has a longer creepage distance.

沿面距離を長くすることにより、装着部55とブッシング370Nとの隙間から、電解液Uが蓋部材50の表面側へ浸み出ることを抑制する効果が高まるので、蓋部材50の割れを抑制することができる。   By increasing the creepage distance, the effect of suppressing the electrolyte U from seeping out to the surface side of the lid member 50 from the gap between the mounting portion 55 and the bushing 370N is enhanced, and thus cracking of the lid member 50 is suppressed. be able to.

尚、「Lcd」は図12中の点(c)から点(d)までの長さ、「Lde」は図12中の点(d)から点(e)までの長さ、「Lce」は図12中の点(c)から点(e)までの長さである。また、「Lfg」は、図12中の点(f)から点(g)までの長さ、「Lgh」は、図12中の点(g)から点(h)までの長さである。   Note that “Lcd” is the length from point (c) to point (d) in FIG. 12, “Lde” is the length from point (d) to point (e) in FIG. 12, and “Lce” is This is the length from point (c) to point (e) in FIG. “Lfg” is the length from point (f) to point (g) in FIG. 12, and “Lgh” is the length from point (g) to point (h) in FIG.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)実施形態1では、正極用のブッシング70Pの下面外側コーナ部83は、「非面取り形状」としたが、正極用のブッシング70Pも、負極用のブッシング70Nと同様に、下面外側コーナ部83を「面取り形状」としてもよい。すなわち、両極のブッシング70P、70Nともに、下面内側コーナ部81は、「非面取り形状」とし、下面外側コーナ部83は、「面取り形状」としてもよい。尚、「面取り形状」は、角が無い形状であればよく、実施形態1に示す曲面(円弧面)による面取り形状、実施形態2に示す斜面による面取り形状のどちらであってもよい。   (1) In the first embodiment, the lower surface outer corner portion 83 of the positive electrode bushing 70P has a “non-chamfered shape”, but the positive electrode bushing 70P is also formed on the lower surface outer corner portion in the same manner as the negative electrode bushing 70N. 83 may be a “chamfered shape”. That is, in both of the bushings 70P and 70N, the lower surface inner corner portion 81 may have a “non-chamfered shape”, and the lower surface outer corner portion 83 may have a “chamfered shape”. The “chamfered shape” may be a shape without corners, and may be either the chamfered shape by the curved surface (arc surface) shown in the first embodiment or the chamfered shape by the inclined surface shown in the second embodiment.

(2)実施形態1では、環状突起77Dの上面外側コーナ部84を、「非面取り形状」とした例を示したが、下面外側コーナ部83が面取りされていればよく、例えば、図13に示すブッシング470Nのように、下面外側コーナ部83に加えて、環状突起77Dの上面外側コーナ部84を、更に面取りするようにしてもよい。   (2) In the first embodiment, the upper surface outer corner portion 84 of the annular protrusion 77D is shown as “non-chamfered shape”, but the lower surface outer corner portion 83 only needs to be chamfered. Like the bushing 470N shown, in addition to the lower surface outer corner portion 83, the upper surface outer corner portion 84 of the annular protrusion 77D may be further chamfered.

(3)実施形態1では、ブッシング70Nの外周面に、複数の環状突起77A〜77Dを形成した例を示したが、図14に示すブッシング570Nのように、環状突起77A〜77Dを廃止してもよい。そして、図14に示すブッシング570Nでは、ブッシングの内周面71と下方端面78とで形成される下面内側コーナ部81を「非面取り形状」とし、ブッシング70の外周面76と下方端面78とで形成される下面外側コーナ部83を「面取り形状」としている。そのため、実施形態1と同様に、下面外側コーナ部83の腐食にともなう膨張により、下面外側コーナ部83を覆う被覆部57にかかる応力を分散させて局所的に応力が集中するのを抑制することができる。   (3) In the first embodiment, the example in which the plurality of annular protrusions 77A to 77D are formed on the outer peripheral surface of the bushing 70N has been described. However, the annular protrusions 77A to 77D are abolished like the bushing 570N illustrated in FIG. Also good. In the bushing 570N shown in FIG. 14, the lower inner corner portion 81 formed by the inner peripheral surface 71 and the lower end surface 78 of the bushing has a “non-chamfered shape”, and the outer peripheral surface 76 and the lower end surface 78 of the bushing 70 are The lower surface outer corner portion 83 formed has a “chamfered shape”. For this reason, as in the first embodiment, the stress applied to the covering portion 57 covering the lower surface outer corner portion 83 due to the expansion caused by the corrosion of the lower surface outer corner portion 83 is dispersed to suppress local concentration of stress. Can do.

(4)実施形態1では、下面外側コーナ部83を、曲面形状にした例を示した。具体的には円弧面にした例を示したが、それ以外に長円面等であってもよい。   (4) In Embodiment 1, the example which made the lower surface outside corner part 83 into the curved-surface shape was shown. Specifically, an example of an arc surface has been shown, but an ellipse surface or the like may be used.

10...鉛蓄電池
20...電槽
30...極板群(本発明の「発電要素」の一例)
50...蓋部材
51...基部
55...装着部
57...被覆部
60P、60N...端子部
70P、70N...ブッシング
81...下面内側コーナ部(本発明の「内側コーナ部」の一例)
83...下面外側コーナ部(本発明の「外側コーナ部」の一例)
77...環状突起(本発明の「突起」の一例)
78...下方端面
80...極柱
DESCRIPTION OF SYMBOLS 10 ... Lead storage battery 20 ... Battery case 30 ... Electrode plate group (an example of "power generation element" of the present invention)
50 ... Lid member 51 ... Base 55 ... Mounting part 57 ... Covering part 60P, 60N ... Terminal part 70P, 70N ... Bushing 81 ... Bottom inner corner part (of the present invention Example of “inner corner”)
83 ... lower outer corner portion (an example of "outer corner portion" of the present invention)
77 ... annular protrusion (an example of the "protrusion" of the present invention)
78 ... Lower end face 80 ... Polar pole

Claims (4)

発電要素と、
前記発電要素を収容する電槽と、
前記電槽を封口する基部及び前記基部から前記電槽内に向かって延在する装着部を有する蓋部材と、
前記装着部に設けられた筒型のブッシングと、
前記発電要素に接続され、前記ブッシングの筒内に挿入された極柱とを含み、
前記装着部は、前記ブッシングの前記電槽内を向いた下方端面と外周面とで形成される外側コーナ部を覆う被覆部を有し、
前記ブッシングの外側コーナ部は、前記ブッシングの前記下方端面と内周面とで形成された内側コーナ部と異なり、面取り形状であり
前記ブッシングの外側コーナ部は、前記下方端面と前記外周面とを接続する曲面を有し、
前記曲面は、半径が0.5mm以上の円弧面である、鉛蓄電池。
Power generation elements,
A battery case containing the power generation element;
A lid member having a base for sealing the battery case and a mounting part extending from the base toward the battery case;
A cylindrical bushing provided in the mounting portion;
A pole pole connected to the power generation element and inserted into the bushing cylinder;
The mounting portion has a covering portion that covers an outer corner portion formed by a lower end surface facing the inside of the battery case and an outer peripheral surface of the bushing,
The outer corner portion of the bushing is chamfered, unlike the inner corner portion formed by the lower end surface and the inner peripheral surface of the bushing ,
The outer corner portion of the bushing has a curved surface connecting the lower end surface and the outer peripheral surface,
The lead-acid battery , wherein the curved surface is an arc surface having a radius of 0.5 mm or more .
請求項1に記載の鉛蓄電池であって、
前記ブッシングは、前記外周面から突出して環状に形成され、筒の延在方向に間隔をあけて配置された複数の突起を有しており、
前記突起のコーナ部の前記装着部と対向する沿面距離の長さは、前記外側コーナ部の前記装着部と対向する沿面距離の長さよりも、長い鉛蓄電池。
The lead acid battery according to claim 1 ,
The bushing protrudes from the outer peripheral surface, is formed in an annular shape, and has a plurality of protrusions arranged at intervals in the extending direction of the cylinder,
The length of the creeping distance of the corner portion of the protrusion facing the mounting portion is longer than the length of the creeping distance of the outer corner portion facing the mounting portion.
請求項に記載の鉛蓄電池であって、
前記複数の突起のうち最も下方の突起は、前記下方端面に配置されている鉛蓄電池。
The lead acid battery according to claim 2 ,
The lowermost protrusion among the plurality of protrusions is a lead-acid battery disposed on the lower end surface.
請求項1ないし請求項のいずれか1項に記載の鉛蓄電池であって、
前記ブッシングの前記下方端面は、平面である鉛蓄電池。
The lead-acid battery according to any one of claims 1 to 3 ,
The lower end surface of the bushing is a lead storage battery that is a flat surface.
JP2014027661A 2014-02-17 2014-02-17 Lead acid battery Active JP6337496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027661A JP6337496B2 (en) 2014-02-17 2014-02-17 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027661A JP6337496B2 (en) 2014-02-17 2014-02-17 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2015153660A JP2015153660A (en) 2015-08-24
JP6337496B2 true JP6337496B2 (en) 2018-06-06

Family

ID=53895694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027661A Active JP6337496B2 (en) 2014-02-17 2014-02-17 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6337496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167004B2 (en) 2019-12-16 2022-11-08 富士通フロンテック株式会社 Deposit transaction method, transaction system, cash machine, and host computer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144931A (en) * 1978-05-04 1979-11-12 Furukawa Battery Co Ltd Method of producing storage battery cover body with lead pushing
JPS5551816U (en) * 1978-09-30 1980-04-05
JPS5551815U (en) * 1978-09-30 1980-04-05
JPS57154066U (en) * 1981-03-24 1982-09-28
JPS57170271U (en) * 1981-04-21 1982-10-26
JPS6085065U (en) * 1983-11-17 1985-06-12 松下電器産業株式会社 lead acid battery
US5905002A (en) * 1997-02-13 1999-05-18 Gnb Technologies, Inc. Lead acid storage battery
JP5380105B2 (en) * 2009-02-19 2014-01-08 古河電池株式会社 Bushing cast molding for storage battery
JP5547045B2 (en) * 2010-03-30 2014-07-09 古河電池株式会社 Bushing manufacturing method and bushing mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167004B2 (en) 2019-12-16 2022-11-08 富士通フロンテック株式会社 Deposit transaction method, transaction system, cash machine, and host computer

Also Published As

Publication number Publication date
JP2015153660A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US11831028B2 (en) Secondary battery
CN108963122A (en) Top cap assembly and secondary battery
JP5994640B2 (en) Electricity storage element
JP2020035694A (en) Secondary battery
JP2015118804A (en) Lead storage battery and manufacturing method of the same
JP2015225839A (en) Square secondary battery
JP2017162764A (en) Manufacturing method of battery module
JP2016122604A (en) Power storage element
JP6337496B2 (en) Lead acid battery
JP2017059419A (en) Lead storage battery
CN215911484U (en) Top cover of power battery and power battery with same
JP2011204405A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN219067143U (en) Battery and battery pack
JP2008300319A (en) Terminal structure of storage battery
WO2023103395A1 (en) Battery top cover plate and battery
JP2013161719A (en) Battery
JP2017220393A (en) Secondary battery
JP7121062B2 (en) lead acid battery
JP2015216085A (en) Lead storage battery
JP6646353B2 (en) Lead storage battery
JP2019029209A (en) Power storage element
JP6213769B2 (en) Lead acid battery
JP6235333B2 (en) Lead acid battery
JP6052071B2 (en) Lead acid battery
JP6012102B2 (en) Lead-acid battery lid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150