JP6331934B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP6331934B2
JP6331934B2 JP2014201471A JP2014201471A JP6331934B2 JP 6331934 B2 JP6331934 B2 JP 6331934B2 JP 2014201471 A JP2014201471 A JP 2014201471A JP 2014201471 A JP2014201471 A JP 2014201471A JP 6331934 B2 JP6331934 B2 JP 6331934B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
phosphor
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201471A
Other languages
Japanese (ja)
Other versions
JP2016072474A (en
Inventor
高宏 谷
高宏 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014201471A priority Critical patent/JP6331934B2/en
Publication of JP2016072474A publication Critical patent/JP2016072474A/en
Application granted granted Critical
Publication of JP6331934B2 publication Critical patent/JP6331934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は、発光装置の製造方法に関する。   The present disclosure relates to a method for manufacturing a light emitting device.

従来から、発光素子の上面に、発光素子からの光を波長変換する蛍光体含有層(波長変換部材)を形成した発光装置が知られている。このような構成によって所望の発光色を発現する発光装置を得ることができる。
しかし、波長変換部材の形成方法によっては、波長変換部材の膜厚の不均一性が生じ、これに起因する発光色の色むらが発生するという問題があった。
そのために、波長変換部材の膜厚が薄くなる発光素子のコーナー部において、発光素子からの光を放射しない非放射部が形成された発光装置が提案されている(特許文献1)。
Conventionally, a light-emitting device in which a phosphor-containing layer (wavelength conversion member) that converts the wavelength of light from the light-emitting element is formed on the upper surface of the light-emitting element is known. With such a configuration, a light-emitting device that expresses a desired emission color can be obtained.
However, depending on the method of forming the wavelength conversion member, there is a problem in that the film thickness of the wavelength conversion member is non-uniform, and the color unevenness of the emission color due to this occurs.
Therefore, a light emitting device is proposed in which a non-radiating portion that does not emit light from the light emitting element is formed at a corner portion of the light emitting element where the film thickness of the wavelength conversion member is reduced (Patent Document 1).

特開2010−92897号公報JP 2010-92897 A

しかし、発光素子に非放射部を形成すると、発光素子の光出力の低下を招くことがある。
本発明は上記課題に鑑みなされたものであり、光出力の低下を招くことなく、より確実に色むらを改善することができる発光装置の製造方法を提供することを目的とする。
However, when a non-radiating portion is formed in the light emitting element, the light output of the light emitting element may be reduced.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a light-emitting device that can more reliably improve color unevenness without causing a decrease in light output.

本開示は、発光素子上面に蛍光体含有樹脂を配置した後、前記発光素子上面の法線方向を、鉛直方向から傾斜させた軸として、該軸を中心に前記発光素子を傾斜回転させることを含む発光装置の製造方法である。   In the present disclosure, after the phosphor-containing resin is disposed on the upper surface of the light emitting element, the normal direction of the upper surface of the light emitting element is set as an axis inclined from the vertical direction, and the light emitting element is tilted and rotated around the axis. The manufacturing method of the light-emitting device containing.

本発明の一実施形態に関する発光装置の製造方法によれば、光出力の低下を招くことなく、より確実に色むらを改善することが可能となる。   According to the method for manufacturing a light emitting device according to an embodiment of the present invention, it is possible to more reliably improve color unevenness without causing a decrease in light output.

本発明の一実施形態の発光素子の回転を説明するための発光素子の概略断面模式図である。It is a schematic cross-sectional schematic diagram of the light emitting element for demonstrating rotation of the light emitting element of one Embodiment of this invention. 本発明の一実施形態の発光素子の別の回転を説明するための発光素子の概略断面模式図である。It is a schematic cross-sectional schematic diagram of the light emitting element for demonstrating another rotation of the light emitting element of one Embodiment of this invention. 本発明の一実施形態の発光素子の回転で用いる傾斜回転装置を示す概略斜視図である。It is a schematic perspective view which shows the inclination rotation apparatus used by rotation of the light emitting element of one Embodiment of this invention. 本発明の一実施形態の発光素子の回転における蛍光体の移動を説明するための発光素子の概略断面模式図である。It is a schematic cross-sectional schematic diagram of the light emitting element for demonstrating the movement of the fluorescent substance in rotation of the light emitting element of one Embodiment of this invention.

本発明者は、発光素子の色むら発生の原因、特に、発光素子に適用する蛍光体の種類、粒径、量、この蛍光体を発光素子に固定する樹脂の種類、粘度、これら蛍光体と樹脂との含有比、発光素子に蛍光体を適用した形態/適用する方法(発光素子に蛍光体を適用する際の発光素子上面の向き及び状態)等について鋭意研究を行った。その結果、発光素子の上面で、蛍光体含有樹脂中の蛍光体の沈降方向を制御することによって、発光素子の全上面において、蛍光体の均一性を高めつつ配置することが可能となり、色むらの改善を実現し得ることを突き止め、本発明の完成に至った。   The present inventor is responsible for the occurrence of uneven color in the light-emitting element, in particular, the type, particle size, and amount of the phosphor applied to the light-emitting element, the type of resin that fixes the phosphor to the light-emitting element, the viscosity, Intensive research was conducted on the content ratio with the resin, the form in which the phosphor was applied to the light emitting element / the method of application (the orientation and state of the upper surface of the light emitting element when the phosphor was applied to the light emitting element), and the like. As a result, by controlling the sedimentation direction of the phosphor in the phosphor-containing resin on the upper surface of the light-emitting element, it becomes possible to arrange the phosphor while improving the uniformity of the phosphor on the entire upper surface of the light-emitting element. As a result, the present invention has been completed.

そのために、本発明の実施形態の発光装置の製造方法では、まず、発光素子上面に蛍光体含有樹脂を配置する。その後、発光素子上面の法線方向を、鉛直方向から傾斜させた軸として、この軸を中心に発光素子を傾斜回転させる。   Therefore, in the method for manufacturing a light emitting device according to the embodiment of the present invention, first, a phosphor-containing resin is disposed on the upper surface of the light emitting element. Thereafter, the normal direction of the upper surface of the light emitting element is set as an axis inclined from the vertical direction, and the light emitting element is tilted and rotated about this axis.

(発光素子)
本発明で用いられる発光素子は、いわゆる発光ダイオードと呼ばれる素子を意味する。なかでも、基板上に、InN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体、III−V族化合物半導体、II−VI族化合物半導体等、種々の発光層を含む半導体層の積層構造が形成されたものが挙げられる。
(Light emitting element)
The light emitting element used in the present invention means an element called a so-called light emitting diode. Among them, a laminated structure of semiconductor layers including various light emitting layers such as nitride semiconductors such as InN, AlN, GaN, InGaN, AlGaN, and InGaAlN, III-V group compound semiconductors, II-VI group compound semiconductors on the substrate. Are formed.

発光素子は、対向する上面と下面に正及び負の電極がそれぞれ形成されたものであってもよく、同一面側に正及び負の電極がともに形成されていてもよい。正及び負の電極は、1つずつ形成されていてもよいし、それぞれ2つ以上形成されていてもよい。   The light emitting element may be one in which positive and negative electrodes are respectively formed on the upper surface and the lower surface facing each other, and both positive and negative electrodes may be formed on the same surface side. One positive electrode and one negative electrode may be formed, or two or more of each may be formed.

電極の材料、膜厚、構造は、特に限定されず、金、銅、鉛、アルミニウム又はこれらの合金を含む単層構造又は積層構造のいずれでもよい。また、各電極の表面には、パッド電極として、Ni、Ti、Au、Pt、Pd、W等の金属又は合金の単層膜又は積層膜を形成してもよい。電極の膜厚は特に限定されないが、なかでも、最終層(最も表面側)にAuが配置され、その膜厚が100nm程度以上であることが好ましい。   The material, film thickness, and structure of the electrode are not particularly limited, and may be any of a single layer structure or a laminated structure including gold, copper, lead, aluminum, or an alloy thereof. Further, a single layer film or a multilayer film of a metal or an alloy such as Ni, Ti, Au, Pt, Pd, or W may be formed on the surface of each electrode as a pad electrode. Although the film thickness of an electrode is not specifically limited, It is preferable that Au is arrange | positioned at the last layer (most surface side) especially, and the film thickness is about 100 nm or more.

対向する面にそれぞれ正及び負の電極を有する発光素子の場合には、発光素子を支持体に設けられた配線上に載置し、一方の電極(以下、第1電極ということがある)が形成された下面を、銀、金、パラジウムなどを含有した導電性ペースト等の接合部材を用いて実装することができる。   In the case of a light-emitting element having positive and negative electrodes on opposite surfaces, the light-emitting element is placed on a wiring provided on a support, and one electrode (hereinafter sometimes referred to as a first electrode) is provided. The formed lower surface can be mounted using a joining member such as a conductive paste containing silver, gold, palladium, or the like.

上面に同一面側に正及び負の電極を有する発光素子を用いる場合は、電極が形成されていない側である下面を後述する支持体上に載置し、エポキシ樹脂、シリコーン等の接合部材によって支持体に実装することができる。
いずれの電極構造においても、発光素子からの光や熱による劣化、発光素子からの光の反射等を考慮して、発光素子の裏面に接合メタル層、基材、メタライズ層、Al、Ag等の金属メッキ層、Au−Sn共晶などの半田、低融点金属等のろう材、導電性ペーストなどの接合層等の1以上を任意に組み合わせてもよい。
When using a light-emitting element having positive and negative electrodes on the same surface on the upper surface, place the lower surface, which is the side on which no electrode is formed, on a support described later, and use a bonding member such as epoxy resin or silicone. It can be mounted on a support.
In any electrode structure, in consideration of deterioration by light and heat from the light emitting element, reflection of light from the light emitting element, etc., a bonding metal layer, a base material, a metallized layer, Al, Ag, etc. One or more of a metal plating layer, a solder such as Au—Sn eutectic, a brazing material such as a low melting point metal, and a bonding layer such as a conductive paste may be arbitrarily combined.

発光素子の半導体層の表面、半導体層と電極、上述した任意の各種層との間の一部又は全部に、保護膜が形成されていることが好ましい。保護膜は、絶縁性材料、例えば、Si、Al、Zr、Ti、Nb、Ta等の酸化物、窒化物、酸化窒化物等の単層又は積層膜が挙げられる。なかでも、酸化シリコン、酸化ニオブ、酸化チタン、酸化アルミニウム、酸化ジルコニウム及び酸化タンタル等が好ましい。   A protective film is preferably formed on the surface of the semiconductor layer of the light-emitting element, part or all of the semiconductor layer and the electrode, and any of the various layers described above. Examples of the protective film include an insulating material, for example, a single layer or a laminated film such as an oxide such as Si, Al, Zr, Ti, Nb, and Ta, a nitride, or an oxynitride. Of these, silicon oxide, niobium oxide, titanium oxide, aluminum oxide, zirconium oxide, tantalum oxide, and the like are preferable.

発光素子の蛍光体含有樹脂が配置される上面は平坦であることが好ましいが、電極、保護膜等の下層に起因する凹凸があってもよい。特に、発光素子上面の蛍光体含有樹脂を配置する面積が0.25mm以上、0.5mm以上、1mm以上であることが好ましい。 The upper surface on which the phosphor-containing resin of the light emitting element is disposed is preferably flat, but may have irregularities caused by lower layers such as electrodes and protective films. In particular, it is preferable that the area on which the phosphor-containing resin is disposed on the upper surface of the light emitting element is 0.25 mm 2 or more, 0.5 mm 2 or more, 1 mm 2 or more.

発光素子から発せられる光は、そのほとんどが蛍光体含有樹脂層に入射し得る構造であることが好ましい。具体的な構造としては、半導体層を挟んで蛍光体含有樹脂層の反対側に反射層又は不透光性の基板を有するもの、同一面側に正及び負の電極がともに形成されている構造であって、透光性基板を有さず半導体層のみであるもの、透光性の基板を有する場合は基板の表面が遮光性の材料で被覆されているものなどが挙げられる。   It is preferable that most of the light emitted from the light emitting element has a structure that can enter the phosphor-containing resin layer. As a specific structure, a structure having a reflective layer or an opaque substrate on the opposite side of the phosphor-containing resin layer with a semiconductor layer in between, and a structure in which both positive and negative electrodes are formed on the same surface side And what has only a semiconductor layer without having a translucent board | substrate, and what has the surface of a board | substrate coat | covered with the light-shielding material in the case of having a translucent board | substrate are mentioned.

(蛍光体)
本発明で用いられる蛍光体は、粒子状のものであればよく、当該分野で公知のもののいずれをも使用することができる。例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば白色系)を出射する発光装置、紫外光の一次光に励起されて可視波長の二次光を出射する発光装置とすることができる。
(Phosphor)
The phosphor used in the present invention may be in the form of particles, and any of those known in the art can be used. For example, yttrium aluminum garnet (YAG) activated with cerium, lutetium aluminum garnet (LAG) activated with cerium, nitrogen-containing calcium aluminosilicate (CaO-Al 2 O activated with europium and / or chromium) 3- SiO 2 ), europium activated silicate ((Sr, Ba) 2 SiO 4 ), and the like. Accordingly, a light emitting device that emits mixed light (for example, white light) of primary light and secondary light having a visible wavelength, and a light emitting device that emits secondary light having a visible wavelength when excited by the primary light of ultraviolet light. it can.

特に、青色発光素子に組み合わせて白色発光させる蛍光体としては、青色で励起されて黄色のブロードな発光を示す蛍光体を用いることが好ましい。例えば、YAG(Yttrium Aluminum Garnet)系、BOS(Barium ortho-Silicate)系等が好ましい。また、Si6−ZAl8−Z:Eu、LuAl12:Ce、BaMgAl1017:Eu、BaMgAl1017:Eu,Mn、(Zn,Cd)Zn:Cu、(Sr,Ca)10(POl2:Eu,Mn、(Sr,Ca)Si:Eu、CaAlSiB3+x:Eu、KSiF:Mn及びCaAlSiN3:Euなどの蛍光体を用いて演色性及び/又は色再現性を調整することもできる。 In particular, as a phosphor that emits white light in combination with a blue light-emitting element, it is preferable to use a phosphor that is excited by blue and exhibits yellow broad light emission. For example, YAG (Yttrium Aluminum Garnet) system, BOS (Barium ortho-Silicate) system and the like are preferable. Further, Si 6-Z Al Z O Z N 8-Z: Eu, Lu 3 Al 5 O 12: Ce, BaMgAl 10 O 17: Eu, BaMgAl 10 O 17: Eu, Mn, (Zn, Cd) Zn: Cu (Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu, Mn, (Sr, Ca) 2 Si 5 N 8 : Eu, CaAlSiB x N 3 + x : Eu, K 2 SiF 6 : Mn and CaAlSiN 3 : Eu Color rendering properties and / or color reproducibility can also be adjusted using phosphors such as

蛍光体は、平均粒径が1〜15μm程度であることが好ましく、5〜13μm程度であることがより好ましい。また、中心粒径が2〜20程度であることが好ましく、7〜13程度であることがより好ましい。これらの粒径分布は、レーザー回析法によって測定することができる。蛍光体の平均粒径及び中心粒径をこの範囲とすることにより、蛍光体によって波長変換する光の光束を低減させることなく、蛍光体の発光素子の隅部への移動を容易かつ確実に行わせることができる。   The average particle diameter of the phosphor is preferably about 1 to 15 μm, and more preferably about 5 to 13 μm. Moreover, it is preferable that a center particle size is about 2-20, and it is more preferable that it is about 7-13. These particle size distributions can be measured by a laser diffraction method. By setting the average particle diameter and the center particle diameter of the phosphor within this range, the phosphor can be easily and reliably moved to the corner of the light emitting element without reducing the luminous flux of the wavelength converted by the phosphor. Can be made.

(樹脂)
蛍光体を含有する樹脂としては、発光素子から出射される光および蛍光体によって波長変換された光を透過させることができるものであればよい。なかでも、発光素子から出射される光の60%以上を透過するもの、さらに、70%、80%又は90%以上を透過するものが好ましい。このような樹脂は、例えば、シリコーン樹脂、シリコーン変成樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、トリメチルペンテン樹脂、ポリノルボルネン樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等の樹脂等が挙げられる。
(resin)
The resin containing the phosphor may be any resin that can transmit light emitted from the light emitting element and light converted in wavelength by the phosphor. Especially, what transmits 60% or more of the light radiate | emitted from a light emitting element, Furthermore, what transmits 70%, 80%, or 90% or more is preferable. Examples of such resins include silicone resins, silicone modified resins, epoxy resins, phenol resins, polycarbonate resins, acrylic resins, trimethylpentene resins, polynorbornene resins, or hybrid resins containing one or more of these resins. Can be mentioned.

樹脂は、例えば、可使時間が4〜180時間程度に調整したものが好ましく、72時間以上又は100時間以上がより好ましい。このような時間に調整する方法としては、樹脂の分子量、組成、添加剤の種類及び量を適宜調整する方法が挙げられる。ここで、可使時間とは、樹脂中に含有される上述した粒径の蛍光体が、その自重によって樹脂内で移動し得る時間、樹脂がその性能を発揮可能な硬化までの時間などを意味する。蛍光体が樹脂内を移動し易い条件としては、可使時間のほか、蛍光体粒径が大きいもの、樹脂粘度低いもの等が挙げられる。   For example, the resin preferably has a pot life adjusted to about 4 to 180 hours, and more preferably 72 hours or more or 100 hours or more. Examples of a method for adjusting the time include a method of appropriately adjusting the molecular weight, composition, and type and amount of additives of the resin. Here, the pot life means the time during which the phosphor having the above-mentioned particle size contained in the resin can move within the resin by its own weight, the time until the resin can perform its performance, etc. To do. The conditions that the phosphor can easily move in the resin include, in addition to the pot life, those having a large phosphor particle diameter and those having a low resin viscosity.

このような樹脂は、蛍光体の量を、蛍光体含有樹脂の全重量に対して5〜70重量%で含有するものが好ましく、20〜40重量%で含有するものがより好ましい。
蛍光体含有樹脂を発光素子上面に配置する際、蛍光体含有樹脂の粘度を1〜50Pa・sとすることが好ましく、10〜15Pa・sとすることがより好ましい。
Such a resin preferably contains the phosphor in an amount of 5 to 70% by weight with respect to the total weight of the phosphor-containing resin, and more preferably contains 20 to 40% by weight.
When arrange | positioning fluorescent substance containing resin on a light emitting element upper surface, it is preferable that the viscosity of fluorescent substance containing resin shall be 1-50 Pa.s, and it is more preferable to set it as 10-15 Pa.s.

蛍光体含有樹脂には、例えば、二酸化チタン、二酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムライト、酸化ニオブ、硫酸バリウム、カーボンブラック、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム)などの光反射材、光散乱材又は着色剤等を含有させてもよい。   Examples of the phosphor-containing resin include titanium dioxide, silicon dioxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, niobium oxide, barium sulfate, carbon black, various rare earth oxides (for example, yttrium oxide). , Gadolinium oxide) and the like, a light scattering material, a colorant, or the like may be included.

(配置方法)
発光素子上面に蛍光体含有樹脂を配置する方法としては、スクリーン印刷、滴下等を利用することができ、なかでも、滴下が好ましい。滴下は、例えば、ディスペンサ等を用いて発光素子上面に、発光素子の外縁を超えない範囲でノズルを走査させて又はノズルを用いることなく行うことが好ましい。1つの発光素子上面に配置する蛍光体含有樹脂の量は、発光素子の大きさによって適宜調整することができるが、例えば、0.05〜1mg程度が好ましく、0.1〜1mg程度がより好ましく、0.2〜0.5mg程度がさらに好ましい。滴下は、1つの発光素子上面に1箇所のみ又は1回のみ行うものであってもよいし、複数箇所又は複数回行ってもよい。
(Arrangement method)
As a method for arranging the phosphor-containing resin on the upper surface of the light emitting element, screen printing, dropping, or the like can be used, and dropping is particularly preferable. The dropping is preferably performed, for example, by using a dispenser or the like to scan the nozzle on the upper surface of the light emitting element within a range not exceeding the outer edge of the light emitting element or without using the nozzle. The amount of the phosphor-containing resin disposed on the upper surface of one light emitting element can be appropriately adjusted depending on the size of the light emitting element, but is preferably about 0.05 to 1 mg, and more preferably about 0.1 to 1 mg. 0.2 to 0.5 mg is more preferable. The dripping may be performed only once or once on the top surface of one light emitting element, or may be performed multiple times or multiple times.

蛍光体含有樹脂は、発光素子の発光面(上面)のみを覆い、発光素子の側面には配置されないように配置することが好ましい。また、発光素子の回転後においても、蛍光体含有樹脂は発光素子の側面には配置されないことが好ましい。発光素子の側面まで蛍光体含有樹脂を被覆すると、発光素子の周縁部から蛍光体による波長変換光を多く含んだ光が放射され、色ムラの原因となる場合がある。   It is preferable that the phosphor-containing resin is disposed so as to cover only the light emitting surface (upper surface) of the light emitting element and not be disposed on the side surface of the light emitting element. Further, it is preferable that the phosphor-containing resin is not disposed on the side surface of the light emitting element even after the light emitting element is rotated. When the phosphor-containing resin is covered up to the side surface of the light emitting element, light containing a large amount of wavelength converted light by the phosphor is emitted from the peripheral portion of the light emitting element, which may cause color unevenness.

通常、蛍光体含有樹脂を発光素子上面に配置する際には、蛍光体含有樹脂が発光素子の上面から漏れないように滴下量等を厳重に管理する必要がある。しかし、このような漏れを管理すると、樹脂の表面張力によって、平面視において角部を有する発光素子の隅部には蛍光体含有樹脂が拡がらず、その厚みが極端に薄くなり、蛍光体が欠乏した領域が生じる。この蛍光体の欠乏領域から放射される光は、蛍光体による波長変換光を殆ど含むことができず、色ムラの原因となる。
一方、蛍光体含有樹脂の配置後に、後述するように、発光素子を傾斜回転させることにより、発光素子の上面に、蛍光体含有樹脂を均一に配置することができ、特に、発光素子の隅部に蛍光体が欠乏した領域の発生を低減することができる。
Usually, when the phosphor-containing resin is disposed on the upper surface of the light emitting element, it is necessary to strictly control the amount of dripping and the like so that the phosphor-containing resin does not leak from the upper surface of the light emitting element. However, if such leakage is controlled, the surface tension of the resin prevents the phosphor-containing resin from spreading in the corners of the light-emitting element having corners in plan view, and the thickness becomes extremely thin. A deficient area results. The light emitted from the phosphor deficient region can hardly contain wavelength-converted light by the phosphor, which causes color unevenness.
On the other hand, as described later, after the phosphor-containing resin is arranged, the phosphor-containing resin can be uniformly arranged on the upper surface of the light-emitting element by tilting and rotating the light-emitting element. In addition, it is possible to reduce the occurrence of a region deficient in phosphor.

(回転方法)
発光素子上面に蛍光体含有樹脂を配置した後、発光素子を傾斜回転させる。この場合、発光素子上面の法線方向を、鉛直方向から傾斜させた軸として設定し、この軸を中心に発光素子を傾斜回転させる。この軸は、発光素子内に設定されていてもよいし(図1A参照)、発光素子外に設定されていてもよい(図1B参照)。前者の場合、例えば、発光素子の中心に設定することが好ましい。後者の場合、例えば、発光素子を板状体に載置し、この板状体上面の法線方向を、発光素子上面の法線方向と見なし、この板状体の法線方向を、鉛直方向から傾斜させた軸として設定し、この軸を発光素子の載置領域以外の板状体内に設定してもよい。つまり、発光素子は、回転軸を中心として、所定の距離を半径とする円の外周に沿って回転してもよい。
なお、軸に対する素子の位置関係は、回転軸を発光素子内に設定した場合と発光素子外に設定した場合とでは異なるが、重力により蛍光体を沈降させ、回転動作を沈降方向(重力が働く方向)変更のために利用しており、いずれの場合も、実質的な物理作用は同等であると考えられる。
(Rotation method)
After the phosphor-containing resin is disposed on the upper surface of the light emitting element, the light emitting element is tilted and rotated. In this case, the normal direction of the upper surface of the light emitting element is set as an axis inclined from the vertical direction, and the light emitting element is tilted and rotated about this axis. This axis may be set within the light emitting element (see FIG. 1A) or may be set outside the light emitting element (see FIG. 1B). In the former case, for example, it is preferably set at the center of the light emitting element. In the latter case, for example, the light emitting element is mounted on a plate-like body, the normal direction of the upper surface of the plate-like body is regarded as the normal direction of the upper surface of the light-emitting element, and the normal direction of the plate-like body is defined as the vertical direction. The axis may be set as a tilted axis, and this axis may be set in a plate-like body other than the mounting region of the light emitting element. That is, the light emitting element may rotate along the outer periphery of a circle having a predetermined distance as a radius around the rotation axis.
The positional relationship of the element with respect to the axis differs between when the rotation axis is set inside the light emitting element and when the rotation axis is set outside the light emitting element. Direction), and in any case, the substantial physical action is considered equivalent.

ここで、1つの発光素子の傾斜回転を模式的に示す図1Aを用いて説明すると、発光素子10の上面に、蛍光体含有樹脂11を配置した後、発光素子10上面の法線方向を、鉛直方向15からα°傾斜させて回転軸14を設定し、この回転軸14を中心に発光素子10を回転させる。この軸14は、例えば、発光素子10の中心を通る。
また、複数の発光素子の回転を模式的に示す図1Bを用いて説明すると、複数の発光素子10を、例えば、支持体が複数連続して構成される板状体13の上面に配置し、これら発光素子10の上面に蛍光体含有樹脂11を配置した後、板状体13上面の法線方向を、鉛直方向15からα°傾斜させて回転軸14を設定し、この回転軸14を中心に複数の発光素子10を回転させる。この回転軸14は、例えば、発光素子10の載置領域外であって、板状体13の中心を通る。
Here, with reference to FIG. 1A schematically showing tilt rotation of one light emitting element, after arranging the phosphor-containing resin 11 on the upper surface of the light emitting element 10, the normal direction of the upper surface of the light emitting element 10 is A rotation axis 14 is set with an inclination of α ° from the vertical direction 15, and the light emitting element 10 is rotated around the rotation axis 14. The axis 14 passes through the center of the light emitting element 10, for example.
Further, with reference to FIG. 1B schematically showing rotation of a plurality of light emitting elements, for example, the plurality of light emitting elements 10 are arranged on the upper surface of a plate-like body 13 constituted by a plurality of support bodies continuously, After the phosphor-containing resin 11 is disposed on the upper surfaces of these light emitting elements 10, the normal direction of the upper surface of the plate-like body 13 is inclined by α ° from the vertical direction 15 to set the rotation axis 14. The plurality of light emitting elements 10 are rotated. For example, the rotating shaft 14 is outside the mounting region of the light emitting element 10 and passes through the center of the plate-like body 13.

なかでも、発光装置の製造方法の生産効率を考慮すると、複数の発光素子を載置した板状体を利用し、この板状体上面の法線方向を、発光素子上面の法線方向と見なして、この板状体の法線方向を、鉛直方向から傾斜させた軸として設定し、この軸を中心に板状体を回転させることが好ましい。なお、この場合の発光素子と回転軸との距離は特に限定されず、100mm程度以下が挙げられる。   In particular, considering the production efficiency of the method for manufacturing a light emitting device, a plate-like body on which a plurality of light-emitting elements are mounted is used, and the normal direction of the upper surface of the plate-like body is regarded as the normal direction of the upper surface of the light-emitting element. Thus, it is preferable that the normal direction of the plate-like body is set as an axis inclined from the vertical direction, and the plate-like body is rotated around this axis. In this case, the distance between the light emitting element and the rotating shaft is not particularly limited, and may be about 100 mm or less.

軸の傾斜角度(図1A及びB中、α)は、10〜80°であることが好ましく、20〜80°がより好ましく、30〜75°がさらに好ましい。このような傾斜角度とすることにより、蛍光体を樹脂内部で適切に移動させることができ、これによって、蛍光体を発光素子の隅部にまで分散させることが可能となる。
軸の回転速度は、0.001〜10rpmが好ましく、0.01〜5rpmがより好ましく、0.1〜1rpmがさらに好ましい。このような回転速度とすることで、蛍光体含有樹脂及びその内部における蛍光体を、意図しない大きな遠心力等によって偏らせることなく、均一に分散させることができ、色むらの解消に有効である。
The axis inclination angle (α in FIGS. 1A and 1B) is preferably 10 to 80 °, more preferably 20 to 80 °, and still more preferably 30 to 75 °. By setting such an inclination angle, the phosphor can be appropriately moved inside the resin, and thus the phosphor can be dispersed to the corners of the light emitting element.
The rotation speed of the shaft is preferably 0.001 to 10 rpm, more preferably 0.01 to 5 rpm, and further preferably 0.1 to 1 rpm. By setting such a rotation speed, the phosphor-containing resin and the phosphor inside thereof can be uniformly dispersed without being biased by an unintended large centrifugal force or the like, which is effective in eliminating color unevenness. .

傾斜回転させる時間は、蛍光体含有樹脂の粘度、蛍光体の粒径等によって、その持続時間を適宜調整することができ、例えば、1〜170時間程度行うことができる。蛍光体が均一に沈降するための時間連続して行うことが好ましい。例えば、4〜40時間程度、6〜30時間程度、10〜20時間程度行うことができる。
また、発光素子の傾斜回転中は、周辺温度を常温とすることが好ましい。発光素子の回転による蛍光体の樹脂内での沈降(移動)を円滑に行わせ、急激な樹脂の硬化を防止するためである。
The duration of the tilt rotation can be appropriately adjusted according to the viscosity of the phosphor-containing resin, the particle size of the phosphor, and the like, and can be performed, for example, for about 1 to 170 hours. It is preferable to carry out continuously for the time required for the phosphor to settle uniformly. For example, it can be performed for about 4 to 40 hours, about 6 to 30 hours, or about 10 to 20 hours.
Further, it is preferable that the ambient temperature is a normal temperature during the tilt rotation of the light emitting element. This is because the phosphor is smoothly settled (moved) in the resin by the rotation of the light-emitting element, and abrupt curing of the resin is prevented.

上述したように、発光素子を傾斜回転させるために、例えば、図2に示す傾斜回転装置を利用することができる。この傾斜回転装置は、回転軸1と、回転軸1を回転させるモータ2と、モータ2を支持/固定する脚部3と、脚部3を移動可能にするレール4と、回転軸1を法線方向とする板状体5を回転軸1に沿って複数収容することができる容器6とを備える。回転軸1の回転方向はいずれでもよく、例えば、矢印Xで示す方向に回転させることができる。また、モータ2は、モータ2に付随する回転軸1の鉛直方向に対する角度を自在に変更することができる角度調整部材7を介して脚部3に固定されている。この角度調整部材7によって、回転軸1の鉛直方向15からの角度(α°)を自在に調整することができる。   As described above, in order to tilt and rotate the light emitting element, for example, the tilt rotating device shown in FIG. 2 can be used. This tilt rotation device is based on a rotating shaft 1, a motor 2 that rotates the rotating shaft 1, a leg 3 that supports / fixes the motor 2, a rail 4 that allows the leg 3 to move, and a rotating shaft 1. And a container 6 that can accommodate a plurality of plate-like bodies 5 in the linear direction along the rotation axis 1. The rotation direction of the rotating shaft 1 may be any, for example, it can be rotated in the direction indicated by the arrow X. The motor 2 is fixed to the leg 3 via an angle adjusting member 7 that can freely change the angle of the rotary shaft 1 attached to the motor 2 with respect to the vertical direction. The angle adjustment member 7 can freely adjust the angle (α °) of the rotary shaft 1 from the vertical direction 15.

このように、発光素子を傾斜回転させることにより、図3(a)に模式的に示すように、蛍光体含有樹脂11中の蛍光体は、発光素子10上面が傾斜した状態で、樹脂中で鉛直方向nに沈降する。この間、発光素子10は傾斜回転しているために、図3(b)に示すように、沈降する蛍光体は、水平方向mに方向を変化しながら、さらに、図3(c)に示すように、鉛直方向nに沈降する。このような発光素子10の傾斜回転により、蛍光体はその沈降方向を徐々に変化させながら、図3(d)に示すように、沈降する。なお、図3(a)〜図3(d)での方向を示す矢印は、蛍光体が樹脂内で実際に沈降する軌道を表すものではく、蛍光体は発光素子10の傾斜回転によって、らせん状の軌道を描いて沈降していると考えられる。また、図3(a)〜図3(d)では、発光素子10の傾斜回転による樹脂の変形を表していないが、発光素子10の傾斜回転によって、蛍光体含有樹脂11の一部は、発光素子10の隅部にまで移動し、蛍光体含有樹脂11は、凸形状の外形を維持しながら、その厚みが中央部と隅部とで均一に近づくように変形する。これによって、発光素子の上面の隅部に蛍光体が欠乏した領域の発生を防止することができる。例えば、中央部(最大厚み)/隅部(最小厚み)との比は、10/3〜10/9程度が好ましく、10/4〜10/8程度がより好ましい。   Thus, by rotating the light emitting element at an inclination, as shown schematically in FIG. 3A, the phosphor in the phosphor-containing resin 11 is in the resin with the upper surface of the light emitting element 10 inclined. It sinks in the vertical direction n. During this time, since the light emitting element 10 is tilted and rotated, as shown in FIG. 3B, the settling phosphor changes its direction in the horizontal direction m and further, as shown in FIG. 3C. Then, it sinks in the vertical direction n. Due to the tilt rotation of the light emitting element 10, the phosphor settles as shown in FIG. 3D while gradually changing the sedimentation direction. Note that the arrows indicating the directions in FIGS. 3A to 3D do not represent the trajectory where the phosphor actually sinks in the resin, and the phosphor does not spiral due to the tilt rotation of the light emitting element 10. It is thought that it is sinking in a circular orbit. 3A to 3D do not show the deformation of the resin due to the tilt rotation of the light emitting element 10, but part of the phosphor-containing resin 11 emits light due to the tilt rotation of the light emitting element 10. It moves to the corner of the element 10 and the phosphor-containing resin 11 is deformed so that its thickness approaches a uniform portion at the center and corner while maintaining the convex outer shape. Accordingly, it is possible to prevent the occurrence of a region in which the phosphor is deficient in the corner portion of the upper surface of the light emitting element. For example, the ratio of the central portion (maximum thickness) / corner portion (minimum thickness) is preferably about 10/3 to 10/9, and more preferably about 10/4 to 10/8.

また、意図しない大きな遠心力が負荷されない程度に回転速度が小さいため、発光素子の側面にまで蛍光体含有樹脂が漏れ出る恐れがなく、また、発光素子の中央部が外周部よりも薄い状態となるような樹脂の移動も防止することができる。   In addition, since the rotational speed is so low that an unintended large centrifugal force is not loaded, there is no possibility that the phosphor-containing resin leaks to the side of the light emitting element, and the central part of the light emitting element is thinner than the outer peripheral part. Such a movement of the resin can also be prevented.

以下に、発光装置の製造方法の具体例を、図面を用いてより詳細に説明する。
まず、発光素子を準備する。発光素子は、下から順に、裏面メタライズ層、基板、接合メタル層の積層構造が、p側全面電極及び保護膜を介して、p側半導体層、発光層及びn側半導体層の積層体と接合されている。n側半導体層の表面には、n側パッド電極及び保護膜が配置されている。n側パッド電極の一部上は保護膜から露出されており、保護膜は、その表面に数十nm程度の凹凸を有する。
この発光素子は、平面形状が、約1mm×1mmの正方形である。
Hereinafter, specific examples of the method for manufacturing the light emitting device will be described in more detail with reference to the drawings.
First, a light emitting element is prepared. In the light-emitting element, the laminated structure of the back metallized layer, the substrate, and the joining metal layer is joined to the laminate of the p-side semiconductor layer, the light-emitting layer, and the n-side semiconductor layer through the p-side full surface electrode and the protective film in order from the bottom. Has been. An n-side pad electrode and a protective film are disposed on the surface of the n-side semiconductor layer. A part of the n-side pad electrode is exposed from the protective film, and the protective film has irregularities of about several tens of nm on the surface thereof.
The light emitting element has a square shape with a planar shape of about 1 mm × 1 mm.

例えば、裏面メタライズ層はTi/Pt/AuSn/Auの積層膜からなり、基板は不透光性のCuWからなり、接合メタル層は、半導体層側からTi/Pt/PtSn/AuSn/PdSn/Pt/Tiの積層構造を有する。p側全面電極はNi/Ag/Ni/Ti/Ptの積層膜からなり、保護膜SiOからなる。n側パッド電極はTi/Al/Ni/Auの積層膜からなり、保護膜はTaである。
p側半導体層及びn側半導体層はAlGaN層からなり、発光層はITO層からなる、ピーク波長は約450〜455nmの発光素子となる。
For example, the back metallization layer is made of a laminated film of Ti / Pt / AuSn / Au, the substrate is made of light-impermeable CuW, and the bonding metal layer is Ti / Pt / PtSn / AuSn / PdSn / Pt from the semiconductor layer side. / Ti laminated structure. The p-side full surface electrode is made of a laminated film of Ni / Ag / Ni / Ti / Pt, and is made of a protective film SiO 2 . The n-side pad electrode is made of a laminated film of Ti / Al / Ni / Au, and the protective film is Ta 2 O 5 .
The p-side semiconductor layer and the n-side semiconductor layer are made of an AlGaN layer, the light emitting layer is made of an ITO layer, and the light emitting element has a peak wavelength of about 450 to 455 nm.

この発光素子を、支持体上(図示せず)に、発光素子の基板を支持体側と対向させて、Au−Sn共晶の接合材を用いて実装する。   The light-emitting element is mounted on a support (not shown) using an Au—Sn eutectic bonding material with the substrate of the light-emitting element facing the support.

発光素子の上面に配置する蛍光体含有樹脂は、平均粒径が10〜15μmのYAG蛍光体を含有する、フェニル系シリコーンからなる。蛍光体の含有量は、樹脂100重量部に対して40重量部と、蛍光体含有樹脂において約28.8重量%であり、粘度は10〜20Pa・sである。
このような蛍光体含有樹脂を、例えば、発光素子の上面上にて、ディスペンサのノズルによって滴下することによって、発光素子上面に蛍光体含有樹脂を配置する。1つの発光素子に対する滴下量は、例えば、0.3〜0.4mgとする。
The phosphor-containing resin disposed on the upper surface of the light emitting element is made of phenyl silicone containing a YAG phosphor having an average particle diameter of 10 to 15 μm. The content of the phosphor is 40 parts by weight with respect to 100 parts by weight of the resin, about 28.8% by weight in the phosphor-containing resin, and the viscosity is 10 to 20 Pa · s.
For example, such a phosphor-containing resin is dropped on the upper surface of the light-emitting element by a nozzle of a dispenser, thereby arranging the phosphor-containing resin on the upper surface of the light-emitting element. The dripping amount with respect to one light emitting element shall be 0.3-0.4 mg, for example.

得られた発光素子を、図3に示す傾斜回転装置の容器に、傾斜角度(α)45°で設置する。この傾斜回転装置によって、図1Bに示すように、発光素子上面の法線方向を、鉛直方向から傾斜させた軸として、この軸を中心に発光素子を回転速度1.1rpmで、周辺温度25℃にて、14時間にわたって傾斜回転させる。
傾斜回転終了時には、蛍光体含有樹脂は、その内部に蛍光体を均一に分散させた状態で、硬化し、最大厚みが500μm、最小厚みが200μmの凸形状の波長変換部材兼配光部材として機能させることができる。
The obtained light-emitting element is placed at a tilt angle (α) of 45 ° in the container of the tilt rotation device shown in FIG. As shown in FIG. 1B, the tilt rotating device sets the normal direction of the upper surface of the light emitting element as an axis inclined from the vertical direction, and the light emitting element is rotated at a rotation speed of 1.1 rpm around the axis and the ambient temperature is 25 ° C. And tilt and rotate for 14 hours.
At the end of the tilt rotation, the phosphor-containing resin is cured with the phosphor uniformly dispersed therein, and functions as a convex wavelength conversion member and light distribution member having a maximum thickness of 500 μm and a minimum thickness of 200 μm. Can be made.

比較のために、発光素子の回転時の傾斜角度(α)を0°及び90°とした以外、上記と同様の方法により発光装置を作製し、上記で得られた発光装置とともに、発光素子点灯時の外観を比較観察した。
その結果、上記で得られた発光装置は、発光素子の回転時の傾斜角度(α)を0°及び90°としたいずれの発光装置と比較しても、発光素子の隅部において、波長変換不十分な光の漏れが顕著に低減され、色むらが顕著に改善されていることを確認した。
For comparison, a light-emitting device was manufactured by the same method as described above except that the tilt angle (α) during rotation of the light-emitting element was 0 ° and 90 °, and the light-emitting element was turned on together with the light-emitting device obtained above. The appearance at the time was comparatively observed.
As a result, the light-emitting device obtained above has a wavelength conversion at the corner of the light-emitting element, compared to any light-emitting device in which the tilt angle (α) during rotation of the light-emitting element is 0 ° and 90 °. It was confirmed that insufficient light leakage was remarkably reduced and color unevenness was remarkably improved.

このように、本発明の一実施形態にかかわる発光装置の製造方法では、発光素子の上面に蛍光体含有樹脂を均一に配置させることができ、特に、発光素子の隅部に蛍光体が欠乏した領域の発生を防止することができる。言い換えると、発光素子の隅部に、蛍光体の粒径よりも厚く樹脂が配置するために、蛍光体が樹脂内部で均一に分散し、蛍光体欠乏領域の発生を最小限に止めることができる。
また、意図しない大きな遠心力が負荷されない程度に回転速度が小さいため、発光素子の側面にまで蛍光体含有樹脂が漏れ出る恐れがなく、発光素子の中央部が外周部よりも薄い状態となるような樹脂の移動も防止することができる。
従って、発光面積を発光素子の平面積と同じとすることができ、最大限の光束を確保しながら、発光素子の隅部での波長変換をも十分に行わせることができる。その結果、発光素子の全上面での良好な光の波長変換を実現することができ、色ムラの発生を効果的に防止することができる。
加えて、発光素子の隅部までも蛍光体含有樹脂を配置するために、蛍光体量や蛍光体含有樹脂量を増大させることなく、適度な厚み及び分布によって蛍光体及び蛍光体含有樹脂を配置することができるために、これらによる光の吸収を無視できるほどに低減させることができ、光束の低下防止に有効である。
As described above, in the method for manufacturing a light emitting device according to an embodiment of the present invention, the phosphor-containing resin can be uniformly disposed on the upper surface of the light emitting element, and in particular, the phosphor is deficient in the corner of the light emitting element. Generation | occurrence | production of an area | region can be prevented. In other words, since the resin is disposed at the corner of the light emitting element so as to be thicker than the particle size of the phosphor, the phosphor is uniformly dispersed inside the resin, and the occurrence of the phosphor-deficient region can be minimized. .
In addition, since the rotational speed is so low that an unintended large centrifugal force is not loaded, the phosphor-containing resin does not leak to the side surface of the light emitting element, and the central part of the light emitting element is thinner than the outer peripheral part. Movement of the resin can also be prevented.
Accordingly, the light emitting area can be made equal to the plane area of the light emitting element, and wavelength conversion at the corner of the light emitting element can be sufficiently performed while ensuring the maximum luminous flux. As a result, favorable wavelength conversion of light on the entire upper surface of the light emitting element can be realized, and the occurrence of color unevenness can be effectively prevented.
In addition, in order to place the phosphor-containing resin up to the corner of the light emitting element, the phosphor and the phosphor-containing resin are arranged with an appropriate thickness and distribution without increasing the amount of the phosphor or the phosphor-containing resin. Therefore, the absorption of light by these can be reduced to a negligible level, and it is effective for preventing a decrease in luminous flux.

また、傾斜角度を70°とし、処理時間を15時間とする以外、上記方法と同様に発光装置を作製したところ、傾斜角度が0°や90°のものと比較して、上記と同様に、発光素子の隅部での蛍光体欠乏領域の低減、色むらの改善が認められた。   Further, except that the tilt angle was 70 ° and the processing time was 15 hours, a light-emitting device was produced in the same manner as the above method. As compared with the one with the tilt angle of 0 ° or 90 °, as described above, It was confirmed that the phosphor-deficient region was reduced and the color unevenness was improved at the corners of the light-emitting element.

さらに、傾斜角度を70°とし、処理時間を63時間とし、回転速度を0.06rpmとする以外、上記方法と同様に発光装置を作製したところ、傾斜角度が0°や90°のものと比較して、上記と同様に、発光素子の隅部での蛍光体欠乏領域の低減、色むらの改善が認められた。   Furthermore, a light emitting device was manufactured in the same manner as described above except that the tilt angle was set to 70 °, the processing time was set to 63 hours, and the rotation speed was set to 0.06 rpm. In the same manner as described above, reduction of the phosphor-deficient region at the corner of the light emitting element and improvement of the color unevenness were observed.

本発明の発光装置の製造方法は、発光素子の上面に蛍光体を配置する発光装置に利用することができる。   The method for manufacturing a light emitting device of the present invention can be used for a light emitting device in which a phosphor is disposed on the upper surface of a light emitting element.

1、14 回転軸
2 モータ
3 脚部
4 レール
5、13 板状体
6 容器
7 角度調整部材
10 発光素子
11 蛍光体含有樹脂
15 鉛直方向
X 回転方向
α 傾斜角度
DESCRIPTION OF SYMBOLS 1, 14 Rotating shaft 2 Motor 3 Leg part 4 Rail 5, 13 Plate-like body 6 Container 7 Angle adjustment member 10 Light emitting element 11 Phosphor containing resin 15 Vertical direction X Rotating direction α Inclination angle

Claims (12)

発光素子上面に蛍光体含有樹脂を配置した後、前記発光素子上面の法線方向を、鉛直方向から傾斜させた軸として、該軸を中心に前記発光素子を傾斜回転させることを含む発光装置の製造方法。   An arrangement of a light emitting device comprising: arranging a phosphor-containing resin on an upper surface of a light emitting element, and setting the normal direction of the upper surface of the light emitting element as an axis inclined from a vertical direction, and tilting and rotating the light emitting element around the axis Production method. 前記発光素子上面へ蛍光体含有樹脂の配置を、滴下によって行う請求項1に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device of Claim 1 which arrange | positions fluorescent substance containing resin to the said light emitting element upper surface by dripping. 前記軸の鉛直方向からの傾斜を、10〜80°とする請求項1又は2に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1 or 2, wherein an inclination of the axis from a vertical direction is set to 10 to 80 degrees. 前記軸の回転速度を、0.001〜10rpmとする請求項1〜3のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein a rotation speed of the shaft is 0.001 to 10 rpm. 前記蛍光体含有樹脂の粘度を1〜50Pa・sとする請求項1〜4のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein the phosphor-containing resin has a viscosity of 1 to 50 Pa · s. 前記蛍光体含有樹脂中の蛍光体の平均粒径を1〜30μmとする請求項1〜5のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein an average particle diameter of the phosphor in the phosphor-containing resin is 1 to 30 μm. 前記蛍光体含有樹脂中の蛍光体の中心粒径を2〜20μmとする請求項1〜6のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to any one of claims 1 to 6, wherein a center particle diameter of the phosphor in the phosphor-containing resin is 2 to 20 µm. 前記発光素子の回転を、1〜170時間行う請求項1〜7のいずれか1つに記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the light emitting element is rotated for 1 to 170 hours. 前記蛍光体含有樹脂に対する蛍光体の量を、5〜70重量%とする請求項1〜8のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein an amount of the phosphor with respect to the phosphor-containing resin is 5 to 70% by weight. 前記発光素子上面の前記蛍光体含有樹脂を配置する面積を0.25mm以上とする請求項1〜9のいずれか1つに記載の発光装置の製造方法。 The manufacturing method of the light-emitting device as described in any one of Claims 1-9 which makes the area which arrange | positions the said fluorescent substance containing resin of the said light emitting element upper surface into 0.25 mm < 2 > or more. 前記樹脂として、可使時間が4〜180時間である樹脂を用いる請求項1〜10のいずれか1つに記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 1, wherein a resin having a pot life of 4 to 180 hours is used as the resin. 前記蛍光体含有樹脂の厚みを、前記発光素子の中央部よりも外周部において薄くする請求項1〜11のいずれか1つに記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein a thickness of the phosphor-containing resin is thinner at an outer peripheral portion than a central portion of the light-emitting element.
JP2014201471A 2014-09-30 2014-09-30 Method for manufacturing light emitting device Active JP6331934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201471A JP6331934B2 (en) 2014-09-30 2014-09-30 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201471A JP6331934B2 (en) 2014-09-30 2014-09-30 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2016072474A JP2016072474A (en) 2016-05-09
JP6331934B2 true JP6331934B2 (en) 2018-05-30

Family

ID=55864985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201471A Active JP6331934B2 (en) 2014-09-30 2014-09-30 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP6331934B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282176B2 (en) * 1997-07-14 2002-05-13 日亜化学工業株式会社 Method of forming light emitting diode
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP4859050B2 (en) * 2006-11-28 2012-01-18 Dowaエレクトロニクス株式会社 Light emitting device and manufacturing method thereof
TWI370564B (en) * 2008-10-29 2012-08-11 Wellypower Optronics Corp Centrifugal precipitating method and light emitting diode and apparatus using the same
JP2010135763A (en) * 2008-11-05 2010-06-17 Toshiba Corp Apparatus for manufacturing led device, method for manufacturing the same, and led device

Also Published As

Publication number Publication date
JP2016072474A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6658723B2 (en) Light emitting device
US10381538B2 (en) Light emitting device having fluorescent and light scattering light-transmissive member
US9349664B2 (en) Method for manufacturing light emitting device and light emitting device
US8552444B2 (en) Semiconductor light-emitting device and manufacturing method of the same
JP6142902B2 (en) Light emitting device and manufacturing method thereof
JP6399017B2 (en) Light emitting device
JP6079209B2 (en) Light emitting device and manufacturing method thereof
US11581465B2 (en) Light emitting device
JP5781741B2 (en) Light emitting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP2009130301A (en) Light-emitting element and method of manufacturing the same
KR20070039569A (en) Light emitting device and illuminator employing it, back light for display, and display
US10873008B2 (en) Light emitting device and method of manufacturing same
JP2018129424A (en) Light-emitting device
JP2017117858A (en) Light-emitting device
JP6481559B2 (en) Light emitting device
JP2018078188A (en) Light-emitting device
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP2018206819A (en) Light emitting device and method for manufacturing the same
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
WO2020137855A1 (en) Light-emitting device, and method for manufacturing light-emitting device
JP6997869B2 (en) Wavelength conversion element and light source device
US10439097B2 (en) Method for manufacturing light emitting device
JP2018190771A (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250