JP6334947B2 - Decomposition method of carbon dioxide by microwave nonequilibrium plasma - Google Patents

Decomposition method of carbon dioxide by microwave nonequilibrium plasma Download PDF

Info

Publication number
JP6334947B2
JP6334947B2 JP2014030235A JP2014030235A JP6334947B2 JP 6334947 B2 JP6334947 B2 JP 6334947B2 JP 2014030235 A JP2014030235 A JP 2014030235A JP 2014030235 A JP2014030235 A JP 2014030235A JP 6334947 B2 JP6334947 B2 JP 6334947B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
microwave
reaction tube
plasma
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014030235A
Other languages
Japanese (ja)
Other versions
JP2015155356A (en
Inventor
康彰 城
康彰 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2014030235A priority Critical patent/JP6334947B2/en
Publication of JP2015155356A publication Critical patent/JP2015155356A/en
Application granted granted Critical
Publication of JP6334947B2 publication Critical patent/JP6334947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02A50/2342

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、非平衡プラズマにより二酸化炭素を分解処理し、分解後の生成物として工業用原料として有用な一酸化炭素を高分解率で得ることのできる方法に関する。   The present invention relates to a method capable of decomposing carbon dioxide with non-equilibrium plasma and obtaining carbon monoxide useful as an industrial raw material as a product after decomposition at a high decomposition rate.

石炭、石油、天然ガスなどの化石燃料やプラスチックや化学繊維などの石油製品を燃やすと二酸化炭素が発生する。大気中の二酸化炭素濃度が増加すると、地表から放射された赤外線の一部が吸収されて温室効果をもたらす。この温室効果が近年の地球温暖化の主原因であると考えられている。   Carbon dioxide is generated when burning fossil fuels such as coal, oil, and natural gas, and petroleum products such as plastics and chemical fibers. As the concentration of carbon dioxide in the atmosphere increases, some of the infrared radiation emitted from the surface is absorbed, resulting in a greenhouse effect. This greenhouse effect is considered to be the main cause of global warming in recent years.

この地球温暖化を防止するため、二酸化炭素の排出量抑制の必要性が国際的に叫ばれているが、我国では2050年までに温室効果ガスの排出量を60%から80%削減することを目標に設定し、低炭素社会の実現に向けて世界を牽引している。   In order to prevent this global warming, there is an international cry for the need to reduce carbon dioxide emissions, but in Japan we will reduce greenhouse gas emissions by 60 to 80% by 2050. We set goals and are leading the world toward the realization of a low-carbon society.

一方、平成23年3月に発生した東北地方太平洋沖地震による原発事故によって、全国の原子力発電所は稼働停止に至り、電力の供給不足が現実的な問題として発生した。   On the other hand, the nuclear power plant accident caused by the Tohoku-Pacific Ocean Earthquake that occurred in March 2011 resulted in the shutdown of nuclear power plants nationwide, causing a shortage of power supply as a practical problem.

そこで、これまで稼働停止していた火力発電所を活用することで電力供給不足を補う対策が採られているが、火力発電所では化石燃料が使用されるので、二酸化炭素の発生量が増大してしまう。   Therefore, measures have been taken to compensate for the shortage of power supply by utilizing thermal power plants that have been suspended until now. However, since fossil fuels are used in thermal power plants, the amount of carbon dioxide generated increases. End up.

このような状況の中、二酸化炭素の処理技術として種々の方法が提案されている。例えば、火力発電所や工場などの排出源から効率よく二酸化炭素を回収し地中に埋設する方法(CCS: carbon dioxide capture and storage)や、下記特許文献1に記載されるように非熱プラズマ雰囲気中で二酸化炭素を炭素と酸素に分解する方法、下記特許文献2に記載されるプラズマ気相反応によって二酸化炭素を可燃性ガスに転化する方法、下記特許文献3に記載されるように誘電体バリア放電を利用して二酸化炭素を分解する方法等が提案されている。   Under such circumstances, various methods have been proposed as carbon dioxide treatment techniques. For example, a carbon dioxide capture and storage (CCS) method that efficiently collects carbon dioxide from an emission source such as a thermal power plant or factory, and a non-thermal plasma atmosphere as described in Patent Document 1 below. A method for decomposing carbon dioxide into carbon and oxygen, a method for converting carbon dioxide into a combustible gas by a plasma gas phase reaction described in Patent Document 2 below, and a dielectric barrier as described in Patent Document 3 below A method of decomposing carbon dioxide using electric discharge has been proposed.

特表2011−500309Special table 2011-500309 特開2003−27241JP2003-27241 特開2013−147411JP2013-147411A

前述した二酸化炭素を地中に埋設する方法は、二酸化炭素が非常に安定した物質であり、その分解が非常に困難であることから、分解することなく地中深くに埋設するという考えに基づいているが、この方法では二酸化炭素量は根本的に低減しておらず、また、処理費用も膨大となる。   The above-mentioned method of burying carbon dioxide in the ground is based on the idea that carbon dioxide is a very stable substance and its decomposition is very difficult, so it is buried deeply in the ground without being decomposed. However, this method does not fundamentally reduce the amount of carbon dioxide, and the processing cost is enormous.

また、非熱プラズマ中で二酸化炭素を炭素と酸素に分解する方法やプラズマ気相反応によって二酸化炭素を可燃性ガスに転化する方法は、二酸化炭素量を根本的に低減することはできるが、二酸化炭素の分解に触媒やガス化剤が必要となり、設備構造が複雑化し、設備費用が増加する。   In addition, the method of decomposing carbon dioxide into carbon and oxygen in non-thermal plasma and the method of converting carbon dioxide to combustible gas by plasma gas phase reaction can fundamentally reduce the amount of carbon dioxide. Catalysts and gasifying agents are required for carbon decomposition, which complicates the equipment structure and increases equipment costs.

一方、誘電体バリア放電を利用して二酸化炭素を分解する方法は、二酸化炭素量を根本的に低減でき、かつ、二酸化炭素の分解に触媒やガス化剤が必要ない利点を有するが、二酸化炭素の分解率が最高でも46%と低い問題点がある。   On the other hand, the method of decomposing carbon dioxide using dielectric barrier discharge has the advantage that it can fundamentally reduce the amount of carbon dioxide and does not require a catalyst or gasifying agent to decompose carbon dioxide. There is a problem that the decomposition rate is as low as 46% at the maximum.

そこで、本発明は触媒やガス化剤を使用することなく、二酸化炭素を高分解率で分解することのできる二酸化炭素の分解方法を提供する。   Therefore, the present invention provides a carbon dioxide decomposition method that can decompose carbon dioxide at a high decomposition rate without using a catalyst or a gasifying agent.

請求項1記載の発明は、1000[Pa]未満に減圧した系内にマイクロ波を照射し、該マイクロ波の照射位置に二酸化炭素単体を投入することにより、触媒やガス化剤を用いることなく、投入した二酸化炭素を電離して一酸化炭素を少なくとも46%を上回る転化率で得ることを特徴とする。 The invention according to claim 1 irradiates a microwave into a system whose pressure is reduced to less than 1000 [Pa], and introduces carbon dioxide alone at the irradiation position of the microwave without using a catalyst or a gasifying agent. The carbon dioxide charged is ionized to obtain carbon monoxide at a conversion rate of at least 46% .

請求項2記載の発明は、請求項1記載の発明において、前記マイクロ波を700[W]で出力する場合、前記系内を200[Pa]に減圧し、前記マイクロ波を700[W]より低くして出力する場合、前記系内を200[Pa]から更に減圧することを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, when the microwave is output at 700 [W], the pressure in the system is reduced to 200 [Pa], and the microwave is reduced from 700 [W]. When the output is made lower, the pressure in the system is further reduced from 200 [Pa] .

請求項1記載の発明によれば、1000[Pa]未満に減圧した系内にマイクロ波を照射するだけで、触媒やガス化剤を一切使用することなく、二酸化炭素の分解が高分解率で可能となる。 According to the first aspect of the present invention, it is possible to decompose carbon dioxide at a high decomposition rate without using any catalyst or gasifying agent by simply irradiating the system with a pressure reduced to less than 1000 [Pa]. It becomes possible.

請求項2記載の発明によれば、マイクロ波の出力が700[W]の場合、系内を200[Pa]に減圧することで、高効率で二酸化炭素単体を一酸化炭素に電離するとともに、マイクロ波の出力を700[W]より低くし消費電力を抑制する場合は、系内を200[Pa]より更に減圧することで、より一層、二酸化炭素の分解率を高めることができる。 According to the second aspect of the present invention, when the microwave output is 700 [W], the inside of the system is depressurized to 200 [Pa], thereby ionizing carbon dioxide alone to carbon monoxide with high efficiency. In the case where the microwave output is set lower than 700 [W] and the power consumption is suppressed, the decomposition rate of carbon dioxide can be further increased by further reducing the pressure in the system from 200 [Pa].

本発明による二酸化炭素の分解方法を実現するための処理装置を示す全体構成図である。It is a whole block diagram which shows the processing apparatus for implement | achieving the decomposition method of the carbon dioxide by this invention.

以下、本発明の実施の形態について図1を用いて説明する。図1は本発明による二酸化炭素の分解方法を実現するための処理装置Aを示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a processing apparatus A for realizing the carbon dioxide decomposition method according to the present invention.

処理装置Aは、マイクロ波発振器1と、マイクロ波導波管2と、二酸化炭素の供給管3と、内部にプラズマを発生させる反応管4と、反応管4内の気圧を調整する真空ポンプ5と、反応管4内の気圧を測定する圧力計6によって概略構成されている。   The processing apparatus A includes a microwave oscillator 1, a microwave waveguide 2, a carbon dioxide supply tube 3, a reaction tube 4 that generates plasma therein, and a vacuum pump 5 that adjusts the atmospheric pressure in the reaction tube 4. The pressure gauge 6 for measuring the atmospheric pressure in the reaction tube 4 is generally configured.

マイクロ波導波管2は、マイクロ波発振器1が発振したマイクロ波の反射を吸収して、マイクロ波が発振器1内に戻ることを防止するアイソレータ7と、マイクロ波の強度を調べるパワーモニタ8と、マイクロ波を共振させることで、反応管4内のプラズマ形成部Xにマイクロ波の焦点を合わせるスタブチューナ9を備えている。   The microwave waveguide 2 absorbs the reflection of the microwave oscillated by the microwave oscillator 1 and prevents the microwave from returning into the oscillator 1, a power monitor 8 for examining the intensity of the microwave, A stub tuner 9 for focusing the microwave on the plasma forming part X in the reaction tube 4 by resonating the microwave is provided.

二酸化炭素の供給管3は、反応管4内に供給する二酸化炭素の量を調節するマスフローコントローラ10を備えている。   The carbon dioxide supply pipe 3 includes a mass flow controller 10 that adjusts the amount of carbon dioxide supplied into the reaction pipe 4.

反応管4は、マイクロ波導波管2によって導かれるマイクロ波を通過可能とする透明の中空石英管からなり、その上端には、二酸化炭素の供給管3のみを貫通させて、反応管4内部を外気と遮断する上側封止栓11が取り付けられている。   The reaction tube 4 is formed of a transparent hollow quartz tube that allows microwaves guided by the microwave waveguide 2 to pass therethrough. An upper sealing plug 11 that shuts off the outside air is attached.

反応管4の下端には、真空ポンプ5に接続される気圧調整管12のみ接続した下端封止栓13が取り付けられており、反応管4の外周には、反応管4内に照射されたマイクロ波が反応管4外部に漏洩することを防止するマイクロ波漏洩防止網14が取り付けられている。   At the lower end of the reaction tube 4, a lower end sealing plug 13 connected only to the pressure adjusting tube 12 connected to the vacuum pump 5 is attached, and on the outer periphery of the reaction tube 4, the micro-tube irradiated in the reaction tube 4 is attached. A microwave leakage prevention network 14 for preventing waves from leaking outside the reaction tube 4 is attached.

真空ポンプ5の後段には、反応管4内の気体(酸素や一酸化炭素)をサンプリングポート15又は排気管16に切り換えて排出する切換弁17が取り付けられている。   A switching valve 17 for switching the gas (oxygen or carbon monoxide) in the reaction tube 4 to the sampling port 15 or the exhaust pipe 16 and discharging it is attached to the rear stage of the vacuum pump 5.

つづいて、上記の如く構成した処理装置Aを用いて二酸化炭素を分解する方法について説明する。二酸化炭素を分解処理する場合、図1に示す供給管3から二酸化炭素単体を供給する。二酸化炭素の供給量はマスフローコントローラ10によって調整し、所定供給量に調節された二酸化炭素は、上側封止栓11を貫通する供給管3内を通って反応管4内に供給される。   Next, a method for decomposing carbon dioxide using the processing apparatus A configured as described above will be described. When carbon dioxide is decomposed, carbon dioxide alone is supplied from the supply pipe 3 shown in FIG. The supply amount of carbon dioxide is adjusted by the mass flow controller 10, and the carbon dioxide adjusted to the predetermined supply amount is supplied into the reaction tube 4 through the supply tube 3 penetrating the upper sealing plug 11.

次に、真空ポンプ5を起動して、下側封止栓13に接続される気圧調整管12を介して、反応管4内を真空引きして減圧する。このとき、反応管4内の気圧は圧力計6を利用して1000[Pa]未満(例えば200[Pa])に調整する。   Next, the vacuum pump 5 is started, and the inside of the reaction tube 4 is evacuated and depressurized via the atmospheric pressure adjusting tube 12 connected to the lower sealing plug 13. At this time, the atmospheric pressure in the reaction tube 4 is adjusted to less than 1000 [Pa] (for example, 200 [Pa]) using the pressure gauge 6.

つづいて、マイクロ波発振器1を起動して所定の出力(例えば700[W])のマイクロ波を出力すると、マイクロ波は導波管2からアイソレータ7を介してパワーモニタ8に伝播し、パワーモニタ8によって入射電力が検出される。このとき、アイソレータ7は反射したマイクロ波を吸収して、マイクロ波発振器1を保護することは前述した通りである。なお、反射したマイクロ波の電力はパワーモニタ8によって検出される。   Subsequently, when the microwave oscillator 1 is started and a microwave having a predetermined output (for example, 700 [W]) is output, the microwave propagates from the waveguide 2 to the power monitor 8 via the isolator 7, and the power monitor. The incident power is detected by 8. At this time, the isolator 7 absorbs the reflected microwave and protects the microwave oscillator 1 as described above. The power of the reflected microwave is detected by the power monitor 8.

導波管2内を通過したマイクロ波はスタブチューナ9によって共振され、反応管4のプラズマ形成部Xにおいてマイクロ波が最大量消費されるように、反応管4に照射される。   The microwave that has passed through the waveguide 2 is resonated by the stub tuner 9, and is irradiated to the reaction tube 4 so that the maximum amount of microwave is consumed in the plasma forming portion X of the reaction tube 4.

照射されたマイクロ波は、透明石英管からなる反応管4を透過して反応管4内に入射し、反応管4内に供給されている二酸化炭素に照射される。二酸化炭素は反応管4内のプラズマ形成部Xにおいて電離してプラズマ化される。   The irradiated microwave passes through the reaction tube 4 made of a transparent quartz tube, enters the reaction tube 4, and is irradiated to the carbon dioxide supplied into the reaction tube 4. Carbon dioxide is ionized in the plasma forming part X in the reaction tube 4 to be converted into plasma.

このとき発生するプラズマは、反応管4内が1000[Pa]未満に減圧されているので、グロー放電によって生じる。グロー放電は、コロナ放電と比較してより広範囲で安定した放電であり、アーク放電と比較して低エネルギーで生じさせることができる。   The plasma generated at this time is generated by glow discharge because the pressure in the reaction tube 4 is reduced to less than 1000 [Pa]. Glow discharge is a more stable discharge in a wider range than corona discharge, and can be generated with lower energy than arc discharge.

このようにして二酸化炭素をプラズマ化することにより、二酸化炭素は酸素と一酸化炭素に分解される。このときの一酸化炭素への転化率は、前述したように、反応管4内を1000[Pa]未満に減圧する限り高い数値を維持することができる。   By converting carbon dioxide into plasma in this way, carbon dioxide is decomposed into oxygen and carbon monoxide. The conversion rate to carbon monoxide at this time can maintain a high numerical value as long as the pressure in the reaction tube 4 is reduced to less than 1000 [Pa] as described above.

特に、マイクロ波の出力を700[W]とし、反応管4内を200[Pa]に減圧した場合の二酸化炭素の分解率は95%と非常に高い分解率を実現することができる。また、マイクロ波の出力を低くしても、反応管4内を更に減圧することによって、分解率をより一層高めることが可能となる。   In particular, when the microwave output is set to 700 [W] and the pressure in the reaction tube 4 is reduced to 200 [Pa], the decomposition rate of carbon dioxide is 95%, and a very high decomposition rate can be realized. Even if the microwave output is lowered, the decomposition rate can be further increased by further reducing the pressure in the reaction tube 4.

分解生成された酸素と一酸化炭素は、反応管4内から気圧調整管12内を通って排出され、切換弁17を操作することにより適宜、サンプリングポート15より採取してガスの性状を分析したり、排気管16から取り出して工業用原料として利用することができる。特に一酸化炭素は、アルコールやグリコール類,カルボン酸類(ギ酸,酢酸等)などの製造原料として利用することが可能である。   The decomposed oxygen and carbon monoxide are discharged from the reaction tube 4 through the pressure adjusting tube 12 and are collected from the sampling port 15 by operating the switching valve 17 to analyze the gas properties. Or it can take out from the exhaust pipe 16 and can utilize it as an industrial raw material. In particular, carbon monoxide can be used as a raw material for producing alcohol, glycols, carboxylic acids (formic acid, acetic acid, etc.), and the like.

また、二酸化炭素の分解過程において、カーボン等の析出はほとんどなく、反応管4の内周面に煤が付着してマイクロ波の入射を妨げる問題もない。   Further, there is almost no precipitation of carbon or the like in the decomposition process of carbon dioxide, and there is no problem that soot adheres to the inner peripheral surface of the reaction tube 4 and prevents the incidence of microwaves.

さらに、プラズマの形成に反応ガスとして希ガスが必要ないので、二酸化炭素の分解を廉価に実現することができる。   Furthermore, since no rare gas is required as a reactive gas for the formation of plasma, decomposition of carbon dioxide can be realized at low cost.

以上説明したように、本発明のマイクロ波非平衡プラズマによる二酸化炭素の分解方法は、分解に際して触媒やガス化剤が一切必要ないので、処理装置の設備構造が複雑化することを防止し,装置コストを低減することができる。   As described above, the method for decomposing carbon dioxide using microwave non-equilibrium plasma according to the present invention does not require any catalyst or gasifying agent at the time of decomposition, so that the equipment structure of the processing apparatus is prevented from becoming complicated. Cost can be reduced.

また、二酸化炭素の分解率(一酸化炭素への転化率)は従来の分解方法と比較して非常に高くできるので非常に有効である。   Further, the decomposition rate of carbon dioxide (conversion rate to carbon monoxide) can be very high as compared with the conventional decomposition method, which is very effective.

二酸化炭素の分解処理に利用可能である。   It can be used for carbon dioxide decomposition.

1 マイクロ波発振器
2 マイクロ波導波管
3 二酸化炭素の供給管
4 反応管
5 真空ポンプ
6 圧力計
7 アイソレータ
8 パワーモニタ
9 スタブチューナ
10 マスフローコントローラ
11 上側封止栓
12 気圧調整管
13 下側封止栓
14 マイクロ波漏洩防止網
15 サンプリングポート
16 排気管
17 切換弁
A 処理装置
X プラズマ形成部
DESCRIPTION OF SYMBOLS 1 Microwave oscillator 2 Microwave waveguide 3 Carbon dioxide supply pipe 4 Reaction pipe 5 Vacuum pump 6 Pressure gauge 7 Isolator 8 Power monitor 9 Stub tuner 10 Mass flow controller 11 Upper sealing plug 12 Atmospheric pressure adjustment pipe 13 Lower sealing plug 14 Microwave leakage prevention network 15 Sampling port 16 Exhaust pipe 17 Switching valve A Processing device X Plasma formation part

Claims (2)

1000[Pa]未満に減圧した系内にマイクロ波を照射し、該マイクロ波の照射位置に二酸化炭素単体を投入することにより、触媒やガス化剤を用いることなく、投入した二酸化炭素を電離して一酸化炭素を少なくとも46%を上回る転化率で得ることを特徴とするマイクロ波非平衡プラズマによる二酸化炭素の分解方法。 By irradiating microwaves into a system whose pressure is reduced to less than 1000 [Pa] and introducing carbon dioxide alone at the microwave irradiation position, the introduced carbon dioxide is ionized without using a catalyst or a gasifying agent. A method of decomposing carbon dioxide with a microwave nonequilibrium plasma, characterized in that carbon monoxide is obtained at a conversion rate of at least 46% . 前記マイクロ波を700[W]で出力する場合、前記系内を200[Pa]に減圧し、前記マイクロ波を700[W]より低くして出力する場合、前記系内を200[Pa]から更に減圧することを特徴とする請求項1記載のマイクロ波非平衡プラズマによる二酸化炭素の分解方法。   When the microwave is output at 700 [W], the inside of the system is depressurized to 200 [Pa], and when the microwave is output below 700 [W], the inside of the system is started from 200 [Pa]. 2. The method for decomposing carbon dioxide with microwave nonequilibrium plasma according to claim 1, wherein the pressure is further reduced.
JP2014030235A 2014-02-20 2014-02-20 Decomposition method of carbon dioxide by microwave nonequilibrium plasma Active JP6334947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030235A JP6334947B2 (en) 2014-02-20 2014-02-20 Decomposition method of carbon dioxide by microwave nonequilibrium plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030235A JP6334947B2 (en) 2014-02-20 2014-02-20 Decomposition method of carbon dioxide by microwave nonequilibrium plasma

Publications (2)

Publication Number Publication Date
JP2015155356A JP2015155356A (en) 2015-08-27
JP6334947B2 true JP6334947B2 (en) 2018-05-30

Family

ID=54774944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030235A Active JP6334947B2 (en) 2014-02-20 2014-02-20 Decomposition method of carbon dioxide by microwave nonequilibrium plasma

Country Status (1)

Country Link
JP (1) JP6334947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU92860B1 (en) * 2015-10-27 2017-05-02 Lb Ass Hydrogen producing and fuel cell system
KR101655885B1 (en) * 2016-05-27 2016-09-08 윤기호 Carbon dioxide decompositon apparatus and carbon dioxide decomposition method
CN116971758A (en) * 2023-07-28 2023-10-31 中国矿业大学(北京) Carbon dioxide plasma coal seam gasification system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256955A (en) * 1993-03-05 1994-09-13 Canon Inc Microwave plasma cvd apparatus
JP2003027241A (en) * 2001-07-16 2003-01-29 Korona Kk Method for converting carbon dioxide to combustible gas by plasma gaseous phase reaction
JP5506342B2 (en) * 2009-11-24 2014-05-28 愛知電機株式会社 Organic waste liquid treatment apparatus and organic waste liquid treatment method
US8633648B2 (en) * 2011-06-28 2014-01-21 Recarbon, Inc. Gas conversion system
JP5678369B2 (en) * 2012-05-25 2015-03-04 株式会社ティサポート CO2 recycling device and CO2 recycling system

Also Published As

Publication number Publication date
JP2015155356A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
CA2828290C (en) Ignition device, internal combustion engine, ignition plug, plasma apparatus, exhaust gas decomposition apparatus, ozone generation/sterilization/disinfection apparatus, and deodorization apparatus
JP6334947B2 (en) Decomposition method of carbon dioxide by microwave nonequilibrium plasma
JP5750616B2 (en) Spark plug
JP2007113570A5 (en)
Tatarova et al. Microwave plasma source operating with atmospheric pressure air-water mixtures
MY174761A (en) Method and system for producing energy from waste
WO2020106263A1 (en) Device for treating organic and other wastes by microwave radiation
TANGE et al. Effect of pretreatment by sulfuric acid on cellulose decomposition using the in-liquid plasma method
TW200734494A (en) Microwave plasma abatement apparatus
JP2016093762A (en) Ammonia processing device and ammonia processing method using microwave nonequilibrium plasma
US20090071816A1 (en) Radio frequency plasma-water dissociator
JP5506342B2 (en) Organic waste liquid treatment apparatus and organic waste liquid treatment method
KR20140090417A (en) System for reuse of carbon dioxide
CN211726927U (en) Dangerous medical waste microwave plasma harmless treatment equipment
JP2012045500A (en) Apparatus and method for decomposing carbon dioxide
JP2008290910A (en) Carbon dioxide decomposition system
KR101713804B1 (en) Externally Oscillated Plasma Equipment for Tar Destruction in Producer Gas from Waste Pyrolysis/Gasification and in Exhaust Gas from Biomass Combustion
JP5725815B2 (en) Treatment system of persistent organic waste liquid using non-equilibrium plasma combustion
JP2011111467A (en) Method for treating organic substance using microwave nonequilibrium plasma
KR20210124285A (en) Plasma Shutter with Gasification Device and Microwave Plasma Delay System of Gasification Device
US10822565B2 (en) Method for converting agricultural biomass or industrial bio waste into biofuel
JP2015168812A (en) Fuel gas collection method from biomass by microwave non-balanced plasma
CN205361006U (en) Waste gas treatment device
CN202844847U (en) System for removing carbon tetrafluoride and associated nitric oxide gas synchronously
RU2815316C1 (en) Method for low-temperature processing of household wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180427

R150 Certificate of patent or registration of utility model

Ref document number: 6334947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150