JP6331678B2 - Cross shaft type universal joint assembly method - Google Patents

Cross shaft type universal joint assembly method Download PDF

Info

Publication number
JP6331678B2
JP6331678B2 JP2014100588A JP2014100588A JP6331678B2 JP 6331678 B2 JP6331678 B2 JP 6331678B2 JP 2014100588 A JP2014100588 A JP 2014100588A JP 2014100588 A JP2014100588 A JP 2014100588A JP 6331678 B2 JP6331678 B2 JP 6331678B2
Authority
JP
Japan
Prior art keywords
arm portions
press
fitting
pair
punches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014100588A
Other languages
Japanese (ja)
Other versions
JP2015218753A5 (en
JP2015218753A (en
Inventor
敏和 村田
敏和 村田
靖友 鹿内
靖友 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014100588A priority Critical patent/JP6331678B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to KR1020167031723A priority patent/KR101903265B1/en
Priority to KR1020187021369A priority patent/KR101923876B1/en
Priority to PCT/JP2015/063777 priority patent/WO2015174457A1/en
Priority to CN201580025715.5A priority patent/CN106662161B/en
Priority to KR1020187021368A priority patent/KR101923875B1/en
Priority to US15/310,481 priority patent/US10533611B2/en
Priority to EP15793070.2A priority patent/EP3139051B1/en
Publication of JP2015218753A publication Critical patent/JP2015218753A/en
Publication of JP2015218753A5 publication Critical patent/JP2015218753A5/ja
Application granted granted Critical
Publication of JP6331678B2 publication Critical patent/JP6331678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Assembly (AREA)

Description

本発明は、例えばステアリングシャフトの動きをステアリングギヤに伝達する為のステアリング装置に組み込まれる十字軸式自在継手の組立方法の改良に関する。   The present invention relates to an improvement in a method for assembling a cruciform universal joint incorporated in a steering device for transmitting a motion of a steering shaft to a steering gear, for example.

自動車のステアリング装置は、例えば図3に示す様に構成している。ステアリングホイール1の動きは、ステアリングシャフト2及び中間シャフト3を介してステアリングギヤユニット4に伝達し、このステアリングギヤユニット4によって車輪を操舵する。前記ステアリングシャフト2と、このステアリングギヤユニット4の入力軸5とは、互いに同一直線上に設ける事ができないのが一般的である。この為に従来から、前記ステアリングシャフト2と前記入力軸5との間に前記中間シャフト3を設け、この中間シャフト3の両端部と、前記ステアリングシャフト2及び前記入力軸5の端部とを、それぞれカルダン継手と呼ばれる自在継手6、6を介して結合している。これにより、同一直線上に存在しない、前記ステアリングシャフト2と前記入力軸5との間で、回転力の伝達を行える様にしている。   An automobile steering device is configured as shown in FIG. 3, for example. The movement of the steering wheel 1 is transmitted to the steering gear unit 4 via the steering shaft 2 and the intermediate shaft 3, and the wheels are steered by the steering gear unit 4. Generally, the steering shaft 2 and the input shaft 5 of the steering gear unit 4 cannot be provided on the same straight line. Therefore, conventionally, the intermediate shaft 3 is provided between the steering shaft 2 and the input shaft 5, and both ends of the intermediate shaft 3 and the ends of the steering shaft 2 and the input shaft 5 are connected. They are connected through universal joints 6 and 6 called cardan joints. Thereby, the rotational force can be transmitted between the steering shaft 2 and the input shaft 5 which do not exist on the same straight line.

図4〜5は、従来から知られている自在継手の1例として、特許文献1に記載されたものを示している。自在継手6は、1対の金属板製のヨーク7a、7bと、十字軸8とを備える。1対のヨーク7a、7bのうち、一方(図4〜5の右方)のヨーク7aは、基部9aと、この基部9aの軸方向一端縁(図4〜5の左端縁)から延出した1対の結合腕部10、10とを備える。   4-5 has shown what was described in patent document 1 as an example of the universal joint known conventionally. The universal joint 6 includes a pair of yokes 7 a and 7 b made of a metal plate and a cross shaft 8. Of the pair of yokes 7a and 7b, one yoke 7a (to the right in FIGS. 4 to 5) extends from the base 9a and one axial end edge (the left end edge in FIGS. 4 to 5) of the base 9a. A pair of connecting arm portions 10 and 10 are provided.

このうちの基部9aは、ステアリングシャフト等の図示しない回転軸の端部を挿入する為、円周方向1個所を不連続部とした欠円筒状に形成して、内径を拡縮可能としている。又、この不連続部に、互いに対向する1対のフランジ11a、11bを設けている。そして、このうちの一方のフランジ11aに、ボルト(図示せず)の杆部を挿通する為の通孔12を形成している。これと共に、他方のフランジ11bに形成した通孔13にナット14を圧入固定する事により、前記ボルトを螺合する為のねじ孔を設けている。   Of these, the base portion 9a is inserted into an end portion of a rotating shaft (not shown) such as a steering shaft, so that the inner portion can be expanded and contracted by forming a circular cylinder with a discontinuous portion in one circumferential direction. In addition, a pair of flanges 11a and 11b facing each other are provided in the discontinuous portion. A through hole 12 for inserting a flange portion of a bolt (not shown) is formed in one of the flanges 11a. Along with this, a screw hole for screwing the bolt is provided by press-fitting and fixing a nut 14 to a through hole 13 formed in the other flange 11b.

又、前記両結合腕部10、10は、前記基部9aの軸方向一端部で径方向反対側となる2個所位置から、この基部9aの軸方向に延出しており、互いの内側面同士を対向させている。又、前記両結合腕部10、10の先端部には、互いに同心の円孔15、15を形成している。   The connecting arm portions 10 and 10 extend in the axial direction of the base portion 9a from two positions opposite to the radial direction at one axial end portion of the base portion 9a. They are facing each other. In addition, concentric circular holes 15 and 15 are formed at the distal ends of the connecting arm portions 10 and 10, respectively.

前記1対のヨーク7a、7bのうちの他方(図4〜5の左方)のヨーク7bは、基部9bの形状のみが、前記一方のヨーク7aと異なる。即ち、この他方のヨーク7bを構成する基部9bは、中間シャフト等の回転軸16の端部を挿入する為、全体を略円筒状に形成している。   The other yoke 7b of the pair of yokes 7a and 7b (left side in FIGS. 4 to 5) differs from the one yoke 7a only in the shape of the base portion 9b. That is, the base 9b constituting the other yoke 7b is formed in a substantially cylindrical shape as a whole in order to insert the end of the rotary shaft 16 such as an intermediate shaft.

前記十字軸8は、この十字軸8を構成する十字に交わる状態で設けられた2本の軸部17a、17bのうち、一方の軸部17aの両端部を、前記一方のヨーク7aの結合腕部10、10に形成した円孔15、15の内側に枢支すると共に、同じく他方の軸部17bの両端部を、前記他方のヨーク7bの結合腕部10、10に形成した円孔15、15の内側に枢支している。この為に、これら各円孔15、15の内側にそれぞれ、カップ軸受18を介して、前記十字軸8を構成する軸部17a、17bの先端部を回転自在に支持している。   The cross shaft 8 has two shaft portions 17a and 17b provided so as to intersect with the cross constituting the cross shaft 8, and both ends of one shaft portion 17a are connected to the connecting arm of the one yoke 7a. The circular holes 15 and 15 are pivotally supported inside the circular holes 15 and 15 formed in the portions 10 and 10 and the both end portions of the other shaft portion 17b are also formed in the coupling arm portions 10 and 10 of the other yoke 7b. 15 is pivoted inside. For this purpose, the end portions of the shaft portions 17a and 17b constituting the cross shaft 8 are rotatably supported inside the circular holes 15 and 15 via cup bearings 18 respectively.

前記各カップ軸受18は、それぞれシェル型ニードル軸受に相当するものであり、シェル型外輪に相当する1個のカップ19と、複数本のニードル20、20とを備える。このうちのカップ19は、炭素鋼板、肌焼鋼板等の硬質金属板を、深絞り加工等の塑性加工により曲げ形成して成るもので、円筒部21と、底部22と、内向鍔部23とを備える。このうちの底部22は、この円筒部21の軸方向一端側(円孔15内への組み付け状態で、結合腕部10の外側面側)全体を塞ぐ。又、前記内向鍔部23は、前記円筒部21の軸方向他端側(円孔15内への組み付け状態で、結合腕部10の内側面側)から径方向内方に折れ曲がったもので、前記各ニードル20、20に対向する面が凹面となる方向に湾曲している。そして、上述の様な構成を有する前記各カップ19、19を、前記各円孔15、15の内側に圧入すると共に、前記各結合腕部10、10の外側面のうち、これら各円孔15、15の開口縁部を径方向内方に塑性変形させてかしめ部24、24を形成し、前記各カップ19、19が前記各円孔15、15から外方に抜け出る事を防止している。又、前記各ニードル20、20の径方向内側に、前記十字軸8を構成する軸部17a、17bの先端部をそれぞれ挿入している。   Each cup bearing 18 corresponds to a shell type needle bearing, and includes one cup 19 corresponding to a shell type outer ring and a plurality of needles 20 and 20. Of these, the cup 19 is formed by bending a hard metal plate such as a carbon steel plate or a case-hardened steel plate by plastic working such as deep drawing, and includes a cylindrical portion 21, a bottom portion 22, an inward flange portion 23, and the like. Is provided. Of these, the bottom portion 22 closes the whole axial one end side of the cylindrical portion 21 (the outer surface side of the connecting arm portion 10 in the assembled state in the circular hole 15). Further, the inward flange 23 is bent radially inward from the other axial end of the cylindrical portion 21 (in the assembled state in the circular hole 15, the inner side of the coupling arm portion 10). The surface facing each of the needles 20 and 20 is curved in a direction that becomes a concave surface. The cups 19 and 19 having the above-described configuration are press-fitted inside the circular holes 15 and 15, and the circular holes 15 are formed on the outer surfaces of the coupling arm portions 10 and 10. , 15 are plastically deformed radially inward to form caulking portions 24, 24, thereby preventing the cups 19, 19 from slipping out of the circular holes 15, 15. . Further, the distal end portions of the shaft portions 17a and 17b constituting the cross shaft 8 are respectively inserted inside the needles 20 and 20 in the radial direction.

上述の様に構成する自在継手6の使用時には、図4〜5に示す様に、他方のヨーク7bを構成する基部9bの内側に、前記回転軸16の端部をがたつきなく挿入又は圧入した状態で、これら基部9bと回転軸16の端部とを溶接固定する。これと共に、一方のヨーク7aを構成する基部9aの内側に、別の回転軸25の端部をスプライン係合させた状態で、一方のフランジ11aに形成した通孔12にその杆部を挿通した図示しないボルトの先端部を、他方のフランジ11bに固定したナット14に螺合させて締め付ける。これにより、前記両フランジ11a、11b同士の間隔を狭めて、前記基部9aを縮径させる事に基づき、この基部9aに対して前記別の回転軸25の端部を結合固定する。そして、この様に2本の回転軸16、25の端部同士を、前記自在継手6を介して連結する事により、同一直線上に存在しない、前記両回転軸16、25同士の間で、回転力の伝達を行える様にする。   When the universal joint 6 configured as described above is used, as shown in FIGS. 4 to 5, the end of the rotary shaft 16 is inserted or pressed into the base 9 b constituting the other yoke 7 b without rattling. In this state, the base 9b and the end of the rotary shaft 16 are welded and fixed. At the same time, the flange portion is inserted into the through-hole 12 formed in one flange 11a in a state where the end portion of another rotating shaft 25 is spline-engaged inside the base portion 9a constituting the one yoke 7a. The tip of a bolt (not shown) is screwed into a nut 14 fixed to the other flange 11b and tightened. Thus, the end of the other rotary shaft 25 is coupled and fixed to the base portion 9a based on reducing the diameter of the base portion 9a by narrowing the distance between the flanges 11a and 11b. And, by connecting the ends of the two rotary shafts 16 and 25 via the universal joint 6 in this way, between the rotary shafts 16 and 25 that do not exist on the same straight line, Enable to transmit rotational force.

次に、上述した様な構成を有する自在継手6の組立方法に就いて説明する。図6は、従来から知られた組立方法の1例を示している。図示の例の場合、ヨーク7aを構成する1対の円孔15の内側に、十字軸8を構成する軸部17aの両端部をそれぞれ緩く挿入した状態で、ヨーク受け治具26を構成する略L字形の1対の支持腕部27の先端部を、1対の結合腕部10の内側に配置する。又、これら両結合腕部10を挟む両側位置に、圧入パンチ28及びかしめパンチ29を、前記各円孔15と同軸上にそれぞれ配置する。このうちの圧入パンチ28は、円柱状に構成されており、基端側に設けられた図示しない圧入用シリンダにより前後方向(図6の左右方向)に移動可能である。これに対し、前記かしめパンチ29は、略円筒状に構成されており、前記圧入パンチ28の周囲に外嵌されている。又、このかしめパンチ29は、基端側に設けられた図示しないかしめ用シリンダにより、前後方向(図6の左右方向)に移動可能である。   Next, a method for assembling the universal joint 6 having the above-described configuration will be described. FIG. 6 shows an example of a conventionally known assembly method. In the case of the illustrated example, the yoke receiving jig 26 is configured in a state in which both ends of the shaft portion 17a constituting the cross shaft 8 are loosely inserted inside the pair of circular holes 15 constituting the yoke 7a. The tip portions of the L-shaped pair of support arm portions 27 are arranged inside the pair of coupling arm portions 10. Further, press-fitting punches 28 and caulking punches 29 are arranged coaxially with the respective circular holes 15 at both side positions sandwiching both the connecting arm portions 10. Of these, the press-fitting punch 28 is formed in a columnar shape, and can be moved in the front-rear direction (left-right direction in FIG. 6) by a press-fitting cylinder (not shown) provided on the base end side. On the other hand, the caulking punch 29 is formed in a substantially cylindrical shape and is fitted around the press-fitting punch 28. The caulking punch 29 can be moved in the front-rear direction (left-right direction in FIG. 6) by a caulking cylinder (not shown) provided on the base end side.

従来方法の場合、先ず、前記ヨーク受け治具26を構成する図示しないモータを駆動する事により、前記両支持腕部27を、機械中心位置から互いに離れる方向に同期して移動させる。そして、これら両支持腕部27の先端部外側面を、前記両結合腕部10の先端部内側面に当接させて、これら両結合腕部10を支持する。その後、前記両圧入パンチ28を前方にそれぞれ移動(ヨーク7aに近づく方向に移動)させる事により、カップ軸受18を構成する底部22の内面を前記軸部17aの先端面に押し付け、前記両圧入パンチ28の前方への移動量が所定量に達した時点で前方への移動を停止する。次いで、前記両かしめパンチ29を前方に移動させて、前記両結合腕部10のうち、前記両円孔15の開口縁部の複数個所を塑性変形させて、当該部分にかしめ部24、24を形成する。これにより、前記カップ軸受18を、前記両円孔15と前記軸部17aの両端部との間部分に組み付け、この軸部17aの両端部をこれら両円孔15の内側に、前記カップ軸受18を介して回転自在に支持する。   In the case of the conventional method, first, by driving a motor (not shown) constituting the yoke receiving jig 26, the both supporting arm portions 27 are moved in synchronization with each other in the direction away from the machine center position. Then, the outer surfaces of the distal ends of the two supporting arm portions 27 are brought into contact with the inner side surfaces of the distal ends of the two connecting arm portions 10 to support the both connecting arm portions 10. Thereafter, the both press-fitting punches 28 are respectively moved forward (moved in a direction approaching the yoke 7a) to press the inner surface of the bottom portion 22 constituting the cup bearing 18 against the tip surface of the shaft portion 17a. When the amount of forward movement 28 reaches a predetermined amount, the forward movement is stopped. Next, both the caulking punches 29 are moved forward to plastically deform a plurality of portions of the opening edge portions of the circular holes 15 in the both connecting arm portions 10, and the caulking portions 24, 24 are applied to the portions. Form. As a result, the cup bearing 18 is assembled to a portion between the circular holes 15 and both end portions of the shaft portion 17a, and both end portions of the shaft portion 17a are inside the circular holes 15 and the cup bearing 18 is assembled. It is supported rotatably via

ところが、上述した様な組立方法の場合、前記カップ軸受18の圧入量(圧入位置)を、前記圧入パンチ28の前方への移動量のみに基づいて決定している為、次の様な問題を生じる可能性がある。以下、前記図6に、図7を加えて説明する。
前記ヨーク7a(7b)の中心軸から1対の結合腕部10、10の内側面までの寸法(以下「内側面寸法」と呼ぶ)には、常に寸法公差内でばらつきを生じる。この為、前記両支持腕部27、27を、機械中心位置Oから互いに離れる方向に等距離だけ移動させて、前記ヨーク7a(7b)を支持した場合、このヨーク7a(7b)は、前記両結合腕部10、10の内側面寸法のばらつきに応じて、前記両円孔15、15の中心軸方向(図7の左右方向)にずれる。具体的には、図7の(A)に示した様に、前記ヨーク7a(7b)の中心位置Xを、前記両支持腕部27、27の機械中心位置Oに一致させた状態で、前記両支持腕部27、27のうちの一方(図7の右方)の支持腕部27の先端部外側面から、前記両結合腕部10、10のうちの一方(図7の右方)の結合腕部10の先端部内側面までの距離(L1)と、同じく他方(図7の左方)の支持腕部27の先端部外側面から、同じく他方(図7の左方)の結合腕部10の先端部内側面までの距離(L2)とが等しくない場合(L1<L2)、同図の(B)に示した様に、距離が短い側(先に当接する側)の支持腕部27に押されて、前記ヨーク7a(7b)が前記両円孔15、15の中心軸方向(同図の右側)にずれる。この為、支持が完了した状態での前記ヨーク7a(7b)の中心位置Xが、前記両支持腕部27、27の機械中心位置Oに対してΔA分だけずれを生じる。
However, in the case of the assembling method as described above, the press-fitting amount (press-fitting position) of the cup bearing 18 is determined based only on the amount of forward movement of the press-fitting punch 28. It can happen. Hereinafter, FIG. 7 will be described in addition to FIG.
The dimension from the central axis of the yoke 7a (7b) to the inner surface of the pair of connecting arm portions 10 and 10 (hereinafter referred to as “inner surface dimension”) always varies within a dimensional tolerance. Therefore, when the support arms 27 and 27 are moved by an equal distance in the direction away from the machine center position O to support the yoke 7a (7b), the yoke 7a (7b) In accordance with variations in the inner surface dimensions of the connecting arm portions 10 and 10, the center holes of the circular holes 15 and 15 are displaced in the direction of the central axis (the left-right direction in FIG. 7). Specifically, as shown in FIG. 7A, the center position X of the yoke 7a (7b) is made to coincide with the machine center position O of the both support arm portions 27, 27, and One of the support arm portions 27, 27 (on the right side in FIG. 7) from the outer surface of the tip end portion of the support arm portion 27, one of the coupling arm portions 10, 10 (on the right side in FIG. 7). The distance (L1) to the inner surface of the distal end of the coupling arm 10 and the coupling arm of the other (left side of FIG. 7) from the outer surface of the distal end of the other supporting arm 27 (left side of FIG. 7). When the distance (L2) to the inner surface of the tip 10 is not equal (L1 <L2), as shown in FIG. The yoke 7a (7b) is displaced in the direction of the central axis of the circular holes 15 and 15 (right side in the figure). For this reason, the center position X of the yoke 7a (7b) in a state where the support is completed is shifted by ΔA with respect to the machine center position O of the both support arm portions 27 and 27.

一方、前記両圧入パンチ28、28の前方への移動量は、機械中心位置Oを基準として設定される為、これら両圧入パンチ28、28のうち、一方(図7の右方)の圧入パンチ28による圧入量は過剰になるのに対し、他方(図7の左方)の圧入パンチ28による圧入量は不足する。従って、1対のカップ軸受18、18に適正な予圧を安定して付与する事が難しくなる。又、同様の理由から、前記両かしめパンチ29、29のうち、一方(図7の右方)のかしめパンチ29によるかしめ量は過剰になるのに対し、他方(図7の左方)のかしめパンチ29によるかしめ量は不足する。従って、少なくとも一方のカップ軸受18の抜け止めが十分に図れなくなる可能性がある。   On the other hand, since the amount of forward movement of both the press-fit punches 28, 28 is set with reference to the machine center position O, one of the press-fit punches 28, 28 (the right side in FIG. 7). While the press-fitting amount by 28 is excessive, the press-fitting amount by the other press-fitting punch 28 (to the left in FIG. 7) is insufficient. Accordingly, it is difficult to stably apply an appropriate preload to the pair of cup bearings 18 and 18. For the same reason, the caulking amount of one (right side in FIG. 7) of the both caulking punches 29 and 29 is excessive, while the other (left side in FIG. 7) is caulked. The amount of caulking by the punch 29 is insufficient. Therefore, there is a possibility that at least one cup bearing 18 cannot be sufficiently prevented from coming off.

特開平10−205547号公報JP-A-10-205547

本発明は、上述の様な事情に鑑みて、ヨークを構成する1対の結合腕部の内側面寸法のばらつきに拘らず、ヨークを構成する円孔と十字軸を構成する軸部の端部との間部分に、カップ軸受を精度良く組み付けられる、十字軸式自在継手の組立方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a circular hole that constitutes a yoke and an end portion of a shaft that constitutes a cross shaft, regardless of variations in the inner surface dimensions of a pair of connecting arm portions that constitute the yoke. Invented in order to realize a method for assembling a cruciform universal joint in which a cup bearing can be assembled with high accuracy between the two.

本発明の十字軸式自在継手の組立方法は、ヨークを構成する1対の結合腕部の先端部に互いに同心に形成された1対の円孔と、これら両円孔の内側にこれら両結合腕部の内側面側から挿入された十字軸の軸部の両端部との間部分に、1対のカップ軸受をそれぞれ組み込むべく、前記両結合腕部の先端部内側面を1対の支持部材により支持(バックアップ)した状態で、前記両カップ軸受を前記両円孔の内側に前記両結合腕部の外側面側から1対の圧入パンチを用いて圧入する、十字軸式自在継手の組立方法である。   The method of assembling the cross shaft universal joint according to the present invention includes a pair of circular holes formed concentrically at the tips of a pair of connecting arm portions constituting a yoke, and both of these couplings inside these circular holes. In order to incorporate a pair of cup bearings into the portion between both ends of the shaft portion of the cross shaft inserted from the inner side surface of the arm portion, the inner side surfaces of the tip end portions of the coupling arm portions are supported by a pair of support members. In a method of assembling a cross shaft type universal joint, the cup bearings are press-fitted with a pair of press-fitting punches into the inner sides of the circular holes from the outer surface side of the coupling arm portions in a state of being supported (backed up). is there.

特に本発明の場合には、先ず、前記両支持部材を、それぞれサーボモータの駆動に基づき、前記両円孔の中心軸と平行な方向に、前記両結合腕部の内側面に近づける様に互いに離隔する方向に移動させる。そして、前記両サーボモータに、予め設定した互いに等しい所定のトルクが発生した時点で、前記両支持部材の移動を停止し、これら両支持部材により前記両結合腕部の先端部内側面を支持する。
その後、前記両サーボモータのパルス数を利用して、前記両支持部材の機械中心位置(円孔の中心軸方向の中心位置)から前記両結合腕部を支持した状態でのこれら両支持部材の中心位置までのずれ量を求め、このずれ量に基づいて、前記両圧入パンチの前方への移動量をそれぞれ補正する。
In particular, in the case of the present invention, first, the two supporting members are moved toward each other so as to approach the inner side surfaces of the connecting arm portions in a direction parallel to the central axis of the circular holes based on driving of the servo motors. Move it away. Then, when predetermined torques equal to each other set in advance are generated in the two servo motors, the movement of the two support members is stopped, and the inner side surfaces of the front ends of the coupling arm portions are supported by the two support members.
Thereafter, using the number of pulses of the two servo motors, the two supporting members are supported in a state in which both the connecting arm portions are supported from the machine center position of the both supporting members (the center position in the central axis direction of the circular hole). The amount of deviation to the center position is obtained, and the amount of forward movement of the two press-fitting punches is corrected based on this amount of deviation.

本発明の十字軸式自在継手の組立方法を実施する場合、例えば請求項2に記載した発明の様に、前記両圧入パンチにより、前記両カップ軸受を前記両円孔の内側に圧入した後、1対のかしめパンチを用いて、前記両支持腕部の外側面のうち、前記両円孔の開口縁部を塑性変形させる工程を備える。そして、前記両かしめパンチの前方への移動量を、前記ずれ量に基づいてそれぞれ補正する。   When carrying out the method of assembling the cruciform universal joint of the present invention, for example, as in the invention described in claim 2, after the both cup bearings are press-fitted inside the circular holes by the both press-fitting punches, Using a pair of caulking punches, a step of plastically deforming the opening edge portions of the circular holes in the outer surfaces of the supporting arm portions is provided. Then, the amount of forward movement of the both caulking punches is corrected based on the amount of deviation.

上述の様に構成する本発明の十字軸式自在継手の組立方法によれば、ヨークを構成する1対の結合腕部の内側面寸法のばらつきに拘らず、このヨークを構成する円孔と十字軸を構成する軸部の先端部との間部分に、カップ軸受を精度良く組み付ける事ができる。
即ち、本発明の場合には、1対の結合腕部の内側面を支持する1対の支持部材を、それぞれサーボモータの駆動により、互いに離隔する方向に移動させ、これら両サーボモータに所定のトルクが発生した時点で移動を停止し、前記両結合腕部の支持を完了する。そして、前記両サーボモータのパルス数を利用して、前記両支持部材の機械中心位置から前記両結合腕部を支持した状態でのこれら両支持部材の中心位置までのずれ量を求め、このずれ量に基づいて、前記両圧入パンチの前方への移動量をそれぞれ補正する。従って、本発明によれば、前記両結合腕部の内側面寸法のばらつきが、前記両圧入パンチの前方への移動量に与える影響を排除できる。この結果、本発明によれば、前記両結合腕部の内側面寸法のばらつきに拘らず、カップ軸受を適正な予圧を付与できる適正位置に精度良く組み付ける事ができる。
According to the method of assembling the cross shaft type universal joint of the present invention configured as described above, the circular hole and the cross constituting the yoke are formed regardless of variations in the inner surface dimensions of the pair of connecting arm portions constituting the yoke. The cup bearing can be assembled with high accuracy in the portion between the tip portion of the shaft portion constituting the shaft.
That is, in the case of the present invention, the pair of support members that support the inner surfaces of the pair of coupling arms are moved away from each other by driving the servo motors, and the two servo motors are moved to a predetermined distance. When the torque is generated, the movement is stopped and the support of both the connecting arm portions is completed. Then, using the number of pulses of the two servo motors, the amount of deviation from the machine center position of the two support members to the center position of the two support members in a state where the two coupling arm portions are supported is obtained. Based on the amount, the amount of forward movement of the both press-fitting punches is corrected. Therefore, according to the present invention, it is possible to eliminate the influence of the variation in the inner side surface dimensions of the both connecting arm portions on the forward movement amount of the both press-fitting punches. As a result, according to the present invention, the cup bearing can be accurately assembled at an appropriate position where an appropriate preload can be applied, regardless of variations in the inner side surface dimensions of both the connecting arm portions.

又、請求項2に記載した発明によれば、前記両結合腕部の内側面寸法のばらつきが、1対のかしめパンチの前方への移動量に与える影響を排除できる。この為、かしめ量(塑性変形量)が不足する事を防止できて、前記カップ軸受の抜け止めを十分に図れる。   According to the second aspect of the present invention, it is possible to eliminate the influence of the variation in the inner side surface dimensions of the coupling arm portions on the amount of forward movement of the pair of caulking punches. For this reason, it is possible to prevent the caulking amount (plastic deformation amount) from being insufficient, and to sufficiently prevent the cup bearing from coming off.

本発明の実施の形態の第1例を示す、自在継手の組立方法を工程順に示す部分断面図。The fragmentary sectional view which shows the assembly method of a universal joint which shows the 1st example of embodiment of this invention in process order. 同じく第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows a 2nd example similarly. 自在継手を組み込んだステアリング装置の1例を示す斜視図。The perspective view which shows an example of the steering device incorporating a universal joint. 従来から知られている自在継手の1例を示す側面図。The side view which shows an example of the universal joint known conventionally. 一部を切断した状態で示す、図4の下方から見た図。The figure seen from the lower part of FIG. 4 shown in the state which cut | disconnected a part. 従来から知られている自在継手の組立方法を示す部分断面図であり、(A)は圧入工程を示しており、(B)はかしめ工程を示している。It is a fragmentary sectional view which shows the assembly method of the universal joint conventionally known, (A) has shown the press injection process, (B) has shown the crimping process. 従来から知られている組立方法による問題点を説明する為に示す部分断面図。The fragmentary sectional view shown in order to demonstrate the problem by the assembly method known conventionally.

[実施の形態の第1例]
図1は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、ヨーク7aのバックアップ工程(支持工程)を工夫する事により、このヨーク7aを構成する1対の結合腕部10、10の内側面寸法(ヨーク中心軸から内側面までの距離)のばらつきに拘らず、カップ軸受18を精度良く組み付けられる組立方法を実現する点にある。本例の組立方法の対象となる自在継手6の構造及び作用効果に就いては、前述した従来構造の場合と同じであるから、同等部分に関する図示及び説明は省略し、以下、本例の特徴部分である組立方法を中心に説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention. The feature of this example is that by devising the backup process (support process) of the yoke 7a, the inner surface dimensions (from the yoke central axis to the inner surface) of the pair of connecting arm portions 10 and 10 constituting the yoke 7a. The cup bearing 18 can be assembled with high accuracy regardless of variations in the distance). Since the structure and operational effects of the universal joint 6 that is the object of the assembly method of this example are the same as those of the above-described conventional structure, illustration and description regarding equivalent parts are omitted, and the features of this example are described below. The assembly method which is a part will be mainly described.

本例の自在継手6の組立方法は、大別して(A)〜(D)の4つの工程を備えている。これら各工程に就いて、以下、工程順に説明する。尚、図1には、本例の組立方法に使用する組立装置30のうち、主要な装置である、ヨーク受け治具31と、1対の圧入かしめ装置32、32のみを示している。   The method of assembling the universal joint 6 of this example is roughly divided into four steps (A) to (D). Each of these steps will be described below in the order of steps. FIG. 1 shows only a yoke receiving jig 31 and a pair of press-fitting caulking devices 32 and 32, which are main devices among the assembling devices 30 used in the assembling method of this example.

[(A)予備工程]
図1の(A)に示す様に、十字軸8を構成する一方の軸部17aの両端部を、ヨーク7aを構成する1対の結合腕部10、10に形成された円孔15、15内にそれぞれ挿入した予備組み立て状態で、前記ヨーク7aを、前記ヨーク受け治具31の上方位置に、図示しないチャックにより下向きに保持する。より具体的には、前記両円孔15、15の中心軸方向(図1の左右方向)に関して、前記ヨーク受け治具31(組立装置30)の機械中心位置Oと前記ヨーク7aの中心位置(中心軸)Xとを一致させた状態で、このヨーク7aを前記ヨーク受け治具31の上方位置に配置する。又、図示しないセンタ出し治具を用いて、前記一方の軸部17aの両端部を前記両円孔15、15の中心に位置させる。
[(A) Preliminary process]
As shown in FIG. 1A, circular holes 15 and 15 formed in a pair of connecting arm portions 10 and 10 constituting a yoke 7a are connected to both end portions of one shaft portion 17a constituting the cross shaft 8. The yoke 7a is held downward by a chuck (not shown) at a position above the yoke receiving jig 31 in a pre-assembled state inserted into each of them. More specifically, with respect to the central axis direction of the circular holes 15 and 15 (left and right direction in FIG. 1), the machine center position O of the yoke receiving jig 31 (assembly device 30) and the center position of the yoke 7a ( The yoke 7 a is disposed above the yoke receiving jig 31 in a state where it is aligned with the central axis (X). Further, both end portions of the one shaft portion 17a are positioned at the centers of the circular holes 15 and 15 by using a centering jig (not shown).

次に、前記ヨーク7aを所定量だけ下降させて、前記両結合腕部10、10の先端部に形成された円孔15、15と、前記両圧入かしめ装置32、32を構成する、それぞれが円柱状の1対の圧入パンチ33、33(及びかしめパンチ34、34)とを同軸上に位置させる。又、この状態で、前記両結合腕部10、10の先端部内側面同士の間に、前記ヨーク受け治具31を構成する、略L字形に構成された1対の支持腕部35、35の先端部を挿入する。本例の場合には、これら両支持腕部35、35を、それぞれ別々のサーボモータ36、36により駆動し、前記両円孔15、15の中心軸と平行な方向に、互いに遠近動可能としている。又、前記両支持腕部35、35の移動(開閉動作)を、前記サーボモータ36、36をトルク制御する事で制御している。尚、前記両支持腕部35、35が、特許請求の範囲に記載した1対の支持部材に相当する。   Next, the yoke 7a is lowered by a predetermined amount to constitute the circular holes 15 and 15 formed at the distal ends of the coupling arm portions 10 and 10, and the press-fitting caulking devices 32 and 32, respectively. A pair of cylindrical press-fitting punches 33, 33 (and caulking punches 34, 34) are positioned coaxially. Further, in this state, a pair of support arm portions 35, 35 configured in a substantially L shape, constituting the yoke receiving jig 31, between the inner side surfaces of the tip end portions of the both connecting arm portions 10, 10. Insert the tip. In the case of this example, both the supporting arm portions 35 and 35 are driven by separate servo motors 36 and 36, respectively, so that they can move in the direction parallel to the central axis of the circular holes 15 and 15. Yes. Further, the movement (opening / closing operation) of the support arm portions 35, 35 is controlled by controlling the torque of the servo motors 36, 36. The support arm portions 35 and 35 correspond to a pair of support members described in the claims.

[(B)バックアップ工程]
次に、前記両サーボモータ36、36をそれぞれ駆動する事により、前記両支持腕部35、35を機械中心位置Oから互いに離れる方向に移動させ、これら両支持腕部35、35の先端部外側面を、前記両結合腕部10、10の先端部内側面に当接させる。又、本例の場合、前記両支持腕部35、35同士の動作が完全には一致(同期)しない様に、移動速度、移動開始のタイミング等をずらしている。そして、前記両サーボモータ36、36に予め設定した互いに等しい所定のトルク(1対の結合腕部10、10を十分にバックアップできる程度の押圧力を付与できるトルク)が発生するまで、前記両支持腕部35、35を移動させる(離隔させる)。本例の場合、バックアップ工程の実行中は、前記ヨーク7aを、少なくとも前記両円孔15、15の中心軸方向への移動(平行移動)を可能に前記チャックにより保持するか、又は、前記両支持腕部35、35による支持が開始された時点で、前記チャックによる前記ヨーク7aの保持を解除しておく。これにより、図1の(B)に示した様に、前記両支持腕部35、35の移動に伴って、前記ヨーク7aが、前記両円孔15、15の中心軸方向にずれる(平行移動する)。尚、このずれ量の中には、前記両結合腕部10、10の内側面寸法のばらつきを原因とするずれ分が含まれている。そして、前記両サーボモータ36、36に、予め設定した互いに等しい所定のトルクが発生した時点で、前記両支持腕部35、35の移動を停止し、これら両支持腕部35、35により前記両結合腕部10、10の先端部内側面を支持する。
[(B) Backup process]
Next, both the servo motors 36 and 36 are driven to move the both support arm portions 35 and 35 away from the machine center position O. The side surface is brought into contact with the inner side surface of the distal end portion of both the connecting arm portions 10 and 10. Further, in the case of this example, the movement speed, the movement start timing, and the like are shifted so that the operations of the support arm portions 35 and 35 do not completely coincide (synchronize). The two supporting motors 36 and 36 are supported until a predetermined torque equal to each other (a torque capable of providing a pressing force enough to back up the pair of coupling arm portions 10 and 10) is generated. The arm portions 35 and 35 are moved (separated). In the case of this example, during execution of the backup process, the yoke 7a is held by the chuck so that at least the movement of the circular holes 15, 15 in the direction of the central axis (parallel movement) is possible, or the both When the support by the support arm portions 35, 35 is started, the holding of the yoke 7a by the chuck is released. As a result, as shown in FIG. 1B, the yoke 7a is displaced in the direction of the central axis of the circular holes 15 and 15 (translational movement) as the support arm portions 35 and 35 move. To do). In addition, in this deviation | shift amount, the deviation | shift part resulting from the dispersion | variation in the inner surface dimension of the said both connecting arm parts 10 and 10 is included. Then, when a predetermined torque equal to each other set in advance is generated in both the servo motors 36, 36, the movement of the both support arm portions 35, 35 is stopped, and the both support arm portions 35, 35 are used to The inner side surfaces of the distal ends of the coupling arm portions 10 and 10 are supported.

この様に本例のバックアップ工程が完了した時点で、前記両支持腕部35、35の中心位置(先端部外側面同士の中央位置)Pを求める。本例の場合には、前記両支持腕部35、35をそれぞれサーボモータ36、36により駆動する為、これら両サーボモータ36、36を制御する前記組立装置30を構成する制御器により、これら両サーボモータ36、36のパルス数を利用して前記両支持腕部35、35のそれぞれの送り量(機械中心位置Oからの移動量)を算出する事で、前記両支持腕部35、35の中心位置Pを求められる。そして、この様にこれら両支持腕部35、35の中心位置Pを求めたならば、機械中心位置Oからの中心位置Pのずれ量(Δα)を求める。又、後述する圧入工程以前に、図示しない軸受供給装置を利用して、1対のカップ軸受18、18を、前記各円孔15、15及び前記各圧入パンチ33、33の同軸上に供給する。尚、これら両カップ軸受18、18は、図1の(A)に示した様に、予備工程の段階で供給し、待機しておく事もできる。   Thus, when the backup process of this example is completed, the center position (the center position between the outer surfaces of the tip end portions) P of the support arm portions 35 and 35 is obtained. In the case of this example, both the support arm portions 35, 35 are driven by the servo motors 36, 36, respectively. By calculating the respective feed amounts (movement amounts from the machine center position O) of the support arm portions 35, 35 using the number of pulses of the servo motors 36, 36, the support arm portions 35, 35 A center position P is obtained. Then, when the center position P of both the support arm portions 35, 35 is obtained in this way, the deviation amount (Δα) of the center position P from the machine center position O is obtained. Prior to the press-fitting process described later, a pair of cup bearings 18 and 18 are supplied coaxially with the circular holes 15 and 15 and the press-fitting punches 33 and 33 using a bearing supply device (not shown). . These two cup bearings 18 and 18 can be supplied at the stage of the preliminary process and stand by as shown in FIG.

[(C)圧入工程]
次に、前記両圧入かしめ装置32、32を構成するサーボモータを駆動する事により、前記両圧入パンチ33、33をそれぞれ前方に移動(互いに近づく方向に移動)させて、前記両カップ軸受18、18を、前記両結合腕部10、10の外側面側から前記両円孔15、15内に同時に圧入する。特に本例の場合、前記両圧入パンチ33、33の送り量(前方への移動量)を、上述の様にして求めたずれ量(Δα)に応じて補正している。具体的には、図示の例の場合、前記両支持腕部35、35の中心位置Pが機械中心位置Oから右側にΔα分だけずれている為、左側の圧入パンチ33の先端面を、通常圧入指令位置(ずれが生じていない事を前提として設定した圧入完了位置)Y1に、Δαを加えた位置(補正圧入指令位置Y1´)まで移動させる様に設定し、反対に、右側の圧入パンチ33の先端面を、通常圧入指令位置Y2から、Δαを引いた位置(補正圧入指令位置Y2´)まで移動させる様に設定している。そして、前記両圧入パンチ33、33を、それぞれ設定された補正圧入指令位置(Y1´、Y2´)まで移動させて、圧入作業を終了する。この様な補正圧入指令位置まで前記両圧入パンチ33、33を移動させた状態で、前記両カップ軸受18、18は、それぞれの底部22、22の内面が前記軸部17aの先端面に当接した後、更に所定量圧入されて、予圧が付与される。
[(C) Press-in process]
Next, by driving the servo motors constituting the both press-fitting caulking devices 32, 32, the both press-fitting punches 33, 33 are moved forward (moved toward each other), respectively, and both the cup bearings 18, 18 is simultaneously press-fitted into the circular holes 15 and 15 from the outer surface side of the connecting arm portions 10 and 10. Particularly in the case of this example, the feed amount (forward movement amount) of both the press-fitting punches 33, 33 is corrected according to the deviation amount (Δα) obtained as described above. Specifically, in the case of the illustrated example, since the center position P of both the support arm portions 35 and 35 is shifted to the right side by Δα from the machine center position O, the front end surface of the left press-fitting punch 33 is The press-fitting command position (the press-fitting completion position set on the assumption that no deviation has occurred) Y1 is set so as to move to a position (corrected press-fitting command position Y1 ′) to which Δα is added. The tip end surface 33 is set so as to move from the normal press-fitting command position Y2 to a position (corrected press-fitting command position Y2 ′) minus Δα. Then, both the press-fitting punches 33, 33 are moved to the set correction press-fitting command positions (Y1 ′, Y2 ′), respectively, and the press-fitting operation is completed. With the both press-fitting punches 33, 33 moved to such a corrected press-fitting command position, the inner surfaces of the bottom portions 22, 22 of the both cup bearings 18, 18 are in contact with the front end surface of the shaft portion 17a. After that, a predetermined amount is press-fitted and pre-load is applied.

[(D)かしめ工程]
次いで、前記両圧入かしめ装置32、32を構成するサーボモータ(圧入パンチ33の駆動に用いるサーボモータとは別のサーボモータ)を駆動する事により、又は、油圧若しくは空圧によって作動するシリンダを駆動する事により、1対のかしめパンチ34、34を前方に移動させる。特に本例の場合には、上述した圧入工程の場合と同様に、これら両かしめパンチ34、34の送り量(前方への移動量)を、上述の様にして求めたずれ量(Δα)に応じて補正している。具体的には、図示の例の場合、バックアップ工程が完了した時点での前記両支持腕部35、35の中心位置Pが、機械中心位置Oから右側にΔα分だけずれている為、左側のかしめパンチ34の先端面の位置を、通常かしめ指令位置(ずれが生じていない事を前提として設定したかしめ完了位置)Z1に、Δαを加えた位置(補正かしめ指令位置Z1´)まで移動させる様に設定し、反対に、右側のかしめパンチ34の先端面の位置を、通常かしめ指令Z2から、Δαを引いた位置(補正かしめ指令位置Z2´)まで移動させる様に設定している。そして、前記両かしめパンチ34、34の先端面を、それぞれ設定された補正かしめ指令位置(Z1´、Z2´)まで移動させて、これら両かしめパンチ34、34の先端面により、前記両円孔15、15の内周縁部の円周方向複数個所を塑性変形させる。そして、当該部分にかしめ部24、24(図4〜6参照)を形成する。これにより、これら各かしめ部24、24を、前記両カップ19、19を構成する底部22、22の外面に押し付けて、これら両カップ19、19が前記両円孔15、15から抜け出る事を防止する。
尚、本例の場合にも、前記図6に示した従来方法で使用したかしめパンチと同様に、前記両かしめパンチ34、34として、円筒状のものを使用し、これら両かしめパンチ34、34を、前記両圧入パンチ33、33の周囲に外嵌した状態で配置している。
[(D) Caulking step]
Next, by driving a servo motor (servo motor different from the servo motor used for driving the press-fitting punch 33) constituting the both press-fitting caulking devices 32, 32, or a cylinder operated by hydraulic pressure or pneumatic pressure is driven. By doing so, the pair of caulking punches 34, 34 are moved forward. In particular, in the case of this example, as in the case of the press-fitting process described above, the feed amount (the amount of forward movement) of both the caulking punches 34, 34 is set to the deviation amount (Δα) obtained as described above. Corrections are made accordingly. Specifically, in the case of the illustrated example, the center position P of the support arm portions 35, 35 at the time when the backup process is completed is shifted to the right side from the machine center position O by Δα. The position of the front end surface of the caulking punch 34 is moved to a position (corrected caulking command position Z1 ′) obtained by adding Δα to a normal caulking command position (caulking completion position set on the assumption that no deviation occurs) Z1. On the contrary, the position of the front end surface of the right caulking punch 34 is set to be moved to a position (corrected caulking command position Z2 ′) obtained by subtracting Δα from the normal caulking command Z2. Then, the front end surfaces of the both caulking punches 34, 34 are moved to the respective corrected caulking command positions (Z1 ′, Z2 ′), and the two circular holes are formed by the front end surfaces of the both caulking punches 34, 34. A plurality of portions in the circumferential direction of the inner peripheral edge portions 15 and 15 are plastically deformed. And the caulking parts 24 and 24 (refer FIGS. 4-6) are formed in the said part. As a result, the caulking portions 24, 24 are pressed against the outer surfaces of the bottom portions 22, 22 constituting the cups 19, 19, thereby preventing the cups 19, 19 from coming out of the circular holes 15, 15. To do.
In the case of this example as well, like the caulking punch used in the conventional method shown in FIG. 6, cylindrical caulking punches 34, 34 are used, and these caulking punches 34, 34 are used. Are arranged around the two press-fitting punches 33, 33 in a state of being externally fitted.

最後に、前記両かしめパンチ34、34及び前記両圧入パンチ33、33を、それぞれ初期位置まで後退させる。又、前記ヨーク受け治具31を構成する前記両支持腕部35、35同士を、互いに近づく方向に移動させて、これら両支持腕部35、35による前記両結合腕部10、10のバックアップを解除する。次いで、前記ヨーク7aを、前記ヨーク受け治具31の上方位置に移動(退避)させて、このヨーク7aを前記組立装置30から取り出す。   Finally, both the caulking punches 34 and 34 and the both press-fitting punches 33 and 33 are retracted to their initial positions. Further, the support arm portions 35, 35 constituting the yoke receiving jig 31 are moved in a direction approaching each other, and the backup of the combined arm portions 10, 10 by the support arm portions 35, 35 is performed. To release. Next, the yoke 7 a is moved (retracted) to a position above the yoke receiving jig 31, and the yoke 7 a is taken out from the assembly apparatus 30.

以上の様な工程を有する本例の組立方法によれば、ヨーク7aを構成する1対の結合腕部10、10の内側面寸法のばらつきに拘らず、このヨーク7aを構成する円孔15、15と十字軸8を構成する軸部17aの両端部との間部分に、1対のカップ軸受18、18を精度良く組み付ける事ができる。
即ち、本例の場合には、前記両結合腕部10、10の内側面を支持する前記両支持腕部35、35を、それぞれサーボモータ36、36の駆動により、互いに離隔する方向に移動させ、これら両サーボモータ36、36に所定のトルクが発生した時点で移動を停止し、前記両結合腕部10、10の支持を完了する。そして、前記両サーボモータ36、36のパルス数を利用して、前記両支持腕部35、35の機械中心位置Oから、前記両結合腕部10、10を支持した状態でのこれら両支持腕部35、35の中心位置Pまでのずれ量(Δα)を求め、このずれ量に基づいて、前記両圧入パンチ33、33及び前記両かしめパンチ34、34の前方への移動量をそれぞれ補正している。この為、本例の場合には、前記両結合腕部10、10の内側面寸法のばらつきが、前記両圧入パンチ33、33及び前記両かしめパンチ34、34の前方への移動量に与える影響を排除できる。従って、本例の組立方法によれば、前記両結合腕部10、10の内側面寸法のばらつきに拘らず、前記両カップ軸受18、18を適正な予圧を付与できる適正位置に精度良く組み付ける事ができると共に、前記各かしめ部24、24のかしめ量(塑性変形量)が不足する事を防止できて、前記カップ軸受18、18の抜け止めを十分に図れる。この結果、本例の組立方法によれば、前記両結合腕部10、10の内側面寸法のばらつきに拘らず、前記両カップ軸受18、18を精度良く組み付ける事ができる。
According to the assembling method of the present example having the steps as described above, the circular holes 15 constituting the yoke 7a, regardless of variations in the inner surface dimensions of the pair of connecting arm portions 10 and 10 constituting the yoke 7a, The pair of cup bearings 18 and 18 can be assembled with high accuracy between the portion 15 and both ends of the shaft portion 17a constituting the cross shaft 8.
That is, in the case of this example, both the supporting arm portions 35 and 35 that support the inner surfaces of the both connecting arm portions 10 and 10 are moved away from each other by driving the servo motors 36 and 36, respectively. When the predetermined torque is generated in both the servo motors 36, 36, the movement is stopped, and the support of the both connecting arm portions 10, 10 is completed. Then, by using the number of pulses of both the servo motors 36, 36, the both support arms 10 and 10 are supported from the machine center position O of the both support arms 35, 35. Deviation amounts (Δα) of the portions 35 and 35 to the center position P are obtained, and based on the deviation amounts, the forward movement amounts of the press-fitting punches 33 and 33 and the caulking punches 34 and 34 are respectively corrected. ing. For this reason, in the case of this example, the variation in the inner side surface dimensions of the connecting arm portions 10 and 10 has an influence on the forward movement amounts of the press-fitting punches 33 and 33 and the caulking punches 34 and 34. Can be eliminated. Therefore, according to the assembling method of this example, the cup bearings 18 and 18 can be assembled with high accuracy at an appropriate position where an appropriate preload can be applied, regardless of variations in the inner surface dimensions of the connecting arm portions 10 and 10. In addition, the caulking amount (plastic deformation amount) of the caulking portions 24, 24 can be prevented from being insufficient, and the cup bearings 18, 18 can be sufficiently prevented from coming off. As a result, according to the assembling method of the present example, the both cup bearings 18 and 18 can be assembled with high accuracy regardless of variations in the inner surface dimensions of the both connecting arm portions 10 and 10.

又、本例の場合には、前記両サーボモータ36、36に所定のトルクが発生するまで前記両支持腕部35、35を移動させて、前記両結合腕部10、10を支持する為、これら両結合腕部10、10の内側面寸法のばらつきに拘らず、これら両結合腕部10、10を適正な力で支持する事ができる。
In the case of this example, in order to support both the connecting arm portions 10 and 10 by moving the both supporting arm portions 35 and 35 until a predetermined torque is generated in both the servo motors 36 and 36, regardless of the variation of the inner surface dimensions of these two coupling arms 10 and 10, it is possible to support both of these coupling arms 10, 10 at a proper force.

[実施の形態の第2例]
図2は、本発明の実施の形態の第2例を示している。尚、本例の特徴は、十字軸8を構成する軸部17aの軸方向寸法のばらつき、及び、カップ軸受18を構成するカップ19の底部22の厚さ寸法のばらつきが、圧入パンチ33、33及びかしめパンチ34、34の前方への移動量に与える影響を排除する点にある。その他の工程に就いては、前述した実施の形態の第1例の場合と同様である為、重複する説明は省略又は簡略にし、以下、本例の特徴部分である圧入工程及びかしめ工程を中心に説明する。
[Second Example of Embodiment]
FIG. 2 shows a second example of the embodiment of the present invention. The feature of this example is that the variation in the axial dimension of the shaft portion 17a constituting the cross shaft 8 and the variation in the thickness dimension of the bottom portion 22 of the cup 19 constituting the cup bearing 18 are the press-fitting punches 33, 33. In addition, the influence on the amount of forward movement of the caulking punches 34, 34 is eliminated. Since the other steps are the same as in the case of the first example of the above-described embodiment, the overlapping description will be omitted or simplified, and the following description will focus on the press-fitting step and the caulking step, which are characteristic portions of this example. Explained.

本例の場合には、前述した実施の形態の第1例の組立方法と同様、図2の(A)に示す様に、予備工程により、ヨーク7aを組立装置30aにセットした後、続いてバックアップ工程を行う。このバックアップ工程に就いても、前記実施の形態の第1例の場合と同様に、サーボモータ36、36を駆動する事により、ヨーク受け治具31を構成する1対の支持腕部35、35を互いに離れる方向(図2の左右方向)に駆動する事により行う。そして、前記両サーボモータ36、36に、予め設定した互いに等しい所定のトルクが発生した時点で、前記両支持腕部35、35の移動を停止し、これら両支持腕部35、35により前記両結合腕部10、10の先端部内側面を支持する。又、これら両支持腕部35、35の機械中心位置Oから、前記両結合腕部10、10を支持した状態でのこれら両支持腕部35、35の中心位置Pまでのずれ量(Δα)を求める。ここまでの工程は、前記第1例の組立方法の場合と同様である。本例の特徴は、次の圧入工程及びかしめ工程にある。
In the case of this example, as shown in FIG. 2A, the yoke 7a is set in the assembling apparatus 30a by the preliminary process as shown in FIG. Perform a backup process. Even in the backup process, as in the case of the first example of the embodiment, by driving the servo motors 36, 36, a pair of support arm portions 35, 35 constituting the yoke receiving jig 31 is provided. Are driven in directions away from each other (left and right in FIG. 2). Then, when a predetermined torque equal to each other set in advance is generated in both the servo motors 36, 36, the movement of the both support arm portions 35, 35 is stopped, and the both support arm portions 35, 35 are used to The inner side surfaces of the distal ends of the coupling arm portions 10 and 10 are supported. Further, the shift amount (Δα) from the machine center position O of both the support arm portions 35 and 35 to the center position P of the both support arm portions 35 and 35 in a state where the both joint arm portions 10 and 10 are supported. Ask for. The steps up to here are the same as those in the assembly method of the first example. The feature of this example is in the following press-fitting process and caulking process.

本例の場合にも、図2の(C)に示す様に、圧入かしめ装置32a、32aを構成するサーボモータを駆動する事により、前記両圧入パンチ33、33をそれぞれ前方に移動させて、前記両カップ軸受18、18を、前記両結合腕部10、10の外側面側から前記両円孔15、15内に同時に圧入する。又、前記両圧入パンチ33、33の送り量を、上述の様にして求めた、前記両支持腕部35、35の機械中心位置Oから、前記両結合腕部10、10を支持した状態でのこれら両支持腕部35、35の中心位置Pまでのずれ量(Δα)に応じて補正している。具体的には、図示の例の場合、前記両支持腕部35、35の中心位置Pが機械中心位置Oから右側にΔα分だけずれている為、左側の圧入パンチ33の先端面を、通常圧入指令位置Y1にΔαを加えた位置(補正圧入指令位置Y1´)まで移動させる様に設定し、反対に、右側の圧入パンチ33の先端面を、通常圧入指令位置Y2からΔαを引いた位置(補正圧入指令位置Y2´)まで移動させる様に設定している。   Also in the case of this example, as shown in FIG. 2C, by driving the servo motors constituting the press-fitting caulking devices 32a, 32a, the press-fitting punches 33, 33 are respectively moved forward, The cup bearings 18 and 18 are simultaneously press-fitted into the circular holes 15 and 15 from the outer surface side of the coupling arm portions 10 and 10. In addition, the feeding amounts of the press-fitting punches 33 and 33 are determined in the above-described manner while the both connecting arm portions 10 and 10 are supported from the machine center position O of the both supporting arm portions 35 and 35. The correction is made in accordance with the amount of deviation (Δα) of the both support arm portions 35, 35 up to the center position P. Specifically, in the case of the illustrated example, since the center position P of both the support arm portions 35 and 35 is shifted to the right side by Δα from the machine center position O, the front end surface of the left press-fitting punch 33 is It is set to move to the position where Δα is added to the press-fitting command position Y1 (corrected press-fitting command position Y1 ′), and conversely, the tip surface of the right press-fitting punch 33 is a position obtained by subtracting Δα from the normal press-fitting command position Y2. It is set to move to (correction press-fitting command position Y2 ′).

更に、本例の場合には、前記両圧入パンチ33、33にそれぞれ設置した圧力センサにより、これら両圧入パンチ33、33に加わる圧力(圧入反力)の大きさを測定している。この様に、これら両圧入パンチ33、33に加わる圧力を測定する理由は、前記十字軸8を構成する軸部17aの軸方向寸法や、前記カップ19を構成する底部22の厚さ寸法には、常に寸法公差内で寸法にばらつきを生じる為、前記両圧入パンチ33、33が、前記補正圧入指令位置(Y1´、Y2´)に達する以前に、前記両カップ軸受18、18に適正な予圧が付与されたり、前記補正圧入指令位置(Y1´、Y2´)に達した状態でも、前記両カップ軸受18、18に適正な予圧が付与されない(予圧が不足している)可能性が生じる為である。この為、本例の場合には、前記両圧入パンチ33、33の送り量が、前記補正圧入指令位置(Y1´、Y2´)に達していなくても、これら両圧入パンチ33、33に加わる圧力の値が予め設定した所定値に達した時点で圧入作業を終了する。そして、前記両圧入パンチ33、33による圧入が実際に完了した位置と、前記補正圧入指令位置(Y1´、Y2´)との差(−Δβ)を求めておく。反対に、前記両圧入パンチ33、33の送り量が、前記補正圧入指令位置(Y1´、Y2´)に達していても、これら両圧入パンチ33、33に加わる圧力の値が前記所定値に達していなければ前方への移動を継続し、この所定値に達した時点で圧入作業を終了する。そして、この場合にも、前記両圧入パンチ33、33による圧入が実際に完了した位置と、前記補正圧入指令位置(Y1´、Y2´)との差(+Δβ)を求めておく。   Furthermore, in the case of this example, the magnitude of the pressure (pressing reaction force) applied to both the press-fitting punches 33, 33 is measured by pressure sensors installed on the both press-fitting punches 33, 33, respectively. In this way, the reason for measuring the pressure applied to both the press-fitting punches 33, 33 is that the axial dimension of the shaft portion 17a constituting the cross shaft 8 and the thickness dimension of the bottom portion 22 constituting the cup 19 are as follows. Since the dimensions always vary within the dimensional tolerance, before the both press-fitting punches 33, 33 reach the corrected press-fitting command position (Y1 ′, Y2 ′), the appropriate preload is applied to the cup bearings 18, 18. Or even when the corrected press-fitting command position (Y1 ′, Y2 ′) is reached, there is a possibility that an appropriate preload is not applied to the cup bearings 18, 18 (the preload is insufficient). It is. For this reason, in the case of this example, even if the feed amount of the both press-fitting punches 33, 33 does not reach the corrected press-fitting command position (Y1 ′, Y2 ′), they are applied to the both press-fitting punches 33, 33. The press-fitting operation is finished when the pressure value reaches a predetermined value. Then, a difference (−Δβ) between the position where the press-fitting by both the press-fitting punches 33, 33 is actually completed and the corrected press-fitting command position (Y1 ′, Y2 ′) is obtained. On the contrary, even if the feed amount of the both press-fitting punches 33, 33 has reached the corrected press-fitting command position (Y1 ′, Y2 ′), the value of the pressure applied to both the press-fitting punches 33, 33 becomes the predetermined value. If not reached, the forward movement is continued, and the press-fitting operation is terminated when the predetermined value is reached. Also in this case, the difference (+ Δβ) between the position where the press-fitting by both the press-fitting punches 33, 33 is actually completed and the corrected press-fitting command position (Y1 ′, Y2 ′) is obtained.

そして、続くかしめ工程にて、前記両かしめパンチ34、34の送り量を、ΔαとΔβとの2つのずれ量に応じて補正している。具体的には、図示の例の場合、前記両支持腕部35、35の中心位置Pが機械中心位置Oから右側にΔα分だけずれている為、左側のかしめパンチ34の先端面の位置を、通常かしめ指令位置Z1にΔαを加えた第1補正かしめ指令位置(Z1´)に、更にΔβを加減した位置(第2補正かしめ指令位置Z1´±Δβ)まで移動させる様に設定し、反対に、右側のかしめパンチ34の先端面の位置を、通常かしめ指令位置Z2からΔαを引いた第1補正かしめ指令位置(Z2´)に、更にΔβを加減した位置(第2補正かしめ指令位置Z2´±Δβ)まで移動させる様に設定している。そして、前記両かしめパンチ34、34の先端面を、それぞれ設定された第2補正かしめ指令位置(Z1´±Δβ、Z2´±Δβ)まで移動させて、前記両かしめパンチ34、34の先端面により、前記両円孔15、15の内周縁部の円周方向複数個所を塑性変形させる。そして、当該部分にかしめ部24、24(図4〜6参照)を形成する。これにより、これら各かしめ部24、24を、前記両カップ19、19を構成する底部22、22の外面に押し付けて、これら両カップ19、19が前記両円孔15、15から抜け出る事を防止する。   In the subsequent caulking step, the feed amounts of the two caulking punches 34 and 34 are corrected according to the two shift amounts of Δα and Δβ. Specifically, in the case of the illustrated example, since the center position P of the both support arm portions 35, 35 is shifted to the right side by Δα from the machine center position O, the position of the front end surface of the caulking punch 34 on the left side is determined. Set to move to the first correction caulking command position (Z1 ′) obtained by adding Δα to the normal caulking command position Z1 to the position (second correction caulking command position Z1 ′ ± Δβ) further increased or decreased by Δβ. In addition, the position of the front end surface of the right caulking punch 34 is a position (second correction caulking command position Z2) obtained by adding or subtracting Δβ to the first correction caulking command position (Z2 ′) obtained by subtracting Δα from the normal caulking command position Z2. It is set to move to '± Δβ). Then, the front end surfaces of the two caulking punches 34, 34 are moved to the respectively set second correction caulking command positions (Z1 ′ ± Δβ, Z2 ′ ± Δβ), respectively. As a result, a plurality of locations in the circumferential direction of the inner peripheral edge portions of the circular holes 15 and 15 are plastically deformed. And the caulking parts 24 and 24 (refer FIGS. 4-6) are formed in the said part. As a result, the caulking portions 24, 24 are pressed against the outer surfaces of the bottom portions 22, 22 constituting the cups 19, 19, thereby preventing the cups 19, 19 from coming out of the circular holes 15, 15. To do.

以上の様な構成を有する本例の場合には、前記十字軸8の軸部17aの軸方向寸法や、前記カップ19を構成する底部22の厚さ寸法のばらつきが、前記両圧入パンチ33、33及び前記両かしめパンチ34、34の前方への移動量に与える影響を排除できる。この為、本例の場合には、前記十字軸8の軸部17aの軸方向寸法や、前記カップ19を構成する底部22の厚さ寸法のばらつきに拘らず、前記両カップ軸受18、18に適正な予圧を付与する事ができると共に、前記かしめ部24、24のかしめ量を適正にする(十分に確保する)事ができる。従って、前記両カップ軸受18、18を精度良く組み付ける事ができる。
その他の工程及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this example having the above-described configuration, the axial dimension of the shaft part 17a of the cross shaft 8 and the variation in the thickness dimension of the bottom part 22 constituting the cup 19 are different from each other. 33 and the amount of forward movement of the two caulking punches 34, 34 can be eliminated. For this reason, in the case of this example, both the cup bearings 18, 18 are not affected by variations in the axial dimension of the shaft portion 17 a of the cross shaft 8 and the thickness dimension of the bottom portion 22 constituting the cup 19. An appropriate preload can be applied, and the amount of caulking of the caulking portions 24, 24 can be made appropriate (ensure sufficiently). Therefore, both the cup bearings 18 and 18 can be assembled with high accuracy.
Other processes and effects are the same as in the first example of the above embodiment.

本発明の組立方法の対象となる十字軸式自在継手は、ステアリング装置に限らず、プロペラシャフトや各種トルク伝達機構に組み付けた状態で使用できる。   The cross shaft type universal joint which is an object of the assembling method of the present invention is not limited to the steering device, and can be used in a state assembled to a propeller shaft and various torque transmission mechanisms.

本発明を実施する場合、ヨーク受け治具を構成する1対の支持部材は、必ずしも両方の支持部材を移動させる必要はない。即ち、1対の支持部材のうち、一方の支持部材を固定し、他方の支持部材のみを移動可能として、これら両支持部材を互いに遠近動可能に構成しても良い。   When carrying out the present invention, the pair of support members constituting the yoke receiving jig do not necessarily need to move both support members. That is, one support member of the pair of support members may be fixed and only the other support member may be moved, and both the support members may be configured so as to be movable in the distance.

1 ステアリングホイール
2 ステアリングシャフト
3 中間シャフト
4 ステアリングギヤユニット
5 入力軸
6 自在継手
7a、7b ヨーク
8 十字軸
9a、9b 基部
10 結合腕部
11a、11b フランジ
12 通孔
13 通孔
14 ナット
15 円孔
16 回転軸
17a、17b 軸部
18 カップ軸受
19 カップ
20 ニードル
21 円筒部
22 底部
23 内向鍔部
24 かしめ部
25 回転軸
26 ヨーク受け治具
27 支持腕部
28 圧入パンチ
29 かしめパンチ
30、30a 組立装置
31 ヨーク受け治具
32、32a 圧入かしめ装置
33 圧入パンチ
34 かしめパンチ
35 支持腕部
36 サーボモータ
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3 Intermediate shaft 4 Steering gear unit 5 Input shaft 6 Universal joint 7a, 7b Yoke 8 Cross shaft 9a, 9b Base part 10 Coupling arm part 11a, 11b Flange 12 Through hole 13 Through hole 14 Nut 15 Circular hole 16 Rotating shafts 17a and 17b Shaft portion 18 Cup bearing 19 Cup 20 Needle 21 Cylindrical portion 22 Bottom portion 23 Inward flange portion 24 Caulking portion 25 Rotating shaft 26 Yoke receiving jig 27 Support arm portion 28 Press-fit punch 29 Caulking punch 30, 30a Assembly device 31 Yoke receiving jig 32, 32a Press fitting caulking device 33 Press fitting punch 34 Caulking punch 35 Support arm portion 36 Servo motor

Claims (2)

ヨークを構成する1対の結合腕部の先端部に互いに同心に形成された1対の円孔と、これら両円孔の内側にこれら両結合腕部の内側面側から挿入された十字軸の軸部の両端部との間部分に、1対のカップ軸受をそれぞれ組み込むべく、前記両結合腕部の先端部内側面を1対の支持部材により支持した状態で、前記両カップ軸受を前記両円孔の内側に前記両結合腕部の外側面側から1対の圧入パンチを用いて圧入する、十字軸式自在継手の組立方法であって、
前記両支持部材を、それぞれサーボモータの駆動に基づき、前記両円孔の中心軸と平行な方向に、前記両結合腕部の内側面に近づける様に互いに離隔する方向に移動させ、前記両サーボモータに所定のトルクが発生した時点で、前記両支持部材の移動を停止し、これら両支持部材により前記両結合腕部の先端部内側面を支持した後、
前記両サーボモータのパルス数を利用して、前記両支持部材の機械中心位置から前記両結合腕部を支持した状態でのこれら両支持部材の中心位置までのずれ量を求め、
このずれ量に基づき、前記両圧入パンチの前方への移動量をそれぞれ補正する
事を特徴とする十字軸式自在継手の組立方法。
A pair of circular holes formed concentrically with each other at the front ends of a pair of coupling arm portions constituting the yoke, and a cross shaft inserted from the inner surface side of both the coupling arm portions inside these circular holes. In order to incorporate a pair of cup bearings in a portion between both ends of the shaft portion, the both cup bearings are connected to the both circles in a state where the inner side surfaces of the front ends of the coupling arm portions are supported by a pair of support members. A method of assembling a cruciform universal joint, wherein a pair of press-fitting punches are press-fitted into the inside of a hole from the outer surface side of both the connecting arm portions,
The both support members are moved in directions away from each other so as to approach the inner side surfaces of the two connecting arm portions in a direction parallel to the center axis of the two circular holes based on driving of the servo motors, respectively. When a predetermined torque is generated in the motor, the movement of both the supporting members is stopped, and the inner side surfaces of the front ends of the coupling arm portions are supported by the both supporting members.
Using the number of pulses of the two servo motors, obtain the amount of deviation from the machine center position of the two support members to the center position of the two support members in the state where the two coupling arm portions are supported,
An assembly method of a cross shaft type universal joint, wherein the amount of forward movement of each of the press-fitting punches is corrected based on the amount of deviation.
前記両圧入パンチにより、前記両カップ軸受を前記両円孔の内側に圧入した後、1対のかしめパンチを用いて、前記両結合腕部の外側面のうち、これら両円孔の開口縁部を塑性変形させる工程を備えており、前記両かしめパンチの前方への移動量を、前記ずれ量に基づきそれぞれ補正する、
請求項1に記載した十字軸式自在継手の組立方法。
After the cup bearings are press-fitted inside the circular holes by the press-fitting punches, an opening edge portion of the circular holes is formed on the outer surfaces of the coupling arm portions using a pair of caulking punches. A step of plastically deforming, and respectively correcting the amount of forward movement of the two crimping punches based on the amount of deviation,
A method of assembling the cross shaft type universal joint according to claim 1.
JP2014100588A 2014-05-14 2014-05-14 Cross shaft type universal joint assembly method Active JP6331678B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014100588A JP6331678B2 (en) 2014-05-14 2014-05-14 Cross shaft type universal joint assembly method
KR1020187021369A KR101923876B1 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft type universal joint and manufacturing method for steering device and manufacturing method for vehicle using the same
PCT/JP2015/063777 WO2015174457A1 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft type universal joint
CN201580025715.5A CN106662161B (en) 2014-05-14 2015-05-13 The assemble method of universal coupling with spider
KR1020167031723A KR101903265B1 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft type universal joint and manufacturing method for steering device and manufacturing method for vehicle using the same
KR1020187021368A KR101923875B1 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft type universal joint and manufacturing method for steering device and manufacturing method for vehicle using the same
US15/310,481 US10533611B2 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft universal joint
EP15793070.2A EP3139051B1 (en) 2014-05-14 2015-05-13 Assembly method for cross shaft type universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100588A JP6331678B2 (en) 2014-05-14 2014-05-14 Cross shaft type universal joint assembly method

Publications (3)

Publication Number Publication Date
JP2015218753A JP2015218753A (en) 2015-12-07
JP2015218753A5 JP2015218753A5 (en) 2017-06-01
JP6331678B2 true JP6331678B2 (en) 2018-05-30

Family

ID=54778310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100588A Active JP6331678B2 (en) 2014-05-14 2014-05-14 Cross shaft type universal joint assembly method

Country Status (1)

Country Link
JP (1) JP6331678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139051B1 (en) * 2014-05-14 2019-07-31 NSK Ltd. Assembly method for cross shaft type universal joint
JP7353905B2 (en) 2019-10-08 2023-10-02 株式会社ジェイテクトマシンシステム Assembly method and assembly device for cross shaft universal joint

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532864B2 (en) * 1987-02-23 1996-09-11 トヨタ自動車株式会社 Cardan joint assembly equipment
JPH10159864A (en) * 1996-11-26 1998-06-16 Toyota Motor Corp Cardan shaft assembling method and device
JP3703236B2 (en) * 1996-12-27 2005-10-05 光洋精工株式会社 Cross shaft joint assembly method and assembly apparatus
JP4739119B2 (en) * 2006-06-01 2011-08-03 Ntn株式会社 Assembling method of cardan joint
JP2007327593A (en) * 2006-06-08 2007-12-20 Jtekt Corp Universal joint, vehicular steering device, and universal joint manufacturing method

Also Published As

Publication number Publication date
JP2015218753A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
US10533611B2 (en) Assembly method for cross shaft universal joint
US8845438B2 (en) Yoke for a cross type universal joint and manufacturing method thereof
JP7353905B2 (en) Assembly method and assembly device for cross shaft universal joint
JP6331678B2 (en) Cross shaft type universal joint assembly method
JP6331692B2 (en) Cross shaft type universal joint assembly method
US8986126B2 (en) Cross universal joint and manufacturing method thereof
US10830327B2 (en) Drive unit pinion and method of installation
JP6331693B2 (en) Cross shaft type universal joint assembly method
JPWO2015174432A1 (en) Yoke for cross shaft type universal joint and method for manufacturing the same
CN111085840A (en) Method of manufacturing universal joint and manufacturing apparatus for universal joint
US11022182B2 (en) Method for assembling cruciform universal joint, and cruciform universal joint
WO2015174433A1 (en) Joint cross-type universal joint yoke
JP2019082217A (en) Coupling structure and coupling method of shafts
JP2015218753A5 (en)
JP2008039123A (en) Assembling method of cardan universal joint
US11698100B2 (en) Motor vehicle drive shaft and method for producing it
JP2007309473A (en) Cardan universal joint, vehicle steering device having it, and assembling method for the cross joint
JP2008298148A (en) Method of manufacturing gear transmission device and positioning tool
JP2834868B2 (en) Cardan joint assembly equipment
JP2017196708A (en) Press-in jig
JPH04111723A (en) Manufacturing device for propeller shaft
JP2015148301A (en) Link mechanism, and method for assembling link mechanism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250