JP6332852B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP6332852B2
JP6332852B2 JP2014101956A JP2014101956A JP6332852B2 JP 6332852 B2 JP6332852 B2 JP 6332852B2 JP 2014101956 A JP2014101956 A JP 2014101956A JP 2014101956 A JP2014101956 A JP 2014101956A JP 6332852 B2 JP6332852 B2 JP 6332852B2
Authority
JP
Japan
Prior art keywords
temperature
heated
impedance
winding
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014101956A
Other languages
Japanese (ja)
Other versions
JP2015220050A (en
Inventor
外村 徹
徹 外村
泰広 藤本
泰広 藤本
昌義 木村
昌義 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2014101956A priority Critical patent/JP6332852B2/en
Publication of JP2015220050A publication Critical patent/JP2015220050A/en
Application granted granted Critical
Publication of JP6332852B2 publication Critical patent/JP6332852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、誘導加熱装置に関するものである。   The present invention relates to an induction heating apparatus.

誘導加熱装置において、特許文献1に示すように、被加熱体に温度検出素子を取り付けて直接温度を測定するものがある。   As an induction heating apparatus, as shown in Patent Document 1, there is an induction heating apparatus in which a temperature detection element is attached to a heated object and the temperature is directly measured.

ところが、被加熱体への温度検出素子の取り付け作業は煩わしく、また、加熱後の被加熱体から温度検出素子を取り外す場合などにおいて危険が伴う。さらに、温度検出素子を被加熱体に取り付ける場合には、個別に温度検出素子と被加熱体との接触状況が異なり、検出温度の誤差となることがある。   However, the operation of attaching the temperature detection element to the heated body is troublesome, and there is a danger in removing the temperature detection element from the heated heated body. Furthermore, when attaching a temperature detection element to a to-be-heated body, the contact state of a temperature detection element and a to-be-heated body differs separately, and it may become an error of detection temperature.

なお、輻射式温度計等の非接触式温度検出手段を用いて被加熱体の温度を検出する方法も考えられるが、検出精度が低かったり、被加熱体の表面輻射率(放射率)に影響されたりして、正確な温度検出が困難な場合が多い。   In addition, although the method of detecting the temperature of a to-be-heated body using non-contact-type temperature detection means, such as a radiation-type thermometer, can also be considered, detection accuracy is low or it influences the surface emissivity (emissivity) of a to-be-heated body. In many cases, accurate temperature detection is difficult.

特開2002−79559号公報JP 2002-79559 A

そこで本発明は、上記問題点を解決するためになされたものであり、誘導加熱装置において、被加熱体の温度を測定する温度検出素子を不要にすることをその主たる課題とするものである。   Accordingly, the present invention has been made in order to solve the above-described problems, and it is a main object of the present invention to eliminate the need for a temperature detection element for measuring the temperature of the object to be heated in the induction heating apparatus.

すなわち本発明に係る誘導加熱装置は、磁束発生機構の巻き線に接続されるとともに、交流電流又は交流電圧を制御する制御素子が設けられた電源回路を備え、前記磁束発生機構により被加熱体を誘導加熱する誘導加熱装置であって、前記巻き線を流れる交流電流を検出する交流電流検出部から得られる交流電流値及び前記巻き線に印加される交流電圧を検出する交流電圧検出部から得られる交流電圧値により、前記巻き線のインピーダンスを算出するインピーダンス算出部と、前記巻き線のインピーダンスと前記被加熱体の温度との関係を示す関係データを格納する関係データ格納部と、前記インピーダンス算出部により得られたインピーダンスと前記関係データ格納部に格納された関係データとから前記被加熱体の温度を算出する被加熱体温度算出部とを備えることを特徴とする。   That is, the induction heating device according to the present invention includes a power supply circuit that is connected to a winding of a magnetic flux generation mechanism and is provided with a control element that controls an alternating current or an alternating voltage. An induction heating apparatus for induction heating, which is obtained from an alternating current value obtained from an alternating current detector that detects an alternating current flowing through the winding and an alternating voltage detector that detects an alternating voltage applied to the winding. An impedance calculation unit for calculating the impedance of the winding by an AC voltage value, a relational data storage unit for storing relational data indicating a relationship between the impedance of the winding and the temperature of the heated object, and the impedance calculation unit The temperature to be heated is calculated from the impedance obtained by the above and the relational data stored in the relational data storage unit Characterized in that it comprises a temperature calculating unit.

このようなものであれば、インピーダンス算出部により得られたインピーダンスと、巻き線のインピーダンス及び被加熱体の温度の関係を示す関係データとから被加熱体の温度を算出する被加熱体温度算出部を有するので、被加熱体に温度検出素子を設けることなく、巻き線のインピーダンスを算出することによって、被加熱体の温度を算出することができる。   If it is such, the to-be-heated body temperature calculation part which calculates the temperature of a to-be-heated body from the impedance obtained by the impedance calculation part and the relationship data which shows the relationship between the impedance of a winding, and the to-be-heated body temperature Therefore, the temperature of the object to be heated can be calculated by calculating the impedance of the winding without providing a temperature detecting element in the object to be heated.

インピーダンス算出部により得られたインピーダンスは、巻き線と対向する被加熱体の被加熱面の温度との間に一定の変化特性を示す。
検証した被加熱体(外径Φ×深さL×側壁部の厚さtを有する円筒形金属製釜)の定格電圧印加時における、インピーダンスと被加熱体の被加熱面の温度との関係は、以下の近似式となる。
θ=k+kn−1n−1+kn−2n−2+,・・・,+k+kZ+k
ここで、θは被加熱面の温度[℃]、Zはインピーダンス(=E/I)、k(n=1,2,・・・,n)及びkは、実測値により定まる係数である。
The impedance obtained by the impedance calculation unit shows a constant change characteristic between the winding and the temperature of the heated surface of the heated object facing the winding.
The relationship between the impedance and the temperature of the heated surface of the heated body when the rated voltage of the verified heated body (cylindrical metal kettle having outer diameter Φ × depth L × side wall thickness t) is applied is The following approximate expression is obtained.
θ 0 = k n Z n + k n-1 Z n-1 + k n-2 Z n-2 +, ···, + k 2 Z 2 + k 1 Z + k 0
Here, θ 0 is the temperature [° C.] of the heated surface, Z is impedance (= E / I), k n (n = 1, 2,..., N), and k 0 are coefficients determined by actual measurement values. It is.

磁束発生機構の巻き線と対向する被加熱体の被加熱面が発熱部となるが、当該発熱部から距離を置いた箇所の温度の算出には、補正が必要となる。
被加熱体が、発熱部の面積と発熱部から距離を置いた箇所の面積とが異なる中空円筒形状をなすものの場合と、それらの面積を実質的に同一と見なすことができる平板形状をなすものの場合と、各側壁が平板形状をなす中空多角筒形状をなすものの場合とで、それぞれに合った補正式を採用することになる。
The heated surface of the heated object that faces the winding of the magnetic flux generation mechanism becomes a heat generating portion, but correction is required for calculating the temperature at a location away from the heat generating portion.
The object to be heated has a hollow cylindrical shape in which the area of the heat generating part and the area of the part spaced from the heat generating part are different, and a flat plate shape in which those areas can be regarded as substantially the same. Depending on the case and the case where each side wall is in the shape of a hollow polygonal cylinder having a flat plate shape, a correction formula suitable for each is adopted.

前記被加熱体が、中空円筒形状をなし、前記磁束発生機構が、前記被加熱体を外周側又は内周側から誘導加熱するものの場合には、被加熱体温度算出部が次のように温度算出面の温度を算出する。
つまり、前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する。
θ=kP/[2π/{ln(d/d)/λ}]
ここで、dは前記被加熱面の直径[m]であり、dは前記温度算出面の直径[m]であり、λは前記被加熱面及び前記温度算出面の間の平均温度における熱伝導率[W/m・℃]であり、Pは熱流速[W/m]であり、kは、実測値から算出した補正係数である。
When the object to be heated has a hollow cylindrical shape and the magnetic flux generating mechanism heats the object to be heated from the outer peripheral side or the inner peripheral side, the temperature of the heated object temperature calculation unit is as follows: Calculate the temperature of the calculation surface.
That is, when the temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface which is a surface for calculating the temperature is θ [° C.], the heated object temperature calculating unit, The temperature of the object to be heated obtained from the impedance and the relational data is corrected using a temperature difference θ obtained using the following equation to calculate the temperature of the temperature calculation surface.
θ = kP / [2π / {ln (d 2 / d 1 ) / λ}]
Here, d 1 is the diameter [m] of the heated surface, d 2 is the diameter [m] of the temperature calculating surface, and λ is an average temperature between the heated surface and the temperature calculating surface. The thermal conductivity [W / m · ° C.], P is the heat flow rate [W / m], and k is a correction coefficient calculated from the actual measurement value.

なお、熱伝導率λは、被加熱体の材質及び温度によって変化し、例えば温度と炭素鋼の熱伝導率の特性を図5に示す。また、数十〜数百kHzの高周波では被加熱体の電流浸透度は数μmであるが、50〜1000Hzの中周波では数mm〜数十mmの電流浸透度が得られる。例えば炭素鋼では、60Hz・500℃において電流浸透度が10mm程度である。つまり、中周波誘導加熱では電流浸透度が深いため、発熱部温度(被加熱面の温度)と温度算出面の温度との差が高周波に比べて小さくなる。   The thermal conductivity λ varies depending on the material and temperature of the object to be heated. For example, the characteristics of temperature and thermal conductivity of carbon steel are shown in FIG. Further, the current penetration degree of the object to be heated is several μm at a high frequency of several tens to several hundreds kHz, but a current penetration degree of several mm to several tens mm is obtained at a medium frequency of 50 to 1000 Hz. For example, carbon steel has a current penetration of about 10 mm at 60 Hz and 500 ° C. That is, since current penetration is deep in medium frequency induction heating, the difference between the temperature of the heat generating portion (temperature of the heated surface) and the temperature of the temperature calculation surface is smaller than that of the high frequency.

ある1つの条件の発熱密度かつ到達温度の温度上昇計測を行い、被加熱体の温度算出面の温度とインピーダンスとの関係を近似式化して、その近似式によってインピーダンスから被加熱体の温度算出面の温度を求める。発熱密度が変われば、肉厚t(被加熱面と温度算出面との距離t)における温度差θも変わり、また、被加熱体の温度算出面の到達温度が変われば平均温度が変わることで熱伝導率も変化する。それらを換算式で演算すれば、被加熱体の温度算出面の温度が得られ、インピーダンスによる被加熱体の温度算出面の温度の算出が可能となる。   Measure the temperature rise of the heat generation density and the reached temperature under a certain condition, approximate the relationship between the temperature of the temperature calculation surface of the heated object and the impedance, and calculate the temperature calculation surface of the heated object from the impedance using the approximate expression Find the temperature of If the heat generation density changes, the temperature difference θ in the wall thickness t (distance t between the heated surface and the temperature calculation surface) also changes, and if the temperature reached by the temperature calculation surface of the heated object changes, the average temperature changes. Thermal conductivity also changes. If they are calculated using a conversion formula, the temperature of the temperature calculation surface of the object to be heated can be obtained, and the temperature of the temperature calculation surface of the object to be heated can be calculated by impedance.

前記被加熱体の側周壁に気液二相の熱媒体が封入されるジャケット室が形成されていることが望ましい。このジャケット室は、封入された気液二相の熱媒体による熱輸送によって被加熱体の温度を均一にするものであり、被加熱体の温度算出面の温度も同時に均一化する。
つまり、インピーダンスによる被加熱体の温度の検出は被加熱面の温度の平均温度を検出するものであるから、ジャケット室によって均一化された被加熱体の各部の温度算出面の温度は、インピーダンスによって検出した温度に必要な補正を加えて温度算出面の温度に換算した値と等価であるといえる。
ここで、前記被加熱面及び前記温度算出面の間の断面積をS[m]とし、前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をS[m]とし、前記被加熱面及び前記温度算出面の間の距離をt[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、前記被加熱体温度算出部が、前記被加熱面の直径dを、dj1=d±t{1−α(1−S/S)}とし、前記温度算出面の直径dを、dj2=d±t{1−α(1−S/S)}として得られる温度差θを用いて、前記被加熱体の温度を補正することが望ましい。
なお、dj1は、ジャケット室による距離(肉厚)低下分を考慮した被加熱面の仮想直径であり、dj2は、ジャケット室による距離(肉厚)低下分を考慮した温度算出面の仮想直径である。また、上記dj1の式において、±部分は、d>dのときは、マイナスであり、d<dのときは、プラスである。一方、上記dj2の式において、±部分は、d>dのときは、プラスであり、d<dのときは、マイナスである。
It is desirable that a jacket chamber in which a gas-liquid two-phase heat medium is enclosed is formed on a side peripheral wall of the object to be heated. The jacket chamber makes the temperature of the heated object uniform by heat transport by the enclosed gas-liquid two-phase heat medium, and the temperature of the temperature calculation surface of the heated object is also made uniform at the same time.
That is, the detection of the temperature of the object to be heated by impedance detects the average temperature of the surface to be heated, so the temperature of the temperature calculation surface of each part of the object to be heated that is made uniform by the jacket chamber depends on the impedance. It can be said that this is equivalent to a value obtained by adding necessary correction to the detected temperature and converting it to the temperature of the temperature calculation surface.
Here, the cross-sectional area between the heated surface and the temperature calculating surface is S [m 2 ], and the sum of the cross-sectional areas of the jacket chamber between the heated surface and the temperature calculating surface is S j [m 2]. When the distance between the heated surface and the temperature calculation surface is t [m], and the variable indicating the ratio of the function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α, The heated body temperature calculation unit sets the diameter d 1 of the heated surface as d j1 = d 1 ± t {1−α (1−S j / S)}, and sets the diameter d 2 of the temperature calculated surface to , D j2 = d 2 ± t {1-α (1-S j / S)} is preferably used to correct the temperature of the object to be heated.
D j1 is the virtual diameter of the heated surface considering the distance (thickness) reduction due to the jacket chamber, and d j2 is the virtual temperature calculation plane considering the distance (thickness) reduction due to the jacket chamber. Diameter. Further, in the formula of d j1 , the ± part is negative when d 1 > d 2 and is positive when d 1 <d 2 . On the other hand, in the formula of d j2 , the ± part is positive when d 1 > d 2 , and is negative when d 1 <d 2 .

中空円筒形状をなす被加熱体の中心軸に直交する断面積をSとし、ジャケット室の前記中心軸に直交する断面積の総和をSとし、被加熱面及び温度算出面の間の距離をtとしたときに、熱的に換算した距離tは、以下の式となる。
=α×t(S−S)/S (α>1)
ここで、αは、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数である。α−θの関係は、熱媒体の種類と、ジャケット室内の不純物濃度とによって特性が定まる。
Let S be the cross-sectional area perpendicular to the central axis of the object to be heated having a hollow cylindrical shape, S j be the sum of the cross-sectional areas perpendicular to the central axis of the jacket chamber, and the distance between the heated surface and the temperature calculation surface When t, the thermally converted distance t j is expressed by the following equation.
t j = α × t (S−S j ) / S (α> 1)
Here, α is a variable indicating the rate of deterioration of the function of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop. The α-θ relationship is determined by the type of heat medium and the impurity concentration in the jacket chamber.

距離tと熱的換算距離tとの差異は、
t−t=t−α×t(S−S)/S
=t{1−α(S−S)/S}
=t{1−α(1−S/S)}
The difference between the distance t and the thermal conversion distance t j is
t−t j = t−α × t (S−S j ) / S
= T {1-α (S−S j ) / S}
= T {1-α (1-S j / S)}

したがって、熱的に換算した被加熱面の仮想直径dj1及び温度算出面の仮想直径dj2は、以下になる。
j1=d±t{1−α(1−S/S)}
j2=d±t{1−α(1−S/S)}
なお、上記dj1の式において、±部分は、d>dのときは、マイナスであり、d<dのときは、プラスである。一方、上記dj2の式において、±部分は、d>dのときは、プラスであり、d<dのときは、マイナスである。
つまり、計算上の被加熱面及び温度算出面の距離が小さくなり、温度差θは小さくなるので、温度計測誤差も小さくなる。
Therefore, the virtual diameter d j1 of the heated surface and the virtual diameter d j2 of the temperature calculation surface, which are thermally converted, are as follows.
d j1 = d 1 ± t {1-α (1-S j / S)}
d j2 = d 2 ± t {1-α (1-S j / S)}
In the formula of d j1 , the ± part is negative when d 1 > d 2 , and is positive when d 1 <d 2 . On the other hand, in the formula of d j2 , the ± part is positive when d 1 > d 2 , and is negative when d 1 <d 2 .
That is, the calculated distance between the heated surface and the temperature calculation surface is reduced, and the temperature difference θ is reduced, so that the temperature measurement error is also reduced.

前記被加熱体が、平板形状をなし、前記磁束発生機構が、前記被加熱体を片面側から誘導加熱するものの場合には、被加熱体温度算出部が次のように温度算出面の温度を算出する。
つまり、前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する。
θ=kQ/(λS/t)
ここで、tは前記被加熱面及び前記温度算出面の間の距離[m]であり、Sは前記被加熱面及び前記温度算出面の間の断面積[m]であり、λは前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qは前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数である。
When the object to be heated has a flat plate shape and the magnetic flux generating mechanism heats the object to be heated from one side, the temperature calculation unit of the object to be heated calculates the temperature of the temperature calculation surface as follows. calculate.
That is, when the temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface which is a surface for calculating the temperature is θ [° C.], the heated object temperature calculating unit, The temperature of the object to be heated obtained from the impedance and the relational data is corrected using a temperature difference θ obtained using the following equation to calculate the temperature of the temperature calculation surface.
θ = kQ / (λS / t)
Here, t is a distance [m] between the heated surface and the temperature calculating surface, S is a cross-sectional area [m 2 ] between the heated surface and the temperature calculating surface, and λ is the above-mentioned It is the thermal conductivity [W / m · ° C.] of the heated body at the average temperature [° C.] between the heated surface and the temperature calculation surface, and Q is the calorific value [W] of the heated surface, k is a correction coefficient calculated from an actual measurement value.

前記被加熱体が、高さがh[m]、n辺の長さがそれぞれa、a、・・・a[m]の中空n角筒形状をなし、前記磁束発生機構が、前記被加熱体を外周側又は内周側から誘導加熱するものの場合には、被加熱体温度算出部が次のように温度算出面の温度を算出する。なお、以下は、各側壁部それぞれで被加熱面と温度算出面との距離が同一の場合を示している。
つまり、前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]とし、前記被加熱体の各辺における前記被加熱面及び前記温度算出面の間の距離をt[m]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する。
θ=kQ/λ[{(a+a+・・・+a)h/t}+m×n×h]
ここで、nは1から始まる自然数であり、λは前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qは前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数であり、mはnにおける定数である。
The to-be-heated body has a hollow n-square cylindrical shape with a height h [m] and n side lengths a 1 , a 2 ,..., A n [m], and the magnetic flux generation mechanism includes: In the case where the object to be heated is induction-heated from the outer peripheral side or the inner peripheral side, the heated object temperature calculation unit calculates the temperature of the temperature calculation surface as follows. The following shows a case where the distance between the heated surface and the temperature calculation surface is the same in each side wall.
That is, the temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface which is a surface for calculating the temperature is θ [° C.], and the heated surface on each side of the heated object When the distance between the temperature calculation surfaces is t [m], the heated object temperature calculation unit calculates the temperature of the heated object obtained from the impedance and the relational data as follows: The temperature of the temperature calculation surface is calculated by correcting using the temperature difference θ obtained by using.
θ = kQ / λ [{(a 1 + a 2 +... + a n ) h / t} + m n × n × h]
Here, n is a natural number starting from 1, and λ is the thermal conductivity [W / m · ° C.] of the heated object at an average temperature [° C.] between the heated surface and the temperature calculating surface, Q is the calorific value [W] of the surface to be heated, k is a correction coefficient calculated from actual measurement values, and mn is a constant at n.

上記のような平板形状又は中空n角筒形状をなす被加熱体の肉厚内に気液二相の熱媒体が封入されるジャケット室が形成されている場合には、前記被加熱面及び前記温度算出面の間の断面積をS[m]とし、前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をS[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、前記被加熱体温度算出部が、前記被加熱面及び前記温度算出面の間の距離tを、t=αt(S−S)/Sとして得られる温度差θを用いて、前記被加熱体の温度を補正することが望ましい。 In the case where a jacket chamber in which a gas-liquid two-phase heat medium is enclosed is formed in the thickness of the heated object having a flat plate shape or a hollow n-square tube shape as described above, the heated surface and the The cross-sectional area between the temperature calculation surfaces is S [m 2 ], the sum of the cross-sectional areas of the jacket chamber between the heated surface and the temperature calculation surface is S j [m 2 ], and the heat medium accompanying the temperature decrease When the variable indicating the rate of reduction in the function of the jacket chamber due to the pressure drop is α, the heated object temperature calculation unit sets the distance t between the heated surface and the temperature calculation surface to t j = αt It is desirable to correct the temperature of the object to be heated using the temperature difference θ obtained as (S−S j ) / S.

一方で、上記の中空n角筒形状をなす被加熱体において、各側壁部それぞれの被加熱面と温度算出面との距離が異なる場合には、被加熱体温度算出部が次のように温度算出面の温度を算出する。
つまり、前記被加熱体の各側壁部それぞれの前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]とし、前記被加熱体の各側壁部それぞれの前記被加熱面及び前記温度算出面の間の距離をt、t、・・・t[m]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する。
θ=k/(λ/t
ここで、tはn番目の側壁部における前記被加熱面及び前記温度算出面の間の距離[m]であり、Sはn番目の側壁部における前記被加熱面及び前記温度算出面の間の断面積[m]であり、λはn番目の側壁部における前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qはn番目の側壁部における前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数である。
On the other hand, in the object to be heated having the above-described hollow n-square tube shape, when the distance between the surface to be heated and the temperature calculation surface of each side wall portion is different, the temperature of the object to be heated is calculated as follows. Calculate the temperature of the calculation surface.
That is, the temperature difference between the heated surface of the heated body facing the winding of each side wall portion of the heated body and the temperature calculation surface that is a surface for calculating the temperature is θ n [° C.], and When the distance between the heated surface and the temperature calculation surface of each side wall portion of the heated object is t 1 , t 2 ,... T n [m], the heated object temperature calculating unit is Then, the temperature of the object to be heated obtained from the impedance and the relational data is corrected using a temperature difference θ n obtained using the following equation to calculate the temperature of the temperature calculation surface.
θ n = k n Q n / (λ n S n / t n)
Here, t n is the distance between the heated surface and the temperature calculated surface at the n-th sidewall part [m], S n is the heated surface and the temperature calculated surface at the n-th sidewall part the cross-sectional area [m 2] between, lambda n is n th said at side wall portions of the heating surface and the thermal conductivity of the object to be heated at an average temperature [℃] between the temperature calculated surface [W / m a · ° C.], Q n is the heat value of the heated surface of the n-th sidewall part [W], k n is a correction coefficient calculated from the measured value.

このとき、前記被加熱体の肉厚内に気液二相の熱媒体が封入されるジャケット室が形成されている場合には、n番目の側壁部における前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をSnj[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、前記被加熱体温度算出部が、n番目の側壁部における前記被加熱面及び前記温度算出面の間の距離tを、tnj=αt(S−Snj)/Sとして得られる温度差θを用いて、前記被加熱体の温度を補正することが望ましい。 At this time, in the case where a jacket chamber in which a gas-liquid two-phase heat medium is sealed is formed within the thickness of the heated body, the heated surface and the temperature calculating surface of the nth side wall portion. When the sum of the cross-sectional areas of the jacket chamber is S nj [m 2 ], and the variable indicating the rate of decrease in the function of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α, the temperature of the heated object The calculation unit calculates a temperature difference θ n obtained by setting the distance t n between the heated surface and the temperature calculation surface in the n th side wall as t nj = αt n (S n −S nj ) / S n. It is desirable to correct the temperature of the object to be heated.

前記インピーダンス算出部により得られたインピーダンスを、前記電源回路の電源電圧を検出する電源電圧検出部から得られる電源電圧値により補正するインピーダンス補正部を更に備え、前記被加熱体温度算出部が、前記インピーダンス補正部により補正された補正インピーダンスと前記関係データとから前記被加熱体の温度を算出することが望ましい。   An impedance correction unit that corrects the impedance obtained by the impedance calculation unit using a power supply voltage value obtained from a power supply voltage detection unit that detects a power supply voltage of the power supply circuit, and the heated object temperature calculation unit includes It is desirable to calculate the temperature of the object to be heated from the corrected impedance corrected by the impedance correction unit and the relation data.

電源電圧は、製品出荷時とユーザの使用時とで変わることが一般的である。例えば仕様が200Vであれば、190V〜210Vの範囲で誘導加熱装置が正常に動作することが求められる。特に、被加熱体の温度の初期昇温時には入力全電圧が印加されるので、受電電圧値に合わせたインピーダンス値の補正を行う必要がある。
ここで、出荷時の電源電圧V1で算出したインピーダンス−温度特性式(前記関係データ)を、ユーザの使用時における電源電圧V2に応じて補正しなければならない。
これは、図6に示す単相の誘導加熱装置の等価回路において、電源電圧が変わると、磁気回路における磁束密度が変化するため、励磁インピーダンスr、l及び被加熱体のリアクタンスlが変化し、また、磁束密度の変化による被加熱体の透磁率が変化することで電流浸透度が変わって被加熱体の抵抗rが変化し、回路インピーダンスも変化するためである。
In general, the power supply voltage varies between product shipment and user use. For example, if the specification is 200V, the induction heating device is required to operate normally in the range of 190V to 210V. In particular, since the entire input voltage is applied when the temperature of the object to be heated is initially raised, it is necessary to correct the impedance value in accordance with the received voltage value.
Here, it is necessary to correct the impedance-temperature characteristic equation (the relational data) calculated with the power supply voltage V1 at the time of shipment in accordance with the power supply voltage V2 at the time of use by the user.
This is because, in the equivalent circuit of the single-phase induction heating device shown in FIG. 6, when the power supply voltage changes, the magnetic flux density in the magnetic circuit changes, so that the excitation impedances r 0 and l 0 and the reactance l 2 of the heated object are altered, also the resistance r 2 of the object to be heated is changed in a current penetration is changed by the magnetic permeability of the heated object due to a change in the magnetic flux density changes, in order to change the circuit impedance.

被加熱体の被加熱面の温度とインピーダンスとの関係を近似式化した場合、入力電圧の変化による磁束密度の変化によって電流浸透度が変わることからインピーダンスの変化を生じる。このため、近似式の読み取りを補正する必要がある。
被加熱体の電流浸透度σは、σ=5.033√(ρ/μs×f)で計算できる。式中のρは固有抵抗、μsは比透磁率、fは周波数である。ここで、磁性材製の被加熱体の比透磁率は磁束密度によって変化し、金属種毎に固有の特性を示す。この磁性材の比透磁率−磁束密度特性を予め測定しておき、入力電圧に応じた磁束密度のときの電流浸透度を算出して、電流浸透度に反比例したインピーダンスを修正して温度を読み取ることになる。また、固有抵抗も金属種毎に温度との固有の変化特性を示すので、温度変化に伴って電流浸透度σも変化してインピーダンスが変わる。しかし、被加熱体の発熱部温度(被加熱面の温度)とインピーダンスの関係近似式は、被加熱体の発熱部温度の変化を含んだ式であり、これに関する補正は必要ない。
When the relationship between the temperature of the surface to be heated and the impedance is approximated, the impedance changes because the current penetration changes due to the change in magnetic flux density due to the change in input voltage. For this reason, it is necessary to correct the reading of the approximate expression.
The current penetration σ of the object to be heated can be calculated by σ = 5.033√ (ρ / μs × f). In the equation, ρ is specific resistance, μs is relative permeability, and f is frequency. Here, the relative magnetic permeability of the heated body made of a magnetic material changes depending on the magnetic flux density, and shows a characteristic specific to each metal type. The relative permeability-magnetic flux density characteristic of this magnetic material is measured in advance, the current penetration at the magnetic flux density corresponding to the input voltage is calculated, the impedance is inversely proportional to the current penetration, and the temperature is read. It will be. In addition, since the specific resistance also shows a characteristic of change with temperature for each metal species, the current penetration degree σ also changes with the temperature change, and the impedance changes. However, the relational approximate expression between the heat generating part temperature of the heated body (temperature of the heated surface) and the impedance is an expression including a change in the heat generating part temperature of the heated body, and correction for this is not necessary.

具体的には、前記制御素子が、誘導電圧調整器のような電圧可変装置であれば巻き線への入力電圧が変化することによって磁気回路の磁束密度が変化し、また、半導体により電流又は電圧の位相角(通電角)を制御するものである場合、通電角によって入力電圧が変わると、磁気回路の磁束密度が変化し、さらに被加熱体の温度も変化するので、被加熱体の電流浸透度σが変わる。   Specifically, if the control element is a voltage variable device such as an induction voltage regulator, the magnetic flux density of the magnetic circuit is changed by changing the input voltage to the winding, and the current or voltage is changed by the semiconductor. When the input voltage changes depending on the conduction angle, the magnetic flux density of the magnetic circuit changes and the temperature of the heated object also changes, so that the current penetration of the heated object is controlled. The degree σ changes.

入力電圧の変化による磁束密度の変化によって、磁気回路の励磁特性も変化し、図6の等価回路の励磁インピーダンスr及びlの値も変化する。この励磁特性は、被加熱体の材質によって、磁気回路の磁束密度と固有の関係を示すので、前もって特性を測定しておいて、インピーダンスを補正することになる。
また、入力電圧の変化による磁束密度の変化によって、図6の等価回路の被加熱体のリアクタンスlの値も変化する。被加熱体のリアクタンスlは、被加熱体の固有抵抗及び磁束密度に関係した変化を示すので、前もって特性を測定しておいてインピーダンスを補正することになる。またリアクタンスlは、被加熱体の構造によって決まる値であり、前もって計算しておく必要がある。
Due to the change in magnetic flux density due to the change in input voltage, the excitation characteristics of the magnetic circuit also change, and the values of the excitation impedances r 0 and l 0 of the equivalent circuit in FIG. 6 also change. This excitation characteristic shows an inherent relationship with the magnetic flux density of the magnetic circuit, depending on the material of the heated object, so that the characteristic is measured in advance and the impedance is corrected.
Further, the reactance l 2 of the heated body of the equivalent circuit of FIG. 6 also changes due to the change in magnetic flux density due to the change in input voltage. Since the reactance l 2 of the heated object shows a change related to the specific resistance and magnetic flux density of the heated object, the characteristic is measured in advance and the impedance is corrected. The reactance l 1 is a value determined by the structure of the heated object, and needs to be calculated in advance.

また、誘導加熱装置の運転中に電源電圧が急激に変動したとき、磁気回路の磁束密度も急激に変化して電流浸透度が変わるので、インピーダンスが変化するが、被加熱体の温度変化にはかなりの時間遅れが発生する。温度の時間遅れは被加熱体構造(材質・寸法・重量等)によって異なるので、被加熱体の種類毎に個別の補正式を定める必要がある。   Also, when the power supply voltage fluctuates rapidly during the operation of the induction heating device, the magnetic flux density of the magnetic circuit also changes abruptly and the current penetration changes, so the impedance changes, but the temperature change of the heated object A considerable time delay occurs. Since the time delay of temperature varies depending on the structure of the heated body (material, dimensions, weight, etc.), it is necessary to define an individual correction formula for each type of heated body.

検証した誘導加熱装置の場合、補正式は下記となった。
={1−a(E−Vin}Zon
ここで、Eは定格電源電圧であり、Vinは制御素子入力電圧であり、Zonは補正前の時間tにおけるインピーダンスであり、nは検出順を表わす数であり、aおよびbは被加熱体毎の定数である。
例えば数十マイクロ秒程度に区切った時間t間の実効電圧及び実効電流から算出したZonを、上記補正式に代入して、補正したインピーダンスZを求める。
さらに次の区切られた時間t(n+1)の実効電圧及び実効電流から求めたZo(n+1)を補正式に代入し、補正インピーダンスZ(n+1)を求める。こうして順次区切られた時間ごとのインピーダンス補正を連続的に行う。
In the case of the verified induction heating apparatus, the correction formula is as follows.
Z n = {1−a (E−V in ) b } Z on
Here, E is the rated power supply voltage, V in is the control element input voltage, Z on is the impedance at time t n before correction, n is a number indicating the detection order, and a and b are subject to detection. It is a constant for each heating element.
For example a Z on calculated from the effective voltage and effective current between time divided into about several tens of microseconds t n, it is substituted into the above correction formula, obtaining the corrected impedance Z n.
Further, Z o (n + 1) obtained from the effective voltage and effective current at the next divided time t (n + 1) is substituted into the correction equation to obtain the corrected impedance Z (n + 1) . In this way, impedance correction is performed continuously for each of the time intervals.

さらに、前記制御素子が半導体の場合には、通電角によって電圧及び電流の波形形状が変わるが、それはそれぞれ違った形状に変わるので、それぞれのインピーダンスの分担電圧が変わることで、励磁インピーダンスの電圧が変化して磁束密度が変わり、励磁インピーダンス及び比透磁率も変化する。このとき、制御素子と通電角と負荷が決まれば、電圧及び電流はそれぞれ一定の形状になるため、通電角による補正係数が決まる。   Furthermore, when the control element is a semiconductor, the waveform shape of the voltage and current changes depending on the energization angle, but since it changes to a different shape, the voltage of the excitation impedance is changed by changing the shared voltage of each impedance. As the magnetic flux density changes, the excitation impedance and the relative permeability also change. At this time, if the control element, the energization angle, and the load are determined, the voltage and the current each have a fixed shape, and thus the correction coefficient according to the energization angle is determined.

ここで、前記インピーダンス算出部により得られたインピーダンスを、前記制御素子の通電角により補正するインピーダンス補正部を更に備え、前記被加熱体温度算出部が、前記インピーダンス補正部により補正された補正インピーダンスと前記関係データとから前記被加熱体の温度を算出するものであることが望ましい。   Here, an impedance correction unit that corrects the impedance obtained by the impedance calculation unit based on an energization angle of the control element is further provided, and the heated object temperature calculation unit includes the corrected impedance corrected by the impedance correction unit and It is desirable to calculate the temperature of the object to be heated from the relation data.

制御素子がサイリスタであり、検証した被加熱体(外径Φ×深さL×側壁部の厚さtを有する円筒形金属製釜)の場合は、波形歪による高調波成分の変化によって、等価回路におけるリアクタンス成分のl及びlにかかる電圧が変化することになる。したがって、励磁インピーダンスに印加される電圧が変化して、磁束密度も変わることになる。つまり、磁束密度によって励磁インピーダンス及び比透磁率が変化するため、その影響を補正する必要がある。
サイリスタの位相角変化による影響を補正した補正インピーダンスZは、下記となる。
Z=a×Z
ここで、C=V/Vinとすると、
a=a+an−1n−1+an−2n−2+,・・・,+a+aC+a
ここで、aは各誘導加熱装置により定まる実測値に基づく係数であり、aは定数である。
また、Zは、補正前のインピーダンスであり、Vinは、サイリスタの受電電圧であり、Vは、サイリスタの出力電圧である。
When the control element is a thyristor and the object to be heated (cylindrical metal kettle with outer diameter Φ x depth L x side wall thickness t) is equivalent due to a change in harmonic components due to waveform distortion The voltage applied to the reactance components l 1 and l 2 in the circuit will change. Therefore, the voltage applied to the excitation impedance changes and the magnetic flux density also changes. That is, since the excitation impedance and the relative permeability change depending on the magnetic flux density, it is necessary to correct the influence.
The corrected impedance Z that corrects the influence due to the phase angle change of the thyristor is as follows.
Z = a × Z x
Here, if C = V / V in ,
a = a n C n + a n-1 C n-1 + a n-2 C n-2 +, ···, + a 2 C 2 + a 1 C + a 0
Here, a n is a coefficient based on the measured value determined by the induction heating device, a 0 is a constant.
Further, Z x is the uncorrected impedance, V in is the receiving voltage of the thyristor, V is an output voltage of the thyristor.

前記インピーダンス補正部が、前記インピーダンス算出部により得られたインピーダンスを、前記巻き線の温度を検出する温度検出部から得られる巻き線温度により補正するものであることが望ましい。   It is desirable that the impedance correction unit corrects the impedance obtained by the impedance calculation unit with a winding temperature obtained from a temperature detection unit that detects the temperature of the winding.

通電によって1次コイルである巻き線の温度が変化すると、図6に示す単相の誘導加熱装置の等価回路におけるrが変化するので、回路インピーダンスも変化することになり、すなわち、V/Iも変わることになる。ところが、この変化は、被加熱体の発熱部温度の変化には無関係であるので、その変化分を補正する必要がある。 When the temperature of the winding that is the primary coil changes due to energization, r 1 in the equivalent circuit of the single-phase induction heating device shown in FIG. 6 changes, so that the circuit impedance also changes, that is, V / I. Will also change. However, this change is irrelevant to the change in the temperature of the heat generating part of the heated body, and it is necessary to correct the change.

巻き線の抵抗率と温度は、およそ絶対温度に比例する関係があるが、その材質によって固有の変化特性を示す。例えば電線材質が銅であれば、下記式の関係になるので、巻き線に温度センサを埋設して巻き線温度を検出すれば、rが算出できる。
=kL/100S[Ω]
k=2.1(234.5+θ)/309.5
ここで、Lは電線長[m]であり、Sは電線断面積[mm]であり、θは巻き線温度[℃]である。
The resistivity and temperature of the winding have a relationship that is approximately proportional to the absolute temperature, but shows inherent change characteristics depending on the material. For example, if the wire material is copper, the following relationship is established. Therefore, if the temperature sensor is embedded in the winding and the winding temperature is detected, r 1 can be calculated.
r 1 = kL / 100S [Ω]
k = 2.1 (234.5 + θ c ) /309.5
Here, L is the wire length [m], S is the wire cross-sectional area [mm 2 ], and θ c is the winding temperature [° C.].

また、誘導加熱装置が、直流電源を制御して、前記巻き線に間欠的に直流電圧を印加する直流電圧印加部と、前記直流電圧印加部により印加される直流電圧と当該直流電圧を印加したときに前記巻き線に流れる直流電流とから前記巻き線の抵抗値を算出する抵抗値算出部とをさらに備え、前記インピーダンス補正部が、前記インピーダンス算出部により得られたインピーダンスを、前記抵抗値算出部から得られる抵抗値により補正するものであっても良い。
巻き線抵抗値は、巻き線に数秒以内の短時間に一定の直流電圧を印加して、当該直流電圧を巻き線に流れる直流電流で除せば算出できる。ここで、直流電圧であれば誘導作用は無いので、直流電流は、被加熱体の影響は受けず、巻き線抵抗値のみとの関係となる。なお、巻き線温度は急激には変化しないことから、周期的且つ短時間の測定値を採用しても、大きな測定誤差を生むことは無い。
In addition, the induction heating device controls the DC power supply, applies a DC voltage intermittently to the winding, applies the DC voltage applied by the DC voltage application unit, and the DC voltage. A resistance value calculating unit that calculates a resistance value of the winding from a direct current that sometimes flows through the winding, and the impedance correction unit calculates the impedance obtained by the impedance calculating unit as the resistance value It may be corrected by the resistance value obtained from the part.
The winding resistance value can be calculated by applying a constant DC voltage to the winding in a short time within a few seconds and dividing the DC voltage by the DC current flowing through the winding. Here, since there is no inductive action in the case of a DC voltage, the DC current is not affected by the heated object, and has only a relationship with the winding resistance value. Since the winding temperature does not change abruptly, even if periodic and short-time measurement values are used, no large measurement error is produced.

また、間欠的な直流電圧の印加とは、数秒以内の印加時間を数秒から数十分の例えば一定の周期で行うことである。このような間欠的な印加であれば、直流成分から受ける偏磁作用を小さくするとともに、誘導発熱させるための交流回路への影響も最小限に抑えることができる。さらに、誘導加熱装置の巻き線は一般的に熱慣性が大きく、且つ、通常の一定負荷条件下の運転では巻き線の温度の変化はさほど大きい値にはならない。したがって、数秒以内の短時間の印加時間によってなされる温度検出を、数秒から数十分単位、好ましくは、数十秒から数分単位で実施されれば、被加熱体の温度制御にとっては十分といえる。   Further, intermittent application of the DC voltage means that the application time within a few seconds is performed at a constant period of several seconds to several tens of minutes, for example. With such intermittent application, it is possible to reduce the demagnetizing action received from the DC component and to minimize the influence on the AC circuit for induction heating. Further, the winding of the induction heating device generally has a large thermal inertia, and the change in the temperature of the winding does not become a large value in the operation under a normal constant load condition. Therefore, if temperature detection performed by a short application time within several seconds is performed in units of several seconds to several tens of minutes, preferably in units of several tens of seconds to several minutes, it is sufficient for temperature control of the object to be heated. I can say that.

前記電源回路に設けられた制御素子により、前記交流電流又は交流電圧を遮断又は最小限とした状態で、前記抵抗値算出部が前記巻き線に直流電圧を印加して巻き線抵抗値を算出するものであることが望ましい。   The resistance value calculation unit applies a DC voltage to the winding and calculates a winding resistance value in a state where the AC current or the AC voltage is cut off or minimized by a control element provided in the power supply circuit. It is desirable to be a thing.

交流電圧が印加されている巻き線に直流電圧を印加して、交流電流と直流電流とが重畳した電流から直流成分(直流電流)だけを検出するには、複雑な検出回路が必要となってしまう。ここで、通常の誘導加熱装置では、被加熱体の温度を制御するための交流電流又は交流電圧を制御する制御素子を有する電源回路を備えている。このため、制御素子により、直流電圧を印加する印加時間のみ、交流電流又は交流電圧を遮断又は最小限の値にすれば、交流電流(交流成分)の影響を抑えることができ、直流電流(直流成分)の検出を容易に行うことができる。ここで、交流電流又は交流電圧の遮断又は最小限の値とするのは、数秒以内の短時間であって、数秒から数十分の時間間隔であり、誘導発熱作用の障害にはならない。   In order to detect only the DC component (DC current) from the current in which the AC current and DC current are superimposed by applying DC voltage to the winding to which AC voltage is applied, a complicated detection circuit is required. End up. Here, the normal induction heating apparatus includes a power supply circuit having a control element for controlling an alternating current or an alternating voltage for controlling the temperature of the heated object. For this reason, if the AC current or the AC voltage is cut off or set to a minimum value only during the application time for applying the DC voltage by the control element, the influence of the AC current (AC component) can be suppressed. Component) can be easily detected. Here, the interruption or the minimum value of the AC current or AC voltage is a short time within a few seconds, and is a time interval of several seconds to several tens of minutes, and does not hinder the induction heating action.

交流電流又は交流電圧の遮断又は最小限の値にする実施態様としては、制御素子が例えば電磁接触器等のスイッチ機器を有する場合は、当該スイッチ機器を遮断する態様、又は、制御回路部が例えばサイリスタ等の半導体素子(電力制御素子)を有する場合は、当該半導体素子の通電位相角を最小にする態様が考えられる。   As an embodiment in which the alternating current or the alternating voltage is cut off or set to a minimum value, when the control element has a switch device such as an electromagnetic contactor, the switch device is cut off, or the control circuit unit has, for example, In the case where a semiconductor element (power control element) such as a thyristor is included, a mode in which the energization phase angle of the semiconductor element is minimized can be considered.

また、誘導加熱装置が、前記巻き線の抵抗値と前記巻き線の温度との抵抗値−温度関係を示す関係データを格納する関係データ格納部と、前記抵抗値算出部により得られた抵抗値と前記関係データが示す抵抗値−温度関係とから前記巻き線の温度を算出する巻き線温度算出部とをさらに備えることが望ましい。   In addition, the induction heating device has a relation data storage section that stores relation data indicating a resistance value-temperature relation between the resistance value of the winding and the temperature of the winding, and the resistance value obtained by the resistance value calculation section. And a winding temperature calculation unit that calculates the temperature of the winding from the resistance value-temperature relationship indicated by the relationship data.

このように構成した本発明によれば、被加熱体に温度検出素子を設けることなく、巻き線のインピーダンスを算出することによって、被加熱体の温度を算出することができる。   According to the present invention configured as described above, the temperature of the object to be heated can be calculated by calculating the impedance of the winding without providing the temperature detection element in the object to be heated.

第1実施形態に係る誘導加熱装置の構成を模式的に示す図。The figure which shows typically the structure of the induction heating apparatus which concerns on 1st Embodiment. 同実施形態の誘導加熱ユニットの構成を模式的に示す断面図。Sectional drawing which shows the structure of the induction heating unit of the embodiment typically. 同実施形態の制御装置の機能構成図。The function block diagram of the control apparatus of the embodiment. 同実施形態の温度算出フローを示す図。The figure which shows the temperature calculation flow of the embodiment. 炭素鋼(S45C)の温度と熱伝導率との関係を示す特性グラフ。The characteristic graph which shows the relationship between the temperature of carbon steel (S45C), and thermal conductivity. 単相の誘導加熱ユニットの等価回路を示す図。The figure which shows the equivalent circuit of a single phase induction heating unit. 炭素鋼(S45C)の磁束密度と比透磁率との関係を示す特性グラフ。The characteristic graph which shows the relationship between the magnetic flux density and relative permeability of carbon steel (S45C). 第2実施形態に係る誘導加熱ユニットの構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the induction heating unit which concerns on 2nd Embodiment. 第3実施形態に係る誘導加熱ユニットの構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the induction heating unit which concerns on 3rd Embodiment. 第4実施形態に係る誘導加熱ユニットの構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the induction heating unit which concerns on 4th Embodiment.

<第1実施形態>
以下に本発明に係る誘導加熱装置の第1実施形態について図面を参照して説明する。
<First Embodiment>
A first embodiment of an induction heating apparatus according to the present invention will be described below with reference to the drawings.

本実施形態に係る誘導加熱装置100は、図1に示すように、処理対象物を熱処理するために加熱される被加熱体2と、当該被加熱体2を誘導加熱するための鉄心31及び巻き線32からなる磁束発生機構3と、巻き線32に接続されるとともに、電流又は電圧を制御する制御素子4が設けられた電源回路5とを備えている。   As shown in FIG. 1, the induction heating apparatus 100 according to this embodiment includes a heated body 2 that is heated to heat-treat a processing target, an iron core 31 and a winding for induction heating the heated body 2. A magnetic flux generation mechanism 3 composed of a wire 32 and a power supply circuit 5 connected to the winding 32 and provided with a control element 4 for controlling current or voltage are provided.

本実施形態の被加熱体2は、図2に示すように、処理対象物を収容する収容部を有するものであり、高さがh[m]、外径がφ[m]、側壁部の厚さがt[m]の中空円筒形状をなす金属製釜である。この被加熱体2の側周壁の肉厚内には、気液二相の熱媒体が封入される複数のジャケット室2Sが、中心軸に沿って周方向に等間隔に形成されている。   As shown in FIG. 2, the heated body 2 of the present embodiment has a housing portion that houses the object to be processed, and has a height of h [m], an outer diameter of φ [m], and a side wall portion. It is a metal pot having a hollow cylindrical shape with a thickness of t [m]. A plurality of jacket chambers 2S in which a gas-liquid two-phase heat medium is enclosed are formed at equal intervals in the circumferential direction along the central axis in the wall thickness of the side peripheral wall of the body 2 to be heated.

また、本実施形態の巻き線32は、中空円筒形状をなす被加熱体2の外側周面の周りに離間して巻回された概略円筒形状をなすものである。これにより、被加熱体2の外側周面が、巻き線32に対向して加熱される被加熱面2hとなる。   In addition, the winding wire 32 of the present embodiment has a substantially cylindrical shape that is wound around the outer peripheral surface of the heated body 2 having a hollow cylindrical shape. Thereby, the outer peripheral surface of the heated body 2 becomes a heated surface 2 h that is heated to face the winding 32.

さらに、本実施形態の制御素子4は、半導体により交流電流又は交流電圧の通電角を制御するものであり、具体的にはサイリスタである。   Furthermore, the control element 4 of this embodiment controls the conduction angle of an alternating current or an alternating voltage with a semiconductor, and is specifically a thyristor.

そして、本実施形態の誘導加熱装置100を制御する制御装置6は、巻き線32のインピーダンスから、被加熱体2の温度算出面2xの温度を算出する温度算出機能を有する。本実施形態の温度算出面2xは、被加熱体2の側壁部において被加熱面2hから厚さ方向に離間した温度を算出する面である。誘導加熱装置100の制御装置6は、当該温度算出面2xの温度が所望の温度となるように制御素子4を有する電源回路5を制御する。   And the control apparatus 6 which controls the induction heating apparatus 100 of this embodiment has a temperature calculation function which calculates the temperature of the temperature calculation surface 2x of the to-be-heated body 2 from the impedance of the winding 32. FIG. The temperature calculation surface 2x of the present embodiment is a surface for calculating a temperature that is separated from the heated surface 2h in the thickness direction in the side wall portion of the heated body 2. The control device 6 of the induction heating device 100 controls the power supply circuit 5 having the control element 4 so that the temperature of the temperature calculation surface 2x becomes a desired temperature.

具体的に制御装置6は、CPU、内部メモリ、A/Dコンバータ、D/Aコンバータ、入出力インターフェイス等を備えた専用乃至汎用のコンピュータであり、内部メモリに予め記憶させた所定プログラムにしたがって前記CPUや周辺機器が動作することにより、図2に示すように、インピーダンス算出部61、インピーダンス補正部62、関係データ格納部63、被加熱体温度算出部64等としての機能を発揮する。   Specifically, the control device 6 is a dedicated or general-purpose computer including a CPU, an internal memory, an A / D converter, a D / A converter, an input / output interface, and the like. The control device 6 is configured according to a predetermined program stored in the internal memory. When the CPU and peripheral devices operate, as shown in FIG. 2, functions as an impedance calculation unit 61, an impedance correction unit 62, a relational data storage unit 63, a heated object temperature calculation unit 64, and the like are exhibited.

以下、各部について、図3とともに、図4の温度算出フローチャートを参照して説明する。   Hereinafter, each part will be described with reference to the temperature calculation flowchart of FIG. 4 together with FIG. 3.

インピーダンス算出部61は、巻き線32を流れる交流電流Iを検出する交流電流検出部7から得られる交流電流値及び巻き線32に印加される交流電圧Vを検出する交流電圧検出部8から得られる交流電圧値により、巻き線32のインピーダンスZ(=V/I)を算出する(図4の(1))。 The impedance calculation unit 61 is obtained from the AC voltage detection unit 8 that detects the AC current value obtained from the AC current detection unit 7 that detects the AC current I that flows through the winding 32 and the AC voltage V that is applied to the winding 32. Based on the AC voltage value, impedance Z 1 (= V / I) of winding 32 is calculated ((1) in FIG. 4).

インピーダンス補正部62は、インピーダンス算出部61により得られたインピーダンスZを、製品出荷時に関係データを作成した電源電圧と、ユーザの使用する電源電圧との違い分(両者の電源電圧の差)により補正する(図4の(2))。 Impedance correction unit 62, the impedance Z 1 obtained by the impedance calculation unit 61, a power supply voltage that created the related data at the time of product shipment, the difference component of the power supply voltage used by the user (difference between the supply voltage) Correction is performed ((2) in FIG. 4).

また、インピーダンス補正部62は、インピーダンスZを、制御素子(サイリスタ)4の通電角(位相角)により補正する(図4の(3))。 The impedance correction unit 62, the impedance Z 1, is corrected by conduction angle control element (thyristor) 4 (phase angle) ((3 in FIG. 4)).

具体的にインピーダンス補正部62は、以下の式により、インピーダンスZを補正する。
=a×Z
ここで、C=V/Vinとすると、
a=a+an−1n−1+an−2n−2+,・・・,+a+aC+a
ここで、aは各誘導加熱装置により定まる実測値に基づく係数であり、aは定数である。
また、Zは、補正前のインピーダンスであり、Vinは、サイリスタの受電電圧であり、Vは、サイリスタの出力電圧である。
Specifically impedance correction unit 62, according to the following equation to correct the impedance Z 1.
Z 2 = a × Z 1
Here, if C = V / V in ,
a = a n C n + a n-1 C n-1 + a n-2 C n-2 +, ···, + a 2 C 2 + a 1 C + a 0
Here, a n is a coefficient based on the measured value determined by the induction heating device, a 0 is a constant.
Further, Z 1 is the uncorrected impedance, V in is the receiving voltage of the thyristor, V is an output voltage of the thyristor.

また、誘導加熱装置100の運転中に電源電圧が急激に変動した場合、磁気回路の磁束密度も急激に変化して、被加熱体の電流浸透度が変わるので、インピーダンスが変化するが、被加熱体の温度変化にはかなりの時間遅れが発生する。このため、本実施形態のインピーダンス補正部62は、上記通電角により補正されたZを、電源回路5の電源電圧を検出する電源電圧検出部9から得られる電源電圧値Eにより補正する(図4の(4))。 In addition, when the power supply voltage fluctuates rapidly during the operation of the induction heating apparatus 100, the magnetic flux density of the magnetic circuit also changes abruptly, and the current penetration degree of the heated object changes, so that the impedance changes. There is a considerable time delay in body temperature changes. For this reason, the impedance correction unit 62 of the present embodiment corrects Z 2 corrected by the energization angle by the power supply voltage value E obtained from the power supply voltage detection unit 9 that detects the power supply voltage of the power supply circuit 5 (FIG. 4 (4)).

具体的にインピーダンス補正部62は、以下の式により、インピーダンスZを補正する。
={1−a(E−Vin}Z
ここで、Eは定格電源電圧であり、Vinは制御素子入力電圧であり、Zは補正前のインピーダンスであり、aおよびbは被加熱体(誘導加熱ユニット)毎の定数である。この補正は区切られた時間ごとに連続的に行なう。
Specifically impedance correction unit 62, according to the following equation to correct the impedance Z 2.
Z 3 = {1-a ( E-V in) b} Z 2
Here, E is the rated supply voltage, V in is the control element input voltage, Z 2 is the impedance of before the correction, a and b are constants for each object to be heated (induction heating unit). This correction is continuously performed at every divided time.

さらに、インピーダンス補正部62は、上記通電角及び電源電圧Eにより補正されたインピーダンスZを、巻き線32の温度を検出する温度検出部10から得られる巻き線温度θ[℃]により補正する(図4の(5))。なお、温度検出部10は、巻き線32に埋設されている。 Further, the impedance correction unit 62 corrects the impedance Z 3 corrected by the energization angle and the power supply voltage E by the winding temperature θ c [° C.] obtained from the temperature detection unit 10 that detects the temperature of the winding 32. ((5) in FIG. 4). The temperature detection unit 10 is embedded in the winding 32.

具体的にインピーダンス補正部62は、以下の式により、巻き線32の抵抗rを算出して、インピーダンスZを補正する。
=kL/100S[Ω]
k=2.1(234.5+θ)/309.5
ここで、Lは電線長[m]であり、Sは電線断面積[mm]であり、θは巻き線温度[℃]である。
Specifically, the impedance correction unit 62 calculates the resistance r 1 of the winding 32 by the following formula and corrects the impedance Z 3 .
r 1 = kL / 100S [Ω]
k = 2.1 (234.5 + θ c ) /309.5
Here, L is the wire length [m], S is the wire cross-sectional area [mm 2 ], and θ c is the winding temperature [° C.].

関係データ格納部63は、巻き線32のインピーダンスと被加熱体2の温度との関係(V/I−θ特性近似式)を示す関係データを格納している。具体的に関係データは、巻き線32のインピーダンスと被加熱体2の被加熱面2hの温度との関係を示すデータである。また、巻き線32のインピーダンスは、予め関係データを求める際に、上述した通り、電流検出部7の交流電流値及び電圧検出部8の交流電圧値により求まるインピーダンスを、通電角、電源電圧及び巻き線温度により補正して得られたものである(図4の(1)〜(5))。なお、この関係データは、基準となる誘導加熱装置を用いて得られたものである。また、関係データ格納部63は、内部メモリの所定領域に設定されたものであっても良いし、前記制御装置6に外付けされる外部メモリの所定領域に設定されたものであっても良い。   The relationship data storage unit 63 stores relationship data indicating a relationship (V / I-θ characteristic approximation formula) between the impedance of the winding 32 and the temperature of the heated object 2. Specifically, the relationship data is data indicating the relationship between the impedance of the winding 32 and the temperature of the heated surface 2h of the heated body 2. In addition, as described above, the impedance of the winding 32 is obtained by calculating the impedance obtained from the AC current value of the current detection unit 7 and the AC voltage value of the voltage detection unit 8 as described above when obtaining the relational data. It is obtained by correcting with the line temperature ((1) to (5) in FIG. 4). This relational data is obtained using a reference induction heating apparatus. The related data storage unit 63 may be set in a predetermined area of the internal memory, or may be set in a predetermined area of the external memory externally attached to the control device 6. .

被加熱体温度算出部64は、前記インピーダンス補正部62により補正された補正インピーダンスと、前記関係データ格納部63に格納された関係データとを用いて、被加熱体2の被加熱面2hの温度を算出する(図4の(6))。   The heated object temperature calculation unit 64 uses the corrected impedance corrected by the impedance correction unit 62 and the relationship data stored in the relationship data storage unit 63, so that the temperature of the heated surface 2h of the heated object 2 is increased. Is calculated ((6) in FIG. 4).

具体的に被加熱体温度算出部64は、被加熱体2の被加熱面2hの温度と、当該被加熱面2hから離間した温度を算出する面である温度算出面2xとの温度差をθ[℃]としたときに、以下の式から得られる温度差θを用いて被加熱面2hの温度を補正して温度算出面2xの温度を算出する(図4の(7))。
θ=kP/[2π/{ln(d/d)/λ}]
ここで、dは被加熱面2hの直径[m]であり、dは前記温度算出面2xの直径[m]であり、λは被加熱面2h及び前記温度算出面2xの間の平均温度における熱伝導率[W/m・℃]であり、Pは熱流速[W/m]であり、kは、実測値から算出した補正係数である。熱流速P[W/m]は、ここでは被加熱体2の内面の発熱量[W]を発熱内面長[m](巻き線幅に等しい)で除した値であり、熱流速[W/m]を求めるに当たって、被加熱体温度算出部64は、電力検出部11から得られる電力値を用いる。
Specifically, the heated body temperature calculation unit 64 calculates the temperature difference between the temperature of the heated surface 2h of the heated body 2 and the temperature calculation surface 2x that is a surface for calculating the temperature separated from the heated surface 2h by θ. When the temperature is [° C.], the temperature of the heated surface 2h is corrected using the temperature difference θ obtained from the following equation to calculate the temperature of the temperature calculation surface 2x ((7) in FIG. 4).
θ = kP / [2π / {ln (d 2 / d 1 ) / λ}]
Here, d 1 is the diameter [m] of the heated surface 2h, d 2 is the diameter [m] of the temperature calculating surface 2x, and λ is the average between the heated surface 2h and the temperature calculating surface 2x. It is the thermal conductivity [W / m · ° C.] at temperature, P is the heat flow rate [W / m], and k is a correction coefficient calculated from the measured value. The heat flow rate P [W / m] is a value obtained by dividing the heat generation amount [W] of the inner surface of the heated body 2 by the heat generation inner surface length [m] (equal to the winding width), and the heat flow rate [W / m]. In determining m], the heated object temperature calculation unit 64 uses the power value obtained from the power detection unit 11.

また、被加熱体温度算出部64は、被加熱体2に形成されたジャケット室2Sによる肉厚低下分を考慮して、被加熱体2の温度算出面2xの温度を算出する。   The heated body temperature calculation unit 64 calculates the temperature of the temperature calculation surface 2x of the heated body 2 in consideration of the thickness reduction due to the jacket chamber 2S formed in the heated body 2.

具体的に被加熱体温度算出部64は、被加熱面2h及び温度算出面2xの間の断面積をS[m]とし、被加熱面2h及び温度算出面2xの間のジャケット室の断面積の総和をS[m]とし、被加熱面2h及び温度算出面2xの間の距離をt[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、被加熱面2hの直径dを、肉厚低下分を考慮した仮想直径dj1(=d−t{1−α(1−S/S)})とし、温度算出面2xの直径dを、肉厚低下分を考慮した仮想直径dj2(=d+t{1−α(1−S/S)})として、上記温度差θの式から得られる温度差θを用いて、被加熱体2の被加熱面2hの温度を補正することにより、被加熱体2の温度算出面2xの温度を算出する。 Specifically, the to-be-heated body temperature calculation unit 64 sets S [m 2 ] as the cross-sectional area between the heated surface 2h and the temperature calculating surface 2x, and cuts the jacket chamber between the heated surface 2h and the temperature calculating surface 2x. The sum of the areas is S j [m 2 ], the distance between the heated surface 2h and the temperature calculation surface 2x is t [m], and the rate of decrease in the function of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is When the variable shown is α, the diameter d 1 of the heated surface 2h is assumed to be a virtual diameter d j1 (= d 1 −t {1−α (1−S j / S)}) in consideration of the thickness reduction. And the diameter d 2 of the temperature calculation surface 2x is a virtual diameter d j2 (= d 2 + t {1−α (1−S j / S)}) in consideration of the thickness reduction, The temperature calculation of the heated body 2 is performed by correcting the temperature of the heated surface 2h of the heated body 2 using the temperature difference θ obtained from To calculate the temperature of the surface 2x.

このように構成した本実施形態の誘導加熱装置100によれば、インピーダンス算出部61により得られたインピーダンスと、巻き線32のインピーダンス及び被加熱体2の温度の関係を示す関係データとから被加熱体2の温度を算出する被加熱体温度算出部64を有するので、被加熱体2に温度検出素子を設けることなく、巻き線32のインピーダンスを算出することによって、被加熱体2の温度を算出することができる。   According to the induction heating apparatus 100 of the present embodiment configured as described above, the object to be heated is obtained from the impedance obtained by the impedance calculating unit 61 and the relational data indicating the relationship between the impedance of the winding 32 and the temperature of the object to be heated 2. Since it has the to-be-heated body temperature calculation part 64 which calculates the temperature of the body 2, the temperature of the to-be-heated body 2 is calculated by calculating the impedance of the winding 32, without providing the temperature detection element in the to-be-heated body 2. can do.

また、インピーダンス算出部61により得られたインピーダンスを、インピーダンス補正部62により、サイリスタ4の通電角、電源回路5の電源電圧E及び巻き線32の温度を用いて補正しているので、被加熱体2の温度を精度良く算出することができる。   Moreover, since the impedance obtained by the impedance calculation unit 61 is corrected by the impedance correction unit 62 using the conduction angle of the thyristor 4, the power supply voltage E of the power supply circuit 5, and the temperature of the winding 32, the object to be heated is corrected. The temperature of 2 can be calculated with high accuracy.

さらに、被加熱体温度算出部64が、被加熱体2の被加熱面2hの温度と温度算出面2xの温度との温度差θにより、温度算出面2xの温度を算出しているので、被加熱体2の温度算出面2xの温度を精度良く算出することができる。   Further, the heated object temperature calculation unit 64 calculates the temperature of the temperature calculation surface 2x based on the temperature difference θ between the temperature of the heated surface 2h of the heated object 2 and the temperature of the temperature calculation surface 2x. The temperature of the temperature calculation surface 2x of the heating body 2 can be calculated with high accuracy.

<第2実施形態>
次に本発明に係る第2実施形態について説明する。第2実施形態に係る誘導加熱装置は、前記第1実施形態とは、被加熱体2の構成及び被加熱体温度算出部64の機能が異なる。
Second Embodiment
Next, a second embodiment according to the present invention will be described. The induction heating apparatus according to the second embodiment is different from the first embodiment in the configuration of the heated body 2 and the function of the heated body temperature calculation unit 64.

第2実施形態に係る被加熱体2は、図8に示すように、一方面(図8では上面)が処理対象物に熱を作用させる作用面となる厚さt[m]の平板形状をなす金属製加熱プレートである。この被加熱体2の肉厚内には、気液二相の熱媒体が封入される複数のジャケット室2Sが、格子状に形成されている。   As shown in FIG. 8, the heated object 2 according to the second embodiment has a flat plate shape with a thickness t [m], where one surface (the upper surface in FIG. 8) serves as a working surface for applying heat to the object to be processed. It is a metal heating plate. A plurality of jacket chambers 2S in which a gas-liquid two-phase heat medium is enclosed are formed in a lattice shape within the thickness of the heated body 2.

また、巻き線32は、被加熱体2の他方面(図8では下面)に、当該他方面から離間して設けられた概略平板形状をなすものである。これにより、被加熱体2の他方面が、巻き線32により加熱される被加熱面2hとなり、磁束発生機構である巻き線32が、被加熱体2を片面側から誘導加熱する構成となる。   The winding 32 has a substantially flat plate shape provided on the other surface (the lower surface in FIG. 8) of the heated body 2 so as to be separated from the other surface. Thereby, the other surface of the to-be-heated body 2 becomes the to-be-heated surface 2h heated with the winding 32, and the winding 32 which is a magnetic flux generation mechanism becomes the structure which induction-heats the to-be-heated body 2 from one side.

そして、被加熱体温度算出部は、前記実施形態と同様に求めた被加熱体2の被加熱面2hの温度と、当該被加熱面2hから離間した温度を算出する面である温度算出面2x(例えば上面である作用面の温度)との温度差をθ[℃]としたときに、以下の式から得られる温度差θを用いて被加熱面2hの温度を補正して温度算出面2xの温度を算出する。
θ=kQ/(λS/t)
ここで、tは被加熱面2h及び温度算出面2xの間の距離[m]であり、Sは被加熱面2h及び温度算出面2xの間の断面積[m]であり、λは被加熱面2h及び前記温度算出面2xの間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qは前記被加熱面2hの発熱量[W]であり、kは、実測値から算出した補正係数である。
And the to-be-heated body temperature calculation part is the temperature calculation surface 2x which is a surface which calculates the temperature of the to-be-heated surface 2h of the to-be-heated body 2 calculated | required similarly to the said embodiment, and the temperature away from the said to-be-heated surface 2h. When the temperature difference from (for example, the temperature of the working surface that is the upper surface) is θ [° C.], the temperature difference 2 θ is obtained from the following equation to correct the temperature of the heated surface 2 h and the temperature calculation surface 2 x The temperature of is calculated.
θ = kQ / (λS / t)
Here, t is the distance [m] between the heated surface 2h and the temperature calculating surface 2x, S is the cross-sectional area [m 2 ] between the heated surface 2h and the temperature calculating surface 2x, and λ is the covered surface. The thermal conductivity [W / m · ° C.] of the heated body at the average temperature [° C.] between the heating surface 2h and the temperature calculation surface 2x, and Q is the calorific value [W] of the heated surface 2h. Yes, k is a correction coefficient calculated from actual measurement values.

また、被加熱体温度算出部64は、被加熱体2に形成されたジャケット室2Sによる肉厚低下分を考慮して、被加熱体2の温度算出面2xの温度を算出する。   The heated body temperature calculation unit 64 calculates the temperature of the temperature calculation surface 2x of the heated body 2 in consideration of the thickness reduction due to the jacket chamber 2S formed in the heated body 2.

具体的に被加熱体温度算出部64は、被加熱面2h及び前記温度算出面2xの間の断面積をS[m]とし、前記被加熱面2h及び前記温度算出面2xの間のジャケット室の断面積の総和をS[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、被加熱面2h及び温度算出面2xの間の距離tを、肉厚低下分を考慮した仮想距離t(=αt(S−S)/S)として、上記温度差θの式から得られる温度差θを用いて、被加熱体2の被加熱面2hの温度を補正することにより、被加熱体2の温度算出面2xの温度を算出する。 Specifically, the to-be-heated body temperature calculation unit 64 sets S [m 2 ] as a cross-sectional area between the heated surface 2h and the temperature calculating surface 2x, and a jacket between the heated surface 2h and the temperature calculating surface 2x. When the sum of the cross-sectional areas of the chamber is S j [m 2 ], and the variable indicating the rate of function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α, the heated surface 2h and the temperature calculation surface The distance t between 2x is defined as a virtual distance t j (= αt (S−S j ) / S) in consideration of the thickness reduction, using the temperature difference θ obtained from the above temperature difference θ formula, By correcting the temperature of the heated surface 2h of the heated body 2, the temperature of the temperature calculating surface 2x of the heated body 2 is calculated.

<第3実施形態>
次に本発明に係る第3実施形態について説明する。第3実施形態に係る誘導加熱装置は、前記第1、2実施形態とは、被加熱体2の構成及び被加熱体温度算出部64の機能が異なる。
<Third Embodiment>
Next, a third embodiment according to the present invention will be described. The induction heating apparatus according to the third embodiment is different from the first and second embodiments in the configuration of the heated body 2 and the function of the heated body temperature calculation unit 64.

第3実施形態に係る被加熱体2は、図9に示すように、処理対象物を収容する収容部又は処理対象物が通過する通過部を有するものであり、高さがh[m]、n辺の長さがそれぞれa、a、・・・a[m]の中空n角筒形状(図9では中空四角形筒形状)をなす金属製筒体である。この被加熱体2の側周壁の肉厚内には、気液二相の熱媒体が封入される複数のジャケット室2Sが、中心軸に沿って周方向に等間隔に形成されている。 As shown in FIG. 9, the heated object 2 according to the third embodiment has a housing part that houses the processing object or a passage part through which the processing object passes, and the height is h [m], the length of the n sides respectively a 1, a 2, a metallic cylindrical body forming the (hollow square tubular shape in FIG. 9) hollow n rectangular tube shape ··· a n [m]. A plurality of jacket chambers 2S in which a gas-liquid two-phase heat medium is enclosed are formed at equal intervals in the circumferential direction along the central axis in the wall thickness of the side peripheral wall of the body 2 to be heated.

また、本実施形態の巻き線32は、中空n角筒形状をなす被加熱体2の外側周面の周りに離間して巻回された概略中空n角筒形状をなすものである。これにより、被加熱体2の外側周面が、巻き線32により加熱される被加熱面2hとなる。   In addition, the winding wire 32 of the present embodiment has a substantially hollow n-square tube shape that is wound around the outer peripheral surface of the heated body 2 having a hollow n-square tube shape. Thereby, the outer peripheral surface of the heated body 2 becomes the heated surface 2h heated by the winding 32.

そして、被加熱体温度算出部は、前記実施形態と同様に求めた被加熱体2の被加熱面2hの温度と、当該被加熱面2hから離間した温度を算出する面である温度算出面2xとの温度差をθ[℃]としたときに、以下の式から得られる温度差θを用いて被加熱面2hの温度を補正して温度算出面2xの温度を算出する。なお、第3実施形態では、各側壁部それぞれで被加熱面2hと温度算出面2xとの距離は同一である。
θ=kQ/λ[{(a+a+・・・+a)h/t}+m×n×h]
ここで、nは1から始まる自然数であり、λは被加熱面2h及び温度算出面2xの間の平均温度[℃]における被加熱体の熱伝導率[W/m・℃]であり、Qは被加熱面2hの発熱量[W]であり、kは、実測値から算出した補正係数であり、mはnにおける定数である。なお、例えばn=4の場合、m=0.54である。
And the to-be-heated body temperature calculation part is the temperature calculation surface 2x which is a surface which calculates the temperature of the to-be-heated surface 2h of the to-be-heated body 2 calculated | required similarly to the said embodiment, and the temperature away from the said to-be-heated surface 2h. And the temperature difference of the temperature calculation surface 2x is calculated by correcting the temperature of the heated surface 2h using the temperature difference θ obtained from the following equation. In the third embodiment, the distance between the heated surface 2h and the temperature calculation surface 2x is the same in each side wall portion.
θ = kQ / λ [{(a 1 + a 2 +... + a n ) h / t} + m n × n × h]
Here, n is a natural number starting from 1, λ is the thermal conductivity [W / m · ° C.] of the heated body at the average temperature [° C.] between the heated surface 2h and the temperature calculation surface 2x, and Q Is the calorific value [W] of the heated surface 2h, k is a correction coefficient calculated from the actual measurement value, and mn is a constant at n. For example, when n = 4, m 4 = 0.54.

また、被加熱体温度算出部64は、被加熱体2に形成されたジャケット室2Sによる肉厚低下分を考慮して、被加熱体2の温度算出面2xの温度を算出する。   The heated body temperature calculation unit 64 calculates the temperature of the temperature calculation surface 2x of the heated body 2 in consideration of the thickness reduction due to the jacket chamber 2S formed in the heated body 2.

具体的に被加熱体温度算出部64は、被加熱面2h及び前記温度算出面2xの間の断面積をS[m]とし、前記被加熱面2h及び前記温度算出面2xの間のジャケット室の断面積の総和をS[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、被加熱面2h及び温度算出面2xの間の距離tを、肉厚低下分を考慮した仮想距離t(=αt(S−S)/S)として、上記温度差θの式から得られる温度差θを用いて、被加熱体2の被加熱面2hの温度を補正することにより、被加熱体2の温度算出面2xの温度を算出する。 Specifically, the to-be-heated body temperature calculation unit 64 sets S [m 2 ] as a cross-sectional area between the heated surface 2h and the temperature calculating surface 2x, and a jacket between the heated surface 2h and the temperature calculating surface 2x. When the sum of the cross-sectional areas of the chamber is S j [m 2 ], and the variable indicating the rate of function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α, the heated surface 2h and the temperature calculation surface The distance t between 2x is defined as a virtual distance t j (= αt (S−S j ) / S) in consideration of the thickness reduction, using the temperature difference θ obtained from the above temperature difference θ formula, By correcting the temperature of the heated surface 2h of the heated body 2, the temperature of the temperature calculating surface 2x of the heated body 2 is calculated.

<第4実施形態>
次に本発明に係る第4実施形態について説明する。第4実施形態に係る誘導加熱装置は、前記第1〜3実施形態とは、被加熱体2の構成及び被加熱体温度算出部64の機能が異なる。
<Fourth embodiment>
Next, a fourth embodiment according to the present invention will be described. The induction heating apparatus according to the fourth embodiment is different from the first to third embodiments in the configuration of the heated body 2 and the function of the heated body temperature calculation unit 64.

第4実施形態に係る被加熱体2は、図10に示すように、処理対象物を収容する収容部又は処理対象物が通過する通過部を有するものであり、高さがh[m]、n辺の長さがそれぞれa、a、・・・a[m]の中空n角筒形状(図10では中空四角形筒形状)をなす金属製筒体である。この被加熱体2の側周壁の肉厚内には、気液二相の熱媒体が封入される複数のジャケット室2Sが、中心軸に沿って周方向に等間隔に形成されている。 As shown in FIG. 10, the heated object 2 according to the fourth embodiment has a housing part that houses the processing object or a passage part through which the processing object passes, and the height is h [m], a 1 length of n sides, respectively, a 2, a metallic cylindrical body forming the (hollow square tubular shape in FIG. 10) hollow n rectangular tube shape ··· a n [m]. A plurality of jacket chambers 2S in which a gas-liquid two-phase heat medium is enclosed are formed at equal intervals in the circumferential direction along the central axis in the wall thickness of the side peripheral wall of the body 2 to be heated.

また、本実施形態の巻き線32は、中空n角筒形状をなす被加熱体2の外側周面の周りに離間して巻回された概略中空n角筒形状をなすものである。これにより、被加熱体2の外側周面が、巻き線32により加熱される被加熱面2hとなる。   In addition, the winding wire 32 of the present embodiment has a substantially hollow n-square tube shape that is wound around the outer peripheral surface of the heated body 2 having a hollow n-square tube shape. Thereby, the outer peripheral surface of the heated body 2 becomes the heated surface 2h heated by the winding 32.

そして、被加熱体温度算出部は、前記第1実施形態と同様に求めた各側壁部それぞれにおける、被加熱体2の被加熱面2hの温度と、当該被加熱面2hから離間した温度を算出する面である温度算出面2xとの温度差をθ[℃]とし、前記被加熱体の各側壁部それぞれの被加熱面2h及び温度算出面2xの間の距離をt、t、・・・t[m]としたときに、以下の式から得られる温度差θを用いて、各側壁部の被加熱面2hの温度を補正して、各側壁部の温度算出面2xの温度を算出する。
θ=k/(λ/t
ここで、tはn番目の側壁部における被加熱面2h及び温度算出面2xの間の距離[m]であり、Sはn番目の側壁部における被加熱面2h及び温度算出面2xの間の断面積[m]であり、λはn番目の側壁部における被加熱面2h及び温度算出面2xの間の平均温度[℃]における被加熱体の熱伝導率[W/m・℃]であり、Qはn番目の側壁部における被加熱面2hの発熱量[W]であり、kは、実測値から算出した補正係数である。
And the to-be-heated body temperature calculation part calculates the temperature of the to-be-heated surface 2h of the to-be-heated body 2, and the temperature away from the to-be-heated surface 2h in each side wall part calculated | required similarly to the said 1st Embodiment. The temperature difference from the temperature calculation surface 2x that is the surface to be heated is θ n [° C.], and the distance between the heated surface 2h and the temperature calculation surface 2x of each side wall portion of the heated body is t 1 , t 2 , ..., T n [m], the temperature difference θ n obtained from the following equation is used to correct the temperature of the heated surface 2h of each side wall, and the temperature calculation surface 2x of each side wall The temperature of is calculated.
θ n = k n Q n / (λ n S n / t n)
Here, t n is the distance [m] between the n-th sidewall heated surface 2h and temperature calculation surfaces in section 2x, S n is the n th side wall heated surface 2h and temperature calculation surfaces in section 2x the cross-sectional area [m 2] between, lambda n is the average temperature thermal conductivity of the heated object at [℃] between the n-th sidewall heated surface 2h and temperature calculation surfaces in section 2x [W / m · ℃] a and, Q n is the heat value of the heated surface 2h at n-th sidewall part [W], k n is a correction coefficient calculated from the measured value.

また、被加熱体温度算出部64は、被加熱体2に形成されたジャケット室2Sによる肉厚低下分を考慮して、被加熱体2の各側壁部の温度算出面2xの温度を算出する。   The heated body temperature calculation unit 64 calculates the temperature of the temperature calculation surface 2x of each side wall portion of the heated body 2 in consideration of the thickness reduction due to the jacket chamber 2S formed in the heated body 2. .

具体的に被加熱体温度算出部64は、n番目の側壁部における前記被加熱面2h及び前記温度算出面2xの間の断面積をS[m]とし、n番目の側壁部における前記被加熱面2h及び前記温度算出面2xの間のジャケット室の断面積の総和をSnj[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、n番目の側壁部における被加熱面2h及び温度算出面2xの間の距離tを、肉厚低下分を考慮した仮想距離tnj(=αt(S−Snj)/S)として、上記温度差θの式から得られる温度差θを用いて、被加熱体2の各側壁部の被加熱面2hの温度を補正することにより、被加熱体2の各側壁部の温度算出面2xの温度を算出する。 Specifically, the to-be-heated body temperature calculation unit 64 sets S n [m 2 ] as the cross-sectional area between the heated surface 2h and the temperature calculation surface 2x in the nth side wall, and the nth side wall in the nth side wall. The sum of the cross-sectional areas of the jacket chamber between the heated surface 2h and the temperature calculation surface 2x is S nj [m 2 ], and a variable indicating the rate of decrease in the function of the jacket chamber due to the decrease in the pressure of the heat medium accompanying the temperature decrease. When α is α, the distance t n between the heated surface 2h and the temperature calculation surface 2x in the nth side wall portion is assumed to be a virtual distance t nj (= αt n (S n −S nj) in consideration of the thickness reduction. ) / S n ), by using the temperature difference θ obtained from the equation of temperature difference θ, the temperature of the heated surface 2h of each side wall portion of the heated body 2 is corrected, thereby The temperature of the temperature calculation surface 2x of the side wall is calculated.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態では、インピーダンス補正部が巻き線32の温度を用いてインピーダンスを補正するものであったが、被加熱体温度算出部64が、インピーダンス及び関係データから算出した被加熱体2の温度を、巻き線32の温度を用いて補正するようにしても良い。この場合、補正値Δtは、例えばm×θ+n(但し、m、nは、実測値から算出した係数である。) For example, in the above-described embodiment, the impedance correction unit corrects the impedance using the temperature of the winding 32. However, the heated object temperature calculation unit 64 calculates the temperature of the heated object 2 calculated from the impedance and related data. The temperature may be corrected using the temperature of the winding 32. In this case, the correction value Δt is, for example, m × θ c + n (where m and n are coefficients calculated from actual measurement values).

また、前記実施形態では、被加熱体の被加熱面2hの温度とインピーダンスとの所定の関係である近似式を基本にして、当該近似式に補正を加えて被加熱体の温度算出面2xの温度を求めるものであったが、被加熱体の温度算出面2xの温度とインピーダンスとの所定の関係である近似式を基本にして、誘導加熱装置の種々の条件とその変化とが温度算出面2xの温度に与える影響に基づいて、前記近似式に補正を加えて、被加熱体の温度算出面2xの温度を求めることでもよい。例えば、被加熱体の温度算出面2xの温度とインピーダンスとの所定の関係である近似式を求めるに際して、輻射温度計を用いて外部から被加熱体の温度算出面2xの温度を測定することが考えられる。また、近似式を補正するにあたっては、前記実施形態における図4の(2)〜(4)等と同様の補正を行うことが考えられる。   Moreover, in the said embodiment, based on the approximate expression which is the predetermined relationship of the temperature and the impedance of the to-be-heated surface 2h of a to-be-heated body, correction is added to the approximate expression, and the temperature calculation surface 2x of a to-be-heated body is corrected. Although the temperature was obtained, various conditions of the induction heating device and their changes are based on the approximate expression which is a predetermined relationship between the temperature and the impedance of the temperature calculation surface 2x of the object to be heated. Based on the influence on the temperature of 2x, the approximate expression may be corrected to obtain the temperature of the temperature calculation surface 2x of the heated object. For example, when obtaining an approximate expression that is a predetermined relationship between the temperature of the temperature calculation surface 2x of the heated object and the impedance, the temperature of the temperature calculation surface 2x of the heated object can be measured from the outside using a radiation thermometer. Conceivable. Further, in correcting the approximate expression, it is conceivable to perform correction similar to (2) to (4) in FIG.

さらに、前記第1、3、4実施形態では、巻き線32を被加熱体2の外側周面の周りに配置して被加熱体2を外周側から誘導加熱するものであったが、巻き線32を被加熱体2の中空内に配置して被加熱体2を内周側から誘導加熱するものであっても良い。なお、この場合、被加熱体2の内側周面が被加熱面となる。   Further, in the first, third, and fourth embodiments, the winding 32 is disposed around the outer peripheral surface of the heated body 2 and the heated body 2 is induction-heated from the outer peripheral side. 32 may be disposed in the hollow of the heated body 2 and the heated body 2 may be induction heated from the inner peripheral side. In this case, the inner peripheral surface of the heated body 2 becomes the heated surface.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・誘導加熱装置
2・・・被加熱体
2h・・・被加熱面
2x・・・温度算出面
2S・・・ジャケット室
3・・・巻き線
4・・・制御素子
5・・・電源回路
6・・・制御装置
61・・・インピーダンス算出部
62・・・インピーダンス補正部
63・・・関係データ格納部
64・・・被加熱体温度算出部
7・・・交流電流検出部
8・・・交流電圧検出部
9・・・電源電圧検出部
10・・・温度検出部
11・・・電力検出部
DESCRIPTION OF SYMBOLS 100 ... Induction heating apparatus 2 ... Heated object 2h ... Heated surface 2x ... Temperature calculation surface 2S ... Jacket chamber 3 ... Winding 4 ... Control element 5 ... Power supply circuit 6... Control device 61... Impedance calculation unit 62... Impedance correction unit 63... Relation data storage unit 64. ..AC voltage detector 9 ... Power supply voltage detector 10 ... Temperature detector 11 ... Power detector

Claims (12)

磁束発生機構の巻き線に接続されるとともに、交流電流又は交流電圧を制御する制御素子が設けられた電源回路を備え、前記磁束発生機構により被加熱体を誘導加熱する誘導加熱装置であって、
前記巻き線を流れる交流電流を検出する交流電流検出部から得られる交流電流値及び前記巻き線に印加される交流電圧を検出する交流電圧検出部から得られる交流電圧値により、前記巻き線のインピーダンスを算出するインピーダンス算出部と、
前記巻き線のインピーダンスと前記被加熱体の温度との関係を示す関係データを格納する関係データ格納部と、
前記インピーダンス算出部により得られたインピーダンスと前記関係データ格納部に格納された関係データとから前記被加熱体の温度を算出する被加熱体温度算出部とを備え
前記被加熱体が、中空円筒形状をなし、
前記磁束発生機構が、前記被加熱体を外周側又は内周側から誘導加熱するものであり、
前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する誘導加熱装置。
θ=kP/[2π/{ln(d /d )/λ}]
ここで、d は前記被加熱面の直径[m]であり、d は前記温度算出面の直径[m]であり、λは前記被加熱面及び前記温度算出面の間の平均温度における熱伝導率[W/m・℃]であり、Pは熱流速[W/m]であり、kは、実測値から算出した補正係数である。
An induction heating device that is connected to a winding of a magnetic flux generation mechanism and includes a power supply circuit provided with a control element that controls an alternating current or an alternating voltage, and induction-heats an object to be heated by the magnetic flux generation mechanism,
The impedance of the winding by the alternating current value obtained from the alternating current detection unit for detecting the alternating current flowing through the winding and the alternating voltage value obtained from the alternating voltage detection unit for detecting the alternating voltage applied to the winding. An impedance calculation unit for calculating
A relational data storage unit that stores relational data indicating the relation between the impedance of the winding and the temperature of the object to be heated;
A to-be-heated body temperature calculating section for calculating the temperature of the to-be-heated body from the impedance obtained by the impedance calculating section and the relation data stored in the relation data storage section ;
The heated body has a hollow cylindrical shape,
The magnetic flux generation mechanism is to induction heat the object to be heated from the outer peripheral side or the inner peripheral side,
When the temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface, which is a surface for calculating the temperature, is θ [° C.], the heated object temperature calculating unit includes the impedance And an induction heating device that calculates the temperature of the temperature calculation surface by correcting the temperature of the object to be heated obtained from the relationship data using a temperature difference θ obtained using the following equation .
θ = kP / [2π / {ln (d 2 / d 1 ) / λ}]
Here, d 1 is the diameter [m] of the heated surface, d 2 is the diameter [m] of the temperature calculating surface, and λ is an average temperature between the heated surface and the temperature calculating surface. The thermal conductivity [W / m · ° C.], P is the heat flow rate [W / m], and k is a correction coefficient calculated from the actual measurement value.
前記被加熱体の側周壁に気液二相の熱媒体が封入されるジャケット室が形成されており、
前記被加熱面及び前記温度算出面の間の断面積をS[m]とし、前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をS[m]とし、前記被加熱面及び前記温度算出面の間の距離をt[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、
前記被加熱体温度算出部が、前記被加熱面の直径dを、dj1=d±t{1−α(1−S/S)}とし、前記温度算出面の直径dを、dj2=d±t{1−α(1−S/S)}として得られる温度差θを用いて、前記被加熱体の温度を補正する請求項記載の誘導加熱装置。
なお、前記dj1の式において、±部分は、d>dのときは、マイナスであり、d<dのときは、プラスである。一方、前記dj2の式において、±部分は、d>dのときは、プラスであり、d<dのときは、マイナスである。
A jacket chamber in which a gas-liquid two-phase heat medium is enclosed is formed on the side peripheral wall of the heated body,
The cross-sectional area between the heated surface and the temperature calculation surface is S [m 2 ], and the total cross-sectional area of the jacket chamber between the heated surface and the temperature calculation surface is S j [m 2 ], When the distance between the surface to be heated and the temperature calculation surface is t [m], and the variable indicating the rate of function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α,
The heated body temperature calculation unit sets the diameter d 1 of the heated surface as d j1 = d 1 ± t {1−α (1−S j / S)}, and sets the diameter d 2 of the temperature calculated surface to , d j2 = d 2 with ± t {1-α (1 -S j / S)} is obtained as temperature difference theta, the induction heating apparatus according to claim 1, wherein correcting the temperature of the object to be heated.
In the formula of d j1 , the ± part is negative when d 1 > d 2 , and is positive when d 1 <d 2 . On the other hand, in the formula of d j2 , the ± part is positive when d 1 > d 2 , and is negative when d 1 <d 2 .
磁束発生機構の巻き線に接続されるとともに、交流電流又は交流電圧を制御する制御素子が設けられた電源回路を備え、前記磁束発生機構により被加熱体を誘導加熱する誘導加熱装置であって、
前記巻き線を流れる交流電流を検出する交流電流検出部から得られる交流電流値及び前記巻き線に印加される交流電圧を検出する交流電圧検出部から得られる交流電圧値により、前記巻き線のインピーダンスを算出するインピーダンス算出部と、
前記巻き線のインピーダンスと前記被加熱体の温度との関係を示す関係データを格納する関係データ格納部と、
前記インピーダンス算出部により得られたインピーダンスと前記関係データ格納部に格納された関係データとから前記被加熱体の温度を算出する被加熱体温度算出部とを備え、
前記被加熱体が、平板形状をなし、
前記磁束発生機構が、前記被加熱体を片面側から誘導加熱するものであり、
前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する誘導加熱装置。
θ=kQ/(λS/t)
ここで、tは前記被加熱面及び前記温度算出面の間の距離[m]であり、Sは前記被加熱面及び前記温度算出面の間の断面積[m]であり、λは前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qは前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数である。
An induction heating device that is connected to a winding of a magnetic flux generation mechanism and includes a power supply circuit provided with a control element that controls an alternating current or an alternating voltage, and induction-heats an object to be heated by the magnetic flux generation mechanism,
The impedance of the winding by the alternating current value obtained from the alternating current detection unit for detecting the alternating current flowing through the winding and the alternating voltage value obtained from the alternating voltage detection unit for detecting the alternating voltage applied to the winding. An impedance calculation unit for calculating
A relational data storage unit that stores relational data indicating the relation between the impedance of the winding and the temperature of the object to be heated;
A to-be-heated body temperature calculating section for calculating the temperature of the to-be-heated body from the impedance obtained by the impedance calculating section and the relation data stored in the relation data storage section;
The heated object has a flat plate shape,
The magnetic flux generation mechanism is to induction-heat the object to be heated from one side,
When the temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface, which is a surface for calculating the temperature, is θ [° C.], the heated object temperature calculating unit includes the impedance And an induction heating device that calculates the temperature of the temperature calculation surface by correcting the temperature of the object to be heated obtained from the relationship data using a temperature difference θ obtained using the following equation.
θ = kQ / (λS / t)
Here, t is a distance [m] between the heated surface and the temperature calculating surface, S is a cross-sectional area [m 2 ] between the heated surface and the temperature calculating surface, and λ is the above-mentioned It is the thermal conductivity [W / m · ° C.] of the heated body at the average temperature [° C.] between the heated surface and the temperature calculation surface, and Q is the calorific value [W] of the heated surface, k is a correction coefficient calculated from an actual measurement value.
磁束発生機構の巻き線に接続されるとともに、交流電流又は交流電圧を制御する制御素子が設けられた電源回路を備え、前記磁束発生機構により被加熱体を誘導加熱する誘導加熱装置であって、
前記巻き線を流れる交流電流を検出する交流電流検出部から得られる交流電流値及び前記巻き線に印加される交流電圧を検出する交流電圧検出部から得られる交流電圧値により、前記巻き線のインピーダンスを算出するインピーダンス算出部と、
前記巻き線のインピーダンスと前記被加熱体の温度との関係を示す関係データを格納する関係データ格納部と、
前記インピーダンス算出部により得られたインピーダンスと前記関係データ格納部に格納された関係データとから前記被加熱体の温度を算出する被加熱体温度算出部とを備え、
前記被加熱体が、高さがh[m]、n辺の長さがそれぞれa、a、・・・a[m]の中空n角筒形状をなし、
前記磁束発生機構が、前記被加熱体を外周側又は内周側から誘導加熱するものであり、
前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]とし、前記被加熱体の各辺における前記被加熱面及び前記温度算出面の間の距離をt[m]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する誘導加熱装置。
θ=kQ/λ[{(a+a+・・・+a)h/t}+m×n×h]
ここで、nは1から始まる自然数であり、λは前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qは前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数であり、mはnにおける定数である。
An induction heating device that is connected to a winding of a magnetic flux generation mechanism and includes a power supply circuit provided with a control element that controls an alternating current or an alternating voltage, and induction-heats an object to be heated by the magnetic flux generation mechanism,
The impedance of the winding by the alternating current value obtained from the alternating current detection unit for detecting the alternating current flowing through the winding and the alternating voltage value obtained from the alternating voltage detection unit for detecting the alternating voltage applied to the winding. An impedance calculation unit for calculating
A relational data storage unit that stores relational data indicating the relation between the impedance of the winding and the temperature of the object to be heated;
A to-be-heated body temperature calculating section for calculating the temperature of the to-be-heated body from the impedance obtained by the impedance calculating section and the relation data stored in the relation data storage section;
The heated body has a hollow n-square tube shape with a height of h [m] and n side lengths of a 1 , a 2 ,... A n [m], respectively.
The magnetic flux generation mechanism is to induction heat the object to be heated from the outer peripheral side or the inner peripheral side,
The temperature difference between the heated surface of the heated object facing the winding and the temperature calculating surface that is a surface for calculating the temperature is θ [° C.], and the heated surface on each side of the heated object and the temperature When the distance between the temperature calculation surfaces is t [m], the heated object temperature calculation unit uses the following equation for the temperature of the heated object obtained from the impedance and the relational data. An induction heating apparatus that calculates the temperature of the temperature calculation surface by correcting using the temperature difference θ obtained in this way.
θ = kQ / λ [{(a 1 + a 2 +... + a n ) h / t} + m n × n × h]
Here, n is a natural number starting from 1, and λ is the thermal conductivity [W / m · ° C.] of the heated object at an average temperature [° C.] between the heated surface and the temperature calculating surface, Q is the calorific value [W] of the surface to be heated, k is a correction coefficient calculated from actual measurement values, and mn is a constant at n.
前記被加熱体の肉厚内に気液二相の熱媒体が封入されるジャケット室が形成されており、
前記被加熱面及び前記温度算出面の間の断面積をS[m]とし、前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をS[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、
前記被加熱体温度算出部が、前記被加熱面及び前記温度算出面の間の距離tを、t=αt(S−S)/Sとして得られる温度差θを用いて、前記被加熱体の温度を補正する請求項3又は4記載の誘導加熱装置。
A jacket chamber in which a gas-liquid two-phase heat medium is enclosed in the thickness of the heated object is formed,
The cross-sectional area between the heated surface and the temperature calculation surface is S [m 2 ], and the total cross-sectional area of the jacket chamber between the heated surface and the temperature calculation surface is S j [m 2 ], When the variable indicating the ratio of the function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α,
The heated body temperature calculation unit uses the temperature difference θ obtained by setting the distance t between the heated surface and the temperature calculating surface as t j = αt (S−S j ) / S, and The induction heating apparatus according to claim 3 or 4, wherein the body temperature is corrected.
磁束発生機構の巻き線に接続されるとともに、交流電流又は交流電圧を制御する制御素子が設けられた電源回路を備え、前記磁束発生機構により被加熱体を誘導加熱する誘導加熱装置であって、
前記巻き線を流れる交流電流を検出する交流電流検出部から得られる交流電流値及び前記巻き線に印加される交流電圧を検出する交流電圧検出部から得られる交流電圧値により、前記巻き線のインピーダンスを算出するインピーダンス算出部と、
前記巻き線のインピーダンスと前記被加熱体の温度との関係を示す関係データを格納する関係データ格納部と、
前記インピーダンス算出部により得られたインピーダンスと前記関係データ格納部に格納された関係データとから前記被加熱体の温度を算出する被加熱体温度算出部とを備え、
前記被加熱体が、高さがh[m]、n辺の長さがそれぞれa、a、・・・a[m]の中空n角筒形状をなし、
前記磁束発生機構が、前記被加熱体を外周側又は内周側から誘導加熱するものであり、
前記被加熱体の各側壁部それぞれの前記巻き線に対向する前記被加熱体の被加熱面と温度を算出する面である温度算出面との温度差をθ[℃]とし、前記被加熱体の各側壁部それぞれの前記被加熱面及び前記温度算出面の間の距離をt、t、・・・t[m]としたときに、前記被加熱体温度算出部が、前記インピーダンスと前記関係データとから得られた前記被加熱体の温度を、以下の式を用いて得られる温度差θを用いて補正して、前記温度算出面の温度を算出する誘導加熱装置。
θ=k/(λ/t
ここで、tはn番目の側壁部における前記被加熱面及び前記温度算出面の間の距離[m]であり、Sはn番目の側壁部における前記被加熱面及び前記温度算出面の間の断面積[m]であり、λはn番目の側壁部における前記被加熱面及び前記温度算出面の間の平均温度[℃]における前記被加熱体の熱伝導率[W/m・℃]であり、Qはn番目の側壁部における前記被加熱面の発熱量[W]であり、kは、実測値から算出した補正係数である。
An induction heating device that is connected to a winding of a magnetic flux generation mechanism and includes a power supply circuit provided with a control element that controls an alternating current or an alternating voltage, and induction-heats an object to be heated by the magnetic flux generation mechanism,
The impedance of the winding by the alternating current value obtained from the alternating current detection unit for detecting the alternating current flowing through the winding and the alternating voltage value obtained from the alternating voltage detection unit for detecting the alternating voltage applied to the winding. An impedance calculation unit for calculating
A relational data storage unit that stores relational data indicating the relation between the impedance of the winding and the temperature of the object to be heated;
A to-be-heated body temperature calculating section for calculating the temperature of the to-be-heated body from the impedance obtained by the impedance calculating section and the relation data stored in the relation data storage section;
The heated body has a hollow n-square tube shape with a height of h [m] and n side lengths of a 1 , a 2 ,... A n [m], respectively.
The magnetic flux generation mechanism is to induction heat the object to be heated from the outer peripheral side or the inner peripheral side,
A temperature difference between the heated surface of the heated body facing the winding of each side wall portion of the heated body and a temperature calculation surface which is a surface for calculating the temperature is θ n [° C.], and the heated When the distance between the heated surface and the temperature calculation surface of each side wall portion of the body is t 1 , t 2 ,... T n [m], the heated body temperature calculation unit An induction heating apparatus that calculates the temperature of the temperature calculation surface by correcting the temperature of the heated object obtained from the impedance and the relational data using a temperature difference θ n obtained using the following equation.
θ n = k n Q n / (λ n S n / t n)
Here, t n is the distance between the heated surface and the temperature calculated surface at the n-th sidewall part [m], S n is the heated surface and the temperature calculated surface at the n-th sidewall part the cross-sectional area [m 2] between, lambda n is n th said at side wall portions of the heated surface and thermal conductivity of the object to be heated at an average temperature [℃] between the temperature calculated surface [W / m a · ° C.], Q n is the heat value of the heated surface of the n-th sidewall part [W], k n is a correction coefficient calculated from the measured value.
前記被加熱体の肉厚内に気液二相の熱媒体が封入されるジャケット室が形成されており、
n番目の側壁部における前記被加熱面及び前記温度算出面の間の断面積をS[m]とし、n番目の側壁部における前記被加熱面及び前記温度算出面の間のジャケット室の断面積の総和をSnj[m]とし、温度低下に伴う熱媒体の圧力低下によるジャケット室の機能低下の割合を示す変数をαとしたときに、
前記被加熱体温度算出部が、n番目の側壁部における前記被加熱面及び前記温度算出面の間の距離tを、tnj=αt(S−Snj)/Sとして得られる温度差θを用いて、前記被加熱体の温度を補正する請求項記載の誘導加熱装置。
A jacket chamber in which a gas-liquid two-phase heat medium is enclosed in the thickness of the heated object is formed,
Let S n [m 2 ] be the cross-sectional area between the heated surface and the temperature calculation surface in the nth side wall portion, and the jacket chamber between the heated surface and the temperature calculation surface in the nth side wall portion. When the sum of the cross-sectional areas is S nj [m 2 ] and the variable indicating the rate of function deterioration of the jacket chamber due to the pressure drop of the heat medium accompanying the temperature drop is α,
The heated object temperature calculation unit obtains the distance t n between the heated surface and the temperature calculation surface in the nth side wall part as t nj = αt n (S n −S nj ) / S n. The induction heating apparatus according to claim 6 , wherein the temperature of the object to be heated is corrected using a temperature difference θ n .
前記インピーダンス算出部により得られたインピーダンスを、前記電源回路の電源電圧を検出する電源電圧検出部から得られる電源電圧値により補正するインピーダンス補正部を更に備え、
前記被加熱体温度算出部が、前記インピーダンス補正部により補正された補正インピーダンスと前記関係データとから前記被加熱体の温度を算出する請求項1乃至の何れかに記載の誘導加熱装置。
An impedance correction unit that corrects the impedance obtained by the impedance calculation unit by a power supply voltage value obtained from a power supply voltage detection unit that detects a power supply voltage of the power supply circuit;
The induction heating apparatus according to any one of claims 1 to 7 , wherein the heated object temperature calculating unit calculates the temperature of the heated object from the corrected impedance corrected by the impedance correcting unit and the relation data.
前記制御素子が、半導体により交流電流又は交流電圧の通電角を制御するものであり、
前記インピーダンス算出部により得られたインピーダンスを、前記制御素子の通電角により補正するインピーダンス補正部を更に備え、
前記被加熱体温度算出部が、前記インピーダンス補正部により補正された補正インピーダンスと前記関係データとから前記被加熱体の温度を算出する請求項1乃至の何れかに記載の誘導加熱装置。
The control element controls a conduction angle of an alternating current or an alternating voltage with a semiconductor,
An impedance correction unit that corrects the impedance obtained by the impedance calculation unit based on a conduction angle of the control element;
The induction heating apparatus according to any one of claims 1 to 8 , wherein the heated object temperature calculating unit calculates the temperature of the heated object from the corrected impedance corrected by the impedance correcting unit and the relation data.
前記インピーダンス補正部が、前記インピーダンス算出部により得られたインピーダンスを、前記巻き線の温度を検出する温度検出部から得られる巻き線温度により補正するものである請求項8又は9記載の誘導加熱装置。 The induction heating device according to claim 8 or 9 , wherein the impedance correction unit corrects the impedance obtained by the impedance calculation unit by a winding temperature obtained from a temperature detection unit that detects a temperature of the winding. . 直流電源を制御して、前記巻き線に間欠的に直流電圧を印加する直流電圧印加部と、
前記直流電圧印加部により印加される直流電圧と当該直流電圧を印加したときに前記巻き線に流れる直流電流とから前記巻き線の抵抗値を算出する抵抗値算出部とをさらに備え、
前記インピーダンス補正部が、前記インピーダンス算出部により得られたインピーダンスを、前記抵抗値算出部から得られる抵抗値により補正するものである請求項8又は9記載の誘導加熱装置。
A DC voltage application unit that controls a DC power supply and intermittently applies a DC voltage to the winding;
A resistance value calculation unit that calculates a resistance value of the winding from a DC voltage applied by the DC voltage application unit and a DC current that flows through the winding when the DC voltage is applied;
The induction heating apparatus according to claim 8 or 9 , wherein the impedance correction unit corrects the impedance obtained by the impedance calculation unit with a resistance value obtained from the resistance value calculation unit.
前記巻き線の抵抗値と前記巻き線の温度との抵抗値−温度関係を示す関係データを格納する関係データ格納部と、
前記抵抗値算出部により得られた抵抗値と前記関係データが示す抵抗値−温度関係とから前記巻き線の温度を算出する巻き線温度算出部とをさらに備える請求項11記載の誘導加熱装置。
A relational data storage unit for storing relational data indicating a resistance value-temperature relation between the resistance value of the winding and the temperature of the winding;
The induction heating device according to claim 11 , further comprising a winding temperature calculation unit that calculates a temperature of the winding from a resistance value obtained by the resistance value calculation unit and a resistance value-temperature relationship indicated by the relationship data.
JP2014101956A 2014-05-16 2014-05-16 Induction heating device Active JP6332852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101956A JP6332852B2 (en) 2014-05-16 2014-05-16 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101956A JP6332852B2 (en) 2014-05-16 2014-05-16 Induction heating device

Publications (2)

Publication Number Publication Date
JP2015220050A JP2015220050A (en) 2015-12-07
JP6332852B2 true JP6332852B2 (en) 2018-05-30

Family

ID=54779273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101956A Active JP6332852B2 (en) 2014-05-16 2014-05-16 Induction heating device

Country Status (1)

Country Link
JP (1) JP6332852B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095898A (en) * 2020-12-30 2022-07-07 엘지전자 주식회사 Induction heating type cooktop and operating method thereof
CN114815924A (en) * 2022-04-24 2022-07-29 桐文科技(深圳)有限公司 Heating method and device of heating table, computing equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790893A (en) * 1980-11-26 1982-06-05 Hitachi Cable Method of measuring temperature of induction heater
JPH08190300A (en) * 1995-01-12 1996-07-23 Canon Inc Heating device and image forming device
JP4193143B2 (en) * 2005-04-27 2008-12-10 三菱電機株式会社 Induction heating cooker
JP5535006B2 (en) * 2010-08-25 2014-07-02 トクデン株式会社 Induction heating roller device
JP6406829B2 (en) * 2014-02-10 2018-10-17 トクデン株式会社 Induction heating roller device and induction coil temperature detection mechanism

Also Published As

Publication number Publication date
JP2015220050A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6317619B2 (en) Induction heating roller device
JP6306931B2 (en) Induction heating roller device
KR102268968B1 (en) Induction heated roll apparatus and induction coil temperature detecting mechanism
US9848462B2 (en) Temperature sensor and induction heating cooker having the same
US20180122549A1 (en) Multi-winding high sensitivity current transformer
JP6866047B2 (en) Methods and calibration elements for calibrating dental furnace temperature measuring instruments
JP6332852B2 (en) Induction heating device
JP2017529056A5 (en)
JP6332853B2 (en) Induction heating device
JP2013113808A (en) Liquid level measuring device, method and program
CN111928969B (en) Pot temperature detection device, electromagnetic heating device and pot temperature detection method
JP7348137B2 (en) Temperature abnormality determination device and temperature abnormality determination method
JP2023080786A (en) Displacement measurement system, displacement measurement method, and program
JP2011108513A (en) Magnetic heating device
JP2017107780A (en) Induction heating roller device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6332852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250