JP6332856B2 - Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded - Google Patents

Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded Download PDF

Info

Publication number
JP6332856B2
JP6332856B2 JP2014134063A JP2014134063A JP6332856B2 JP 6332856 B2 JP6332856 B2 JP 6332856B2 JP 2014134063 A JP2014134063 A JP 2014134063A JP 2014134063 A JP2014134063 A JP 2014134063A JP 6332856 B2 JP6332856 B2 JP 6332856B2
Authority
JP
Japan
Prior art keywords
metal
fine particles
glass
quartz glass
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134063A
Other languages
Japanese (ja)
Other versions
JP2016011229A (en
Inventor
洋史 比田井
洋史 比田井
真 松下
真 松下
壮太 松坂
壮太 松坂
森田 昇
昇 森田
千葉 明
明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2014134063A priority Critical patent/JP6332856B2/en
Publication of JP2016011229A publication Critical patent/JP2016011229A/en
Application granted granted Critical
Publication of JP6332856B2 publication Critical patent/JP6332856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス中に金属微粒子を埋設する方法、金属微粒子が埋設されたガラス及びその製造方法に関する。   The present invention relates to a method of embedding metal fine particles in glass, a glass in which metal fine particles are embedded, and a method for producing the same.

金属微粒子が埋設されたガラスは、金属微粒子の量によって透過量を調節することが可能であり、近年、光通信等の光情報通信分野に応用できる光学材料として期待されている。また、ガラスといった材料内に金属微粒子を所望の形状に配置させることでオブジェとしての応用も考えられる。   Glass in which metal fine particles are embedded can adjust the amount of transmission depending on the amount of metal fine particles, and is recently expected as an optical material applicable to the field of optical information communication such as optical communication. Moreover, application as an object is also conceivable by arranging fine metal particles in a desired shape in a material such as glass.

金属微粒子を埋設する方法として、例えば、下記特許文献1に記載の技術がある。下記特許文献1には、金属イオンを添加したガラスを原料とし、溶解した無色のガラスにパルスレーザ光を集光照射し、焦点近傍のガラス内部で金属イオンを還元し、ナノ粒子として析出させる方法が開示されている。   As a method for embedding metal fine particles, for example, there is a technique described in Patent Document 1 below. The following Patent Document 1 discloses a method of using glass added with metal ions as a raw material, condensing and irradiating a melted colorless glass with pulsed laser light, reducing metal ions inside the glass near the focal point, and depositing them as nanoparticles. Is disclosed.

特開平11−60271号公報Japanese Patent Laid-Open No. 11-60271

しかしながら、上記特許文献1に記載の技術は、金属イオンを添加したガラスを使用するものであって、予め所望の範囲で金属イオンを含むガラスとしなければならず、ガラスの準備に関し金属イオンの濃度調整等の制約が大きいといった課題がある。   However, the technique described in Patent Document 1 uses a glass to which metal ions are added, and must be glass containing metal ions in a desired range in advance. There is a problem that restrictions such as adjustment are large.

そこで、本発明は、上記課題を鑑み、より制約の少ない、ガラス中に金属微粒子を埋設する方法、金属微粒子が埋設されたガラス及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method for embedding metal fine particles in glass, a glass in which metal fine particles are embedded, and a method for producing the same, with less restrictions.

本発明の一の観点に係る石英ガラス中に金属微粒子を埋設する方法は、金属薄膜が配置された石英ガラスの金属薄膜に石英ガラス側からレーザー光を照射して石英ガラス中に金属球を形成し、前記金属球を移動させつつ、金属球から金属微粒子を分離させて石英ガラス中に金属微粒子を埋設することを特徴とする。   The method of embedding metal fine particles in quartz glass according to one aspect of the present invention is to form a metal sphere in quartz glass by irradiating the quartz glass thin film on which the metal thin film is disposed with laser light from the quartz glass side. Then, while moving the metal sphere, the metal fine particles are separated from the metal spheres, and the metal fine particles are embedded in the quartz glass.

また、本発明の他の一観点に係る金属微粒子が埋設された石英ガラスを製造する方法は、薄膜が配置された石英ガラスの薄膜に石英ガラス側からレーザー光を照射して石英ガラス中に金属球を形成し、金属球を移動させつつ、金属球から金属微粒子を分離させることを特徴とする。   Further, according to another aspect of the present invention, there is provided a method for producing quartz glass in which metal fine particles are embedded, wherein a quartz glass thin film on which a thin film is disposed is irradiated with laser light from the quartz glass side to form a metal in the quartz glass. A metal sphere is formed and metal fine particles are separated from the metal sphere while moving the metal sphere.

また、本発明の一の観点に係る金属微粒子が埋設された石英ガラスは、金属球、及び、金属球から延びる複数の金属微粒子を含む軌跡領域が埋設されていることを特徴とする。   Further, the quartz glass in which the metal fine particles according to one aspect of the present invention are embedded is characterized in that a locus including the metal sphere and a plurality of metal fine particles extending from the metal sphere is embedded.

以上、本発明によって、より制約の少ない、ガラス中に金属微粒子を埋設する方法、金属微粒子が埋設されたガラス及びその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a method of embedding metal fine particles in glass with less restrictions, a glass in which metal fine particles are embedded, and a method for producing the same.

実施形態に係る方法のフロー図である。It is a flowchart of the method which concerns on embodiment. 実施形態に係る方法のイメージを示す図である。It is a figure which shows the image of the method which concerns on embodiment. 実施形態において金属微粒子を埋設した場合における金属球の軌跡のイメージ図である。It is an image figure of the locus | trajectory of a metal sphere at the time of embedding a metal microparticle in embodiment. 実施形態における金属球の軌跡のイメージ図である。It is an image figure of the locus | trajectory of the metal sphere in embodiment. 実施形態に係る方法他の例のイメージ図である。It is an image figure of the method other example which concerns on embodiment. 実施例おいて用いた系の概略図である。It is the schematic of the system used in the Example. 実施例に係る金属微粒子の写真図である。It is a photograph figure of the metal particulates concerning an example. 実施例に係る金属微粒子の拡大写真図である。It is an enlarged photograph figure of the metal particulate concerning an example.

以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の記載にのみ限定されるわけではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the description of the following embodiments and examples.

図1は、本実施形態に係る金属微粒子を埋設する方法(以下「本方法」とする)のフローを示す図であり、図2は、本方法のイメージを示す図である。   FIG. 1 is a diagram showing a flow of a method of embedding metal fine particles according to the present embodiment (hereinafter referred to as “this method”), and FIG. 2 is a diagram showing an image of this method.

本方法は、金属薄膜12が配置された石英ガラス11の金属薄膜12に、石英ガラス11側からレーザー光Lを照射して石英ガラス11中に金属球13を形成し(S1)、金属球13を移動させつつ、金属球13から金属微粒子14を分離させて(S2)、石英ガラス11中に金属微粒子14を埋設することを特徴とする。   In this method, the metal thin film 12 of the quartz glass 11 on which the metal thin film 12 is disposed is irradiated with laser light L from the quartz glass 11 side to form a metal sphere 13 in the quartz glass 11 (S1). The metal fine particles 14 are separated from the metal spheres 13 while moving (S2), and the metal fine particles 14 are embedded in the quartz glass 11.

本方法では、まず、金属薄膜が配置された石英ガラス11の金属薄膜12に、石英ガラス11側からレーザー光Lを照射して石英ガラス11中に金属球13を形成する(S1、図2(a))。本工程によると、石英ガラス11側から金属薄膜12にレーザー光Lを絞って照射することで、レーザー光Lが照射された部位の金属薄膜121が加熱され、この部位の金属薄膜121が溶融するとともに、熱の伝わりによってその周辺の石英ガラス111も溶融(軟化)する。すると、溶融したガラス中に溶融した部位の金属が光の照射された方向に移動し、溶融(軟化)した石英ガラス中に移動し、石英ガラス中に浮いた金属球13となる。金属球13が形成される原理及びこの金属球13が移動する原理は、推測の部分もあるが、レーザー光が照射されることで加熱された場合、照射側が高温になる。ガラスの界面張力は温度が上昇することで小さくなるため、照射側の界面張力が小さくなり、照射されていない側の界面張力が大きくなり、この界面張力の差が金属球の移動をもたらすと考えられる。   In this method, first, the metal thin film 12 of the quartz glass 11 on which the metal thin film is disposed is irradiated with the laser light L from the quartz glass 11 side to form the metal sphere 13 in the quartz glass 11 (S1, FIG. 2 ( a)). According to this process, by irradiating the thin metal film 12 with the laser light L from the quartz glass 11 side, the metal thin film 121 at the portion irradiated with the laser light L is heated, and the metal thin film 121 at this portion is melted. At the same time, the surrounding quartz glass 111 is also melted (softened) by the transfer of heat. Then, the molten metal in the molten glass moves in the direction of light irradiation, moves into the fused (softened) quartz glass, and becomes a metal ball 13 floating in the quartz glass. The principle of the formation of the metal sphere 13 and the principle of movement of the metal sphere 13 are speculated, but when heated by being irradiated with laser light, the irradiation side becomes high temperature. Since the interfacial tension of glass decreases as the temperature rises, the interfacial tension on the irradiation side decreases, the interfacial tension on the non-irradiation side increases, and this difference in interfacial tension is thought to cause movement of the metal sphere. It is done.

また本実施形態に係る金属薄膜が配置された石英ガラス11は、石英からなるガラスであり、市販のガラスを使用することができる。石英ガラス11の厚さは、レーザー光Lを透過し、熱により溶融して金属球を内部に形成、移動させることができる程度に厚い限りにおいて限定されるわけではないが、例えば10μm以上10cm以下であることが好ましい。   Moreover, the quartz glass 11 in which the metal thin film according to the present embodiment is arranged is a glass made of quartz, and a commercially available glass can be used. The thickness of the quartz glass 11 is not limited as long as it is thick enough to transmit the laser light L, melt by heat, and form and move a metal sphere inside. For example, the thickness is 10 μm or more and 10 cm or less. It is preferable that

また本実施形態において、金属薄膜12は、石英ガラスに接触して配置されるものであって、石英ガラス11中に金属球として形成でき、金属微粒子を分散させることができるものである限りにおいて限定されるわけではないが、例えば鉄、ニッケル及び白金の少なくともいずれかを含むものであることが好ましく、鉄を含む場合、ステンレス鋼であることがより好ましい。   Further, in the present embodiment, the metal thin film 12 is disposed in contact with the quartz glass and is limited as long as it can be formed as a metal sphere in the quartz glass 11 and can disperse the metal fine particles. Although not necessarily performed, for example, it preferably contains at least one of iron, nickel, and platinum. When iron is included, stainless steel is more preferable.

また、金属薄膜2の厚さは、石英ガラス11中に金属球13を形成することが出来る限りにおいて限定されるわけではないが、0.1μm以上1mm以下であることが好ましく、より好ましくは0.1μm以上100μm、更に好ましくは10μm以下である。   The thickness of the metal thin film 2 is not limited as long as the metal spheres 13 can be formed in the quartz glass 11, but is preferably 0.1 μm or more and 1 mm or less, more preferably 0. .1 μm or more and 100 μm, more preferably 10 μm or less.

本方法においてレーザー光Lの波長範囲としては、所望の位置に光を照射し金属球を形成することができる限りにおいて限定されるわけではないが、350nm以上2000nm以下であることが好ましく、より好ましくは450nm以上1100nm以下である。   In this method, the wavelength range of the laser beam L is not limited as long as it can irradiate light at a desired position to form a metal sphere, but it is preferably 350 nm or more and 2000 nm or less. Is 450 nm or more and 1100 nm or less.

またレーザー光Lの強度としては、金属球13及び金属微粒子14を形成することができる限りにおいて限定されるわけではないが、10kW/cm以上3000kW/cm以下の範囲であることが好ましく、より好ましくは50kW/cm以上2000kW/cm以下の範囲、更に好ましくは100kW/cm以上1000kW/cmである。 The intensity of the laser beam L is not limited as long as the metal spheres 13 and the metal fine particles 14 can be formed, but is preferably in the range of 10 kW / cm 2 to 3000 kW / cm 2 , more preferably 50 kW / cm 2 or more 2000 kW / cm 2 or less in the range, more preferably from 100 kW / cm 2 or more 1000 kW / cm 2.

またレーザー光Lは絞られてスポットとなり照射されていることが好ましく、このスポットの径としては、限定されるわけではないが10μm以上1000μm以下の範囲内であることが好ましく、より好ましくは20μm以上500μm以下の範囲内である。   The laser light L is preferably focused and irradiated as a spot, and the diameter of the spot is not limited, but is preferably in the range of 10 μm or more and 1000 μm or less, more preferably 20 μm or more. It is in the range of 500 μm or less.

なお、本方法においてレーザー光Lの照射時間は、上記の光の波長及び強度に応じて適宜調整可能である。   In the present method, the irradiation time of the laser light L can be appropriately adjusted according to the wavelength and intensity of the light.

また本方法では、金属球13を移動させつつ、金属球13から金属微粒子14を分離させる(S2)。本方法では金属球13が形成された後、金属球13が溶融した石英ガラス中を移動する際、金属球13の一部が金属微粒子14として分離する。この結果、石英ガラス11中に金属微粒子14を埋設することができる(S3)。   In this method, the metal fine particles 14 are separated from the metal spheres 13 while moving the metal spheres 13 (S2). In this method, after the metal sphere 13 is formed, a part of the metal sphere 13 is separated as the metal fine particles 14 when the metal sphere 13 moves in the fused quartz glass. As a result, the metal fine particles 14 can be embedded in the quartz glass 11 (S3).

また、本方法において、金属球13から分離する金属微粒子14の大きさは、限定されるわけではないが、0.1μm以上1000μm以下であり、好ましくは3μm以上300μmである。なお、100μm以上の金属微粒子となると、肉眼でも認識が可能となる。   In the present method, the size of the metal fine particles 14 separated from the metal spheres 13 is not limited, but is 0.1 μm or more and 1000 μm or less, preferably 3 μm or more and 300 μm. In addition, if it becomes a metal microparticle of 100 micrometers or more, recognition will be possible also with the naked eye.

また本方法において形成される金属微粒子14は、移動軌跡の延びる方向に対し縞状に形成されてなる。ここで「縞状」とは、軌跡の延びる方向に対し垂直な方向に広がりを有する一方、軌跡の延びる方向に沿って濃淡が生じている状態をいう。この場合のイメージ図を図3に示しておく。   Further, the metal fine particles 14 formed in the present method are formed in a stripe shape in the direction in which the movement locus extends. Here, “striped” refers to a state in which light is shaded along the direction in which the locus extends while extending in a direction perpendicular to the direction in which the locus extends. An image diagram in this case is shown in FIG.

また本方法において、金属微粒子14は、上記のとおり、金属球13の移動に伴い金属球13から分離するものである。ところで金属球13はレーザー光Lが入射される方向に向かって移動するため、レーザー光Lと石英ガラス11の位置関係を固定した場合、金属球13の移動軌跡は直線となる。このため、レーザー光の照射中に、レーザー光Lと石英ガラス11の位置関係を異ならせる、具体的には、石英ガラス11を固定する一方石英ガラスに対するレーザー光の入射角を変化させる、または石英ガラス11を回転させて石英ガラス11に対するレーザー光の入射角を変化させることで、この軌跡を折れ曲がらせる又は曲線とすることが可能となる。この場合のイメージを図4に示しておく。   In this method, the metal fine particles 14 are separated from the metal spheres 13 as the metal spheres 13 move as described above. Incidentally, since the metal sphere 13 moves in the direction in which the laser beam L is incident, when the positional relationship between the laser beam L and the quartz glass 11 is fixed, the movement locus of the metal sphere 13 becomes a straight line. For this reason, during the irradiation of the laser light, the positional relationship between the laser light L and the quartz glass 11 is made different. Specifically, the incident angle of the laser light on the quartz glass is changed while the quartz glass 11 is fixed, or quartz By rotating the glass 11 and changing the incident angle of the laser light with respect to the quartz glass 11, this locus can be bent or curved. An image in this case is shown in FIG.

また、上記の記載から明らかなように、本方法によると、金属球及びこの金属球から延びる金属微粒子の移動軌跡が埋設されてなる石英ガラスを提供することができる。   Further, as is apparent from the above description, according to the present method, it is possible to provide quartz glass in which the movement trajectory of the metal sphere and the metal fine particles extending from the metal sphere is embedded.

以上、本方法によって、より制約の少ない、ガラス中に金属微粒子を埋設する方法、金属微粒子が埋設されたガラスの製造方法、及び、金属微粒子が埋設されたガラスを提供することができる。より具体的に説明すると本方法によると、石英ガラス11に金属薄膜12を配置し、レーザー光Lを照射するだけで、金属球13を形成し、その金属球13を移動させるだけでガラス中に金属微粒子を分離させ、その金属微粒子を軌跡として残すことができる。   As described above, the present method can provide a method of embedding metal fine particles in glass, a method for producing glass in which metal fine particles are embedded, and a glass in which metal fine particles are embedded. More specifically, according to the present method, the metal thin film 12 is disposed on the quartz glass 11, the metal sphere 13 is formed only by irradiating the laser beam L, and the metal sphere 13 is simply moved in the glass. The metal fine particles can be separated, and the metal fine particles can be left as a locus.

また、本方法において、石英ガラスと金属薄膜の間には、ホウケイ酸ガラスを配置しておくことが好ましい。この場合のイメージ図を図5に示しておく。ここで「ホウケイ酸ガラス」とは、ホウ酸を混ぜたガラスをいい、ホウケイ酸ガラスを石英ガラスと金属薄膜の間に配置することで石英ガラスへの金属球の導入を容易にすることができるといった効果がある。なおホウケイ酸ガラスの厚さとしては適宜調整されるわけではないが、1μm以上3mm以下であることが好ましい。   Moreover, in this method, it is preferable to arrange | position borosilicate glass between quartz glass and a metal thin film. An image diagram in this case is shown in FIG. Here, “borosilicate glass” refers to glass mixed with boric acid. By placing borosilicate glass between quartz glass and a metal thin film, introduction of metal spheres into quartz glass can be facilitated. There is an effect. The thickness of the borosilicate glass is not adjusted as appropriate, but is preferably 1 μm or more and 3 mm or less.

なお、本方法によって作成される金属微粒子が埋設されたガラスは、産業上様々な用途に用いることができる。例えば、光デバイスやオブジェ等に用いることができる。オブジェの場合、金属微粒子の軌跡によって文字や記号、図形等を標記し、ガラス内にこれらが埋め込まれたものとすることができる。また光デバイスの場合、希土類の元素を軌跡にいれることで、光増幅機能を持たせることや、金属元素を入れることで、ある波長の光を吸収させるフィルタの機能を持たせたることができる。   In addition, the glass in which the metal microparticles created by this method are embedded can be used for various industrial purposes. For example, it can be used for optical devices and objects. In the case of an object, it is possible to mark characters, symbols, figures, etc. according to the traces of metal fine particles and to embed them in glass. In the case of an optical device, it is possible to provide a light amplification function by placing a rare earth element in the locus, or to provide a filter function that absorbs light of a certain wavelength by inserting a metal element.

ここで、上記実施形態に基づき実際にガラス中に金属微粒子を埋設することにより、本発明の効果を確認した。以下具体的に説明する。   Here, the effect of the present invention was confirmed by actually embedding metal fine particles in glass based on the above embodiment. This will be specifically described below.

20mm×20mm、厚さ10mmの石英ガラス(東ソー・クォーツ社製)を用い、20mm×20mm、厚さ5mmのホウ珪酸ガラス(コーニング7740)、厚さ10μmのSUS304金属箔、20mm×20mm、厚さ5mmのホウ珪酸ガラスの順に積層した。なおこの系の概略について図6に示しておく。   20 mm × 20 mm, 10 mm thick quartz glass (manufactured by Tosoh Quartz), 20 mm × 20 mm, 5 mm thick borosilicate glass (Corning 7740), 10 μm thick SUS304 metal foil, 20 mm × 20 mm, thickness Lamination was performed in the order of 5 mm borosilicate glass. An outline of this system is shown in FIG.

そして、この石英ガラスに波長1060nmのYAGレーザーをガラスの面に対して垂直な方向から17W程度で照射した。この結果、石英ガラス中に粒径約80μmの金属球と、この金属球が移動した結果金属球から分離した金属微粒子を確認することができた。この結果を図7に示しておく。この結果、ガラス中に金属球を埋設することができたとともに、縞状の微粒子も分離させることができているのを確認した。   The quartz glass was irradiated with a YAG laser having a wavelength of 1060 nm at about 17 W from a direction perpendicular to the glass surface. As a result, metal spheres having a particle diameter of about 80 μm in the quartz glass and metal fine particles separated from the metal spheres as a result of the movement of the metal spheres could be confirmed. The result is shown in FIG. As a result, it was confirmed that the metal spheres could be embedded in the glass and the striped fine particles could be separated.

また、上記と同じ条件で、金属箔の材料をニッケルとして同様の実験を行った。この結果を図8に示しておく。この結果によっても、上記と同様、金属球を埋設することができたとともに、縞状の微粒子も分離させることができ、同様の結果を得ることができた。   Further, under the same conditions as described above, the same experiment was performed using nickel as the metal foil material. The result is shown in FIG. Also according to this result, the metal sphere could be embedded similarly to the above, and the striped fine particles could be separated, and the same result could be obtained.

本図で示すように、本方法によると、石英ガラスに金属薄膜を形成し、この金属薄膜に石英ガラスの方向からレーザー光を照射することで金属球を生じさせ、さらにこの金属球を移動させることで金属微粒子を分離させ、軌跡としてガラス基板中に埋設させることができることを確認した。   As shown in this figure, according to this method, a metal thin film is formed on quartz glass, and a metal sphere is formed by irradiating the metal thin film with laser light from the direction of the quartz glass, and this metal sphere is further moved. Thus, it was confirmed that the metal fine particles can be separated and embedded in the glass substrate as a locus.

以上、本実施例により、本発明の効果を確認することができた。   As described above, the effect of the present invention could be confirmed by this example.

本発明は、金属微粒子が埋設されたガラス基板及びその製造方法として産業上の利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability as a glass substrate in which metal fine particles are embedded and a manufacturing method thereof.

Claims (6)

金属薄膜が配置された石英ガラスの前記金属薄膜に前記石英ガラス側からレーザー光を照射して前記石英ガラス中に金属球を形成し、前記金属球を移動させつつ、前記金属球から金属微粒子を分離させて前記石英ガラス中に金属微粒子を埋設する方法。   The metal thin film of the quartz glass on which the metal thin film is disposed is irradiated with laser light from the quartz glass side to form metal spheres in the quartz glass, and the metal spheres are moved while moving metal fine particles from the metal spheres. A method of embedding metal fine particles in the quartz glass after separation. 前記金属薄膜と前記石英ガラスの間にホウケイ酸ガラスを挟む請求項1記載の方法。   The method according to claim 1, wherein a borosilicate glass is sandwiched between the metal thin film and the quartz glass. 前記金属薄膜は、ステンレス鋼、ニッケル及び白金の少なくともいずれかを含む請求項1記載の方法。   The method according to claim 1, wherein the metal thin film includes at least one of stainless steel, nickel, and platinum. 金属薄膜が配置された石英ガラスの前記金属薄膜に前記石英ガラス側からレーザー光を照射して前記石英ガラス中に金属球を形成し、前記金属球を移動させつつ、前記金属球から金属微粒子を分離させる、金属微粒子が埋設された石英ガラスを製造する方法。 Metal thin film by irradiating a laser beam from the quartz glass side to the metal thin film disposed quartz glass to form a metal ball into the quartz glass, while moving the metal balls, the metal particles from the metal ball A method for producing quartz glass in which metal fine particles are embedded. 前記金属薄膜と前記石英ガラスの間にホウケイ酸ガラスを挟む請求項4記載の方法。   The method according to claim 4, wherein borosilicate glass is sandwiched between the metal thin film and the quartz glass. 前記金属薄膜は、ステンレス鋼、ニッケル及び白金の少なくともいずれかを含む請求項4記載の金属微粒子が埋設された石英ガラスを製造する方法。   The method for producing quartz glass in which metal fine particles are embedded according to claim 4, wherein the metal thin film contains at least one of stainless steel, nickel, and platinum.
JP2014134063A 2014-06-30 2014-06-30 Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded Active JP6332856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134063A JP6332856B2 (en) 2014-06-30 2014-06-30 Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134063A JP6332856B2 (en) 2014-06-30 2014-06-30 Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded

Publications (2)

Publication Number Publication Date
JP2016011229A JP2016011229A (en) 2016-01-21
JP6332856B2 true JP6332856B2 (en) 2018-05-30

Family

ID=55228184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134063A Active JP6332856B2 (en) 2014-06-30 2014-06-30 Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded

Country Status (1)

Country Link
JP (1) JP6332856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999466B2 (en) 2018-03-26 2022-01-18 株式会社Lixil Smoke exhaust window

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228989A (en) * 2009-03-27 2010-10-14 Osaka Univ Doping method, method for manufacturing optical device, and method for producing nanoparticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999466B2 (en) 2018-03-26 2022-01-18 株式会社Lixil Smoke exhaust window

Also Published As

Publication number Publication date
JP2016011229A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5465235B2 (en) Raised features on transparent substrates and related methods
Armon et al. Continuous nanoparticle assembly by a modulated photo-induced microbubble for fabrication of micrometric conductive patterns
CN101678502B (en) Method for incorporating a structure into a surface of a transparent workpiece
CN108609841B (en) Welding method suitable for glass
KR20190035805A (en) Apparatus and method for laser processing
JP2009135448A5 (en)
CN101875156B (en) Laser machining method and laser machining apparatus
WO2015114291A1 (en) Welded glass product and method of fabrication
CN111065485A (en) Apparatus and method for laser machining transparent workpieces using an afocal beam adjustment assembly
WO2014157245A1 (en) Glass sheet processing method and glass sheet processing apparatus
JP6332856B2 (en) Method for embedding metal fine particles in glass, and method for producing glass in which metal fine particles are embedded
JP5188764B2 (en) Laser processing apparatus and laser processing method
JP2008205443A5 (en)
JP6039306B2 (en) Laser processing method
Narazaki et al. On-demand patterning of indium tin oxide microdots by laser-induced dot transfer
KR20190134897A (en) 3d printing apparatus and method using laser
US20190384087A1 (en) Manufacturing method of graphene electrode and liquid crystal display panel
KR102056793B1 (en) Smart glasses, glassess, car parking assistant camera, experimental safety goggle, sports goggles and motocycle protective helmet having micro heater
US10429553B2 (en) Optical assembly having microlouvers
KR101259352B1 (en) Method for formating alternative metal pattern using laser
JP2010228989A (en) Doping method, method for manufacturing optical device, and method for producing nanoparticle
TWI587960B (en) Laser processing method and laser processing device
CN109982984A (en) The method of the glass article of electrochromism coating and the glass article for laser treatment electrochromism coating
JP2007014975A (en) Scribe forming method, and substrate with division projected line
JP2015048286A (en) Glass optical element manufacturing method, and glass optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6332856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250