JP6328945B2 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP6328945B2
JP6328945B2 JP2014013111A JP2014013111A JP6328945B2 JP 6328945 B2 JP6328945 B2 JP 6328945B2 JP 2014013111 A JP2014013111 A JP 2014013111A JP 2014013111 A JP2014013111 A JP 2014013111A JP 6328945 B2 JP6328945 B2 JP 6328945B2
Authority
JP
Japan
Prior art keywords
diameter portion
reduced diameter
metal shell
insulator
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014013111A
Other languages
Japanese (ja)
Other versions
JP2015141781A (en
Inventor
敬太 中川
敬太 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014013111A priority Critical patent/JP6328945B2/en
Publication of JP2015141781A publication Critical patent/JP2015141781A/en
Application granted granted Critical
Publication of JP6328945B2 publication Critical patent/JP6328945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、スパークプラグに関する。   The present invention relates to a spark plug.

近年、内燃機関の高圧縮化および高出力化の要請から、スパークプラグへの印加電圧が高くなっているために、スパークプラグに対して耐電圧性能の向上が求められている。スパークプラグは、絶縁体と、絶縁体の一部を囲む筒状の主体金具とを有しており、主体金具の内周面に設けられた段部と、絶縁体の外周面に設けられた段部とが金属製の板パッキンを介して対向する構造を有する。主体金具の内径は、段部において小さくなっているため、段部において、主体金具と中心電極との間の距離(電極間距離)は短い。このため、主体金具の段部の近傍において、絶縁破壊が生じて絶縁体が破損するおそれがあった。また、上述の部分では、主体金具の段部のエッジにより電界強度が増大するために、耐電圧性能が低下するおそれがあった。このため、段部を、エッジを有しない湾曲状に形成することにより、耐電圧性能を向上させるスパークプラグが提案されている(特許文献1を参照)。   In recent years, due to the demand for higher compression and higher output of internal combustion engines, the applied voltage to the spark plug has been increased, and hence the spark plug is required to have improved withstand voltage performance. The spark plug has an insulator and a cylindrical metal shell that surrounds a part of the insulator. The spark plug is provided on the inner peripheral surface of the metal shell and on the outer peripheral surface of the insulator. The step portion has a structure facing the metal plate packing. Since the inner diameter of the metal shell is small at the step portion, the distance between the metal shell and the center electrode (interelectrode distance) is short at the step portion. For this reason, there existed a possibility that dielectric breakdown might arise in the vicinity of the step part of a metal shell, and an insulator might be damaged. Moreover, in the above-mentioned part, since the electric field strength is increased by the edge of the step portion of the metal shell, the withstand voltage performance may be lowered. For this reason, the spark plug which improves a withstand voltage performance by forming a step part in the curved shape which does not have an edge is proposed (refer patent document 1).

特許第3432102号公報Japanese Patent No. 3432102

上述の特許文献1に記載のスパークプラグであっても、製造時において、主体金具に対して加締加工を行なって主体金具と絶縁体とを組み付ける際に、板パッキンが変形して内径方向(絶縁体に近づく方向)に突出するおそれがあった。かかる場合には、突出した板パッキンにより電界強度が増大して、耐電圧性能が低下するという問題があった。   Even in the spark plug described in Patent Document 1 described above, when the metal shell and the insulator are assembled by performing caulking processing on the metal shell at the time of manufacture, the plate packing is deformed and the inner diameter direction ( There is a risk of protruding in a direction approaching the insulator. In such a case, there is a problem that the electric field strength is increased by the protruding plate packing and the withstand voltage performance is lowered.

本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の第1の形態は、
軸線方向に延びる棒状の中心電極と、
前記軸線方向に沿って第1貫通孔が形成され、前記第1貫通孔内において前記中心電極を保持し、前記軸線方向に沿って先端側に向かうにつれて外径が小さくなる絶縁体側縮径部を有する絶縁体と、
前記軸線方向に沿って第2貫通孔が形成され、前記第2貫通孔内において前記絶縁体を保持し、前記軸線方向に沿って先端側に向かうにつれて内径が小さくなる主体金具側縮径部を有する主体金具と、
前記絶縁体側縮径部と前記主体金具側縮径部との間に配置されているシール部材と、
を備えるスパークプラグであって、
前記主体金具は、さらに、
前記主体金具側縮径部の先端側の端部と接し、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向に突出している突出部を有し、
前記主体金具側縮径部の表面に沿った方向における前記突出部の長さをTwとし、前記主体金具側縮径部の表面と垂直な方向における前記突出部の高さをThとし、前記主体金具側縮径部の表面と垂直な方向における前記主体金具側縮径部と前記絶縁体側縮径部との間の距離をPhとしたときに、
Tw≧Th、かつ、Th≧(1/2)×Ph
の条件を満たすことを特徴とするスパークプラグである。
本発明の第2の形態は、
軸線方向に延びる棒状の中心電極と、
前記軸線方向に沿って第1貫通孔が形成され、前記第1貫通孔内において前記中心電極を保持し、前記軸線方向に沿って先端側に向かうにつれて外径が小さくなる絶縁体側縮径部を有する絶縁体と、
前記軸線方向に沿って第2貫通孔が形成され、前記第2貫通孔内において前記絶縁体を保持し、前記軸線方向に沿って先端側に向かうにつれて内径が小さくなる主体金具側縮径部を有する主体金具と、
前記絶縁体側縮径部と前記主体金具側縮径部との間に配置されているシール部材と、
を備えるスパークプラグであって、
前記主体金具は、さらに、
前記主体金具側縮径部の先端側の端部と接し、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向に突出している突出部を有し、
前記主体金具は、
前記突出部の先端側の端部と接し、前記軸線方向に沿ったいずれの位置においても内径が一定である第1一定径部と、
前記主体金具側縮径部の基端側の端部と接し、前記軸線方向に沿ったいずれの位置においても内径が一定である第2一定径部と、
を有し、
前記主体金具側縮径部の内周面を仮想的に先端側に延長した面と前記第1一定径部の内周面とが交わる第1交線と、前記主体金具側縮径部の内周面と前記第2一定径部の内周面とが交わる第2交線との間の最短距離をL1とし、前記主体金具側縮径部の内周面と前記突出部とが交わる第3交線と前記第2交線との間の最短距離をL2としたときに、
L2≧(1/2)×L1
の条件を満たすことを特徴とするスパークプラグである。また、本発明は、以下の形態としても実現できる。
The present invention has been made to solve the above-described problems, and can be realized as the following forms.
The first aspect of the present invention is:
A rod-shaped center electrode extending in the axial direction;
A first through hole is formed along the axial direction, the center electrode is held in the first through hole, and an insulator-side reduced diameter portion whose outer diameter decreases toward the distal end side along the axial direction. An insulator having,
A second through hole is formed along the axial direction, the insulator is held in the second through hole, and a metal fitting side reduced diameter portion having a smaller inner diameter toward the distal end side along the axial direction. Having a metal shell,
A seal member disposed between the insulator-side reduced diameter portion and the metal shell-side reduced diameter portion;
A spark plug comprising:
The metal shell further includes:
A protruding portion that is in contact with the end portion on the distal end side of the metal shell-side reduced diameter portion and protrudes in a direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion;
The length of the protrusion in the direction along the surface of the metal shell side reduced diameter portion is Tw, and the height of the protrusion in the direction perpendicular to the surface of the metal shell side reduced diameter portion is Th. When the distance between the metal shell side reduced diameter part and the insulator side reduced diameter part in the direction perpendicular to the surface of the metal part reduced diameter part is Ph,
Tw ≧ Th and Th ≧ (1/2) × Ph
It is a spark plug characterized by satisfying the following conditions.
The second aspect of the present invention is:
A rod-shaped center electrode extending in the axial direction;
A first through hole is formed along the axial direction, the center electrode is held in the first through hole, and an insulator-side reduced diameter portion whose outer diameter decreases toward the distal end side along the axial direction. An insulator having,
A second through hole is formed along the axial direction, the insulator is held in the second through hole, and a metal fitting side reduced diameter portion having a smaller inner diameter toward the distal end side along the axial direction. Having a metal shell,
A seal member disposed between the insulator-side reduced diameter portion and the metal shell-side reduced diameter portion;
A spark plug comprising:
The metal shell further includes:
A protruding portion that is in contact with the end portion on the distal end side of the metal shell-side reduced diameter portion and protrudes in a direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion;
The metallic shell is
A first constant diameter portion that is in contact with the end portion on the distal end side of the protruding portion and has a constant inner diameter at any position along the axial direction;
A second constant diameter portion that is in contact with an end portion on the base end side of the metal shell-side reduced diameter portion and has a constant inner diameter at any position along the axial direction;
Have
A first intersection line where a surface virtually extending the inner peripheral surface of the metal shell-side reduced diameter portion toward the distal end side and an inner peripheral surface of the first constant-diameter portion, and an inside of the metal shell-side reduced diameter portion The shortest distance between the peripheral surface and the second intersecting line where the inner peripheral surface of the second constant diameter portion intersects is L1, and the inner peripheral surface of the metal shell-side reduced diameter portion and the protruding portion intersect with each other. When the shortest distance between the intersection line and the second intersection line is L2,
L2 ≧ (1/2) × L1
It is a spark plug characterized by satisfying the following conditions. The present invention can also be realized as the following forms.

(1)本発明の一形態によれば、軸線方向に延びる棒状の中心電極と、前記軸線方向に沿って第1貫通孔が形成され、前記第1貫通孔内において前記中心電極を保持し、前記軸線方向に沿って先端側に向かうにつれて外径が小さくなる絶縁体側縮径部を有する絶縁体と、前記軸線方向に沿って第2貫通孔が形成され、前記第2貫通孔内において前記絶縁体を保持し、前記軸線方向に沿って先端側に向かうにつれて内径が小さくなる主体金具側縮径部を有する主体金具と、前記絶縁体縮径部と前記主体金具側縮径部との間に配置されているシール部材と、を備えるスパークプラグが提供される。このスパークプラグにおいて、前記主体金具は、さらに、前記主体金具側縮径部の先端側の端部と接し、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向に突出している突出部を有することを特徴とする。この形態のスパークプラグによれば、主体金具は、主体金具側縮径部の先端側の端部と接し、主体金具側縮径部から絶縁体側縮径部に向かう方向に突出している突出部を有するので、絶縁体側縮径部と主体金具側縮径部との間に配置されているシール部材が、内径方向(主体金具側縮径部から絶縁体側縮径部に向かう方向と垂直な方向)に突出することを抑制できる。このため、シール部材が突出して電界強度が増大することに起因する耐電圧性の低下を抑制できる。   (1) According to one aspect of the present invention, a rod-shaped center electrode extending in the axial direction and a first through hole are formed along the axial direction, and the center electrode is held in the first through hole, An insulator having an insulator-side reduced diameter portion whose outer diameter decreases along the axial direction toward the distal end side, and a second through hole is formed along the axial direction, and the insulation is formed in the second through hole. A metal shell having a metal shell-side reduced diameter portion that holds the body and has an inner diameter that decreases toward the distal end side along the axial direction, and between the insulator metal diameter-reduced portion and the metal shell-side reduced diameter portion. A spark plug is provided. In the spark plug, the metal shell is further in contact with the end portion on the distal end side of the metal shell-side reduced diameter portion, and protrudes in a direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion. It has the part. According to the spark plug of this embodiment, the metal shell is in contact with the end portion on the tip side of the metal shell-side reduced diameter portion, and the protruding portion protruding in the direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion. Therefore, the seal member disposed between the insulator-side reduced diameter portion and the metal shell-side reduced diameter portion has an inner diameter direction (a direction perpendicular to the direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion). Can be prevented from protruding. For this reason, it is possible to suppress a decrease in withstand voltage due to the projecting of the seal member and the increase in electric field strength.

(2)上記形態のスパークプラグにおいて、前記主体金具は、前記突出部の先端側の端部と接し、軸線方向に沿ったいずれの位置においても内径が一定である第1一定径部を有し、前記突出部において、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向の頂から、前記第1一定径部と接する前記先端側の端部までの内周面は、凸状の曲面であってもよい。この形態のスパークプラグによれば、突出部の頂から第1一定径部と接する先端側の端部までの内周面は曲面であるためにエッジが存在しないことから、突出部に起因して電界強度が増大することを抑制できる。   (2) In the spark plug of the above aspect, the metal shell has a first constant diameter portion that is in contact with the end portion on the distal end side of the protruding portion and has a constant inner diameter at any position along the axial direction. In the projecting portion, the inner peripheral surface from the apex in the direction from the metal shell-side reduced diameter portion to the insulator-side reduced diameter portion to the end portion on the distal end side in contact with the first constant diameter portion is convex. It may be a curved surface. According to this form of the spark plug, the inner peripheral surface from the top of the projecting portion to the end on the tip side in contact with the first constant diameter portion is a curved surface, so there is no edge. An increase in electric field strength can be suppressed.

(3)上記形態のスパークプラグにおいて、前記主体金具側縮径部の表面に沿った方向における前記突出部の長さをTwとし、前記主体金具側縮径部の表面と垂直な方向における前記突出部の長さをThとし、前記主体金具側縮径部の表面と垂直な方向における前記主体金具側縮径部と前記絶縁体側縮径部との間の距離をPhとしたときに、Tw≧Th、かつ、Th≧(1/2)×Phの条件を満たしてもよい。この形態のスパークプラグによれば、Tw≧Thを満たすことにより、突出部は、主体金具側縮径部の表面に沿った方向に長い外観形状となるため、突出部がシール部から押圧力を受けた際に、突出部の変形を抑制できる。加えて、Th≧(1/2)×Phを満たすことにより、突出部と絶縁体(絶縁体側縮径部)との間の空隙を狭くして、シール部の先端側(内径側)端面のうちの多くの領域を、突出部により支えることができる。このため、シール部が突出部を乗り越えて、先端側(内径側)に突出することを抑制できる。   (3) In the spark plug of the above aspect, the length of the protruding portion in the direction along the surface of the metal shell-side reduced diameter portion is Tw, and the protrusion in the direction perpendicular to the surface of the metal shell-side reduced diameter portion is When the length of the portion is Th and the distance between the metal shell side reduced diameter portion and the insulator side reduced diameter portion in the direction perpendicular to the surface of the metal shell side reduced diameter portion is Ph, Tw ≧ The condition of Th and Th ≧ (1/2) × Ph may be satisfied. According to the spark plug of this embodiment, by satisfying Tw ≧ Th, the protruding portion has a long external shape in the direction along the surface of the reduced diameter portion of the metal shell, so that the protruding portion applies a pressing force from the seal portion. When received, deformation of the protrusion can be suppressed. In addition, by satisfying Th ≧ (1/2) × Ph, the gap between the protruding portion and the insulator (insulator-side reduced diameter portion) is narrowed, and the tip end side (inner diameter side) end surface of the seal portion is reduced. Many of these areas can be supported by protrusions. For this reason, it can suppress that a seal part gets over a protrusion part, and protrudes to the front end side (inner diameter side).

(4)上記形態のスパークプラグにおいて、前記主体金具は、前記突出部の先端側の端部と接し、軸線方向に沿ったいずれの位置においても内径が一定である第1一定径部と;前記主体金具側縮径部の基端側の端部と接し、軸線方向に沿ったいずれの位置においても内径が一定である第2一定径部と;を有し、前記主体金具側縮径部の内周面を仮想的に先端側に延長した面と前記第1一定径部の内周面とが交わる第1交線と、前記主体金具側縮径部の内周面と前記第2一定径部の内周面とが交わる第2交線との間の最短距離をL1とし、前記主体金具側縮径部の内周面と前記突出部とが交わる第3交線と前記第2交線との間の最短距離をL2としたときに、L2≧(1/2)×L1の条件を満たしてもよい。この形態のスパークプラグによれば、L2≧(1/2)×L1を満たすことにより、L2が(1/2)×L1未満である構成に比べて、主体金具と絶縁体との間に介在するシール部の体積を大きくできる。換言すると、シール部と主体金具との接触面積、および絶縁体とシール部との接触面積を大きくできるので、主体金具と絶縁体との間の気密性を向上できる。   (4) In the spark plug of the above aspect, the metal shell is in contact with the end portion on the distal end side of the protruding portion and has a first constant diameter portion having a constant inner diameter at any position along the axial direction; A second constant diameter portion having a constant inner diameter at any position along the axial direction in contact with the base end side end portion of the metal shell side reduced diameter portion; A first intersection line where a surface virtually extending the inner peripheral surface toward the distal end side and an inner peripheral surface of the first constant diameter portion, an inner peripheral surface of the metal shell side reduced diameter portion, and the second constant diameter The shortest distance between the second intersecting line intersecting the inner peripheral surface of the part is L1, and the third intersecting line and the second intersecting line intersecting the inner peripheral surface of the metal shell side reduced diameter portion and the protruding portion When the shortest distance between and is L2, the condition of L2 ≧ (1/2) × L1 may be satisfied. According to the spark plug of this embodiment, by satisfying L2 ≧ (1/2) × L1, it is interposed between the metal shell and the insulator as compared with the configuration in which L2 is less than (1/2) × L1. The volume of the sealing portion to be increased can be increased. In other words, since the contact area between the seal portion and the metal shell and the contact area between the insulator and the seal portion can be increased, the airtightness between the metal shell and the insulator can be improved.

(5)上記形態のスパークプラグにおいて、前記突出部の先端側端部と前記絶縁体との間の径方向に沿った距離が、0.5mm以下であってもよい。この形態のスパークプラグによれば、スパークプラグの小型化・小径化を実現しつつ、耐電圧性を向上できる。   (5) In the spark plug of the above aspect, the distance along the radial direction between the tip end portion of the protruding portion and the insulator may be 0.5 mm or less. According to this form of the spark plug, the withstand voltage can be improved while realizing a reduction in the size and diameter of the spark plug.

(6)上記形態のスパークプラグにおいて、前記主体金具の外周部に、呼び径がM12以下であるねじ部が形成されていてもよい。この形態のスパークプラグによれば、呼び径がM12以下であるねじ部を有する比較的小型のスパークプラグにおいて、耐電圧性を向上できる。   (6) In the spark plug of the above aspect, a threaded portion having a nominal diameter of M12 or less may be formed on the outer peripheral portion of the metal shell. According to the spark plug of this embodiment, withstand voltage can be improved in a relatively small spark plug having a threaded portion having a nominal diameter of M12 or less.

本発明は、スパークプラグ以外の種々の形態で実現することも可能である。例えば、スパークプラグを搭載した内燃機関や、スパークプラグの製造方法等の形態で実現することができる。   The present invention can be realized in various forms other than the spark plug. For example, it can be realized in the form of an internal combustion engine equipped with a spark plug, a method for manufacturing a spark plug, or the like.

本発明の一実施形態としてのスパークプラグ100を示す部分断面図である。It is a fragmentary sectional view showing spark plug 100 as one embodiment of the present invention. 板パッキン8近傍の詳細構成を示す説明図である。It is explanatory drawing which shows the detailed structure of the board packing 8 vicinity. 第2実施形態のスパークプラグにおける板パッキン8近傍の詳細構成を示す説明図である。It is explanatory drawing which shows the detailed structure of the plate packing 8 vicinity in the spark plug of 2nd Embodiment. 突出部の有無に応じた耐電圧性評価試験の試験結果を示す説明図である。It is explanatory drawing which shows the test result of the withstand voltage evaluation test according to the presence or absence of a protrusion part. 第1条件(Tw≧ThかつTh≧(1/2)×Ph)の充足の有無に応じた耐電圧性評価試験の第1の試験結果を示す説明図である。It is explanatory drawing which shows the 1st test result of the withstand voltage evaluation test according to the presence or absence of satisfaction of 1st conditions (Tw> = Th and Th> = (1/2) * Ph). 第1条件の充足の有無に応じた耐電圧性評価試験の第2の試験結果を示す説明図である。It is explanatory drawing which shows the 2nd test result of the withstand voltage evaluation test according to the presence or absence of satisfaction of 1st conditions. 第2条件(L2≧(1/2)×L1)の充足の有無に応じた気密性評価試験の第1の試験結果を示す説明図である。It is explanatory drawing which shows the 1st test result of the airtightness evaluation test according to the presence or absence of satisfaction of 2nd conditions (L2> = (1/2) * L1). 第3条件(長さD≦0.5mm)の充足の有無に応じた耐電圧性向上評価試験の試験結果を示す説明図である。It is explanatory drawing which shows the test result of the withstand voltage improvement evaluation test according to the presence or absence of satisfaction of 3rd conditions (length D <= 0.5mm).

A.第1実施形態:
A1.スパークプラグの構成:
図1は、本発明の一実施形態としてのスパークプラグ100を示す部分断面図である。なお、図1において、スパークプラグ100の左側は、スパークプラグ100の軸線OLを通る断面形状を示し、スパークプラグ100の右側は、スパークプラグ100の外観形状を示している。以降では、軸線OLに沿った方向を軸線方向ODと呼ぶ。また、軸線方向ODを図面における上下方向として、下側(後述する接地電極30が配置されている側)を先端側と呼び、上側(後述する端子金具40が配置されている側)を基端側と呼ぶ。
A. First embodiment:
A1. Spark plug configuration:
FIG. 1 is a partial cross-sectional view showing a spark plug 100 as an embodiment of the present invention. In FIG. 1, the left side of the spark plug 100 shows a cross-sectional shape passing through the axis OL of the spark plug 100, and the right side of the spark plug 100 shows the external shape of the spark plug 100. Hereinafter, the direction along the axis OL is referred to as the axis direction OD. Also, with the axial direction OD as the vertical direction in the drawing, the lower side (side where a ground electrode 30 to be described later is disposed) is called the distal end side, and the upper side (side where the terminal fitting 40 to be described later is disposed) is the base end. Call the side.

スパークプラグ100は、絶縁碍子10と、中心電極20と、端子金具40と、主体金具50と、接地電極30と、を備えている。これらのうち、接地電極30を除く他の構成要素は、いずれもスパークプラグ100の軸線OLと同じ軸線を有する。   The spark plug 100 includes an insulator 10, a center electrode 20, a terminal metal fitting 40, a metal shell 50, and a ground electrode 30. Among these, all the components other than the ground electrode 30 have the same axis as the axis OL of the spark plug 100.

絶縁碍子10は、アルミナ等のセラミックス材料を焼成して形成された筒状の部材である。絶縁碍子10には、軸線方向ODに沿って延びる貫通孔12が形成されており、絶縁碍子10は、貫通孔12において中心電極20および端子金具40を保持する。絶縁碍子10において、軸線方向ODの中央部には外径が最も大きな鍔部19が形成されており、それより基端側には基端側胴部18が形成されている。鍔部19より先端側には、基端側胴部18よりも外径の小さな先端側胴部17が形成され、さらにその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径され、スパークプラグ100が内燃機関のエンジンヘッド200に取り付けられた際には、その燃焼室に曝される。脚長部13と先端側胴部17との間には縮径部15が形成されている。縮径部15の外径は、軸線方向ODに沿って先端側に向かうにつれて小さくなる。   The insulator 10 is a cylindrical member formed by firing a ceramic material such as alumina. A through-hole 12 extending along the axial direction OD is formed in the insulator 10, and the insulator 10 holds the center electrode 20 and the terminal fitting 40 in the through-hole 12. In the insulator 10, a flange portion 19 having the largest outer diameter is formed at the central portion in the axial direction OD, and a proximal end body portion 18 is formed at the proximal end side. A distal end side body portion 17 having an outer diameter smaller than that of the proximal end side body portion 18 is formed on the distal end side of the flange portion 19, and further on the distal end side with respect to the distal end side body portion 17, more than the distal end side body portion 17. A long leg portion 13 having a small outer diameter is formed. The long leg portion 13 is reduced in diameter toward the tip side, and is exposed to the combustion chamber when the spark plug 100 is attached to the engine head 200 of the internal combustion engine. A reduced diameter portion 15 is formed between the leg long portion 13 and the distal end side body portion 17. The outer diameter of the reduced diameter portion 15 becomes smaller toward the tip side along the axial direction OD.

中心電極20は、軸線方向ODに延びる棒状の外観形状を有する。中心電極20は、先端部が絶縁碍子10から露出するように、絶縁碍子10の貫通孔12内に収容されている。中心電極20は、電極母材21の内部に芯材25を埋設した構造を有している。電極母材21は、インコネル(商標名)600または601等のニッケルまたはニッケルを主成分とする合金から形成されている。芯材25は、電極母材21よりも熱伝導性に優れる銅または銅を主成分とする合金から形成されている。中心電極20の先端には、中心電極チップ90が接合されている。中心電極チップ90は、軸線方向ODに伸びた略円柱形状を有しており、耐火花消耗性を向上するため、イリジウム(Ir)や白金(Pt)等の高融点の貴金属によって形成されている。中心電極20は、シール体4およびセラミック抵抗3を経由して、端子金具40に電気的に接続されている。端子金具40には、高圧ケーブル(図示せず)がプラグキャップ(図示せず)を介して接続され、高電圧が印加される。   The center electrode 20 has a rod-like appearance shape extending in the axial direction OD. The center electrode 20 is accommodated in the through hole 12 of the insulator 10 so that the tip portion is exposed from the insulator 10. The center electrode 20 has a structure in which a core material 25 is embedded in an electrode base material 21. The electrode base material 21 is made of nickel such as Inconel (trade name) 600 or 601 or an alloy containing nickel as a main component. The core material 25 is made of copper or an alloy containing copper as a main component, which is superior in thermal conductivity to the electrode base material 21. A center electrode tip 90 is joined to the tip of the center electrode 20. The center electrode tip 90 has a substantially cylindrical shape extending in the axial direction OD, and is formed of a high melting point noble metal such as iridium (Ir) or platinum (Pt) in order to improve the spark wear resistance. . The center electrode 20 is electrically connected to the terminal fitting 40 via the seal body 4 and the ceramic resistor 3. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown), and a high voltage is applied.

主体金具50は、低炭素鋼材より形成された筒状の金具であり、スパークプラグ100を内燃機関のエンジンヘッド200に固定する。主体金具50には、軸線方向ODに沿って貫通孔65が形成されており、主体金具50は、貫通孔65において絶縁碍子10を保持する。   The metal shell 50 is a cylindrical metal fitting formed of a low carbon steel material, and fixes the spark plug 100 to the engine head 200 of the internal combustion engine. A through hole 65 is formed in the metal shell 50 along the axial direction OD, and the metal shell 50 holds the insulator 10 in the through hole 65.

主体金具50は、外周部に、工具係合部51と取付ねじ部52とを備えている。工具係合部51は、スパークプラグレンチ(図示せず)が嵌合する部位である。主体金具50の取付ねじ部52は、ねじ山が形成された部位であり、内燃機関の上部に設けられたエンジンヘッド200の取付ねじ孔201に螺合する。なお、本実施形態において、取付ねじ部52の呼び径は、M12である。   The metal shell 50 includes a tool engaging portion 51 and a mounting screw portion 52 on the outer peripheral portion. The tool engaging part 51 is a part into which a spark plug wrench (not shown) is fitted. The mounting screw portion 52 of the metal shell 50 is a portion where a screw thread is formed, and is screwed into a mounting screw hole 201 of the engine head 200 provided in the upper part of the internal combustion engine. In this embodiment, the nominal diameter of the mounting screw portion 52 is M12.

主体金具50の工具係合部51と取付ねじ部52との間には、鍔状のシール部54が形成されている。取付ねじ部52とシール部54との間のねじ首59には、板体を折り曲げて形成した環状のガスケット5が嵌挿されている。ガスケット5は、スパークプラグ100をエンジンヘッド200に取り付けた際に、シール部54の座面55と取付ねじ孔201の開口周縁部205との間で押し潰されて変形する。このガスケット5の変形により、スパークプラグ100とエンジンヘッド200間が封止され、取付ねじ孔201を介したエンジン内の気密漏れが防止される。   Between the tool engaging portion 51 and the mounting screw portion 52 of the metal shell 50, a bowl-shaped seal portion 54 is formed. An annular gasket 5 formed by bending a plate is fitted into a screw neck 59 between the attachment screw portion 52 and the seal portion 54. When the spark plug 100 is attached to the engine head 200, the gasket 5 is crushed and deformed between the seat surface 55 of the seal portion 54 and the opening peripheral edge portion 205 of the attachment screw hole 201. Due to the deformation of the gasket 5, the gap between the spark plug 100 and the engine head 200 is sealed, and airtight leakage in the engine through the mounting screw hole 201 is prevented.

主体金具50の工具係合部51より後端側には、薄肉の加締部53が設けられている。また、シール部54と工具係合部51との間には、加締部53と同様に、薄肉の座屈部58が設けられている。主体金具50の工具係合部51から加締部53にかけての内周面と、絶縁碍子10の基端側胴部18の外周面との間には、円環状のリング部材6,7が介在されている。さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53を内側に折り曲げるようにして加締めると、絶縁碍子10は、リング部材6,7およびタルク9を介して主体金具50内の先端側に向け押圧される。これにより、絶縁碍子10の縮径部15は、主体金具50の内周に形成された段部56に支持され、主体金具50と絶縁碍子10とは、一体となる。このとき、主体金具50と絶縁碍子10との間の気密性は、絶縁碍子10の縮径部15と主体金具50の段部56との間に介在された環状の板パッキン8によって保持され、燃焼ガスの流出が防止される。板パッキン8は、例えば、銅やアルミニウム等の熱伝導率の高い材料によって形成される。板パッキン8の熱伝導率が高いと、絶縁碍子10の熱が主体金具50の段部56に効率よく伝わるため、スパークプラグ100の熱引きがよくなり、耐熱性を向上させることができる。板パッキン8近傍の詳細構成については、後述する。なお、主体金具50の段部56よりも先端側と絶縁碍子10との間には、所定寸法のクリアランスCLが設けられている。   A thin caulking portion 53 is provided on the rear end side of the metal shell 50 from the tool engaging portion 51. In addition, a thin buckled portion 58 is provided between the seal portion 54 and the tool engaging portion 51, similarly to the caulking portion 53. Between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the base end side body portion 18 of the insulator 10, annular ring members 6 and 7 are interposed. Has been. Further, a powder of talc (talc) 9 is filled between the ring members 6 and 7. When the crimping portion 53 is bent inwardly, the insulator 10 is pressed toward the front end side in the metal shell 50 via the ring members 6 and 7 and the talc 9. Thus, the reduced diameter portion 15 of the insulator 10 is supported by the step portion 56 formed on the inner periphery of the metal shell 50, and the metal shell 50 and the insulator 10 are integrated. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the annular plate packing 8 interposed between the reduced diameter portion 15 of the insulator 10 and the step portion 56 of the metal shell 50, Outflow of combustion gas is prevented. The plate packing 8 is formed of a material having high thermal conductivity such as copper or aluminum. When the thermal conductivity of the plate packing 8 is high, the heat of the insulator 10 is efficiently transmitted to the step portion 56 of the metal shell 50, so that the heat extraction of the spark plug 100 is improved and the heat resistance can be improved. A detailed configuration in the vicinity of the plate packing 8 will be described later. A clearance CL having a predetermined dimension is provided between the front end side of the stepped portion 56 of the metal shell 50 and the insulator 10.

接地電極30は、耐腐食性の高い金属から形成され、例えば、インコネル(商標名)600または601等のニッケル合金から形成されている。この接地電極30の基部32は、溶接によって、主体金具50の先端部57に接合されている。また、接地電極30は屈曲しており、接地電極30の先端部33には、接地電極チップ95が接合されている。接地電極チップ95は、中心電極チップ90と対向しており、接地電極チップ95と、中心電極チップ90との間には、火花放電ギャップGが形成されている。なお、接地電極チップ95は、中心電極チップ90と同様の材料で形成することができる。   The ground electrode 30 is made of a metal having high corrosion resistance, and is made of, for example, a nickel alloy such as Inconel (trade name) 600 or 601. The base 32 of the ground electrode 30 is joined to the tip 57 of the metal shell 50 by welding. The ground electrode 30 is bent, and a ground electrode tip 95 is bonded to the tip 33 of the ground electrode 30. The ground electrode chip 95 faces the center electrode chip 90, and a spark discharge gap G is formed between the ground electrode chip 95 and the center electrode chip 90. The ground electrode tip 95 can be formed of the same material as the center electrode tip 90.

A2.板パッキン8近傍の詳細構成:
図2は、板パッキン8近傍の詳細構成を示す説明図である。図2に示すように、主体金具50の段部56は、縮径部62と、第1一定径部63と、拡径部64と、突出部70とを備えている。
A2. Detailed configuration near the plate packing 8:
FIG. 2 is an explanatory view showing a detailed configuration in the vicinity of the plate packing 8. As shown in FIG. 2, the step portion 56 of the metal shell 50 includes a reduced diameter portion 62, a first constant diameter portion 63, an enlarged diameter portion 64, and a protruding portion 70.

縮径部62は、段部56において最も基端側に位置し、基端側の端部において第2一定径部61と接し、先端側の端部において突出部70と接する。縮径部62の内径は、軸線方向ODに沿って先端側に向かうにつれて小さくなる。縮径部62の内周面S51は、板パッキン8と接している。また、縮径部62の内周面S51は、板パッキン8を介して、絶縁碍子10の縮径部15の外周面S11と向き合っている。なお、前述の第2一定径部61は、軸線方向ODに沿ったいずれの位置においても内径が略一定の部位である。   The reduced diameter portion 62 is located on the most proximal side in the step portion 56, is in contact with the second constant diameter portion 61 at the proximal end, and is in contact with the protrusion 70 at the distal end. The inner diameter of the reduced diameter portion 62 becomes smaller toward the tip side along the axial direction OD. An inner peripheral surface S51 of the reduced diameter portion 62 is in contact with the plate packing 8. Further, the inner peripheral surface S51 of the reduced diameter portion 62 faces the outer peripheral surface S11 of the reduced diameter portion 15 of the insulator 10 via the plate packing 8. The above-mentioned second constant diameter portion 61 is a portion having a substantially constant inner diameter at any position along the axial direction OD.

第1一定径部63は、段部56において軸線方向ODに沿った略中央に位置し、基端側の端部において突出部70と接し、先端側の端部において拡径部64と接する。第1一定径部63の内径は、軸線方向ODに沿ったいずれの位置においても一定である。第1一定径部63の内周面S52は、絶縁碍子10(脚長部13)の外周面14と向き合っている。   The first constant diameter portion 63 is located at the approximate center along the axial direction OD in the step portion 56, contacts the protruding portion 70 at the proximal end, and contacts the expanded diameter portion 64 at the distal end. The inner diameter of the first constant diameter portion 63 is constant at any position along the axial direction OD. The inner peripheral surface S52 of the first constant diameter portion 63 faces the outer peripheral surface 14 of the insulator 10 (leg long portion 13).

拡径部64は、段部56において最も先端側に位置し、基端側の端部において第1一定径部63と接する。拡径部64の内径は、軸線方向ODに沿って先端側に向かうにつれて大きくなる。拡径部64の内周面と絶縁碍子10(脚長部13)の外周面14との間には、前述のクリアランスCLが形成されている。   The enlarged diameter portion 64 is located on the most distal end side in the stepped portion 56, and contacts the first constant diameter portion 63 at the proximal end side. The inner diameter of the enlarged diameter portion 64 becomes larger toward the tip side along the axial direction OD. The clearance CL described above is formed between the inner peripheral surface of the enlarged diameter portion 64 and the outer peripheral surface 14 of the insulator 10 (leg long portion 13).

突出部70は、縮径部62の先端側の端部と接し、主体金具50の縮径部62から、絶縁碍子10の縮径部15に向かう方向に突出している。図2に示すように、突出部70の内周面71は、内径方向に凸となる凸状の曲面であり、第1一定径部63の内周面S52と連続している。なお、突出部70の内周面71とは、軸線OLに向かう方向に露出した面を意味する。換言すると、突出部70の内周面71とは、突出部70において、縮径部62から縮径部15に向かう方向の頂から第1一定径部63と接する先端側の端部までの面を意味する。突出部70の外周面72は、縮径部62の内周面S51と略垂直な平面であり、板パッキン8の先端側の端面と接している。なお、突出部70の外周面72は、突出部70において軸線OLから離れる方向に露出した面である。   The protruding portion 70 is in contact with the end portion on the distal end side of the reduced diameter portion 62 and protrudes from the reduced diameter portion 62 of the metal shell 50 in the direction toward the reduced diameter portion 15 of the insulator 10. As shown in FIG. 2, the inner peripheral surface 71 of the protruding portion 70 is a convex curved surface that is convex in the inner diameter direction, and is continuous with the inner peripheral surface S <b> 52 of the first constant diameter portion 63. The inner peripheral surface 71 of the protrusion 70 means a surface exposed in the direction toward the axis OL. In other words, the inner peripheral surface 71 of the protruding portion 70 is a surface from the top in the direction from the reduced diameter portion 62 to the reduced diameter portion 15 to the end portion on the distal end side in contact with the first constant diameter portion 63 in the protruding portion 70. Means. The outer peripheral surface 72 of the protruding portion 70 is a flat surface that is substantially perpendicular to the inner peripheral surface S51 of the reduced diameter portion 62, and is in contact with the end surface on the front end side of the plate packing 8. In addition, the outer peripheral surface 72 of the protrusion part 70 is a surface exposed in the direction away from the axis line OL in the protrusion part 70.

図2に示すように、板パッキン8は、縮径部62の内周面S51と、縮径部15の外周面S11とで囲まれた空隙に配置されている。また、板パッキン8の先端側(内径側)の端面は、突出部70の外周面72に接している。スパークプラグ100の製造工程において、加締部53が加締められると、板パッキン8は、内周面S51と外周面S11とで押し潰されて延伸しようとする。しかしながら、板パッキン8の先端側には突出部70が配置されているため、板パッキン8の先端側への延伸が抑制される。より具体的には、板パッキン8が延伸しようとする際に、板パッキン8の先端側(内径側)の端面が突出部70の外周面72に突き当たるため、板パッキン8の先端側(内径側)への延伸が抑制される。このため、板パッキン8が、主体金具50(段部56)と絶縁碍子10(縮径部15)との間の空隙において、突出部70よりも先端側(内径側)に突出することが抑えられる。したがって、電界強度の増大を抑制して、耐電圧性能を向上できる。また、突出部70の内周面71は、第1一定径部63の内周面S52と連続して接する曲面であり、エッジ部分が存在しないことから、突出部70による電界強度の増大も抑制できる。   As shown in FIG. 2, the plate packing 8 is disposed in a space surrounded by the inner peripheral surface S <b> 51 of the reduced diameter portion 62 and the outer peripheral surface S <b> 11 of the reduced diameter portion 15. Further, the end face (inner diameter side) end face of the plate packing 8 is in contact with the outer peripheral face 72 of the protrusion 70. In the manufacturing process of the spark plug 100, when the crimping portion 53 is crimped, the plate packing 8 is crushed by the inner peripheral surface S51 and the outer peripheral surface S11 and tends to extend. However, since the protruding portion 70 is disposed on the front end side of the plate packing 8, the extension of the plate packing 8 to the front end side is suppressed. More specifically, when the plate packing 8 is to be extended, the end surface (inner diameter side) of the plate packing 8 abuts against the outer peripheral surface 72 of the projecting portion 70, so that the front end side (inner diameter side) of the plate packing 8. ) Is suppressed. For this reason, it is suppressed that the plate packing 8 protrudes more to the front end side (inner diameter side) than the protrusion part 70 in the space | gap between the metal shell 50 (step part 56) and the insulator 10 (reduced diameter part 15). It is done. Therefore, the withstand voltage performance can be improved by suppressing an increase in electric field strength. Moreover, since the inner peripheral surface 71 of the protrusion part 70 is a curved surface which is continuously in contact with the inner peripheral surface S52 of the first constant diameter part 63 and there is no edge portion, an increase in electric field strength due to the protrusion part 70 is also suppressed. it can.

ここで、本実施形態では、縮径部62の内周面S51に沿った方向における突出部70の長さをTwとし、内周面S51と垂直な方向における突出部70の長さをThとし、内周面S51と垂直な方向における縮径部62と縮径部15との間の距離をPhとしたときに、下記式1に示す条件(以下、「第1条件」と呼ぶ)を満たすことが好ましい。
Tw≧Th、かつ、Th≧(1/2)×Ph ・・・(1)
Here, in the present embodiment, the length of the protruding portion 70 in the direction along the inner peripheral surface S51 of the reduced diameter portion 62 is Tw, and the length of the protruding portion 70 in the direction perpendicular to the inner peripheral surface S51 is Th. When the distance between the reduced diameter portion 62 and the reduced diameter portion 15 in the direction perpendicular to the inner peripheral surface S51 is Ph, the condition shown in the following formula 1 (hereinafter referred to as “first condition”) is satisfied. It is preferable.
Tw ≧ Th and Th ≧ (1/2) × Ph (1)

長さTwが長さTh以上であることにより、縮径部62の内周面S51に沿った横長な形状となるため、加締時に突出部70に力が加えられた際に、また、その後の残留応力を受けているときに、突出部70の変形が抑制される。加えて、長さThが、距離Phの1/2以上であることにより、突出部70と絶縁碍子10(縮径部15)との間の空隙を狭くして、板パッキン8の先端側(内径側)端面のうちの多くの領域を、外周面72により支えることができる。このため、板パッキン8が突出部70を乗り越えて、先端側(軸線OL側)に突出することを抑制できる。   When the length Tw is equal to or longer than the length Th, the shape becomes a horizontally long shape along the inner circumferential surface S51 of the reduced diameter portion 62. Therefore, when force is applied to the protruding portion 70 during caulking, When the residual stress is received, the deformation of the protrusion 70 is suppressed. In addition, since the length Th is ½ or more of the distance Ph, the gap between the projecting portion 70 and the insulator 10 (the reduced diameter portion 15) is narrowed, and the front end side of the plate packing 8 ( Many regions of the end surface on the inner diameter side can be supported by the outer peripheral surface 72. For this reason, it can suppress that the plate packing 8 gets over the protrusion part 70, and protrudes to the front end side (axis line OL side).

また、本実施形態では、縮径部62の内周面S51を仮想的に先端側に延長した面と、第1一定径部63の内周面S52とが交わる交線を交線Aとし、縮径部62の内周面S51と第2一定径部61の内周面とが交わる交線を交線Bとし、縮径部62の内周面S51と突出部70とが交わる交線を交線Cとし、前述の交線Aと交線Bとの間の最短距離をL1とし、交線Bと交線Cとの間の最短距離をL2としたときに、下記式2に示す条件(以下、「第2条件」と呼ぶ)を満たすことが好ましい。
L2≧(1/2)×L1 ・・・(2)
In the present embodiment, the line of intersection between the surface virtually extending the inner peripheral surface S51 of the reduced diameter portion 62 and the inner peripheral surface S52 of the first constant diameter portion 63 is defined as an intersection line A. A line of intersection between the inner peripheral surface S51 of the reduced diameter portion 62 and the inner peripheral surface of the second constant diameter portion 61 is defined as an intersection line B, and an intersection line between the inner peripheral surface S51 of the reduced diameter portion 62 and the protruding portion 70 is defined. When the intersection line C, the shortest distance between the intersection line A and the intersection line B is L1, and the shortest distance between the intersection line B and the intersection line C is L2, the condition shown in the following formula 2 is satisfied. (Hereinafter referred to as “second condition”) is preferably satisfied.
L2 ≧ (1/2) × L1 (2)

距離L2が距離L1の1/2以上であることにより、1/2未満である構成に比べて、主体金具50と絶縁碍子10との間に介在する板パッキン8の体積を大きくできる。このため、板パッキン8と主体金具50との接触面積、および板パッキン8と絶縁碍子10との接触面積を増大でき、シール性を向上できる。   When the distance L2 is equal to or greater than ½ of the distance L1, the volume of the plate packing 8 interposed between the metal shell 50 and the insulator 10 can be increased as compared with the configuration of less than ½. For this reason, the contact area between the plate packing 8 and the metal shell 50 and the contact area between the plate packing 8 and the insulator 10 can be increased, and the sealing performance can be improved.

また、本実施形態では、突出部70の先端側端部と、絶縁碍子10の外周面14との間の径方向(軸線方向ODと垂直な方向)に沿った長さDが0.5mm以下である、との条件(以下、「第3条件」と呼ぶ)を満たすことが好ましい。かかる第3条件を満たすことで、スパークプラグ100の径方向の長さを小さくできる。このため、スパークプラグ100の小型化を実現しつつ、板パッキン8の先端側への突出を抑制して耐電圧性を向上できる。なお、長さDの下限としては、例えば、0.1mmとすることができる。   Moreover, in this embodiment, the length D along the radial direction (direction perpendicular to the axial direction OD) between the distal end side end portion of the protrusion 70 and the outer peripheral surface 14 of the insulator 10 is 0.5 mm or less. Is preferably satisfied (hereinafter referred to as “third condition”). By satisfying the third condition, the radial length of the spark plug 100 can be reduced. For this reason, withstanding the miniaturization of the spark plug 100, it is possible to suppress the protrusion of the plate packing 8 toward the tip side and improve the voltage resistance. In addition, as a minimum of length D, it can be set to 0.1 mm, for example.

また、本実施形態では、スパークプラグ100の取付ねじ部52の呼び径はM12であったが、M12以下であることが好ましい。呼び径がM12以下であるスパークプラグは、比較的小型のスパークプラグであり、絶縁碍子10の厚みも小さく、絶縁破壊が発生する可能性が比較的高い。しかしながら、上述した第1実施形態のスパークプラグ100のように、突出部70を設けることにより、板パッキン8の先端側(内径側)への突出を抑制して、耐電圧性能を向上できる。   Moreover, in this embodiment, although the nominal diameter of the attachment screw part 52 of the spark plug 100 was M12, it is preferable that it is M12 or less. A spark plug having a nominal diameter of M12 or less is a relatively small spark plug, the thickness of the insulator 10 is small, and the possibility of dielectric breakdown is relatively high. However, like the spark plug 100 of the first embodiment described above, by providing the protruding portion 70, it is possible to suppress the protrusion of the plate packing 8 toward the distal end side (inner diameter side) and improve the withstand voltage performance.

なお、上述した第1実施形態において、絶縁碍子10は、請求項における絶縁体に相当する。また、貫通孔12は、請求項における第1貫通孔に、縮径部15は請求項における絶縁体側縮径部に、貫通孔65は請求項における貫通孔に、縮径部62は請求項における主体金具側縮径部に、板パッキン8は請求項におけるシール部材に、取付ねじ部52は請求項におけるねじ部に、それぞれ相当する。   In the first embodiment described above, the insulator 10 corresponds to an insulator in claims. The through hole 12 is the first through hole in the claims, the reduced diameter portion 15 is the insulator-side reduced diameter portion in the claims, the through hole 65 is the through hole in the claims, and the reduced diameter portion 62 is in the claims. In the metal shell side reduced diameter portion, the plate packing 8 corresponds to the seal member in the claims, and the mounting screw portion 52 corresponds to the screw portion in the claims.

B.第2実施形態:
図3は、第2実施形態のスパークプラグにおける板パッキン8近傍の詳細構成を示す説明図である。第2実施形態のスパークプラグは、突出部70に代えて突出部70aを備えている点において、第1実施形態のスパークプラグ100と異なる。第2実施形態のスパークプラグにおけるその他の構成は、第1実施形態のスパークプラグ100と同じであるため、同一の符号を付して詳細な説明は省略する。
B. Second embodiment:
FIG. 3 is an explanatory view showing a detailed configuration in the vicinity of the plate packing 8 in the spark plug of the second embodiment. The spark plug according to the second embodiment is different from the spark plug 100 according to the first embodiment in that a protrusion 70 a is provided instead of the protrusion 70. Since the other structure in the spark plug of 2nd Embodiment is the same as the spark plug 100 of 1st Embodiment, it attaches | subjects the same code | symbol and abbreviate | omits detailed description.

図3に示すように、第2実施形態のスパークプラグの突出部70aは、内周面の外観形状が2つの平面が接続された段差状の形状である点において、第1実施形態の突出部70と異なり、他の構成は、第1実施形態の突出部70と同じである。具体的には、突出部70aの内周面は、互いに接する第1面73と第2面74とにより構成されている。第1面73は、先端側の端部において、第1一定径部63の内周面S52の基端側の端部と接し、内周面S52と連続する平面である。また、第1面73の基端側の端部は、第2面74と接している。第2面74は、基端側の端部において外周面72と接し、また、先端側の端部において第1面73と接する平面である。また、第2面74は、縮径部62の内周面S51と平行な平面である。   As shown in FIG. 3, the protrusion 70a of the spark plug of the second embodiment is the protrusion of the first embodiment in that the outer peripheral shape is a stepped shape in which two planes are connected. Unlike 70, the other structure is the same as the protrusion part 70 of 1st Embodiment. Specifically, the inner peripheral surface of the protruding portion 70a is constituted by a first surface 73 and a second surface 74 that are in contact with each other. The first surface 73 is a flat surface that is in contact with the proximal end portion of the inner peripheral surface S52 of the first constant diameter portion 63 and is continuous with the inner peripheral surface S52 at the end portion on the distal end side. In addition, the proximal end of the first surface 73 is in contact with the second surface 74. The second surface 74 is a flat surface in contact with the outer peripheral surface 72 at the proximal end portion and in contact with the first surface 73 at the distal end portion. The second surface 74 is a plane parallel to the inner peripheral surface S51 of the reduced diameter portion 62.

以上の構成を有する第2実施形態のスパークプラグにおいても、縮径部62の先端側端部に接して突出部70aが設けられているため、板パッキン8の先端側(内径側)への延伸が抑制される。このため、板パッキン8が、主体金具50(段部56)と絶縁碍子10(縮径部15)との間の空隙において、突出部70aよりも先端側(内径側)に突出することが抑えられる。このため、第2実施形態のスパークプラグは、第1実施形態のスパークプラグ100と同様な効果を有する。   Also in the spark plug according to the second embodiment having the above-described configuration, since the protruding portion 70a is provided in contact with the end portion on the tip end side of the reduced diameter portion 62, the plate packing 8 is extended to the tip end side (inner diameter side). Is suppressed. For this reason, it is suppressed that the plate packing 8 protrudes more to the front end side (inner diameter side) than the protrusion part 70a in the space | gap between the metal shell 50 (step part 56) and the insulator 10 (reduced diameter part 15). It is done. For this reason, the spark plug of 2nd Embodiment has an effect similar to the spark plug 100 of 1st Embodiment.

C.突出部の有無に応じた耐電圧性の試験例:
図4は、突出部の有無に応じた耐電圧性評価試験の試験結果を示す説明図である。この試験では、上述した第1実施形態のスパークプラグ100のサンプル(以下、「第1サンプル群」と呼ぶ)と、第2実施形態のスパークプラグのサンプル(以下、「第2サンプル群」と呼ぶ)と、突出部70および突出部70aを有しないスパークプラグのサンプル(以下、「第3サンプル群」と呼ぶ)を、それぞれ10個ずつ製作した。そして、各サンプルにつき、耐電圧性能評価試験を行った。
C. Test example of withstand voltage according to the presence or absence of protrusions:
FIG. 4 is an explanatory diagram showing test results of a withstand voltage evaluation test according to the presence or absence of protrusions. In this test, the sample of the spark plug 100 of the first embodiment (hereinafter referred to as “first sample group”) and the sample of the spark plug of the second embodiment (hereinafter referred to as “second sample group”). ) And 10 spark plug samples (hereinafter referred to as “third sample group”) each having no protrusion 70 and no protrusion 70a. And withstand voltage performance evaluation test was done about each sample.

耐電圧性能評価試験は、以下の手順1から手順3の順序に従って実行した。
(手順1)各サンプルの接地電極30を取り外し、各サンプルを、シリコン製チューブ内に取付ねじ部52が収容されるように配置した上で、中心電極20の中心電極チップ90が電気絶縁性液体内に位置するように、前述のチューブ内を電気絶縁性液体で満たす。電気絶縁性液体としては、例えば、絶縁油や、フッ素系不活性液体を用いることができる。
(手順2)各サンプルの主体金具50をグランド(GND)に接続し、スパークプラグの電位を0(ゼロ)にする。
(手順3)サンプルに引加する電圧を所定の速度(例えば、0.1kV/3sec)で上昇させていき、絶縁碍子10の脚長部13が絶縁破壊される限界の電圧(耐電圧)を測定する。
The withstand voltage performance evaluation test was performed in the order of the following procedure 1 to procedure 3.
(Procedure 1) The ground electrode 30 of each sample is removed, and each sample is disposed so that the mounting screw portion 52 is accommodated in a silicon tube, and then the center electrode tip 90 of the center electrode 20 is electrically insulating liquid. The inside of the tube is filled with an electrically insulating liquid so as to be located inside. As the electrically insulating liquid, for example, insulating oil or a fluorine-based inert liquid can be used.
(Procedure 2) The metal shell 50 of each sample is connected to the ground (GND), and the potential of the spark plug is set to 0 (zero).
(Procedure 3) The voltage applied to the sample is increased at a predetermined speed (for example, 0.1 kV / 3 sec), and the limit voltage (withstand voltage) at which the leg portion 13 of the insulator 10 breaks down is measured. To do.

図4では、各サンプル群について、10個のサンプルの平均の耐電圧(kV)を示している。図4に示すように、第1サンプル群(第1実施形態)の耐電圧は最も高く、第2サンプル群(第2実施形態)の耐電圧が2番目に高く、第3サンプル群の耐電圧が最も低かった。かかる結果から、突出部70,70aを設けることにより、突出部70,70aを設けない構成に比べて、耐電圧性が向上したことが理解できる。また、突出部の内周面(軸線OLに向かう方向に露出した面、換言すると、絶縁碍子10に向いた面)が内径方向に凸となる曲面であることにより、曲面でない構成に比べて、耐電圧性が高いことが理解できる。これは、突出部の内周面が曲面であるためにエッジが存在しないので、突出部による電界強度の増大が抑制されたからであるものと推測される。   FIG. 4 shows the average withstand voltage (kV) of 10 samples for each sample group. As shown in FIG. 4, the first sample group (first embodiment) has the highest withstand voltage, the second sample group (second embodiment) has the second highest withstand voltage, and the third sample group has the withstand voltage. Was the lowest. From this result, it can be understood that the withstand voltage is improved by providing the protrusions 70 and 70a as compared to the configuration without the protrusions 70 and 70a. Further, the inner peripheral surface of the protrusion (the surface exposed in the direction toward the axis OL, in other words, the surface facing the insulator 10) is a curved surface that is convex in the inner diameter direction. It can be understood that the withstand voltage is high. This is presumed to be because an increase in the electric field strength due to the protrusion is suppressed because there is no edge because the inner peripheral surface of the protrusion is a curved surface.

D.第1条件の充足の有無に応じた耐電圧性の試験例:
図5は、上述した第1条件(Tw≧Th、かつ、Th≧(1/2)×Ph)の充足の有無に応じた耐電圧性評価試験の第1の試験結果を示す説明図である。図6は、上述した第1条件の充足の有無に応じた耐電圧性評価試験の第2の試験結果を示す説明図である。この試験では、第1実施形態のスパークプラグ100において、突出部70の長さTh(内周面S51と垂直な方向における長さTh)と、突出部70の長さTw(内周面S51に沿った方向における長さTw)とが互いに異なるサンプルと、突出部70を有しないサンプルとを製作して、各サンプルにつき耐電圧性能評価試験を行った。
D. Test example of withstand voltage according to whether the first condition is satisfied:
FIG. 5 is an explanatory diagram showing a first test result of a withstand voltage evaluation test according to whether or not the first condition (Tw ≧ Th and Th ≧ (1/2) × Ph) is satisfied. . FIG. 6 is an explanatory diagram illustrating a second test result of the withstand voltage evaluation test according to whether or not the first condition described above is satisfied. In this test, in the spark plug 100 of the first embodiment, the length Th of the protrusion 70 (the length Th in the direction perpendicular to the inner peripheral surface S51) and the length Tw of the protrusion 70 (on the inner peripheral surface S51). Samples having different lengths (Tw) in the direction along the sample and samples having no protrusion 70 were manufactured, and a withstand voltage performance evaluation test was performed on each sample.

具体的には、図5に示すように、長さThを0.05mmとし、長さTwを、0.05mm、0.10mm、0.15mm、および0.20mmとしたサンプルを、それぞれ10個ずつ製作した。また、長さThを0.10mmとし、長さTwを、0.05mm、0.10mm、0.15mm、および0.20mmとしたサンプルを、それぞれ10個ずつ製作した。また、長さThを0.15mmとし、長さTwを、0.05mm、0.10mm、0.15mm、および0.20mmとしたサンプルを、それぞれ10個ずつ製作した。また、突出部70を有しないサンプルを10個製作した。なお、上述した各サンプル(図5に示す試験結果が得られたサンプル)において、距離Ph(内周面S51と垂直な方向における縮径部62と縮径部15との間の距離)は、0.20mmであった。耐電圧性能評価試験の具体的な手順は、上述した(手順1)ないし(手順3)と同じであるので、説明を省略する。   Specifically, as shown in FIG. 5, 10 samples each having a length Th of 0.05 mm and a length Tw of 0.05 mm, 0.10 mm, 0.15 mm, and 0.20 mm are provided. Made one by one. In addition, 10 samples each having a length Th of 0.10 mm and a length Tw of 0.05 mm, 0.10 mm, 0.15 mm, and 0.20 mm were manufactured. In addition, 10 samples each having a length Th of 0.15 mm and a length Tw of 0.05 mm, 0.10 mm, 0.15 mm, and 0.20 mm were manufactured. In addition, ten samples having no protrusions 70 were manufactured. In each sample described above (the sample from which the test result shown in FIG. 5 was obtained), the distance Ph (the distance between the reduced diameter portion 62 and the reduced diameter portion 15 in the direction perpendicular to the inner peripheral surface S51) is: It was 0.20 mm. Since the specific procedure of the withstand voltage performance evaluation test is the same as (Procedure 1) to (Procedure 3) described above, the description thereof is omitted.

図5では、長さTh,Twが同じ条件である10個のサンプルの平均の耐電圧(kV)を示している。図5に示すように、突出部70を有しないサンプルの耐電圧(35kV)は、他のサンプルに比べて低かった。また、長さThが0.05mmであるサンプルの耐電圧(36V)は、突出部70が有しないサンプルに比べて高いが、その他のサンプルに比べて低かった。このように、長さThが距離Phの1/2よりも低いと、板パッキン8が突出部70と縮径部15の外周面S11との間から突出して電界強度が強まり、耐電圧性が低くなったものと推測される。換言すると、長さThが距離Phの1/2以上であると、板パッキン8が突出部70と縮径部15の外周面S11との間から突出することが抑制され、耐電圧性が向上するものと推測される。   FIG. 5 shows the average withstand voltage (kV) of 10 samples with the same length Th and Tw. As shown in FIG. 5, the withstand voltage (35 kV) of the sample without the protrusion 70 was lower than that of the other samples. In addition, the withstand voltage (36V) of the sample having a length Th of 0.05 mm was higher than that of the sample without the protrusion 70, but was lower than that of the other samples. As described above, when the length Th is less than ½ of the distance Ph, the plate packing 8 protrudes from between the protruding portion 70 and the outer peripheral surface S11 of the reduced diameter portion 15, and the electric field strength is increased and the voltage resistance is improved. Presumed to be lower. In other words, when the length Th is ½ or more of the distance Ph, the plate packing 8 is suppressed from protruding between the protruding portion 70 and the outer peripheral surface S11 of the reduced diameter portion 15, and the voltage resistance is improved. Presumed to be.

長さThが0.10mmのサンプルに関しては、長さTwが0.05mmであるサンプルの耐電圧は37kVであったが、長さTwが0.10mm以上であるサンプルの耐電圧は、いずれも38kVと比較的高い値であった。長さTwが長さTh以上であると、加締時に突出部70に力が加えられた際に、また、その後に残留応力を受けているときに、突出部70の変形(先端側かつ絶縁碍子10に向かう方向への変形)が抑制されるために、耐電圧性が比較的高くなったものと推測される。   Regarding the sample with the length Th of 0.10 mm, the withstand voltage of the sample with the length Tw of 0.05 mm was 37 kV, but the withstand voltage of the sample with the length Tw of 0.10 mm or more is all It was a relatively high value of 38 kV. When the length Tw is equal to or longer than the length Th, when the force is applied to the projecting portion 70 during caulking, or when a residual stress is subsequently applied, deformation of the projecting portion 70 (the tip side and the insulation) Since the deformation in the direction toward the insulator 10 is suppressed, it is presumed that the voltage resistance is relatively high.

長さThが0.15mmのサンプルに関しては、長さTwが0.05mmおよび0.10mmであるサンプルの耐電圧は37kVであったが、長さTwが0.15mm以上であるンプルの耐電圧は、いずれも38kVと比較的高い値であった。このように、長さTwが0.15mm以上の場合に耐電圧が比較的高い理由は、上述した長さThが0.10mmのサンプルにおいて、長さTwが0.10mm以上の場合に耐電圧が高い理由と同じであると推測される。   For samples with a length Th of 0.15 mm, the withstand voltage of the samples with the length Tw of 0.05 mm and 0.10 mm was 37 kV, but the withstand voltage of the samples with the length Tw of 0.15 mm or more All were relatively high values of 38 kV. As described above, the reason why the withstand voltage is relatively high when the length Tw is 0.15 mm or more is that the withstand voltage is obtained when the length Tw is 0.10 mm or more in the above-described sample having the length Th of 0.10 mm. Is presumed to be the same as the reason for the high.

図6の試験例では、長さThを0.10mmとし、長さTwを、0.10mm、0.15mm、0.20mm、および0.25mmとしたサンプルをそれぞれ10個ずつ製作した。また、長さThを0.15mmとし、長さTwを、0.10mm、0.15mm、0.20mm、および0.25mmとしたサンプルをそれぞれ10個ずつ製作した。また、長さThを0.20mmとし、長さTwを、0.10mm、0.15mm、0.20mm、および0.25mmとしたサンプルをそれぞれ10個ずつ製作した。上述した各サンプル(図6に示す試験結果が得られたサンプル)において、距離Ph(内周面S51と垂直な方向における縮径部62と縮径部15との間の距離)は、図5の例とは異なり、0.30mmであった。耐電圧性能評価試験の具体的な手順は、上述した(手順1)ないし(手順3)と同じであるので、説明を省略する。   In the test example of FIG. 6, ten samples each having a length Th of 0.10 mm and a length Tw of 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm were manufactured. In addition, 10 samples each having a length Th of 0.15 mm and a length Tw of 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm were manufactured. Further, ten samples each having a length Th of 0.20 mm and a length Tw of 0.10 mm, 0.15 mm, 0.20 mm, and 0.25 mm were manufactured. In each sample described above (the sample from which the test result shown in FIG. 6 was obtained), the distance Ph (the distance between the reduced diameter portion 62 and the reduced diameter portion 15 in the direction perpendicular to the inner peripheral surface S51) is as shown in FIG. Unlike the example, it was 0.30 mm. Since the specific procedure of the withstand voltage performance evaluation test is the same as (Procedure 1) to (Procedure 3) described above, the description thereof is omitted.

図6では、図5と同様に、長さTh,Twが同じ条件である10個のサンプルの平均の耐電圧(kV)を示している。図6の試験例では、図5の試験例と同様な傾向が得られた。すなわち、長さThが距離Phの1/2以上であるサンプルの耐電圧性は、長さThが距離Phの1/2よりも小さいサンプルの耐電圧性に比べて高かった。また、長さTwが長さTh以上であるサンプルの耐電圧性は、長さTwが長さThよりも低いサンプルの耐電圧性よりも高かった。以上の試験結果から、上述の第1条件(Tw≧Th、かつ、Th≧(1/2)×Ph)を満たすことにより、スパークプラグの耐電圧性が向上した。   FIG. 6 shows the average withstand voltage (kV) of 10 samples under the same conditions for the lengths Th and Tw, as in FIG. In the test example of FIG. 6, the same tendency as the test example of FIG. 5 was obtained. That is, the withstand voltage of the sample whose length Th is 1/2 or more of the distance Ph is higher than the withstand voltage of a sample whose length Th is smaller than 1/2 of the distance Ph. Moreover, the voltage resistance of the sample whose length Tw is equal to or longer than the length Th was higher than the voltage resistance of the sample whose length Tw was lower than the length Th. From the above test results, the withstand voltage of the spark plug was improved by satisfying the first condition (Tw ≧ Th and Th ≧ (1/2) × Ph).

E.第2条件の充足の有無に応じた気密性の試験例:
図7は、上述した第2条件(L2≧(1/2)×L1)の充足の有無に応じた気密性評価試験の第1の試験結果を示す説明図である。この試験では、第1実施形態のスパークプラグ100において、距離L1(交線Aと交線Bとの間の最短距離)が等しく、距離L2(交線Bと交線Cとの間の最短距離)が互いに異なるサンプルをそれぞれ製作して、各サンプルについて機密性能評価試験を行った。
E. Test example of airtightness depending on whether the second condition is satisfied:
FIG. 7 is an explanatory diagram showing a first test result of an airtightness evaluation test according to whether or not the second condition (L2 ≧ (1/2) × L1) is satisfied. In this test, in the spark plug 100 of the first embodiment, the distance L1 (the shortest distance between the intersection line A and the intersection line B) is equal, and the distance L2 (the shortest distance between the intersection line B and the intersection line C). ) Were produced from different samples, and a confidential performance evaluation test was conducted on each sample.

具体的には、距離L2を0.15mmとするサンプルを5つ製作した。同様に、距離L2を0.20mmとするサンプルと、距離L2を0.25mmとするサンプルと、距離L2を0.30mmとするサンプルとを、それぞれ5つずつ製作した。なお、いずれのサンプルにおいても、距離L1は0.50mmであった。   Specifically, five samples with a distance L2 of 0.15 mm were manufactured. Similarly, five samples each having a distance L2 of 0.20 mm, a sample having a distance L2 of 0.25 mm, and a sample having a distance L2 of 0.30 mm were manufactured. In any sample, the distance L1 was 0.50 mm.

気密性評価試験として、JIS(日本工業規格)の試験方法(JIS B8031 7.5項)に準拠した試験を行った。なお、スパークプラグ100を締め付ける際のトルクは、呼び径M12における下限値である15N・mとした。そして、スパークプラグ100を150℃の雰囲気中に30分間保った後、その状態のまま1.5MPaの空気圧を加えて、スパークプラグ100の内部からの空気の漏洩量を測定した。図7における「漏洩量」は、距離L2が同じ5つのサンプルの空気の漏洩量(cc/min)の平均値を表している。そして、漏洩量が10cc/min以下である場合に「OK」と判定し、漏洩量が10cc/minよりも大きい場合に「NG」と判定した。   As an airtightness evaluation test, a test based on a JIS (Japanese Industrial Standard) test method (JIS B8031 7.5) was performed. The torque when tightening the spark plug 100 was 15 N · m, which is the lower limit value of the nominal diameter M12. Then, after maintaining the spark plug 100 in an atmosphere of 150 ° C. for 30 minutes, an air pressure of 1.5 MPa was applied in that state, and the amount of air leakage from the inside of the spark plug 100 was measured. “Leakage amount” in FIG. 7 represents an average value of air leakage amounts (cc / min) of five samples having the same distance L2. Then, “OK” was determined when the leakage amount was 10 cc / min or less, and “NG” was determined when the leakage amount was greater than 10 cc / min.

図7に示すように、距離L2が0.15mmおよび0.20mmであるサンプルについての判定はNGであった。これに対して、距離L2が0.25mmおよび0.30mmであるサンプルについての判定はOKであった。距離L1は0.50mmであるので、上記試験結果を換言すると、距離L2が距離L1の1/2よりも小さい場合に判定はNGであり、距離L1の1/2以上の場合に判定はOKであった。   As shown in FIG. 7, the determination for the samples having the distance L2 of 0.15 mm and 0.20 mm was NG. On the other hand, the determination about the sample whose distance L2 is 0.25 mm and 0.30 mm was OK. Since the distance L1 is 0.50 mm, in other words, the test result is NG when the distance L2 is smaller than 1/2 of the distance L1, and the determination is OK when the distance L1 is 1/2 or more of the distance L1. Met.

距離L2が距離L1の1/2以上であるサンプルでは、距離L2が距離L1の1/2よりも小さいサンプルに比べて、主体金具50の内周面S51と、絶縁碍子10の外周面S11との間に介在する板パッキン8の体積をより大きくすることができる。換言すると、主体金具50の内周面S51と板パッキン8との接触面積、および絶縁碍子10の外周面S11と板パッキン8との接触面積を、より大きくすることができる。このため、主体金具50の内周面S51と、絶縁碍子10の外周面S11との間のシール性を向上でき、より良い気密性評価試験結果が得られたものと推定される。   In the sample whose distance L2 is 1/2 or more of the distance L1, the inner peripheral surface S51 of the metal shell 50 and the outer peripheral surface S11 of the insulator 10 are compared with the sample whose distance L2 is smaller than 1/2 of the distance L1. The volume of the plate packing 8 interposed therebetween can be increased. In other words, the contact area between the inner peripheral surface S51 of the metal shell 50 and the plate packing 8 and the contact area between the outer peripheral surface S11 of the insulator 10 and the plate packing 8 can be further increased. For this reason, it is estimated that the sealing performance between the inner peripheral surface S51 of the metal shell 50 and the outer peripheral surface S11 of the insulator 10 can be improved, and a better airtightness evaluation test result was obtained.

F.第3条件の充足の有無に応じた耐電圧性の試験例:
図8は、上述した第3条件(長さD≦0.5mm)の充足の有無に応じた耐電圧性向上評価試験の試験結果を示す説明図である。この試験では、まず、第1実施形態のスパークプラグ100において、長さD(突出部70の先端側端部と、絶縁碍子10の外周面14との間の径方向に沿った長さ)が互いに異なる3つのサンプルをそれぞれ製作した。具体的には、長さDが0.3mmのサンプルを10個、長さDが0.5mmのサンプルを10個、長さDが0.7mmであるサンプルを10個、それぞれ製作した。そして、各サンプルについて、耐電圧を測定した。このときの耐電圧測定方法は、上述した耐電圧性能評価試験の手順と同じであるので、説明を省略する。そして、突出部70を有しないスパークプラグについても同様にして耐電圧を測定し、各サンプルで得られた耐電圧値から、突出部70を有しないスパークプラグについて得られた耐電圧値を差し引くことにより、各サンプルについての耐電圧向上値を求めた。なお、図8において、横軸は、長さDを表し、縦軸は、耐電圧向上値(kV)を表す。なお、図8の耐電圧向上値は、長さDが同じ5つのサンプルの耐電圧向上値の平均値を表している。
F. Test example of withstand voltage according to whether the third condition is satisfied:
FIG. 8 is an explanatory diagram showing test results of a withstand voltage improvement evaluation test according to whether or not the third condition (length D ≦ 0.5 mm) is satisfied. In this test, first, in the spark plug 100 of the first embodiment, the length D (the length along the radial direction between the distal end side end of the protruding portion 70 and the outer peripheral surface 14 of the insulator 10) is set. Three different samples were produced. Specifically, 10 samples with a length D of 0.3 mm, 10 samples with a length D of 0.5 mm, and 10 samples with a length D of 0.7 mm were manufactured. And the withstand voltage was measured about each sample. Since the withstand voltage measurement method at this time is the same as the procedure of the withstand voltage performance evaluation test described above, the description thereof is omitted. Then, the withstand voltage is measured in the same manner for the spark plug without the projecting portion 70, and the withstand voltage value obtained for the spark plug without the projecting portion 70 is subtracted from the withstand voltage value obtained for each sample. Thus, the withstand voltage improvement value for each sample was obtained. In FIG. 8, the horizontal axis represents the length D, and the vertical axis represents the withstand voltage improvement value (kV). In addition, the withstand voltage improvement value of FIG. 8 represents the average value of the withstand voltage improvement values of five samples having the same length D.

図8に示すように、長さDが0.3mmであるサンプルの耐電圧向上値は最も高く、長さDが0.5mmであるサンプルの耐電圧は2番目に高く、長さDが0.7mmであるサンプルの耐電圧は、最も低かった。これは、長さDが小さいほど、板パッキン8の先端側(内径側)への突出により耐電圧性の劣化が大きいからである。換言すると、長さDが小さいほど、突出部70による耐電圧性の向上効果が大きいことを意味している。   As shown in FIG. 8, the withstand voltage improvement value of the sample having the length D of 0.3 mm is the highest, the withstand voltage of the sample having the length D of 0.5 mm is the second highest, and the length D is 0. The withstand voltage of the sample that was .7 mm was the lowest. This is because the smaller the length D, the greater the deterioration of the withstand voltage due to the protrusion of the plate packing 8 toward the tip side (inner diameter side). In other words, the smaller the length D, the greater the effect of improving the withstand voltage by the protrusion 70.

G.変形例:
本発明のスパークプラグの構成は、各実施形態におけるスパークプラグ100の構成に限定されるものではなく、適宜変更することができる。例えば、板パッキン8は、環状の外観形状を有していたが、これに代えて、円周方向に沿って部分的に欠けた環状の外観形状を有していてもよい。また、例えば、円弧状の外観形状を有する複数の板パッキンを、板パッキン8の代わりに用いてもよい。
G. Variations:
The configuration of the spark plug of the present invention is not limited to the configuration of the spark plug 100 in each embodiment, and can be changed as appropriate. For example, the plate packing 8 has an annular outer shape, but instead, it may have an annular outer shape partially missing along the circumferential direction. Further, for example, a plurality of plate packings having an arcuate appearance may be used instead of the plate packing 8.

また、各実施形態のスパークプラグ100を、横放電型のスパークプラグに置き換えてもよい。   Further, the spark plug 100 of each embodiment may be replaced with a lateral discharge type spark plug.

本発明は、上述の実施形態、試験例、および変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する本実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments, test examples, and modifications, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features in the present embodiment and the modified examples corresponding to the technical features in the embodiments described in the column of the summary of the invention are to solve part or all of the above-described problems, or In order to achieve part or all of the above effects, replacement or combination can be appropriately performed. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

3…セラミック抵抗
4…シール体
5…ガスケット
6…リング部材
8…板パッキン
9…タルク
10…絶縁碍子
12…貫通孔
13…脚長部
14…外周面
15…縮径部
17…先端側胴部
18…基端側胴部
19…鍔部
20…中心電極
21…電極母材
25…芯材
30…接地電極
32…基部
33…先端部
40…端子金具
50…主体金具
51…工具係合部
52…取付ねじ部
53…加締部
54…シール部
55…座面
56…段部
57…先端部
58…座屈部
59…首
61…第2一定径部
62…縮径部
63…第1一定径部
64…拡径部
65…貫通孔
70,70a…突出部
71…内周面
72…外周面
73…第1面
74…第2面
90…中心電極チップ
95…接地電極チップ
100…スパークプラグ
200…エンジンヘッド
201…孔
205…開口周縁部
G…火花放電ギャップ
A,B,C…交線
L1…距離
L2…距離
OD…軸線方向
OL…軸線
CL…クリアランス
Ph…距離
S11…外周面
M12…径
S51…内周面
S52…内周面
Th…長さ
Tw…長さ
DESCRIPTION OF SYMBOLS 3 ... Ceramic resistance 4 ... Sealing body 5 ... Gasket 6 ... Ring member 8 ... Plate packing 9 ... Talc 10 ... Insulator 12 ... Through-hole 13 ... Leg long part 14 ... Outer peripheral surface 15 ... Reduced diameter part 17 ... Tip side trunk | drum 18 ... Base end side body part 19 ... Gutter part 20 ... Center electrode 21 ... Electrode base material 25 ... Core material 30 ... Ground electrode 32 ... Base part 33 ... Tip part 40 ... Terminal metal fitting 50 ... Main metal fitting 51 ... Tool engagement part 52 ... Mounting screw portion 53 ... Clamping portion 54 ... Sealing portion 55 ... Seat surface 56 ... Step portion 57 ... Tip portion 58 ... Buckling portion 59 ... Neck 61 ... Second constant diameter portion 62 ... Reduced diameter portion 63 ... First constant diameter Part 64 ... Diameter-enlarged part 65 ... Through hole 70, 70a ... Projection part 71 ... Inner peripheral surface 72 ... Outer peripheral surface 73 ... First surface 74 ... Second surface 90 ... Central electrode tip 95 ... Ground electrode tip 100 ... Spark plug 200 ... Engine head 201 ... Hole 20 5 ... Opening peripheral edge G ... Spark discharge gap A, B, C ... Intersection line L1 ... Distance L2 ... Distance OD ... Axial direction OL ... Axis line CL ... Clearance Ph ... Distance S11 ... Outer peripheral surface M12 ... Diameter S51 ... Inner peripheral surface S52 ... Inner peripheral surface Th ... Length Tw ... Length

Claims (5)

軸線方向に延びる棒状の中心電極と、
前記軸線方向に沿って第1貫通孔が形成され、前記第1貫通孔内において前記中心電極を保持し、前記軸線方向に沿って先端側に向かうにつれて外径が小さくなる絶縁体側縮径部を有する絶縁体と、
前記軸線方向に沿って第2貫通孔が形成され、前記第2貫通孔内において前記絶縁体を保持し、前記軸線方向に沿って先端側に向かうにつれて内径が小さくなる主体金具側縮径部を有する主体金具と、
前記絶縁体側縮径部と前記主体金具側縮径部との間に配置されているシール部材と、
を備えるスパークプラグであって、
前記主体金具は、さらに、
前記主体金具側縮径部の先端側の端部と接し、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向に突出している突出部を有し、
前記主体金具側縮径部の表面に沿った方向における前記突出部の長さをTwとし、前記主体金具側縮径部の表面と垂直な方向における前記突出部の高さをThとし、前記主体金具側縮径部の表面と垂直な方向における前記主体金具側縮径部と前記絶縁体側縮径部との間の距離をPhとしたときに、
Tw≧Th、かつ、Th≧(1/2)×Ph
の条件を満たすことを特徴とするスパークプラグ。
A rod-shaped center electrode extending in the axial direction;
A first through hole is formed along the axial direction, the center electrode is held in the first through hole, and an insulator-side reduced diameter portion whose outer diameter decreases toward the distal end side along the axial direction. An insulator having,
A second through hole is formed along the axial direction, the insulator is held in the second through hole, and a metal fitting side reduced diameter portion having a smaller inner diameter toward the distal end side along the axial direction. Having a metal shell,
A seal member disposed between the insulator-side reduced diameter portion and the metal shell-side reduced diameter portion;
A spark plug comprising:
The metal shell further includes:
The metal shell-side contact with the distal end of the reduced diameter portion, have a protrusion from the metal shell side reduced-diameter portion projecting in a direction towards the insulator side reduced diameter portion,
The length of the protrusion in the direction along the surface of the metal shell side reduced diameter portion is Tw, and the height of the protrusion in the direction perpendicular to the surface of the metal shell side reduced diameter portion is Th. When the distance between the metal shell side reduced diameter part and the insulator side reduced diameter part in the direction perpendicular to the surface of the metal part reduced diameter part is Ph,
Tw ≧ Th and Th ≧ (1/2) × Ph
A spark plug characterized by satisfying the following conditions .
請求項1に記載のスパークプラグにおいて、
前記主体金具は、前記突出部の先端側の端部と接し、前記軸線方向に沿ったいずれの位置においても内径が一定である第1一定径部を有し、
前記突出部において、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向の頂から、前記第1一定径部と接する前記先端側の端部までの内周面は、凸状の曲面であることを特徴とするスパークプラグ。
The spark plug according to claim 1, wherein
The metal shell has a first constant diameter portion that is in contact with the end portion on the distal end side of the protruding portion and has a constant inner diameter at any position along the axial direction.
In the protruding portion, an inner peripheral surface from a top in a direction from the metal shell side reduced diameter portion toward the insulator side reduced diameter portion to an end portion on the distal end side in contact with the first constant diameter portion is a convex shape. A spark plug characterized by a curved surface.
軸線方向に延びる棒状の中心電極と、
前記軸線方向に沿って第1貫通孔が形成され、前記第1貫通孔内において前記中心電極を保持し、前記軸線方向に沿って先端側に向かうにつれて外径が小さくなる絶縁体側縮径部を有する絶縁体と、
前記軸線方向に沿って第2貫通孔が形成され、前記第2貫通孔内において前記絶縁体を保持し、前記軸線方向に沿って先端側に向かうにつれて内径が小さくなる主体金具側縮径部を有する主体金具と、
前記絶縁体側縮径部と前記主体金具側縮径部との間に配置されているシール部材と、
を備えるスパークプラグであって、
前記主体金具は、さらに、
前記主体金具側縮径部の先端側の端部と接し、前記主体金具側縮径部から前記絶縁体側縮径部に向かう方向に突出している突出部を有し、
前記主体金具は、
前記突出部の先端側の端部と接し、前記軸線方向に沿ったいずれの位置においても内径が一定である第1一定径部と、
前記主体金具側縮径部の基端側の端部と接し、前記軸線方向に沿ったいずれの位置においても内径が一定である第2一定径部と、
を有し、
前記主体金具側縮径部の内周面を仮想的に先端側に延長した面と前記第1一定径部の内周面とが交わる第1交線と、前記主体金具側縮径部の内周面と前記第2一定径部の内周面とが交わる第2交線との間の最短距離をL1とし、前記主体金具側縮径部の内周面と前記突出部とが交わる第3交線と前記第2交線との間の最短距離をL2としたときに、
L2≧(1/2)×L1
の条件を満たすことを特徴とするスパークプラグ。
A rod-shaped center electrode extending in the axial direction;
A first through hole is formed along the axial direction, the center electrode is held in the first through hole, and an insulator-side reduced diameter portion whose outer diameter decreases toward the distal end side along the axial direction. An insulator having,
A second through hole is formed along the axial direction, the insulator is held in the second through hole, and a metal fitting side reduced diameter portion having a smaller inner diameter toward the distal end side along the axial direction. Having a metal shell,
A seal member disposed between the insulator-side reduced diameter portion and the metal shell-side reduced diameter portion;
A spark plug comprising:
The metal shell further includes:
A protruding portion that is in contact with the end portion on the distal end side of the metal shell-side reduced diameter portion and protrudes in a direction from the metal shell-side reduced diameter portion toward the insulator-side reduced diameter portion;
The metallic shell is
A first constant diameter portion that is in contact with the end portion on the distal end side of the protruding portion and has a constant inner diameter at any position along the axial direction;
A second constant diameter portion that is in contact with an end portion on the base end side of the metal shell-side reduced diameter portion and has a constant inner diameter at any position along the axial direction;
Have
A first intersection line where a surface virtually extending the inner peripheral surface of the metal shell-side reduced diameter portion toward the distal end side and an inner peripheral surface of the first constant-diameter portion, and an inside of the metal shell-side reduced diameter portion The shortest distance between the peripheral surface and the second intersecting line where the inner peripheral surface of the second constant diameter portion intersects is L1, and the inner peripheral surface of the metal shell-side reduced diameter portion and the protruding portion intersect with each other. When the shortest distance between the intersection line and the second intersection line is L2,
L2 ≧ (1/2) × L1
A spark plug characterized by satisfying the following conditions.
請求項1から請求項までのいずれか一項に記載のスパークプラグにおいて、
前記突出部の先端側端部と前記絶縁体との間の径方向に沿った距離が、0.5mm以下であることを特徴とするスパークプラグ。
In the spark plug according to any one of claims 1 to 3 ,
A spark plug characterized in that a distance along a radial direction between a tip side end portion of the protruding portion and the insulator is 0.5 mm or less.
請求項1から請求項までのいずれか一項に記載のスパークプラグであって、
前記主体金具の外周部に、呼び径がM12以下であるねじ部が形成されていることを特徴とするスパークプラグ。
The spark plug according to any one of claims 1 to 4 , wherein
A spark plug, wherein a threaded portion having a nominal diameter of M12 or less is formed on an outer peripheral portion of the metal shell.
JP2014013111A 2014-01-28 2014-01-28 Spark plug Active JP6328945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013111A JP6328945B2 (en) 2014-01-28 2014-01-28 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013111A JP6328945B2 (en) 2014-01-28 2014-01-28 Spark plug

Publications (2)

Publication Number Publication Date
JP2015141781A JP2015141781A (en) 2015-08-03
JP6328945B2 true JP6328945B2 (en) 2018-05-23

Family

ID=53772027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013111A Active JP6328945B2 (en) 2014-01-28 2014-01-28 Spark plug

Country Status (1)

Country Link
JP (1) JP6328945B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913445B2 (en) * 2014-06-27 2016-04-27 日本特殊陶業株式会社 Spark plug
JP6426120B2 (en) * 2016-05-30 2018-11-21 日本特殊陶業株式会社 Spark plug
JP6910496B1 (en) * 2020-04-06 2021-07-28 日本特殊陶業株式会社 Spark plug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652965A (en) * 1992-07-31 1994-02-25 Nippondenso Co Ltd Spark plug for internal combustion engine
JP3432102B2 (en) * 1996-02-15 2003-08-04 日本特殊陶業株式会社 Spark plug
JP4191773B2 (en) * 2006-08-29 2008-12-03 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP2015141781A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5260748B2 (en) Spark plug
WO2014013723A1 (en) Spark plug
US10120015B2 (en) Method for inspecting insulator for spark plug
JP6328945B2 (en) Spark plug
JP5134133B1 (en) Manufacturing method of spark plug
JP5595563B1 (en) Spark plug
US9912126B2 (en) Spark plug insulator containing mullite and spark plug including same
JP6158283B2 (en) Spark plug
JP5690702B2 (en) Spark plug
JP5798203B2 (en) Spark plug
EP3118953B1 (en) Spark plug
JP4837688B2 (en) Spark plug
JP5683409B2 (en) Spark plug and method of manufacturing spark plug
JP6436942B2 (en) Spark plug
JP5058114B2 (en) Spark plug and method for manufacturing the spark plug.
JP2007280668A (en) Spark plug
JP6054928B2 (en) Spark plug
JP7492938B2 (en) Spark plug
JP7076413B2 (en) Spark plug
JP5451676B2 (en) Manufacturing method of spark plug
JP6207573B2 (en) Insulator inspection method for spark plug
JPWO2019069640A1 (en) Spark plug
JP5335290B2 (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6328945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250