JP6328407B2 - Titania nanostructure and manufacturing method thereof - Google Patents

Titania nanostructure and manufacturing method thereof Download PDF

Info

Publication number
JP6328407B2
JP6328407B2 JP2013242820A JP2013242820A JP6328407B2 JP 6328407 B2 JP6328407 B2 JP 6328407B2 JP 2013242820 A JP2013242820 A JP 2013242820A JP 2013242820 A JP2013242820 A JP 2013242820A JP 6328407 B2 JP6328407 B2 JP 6328407B2
Authority
JP
Japan
Prior art keywords
titania
mcnf
nanostructure according
titania nanostructure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013242820A
Other languages
Japanese (ja)
Other versions
JP2015101504A (en
Inventor
裕介 井出
裕介 井出
庸治 佐野
庸治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013242820A priority Critical patent/JP6328407B2/en
Publication of JP2015101504A publication Critical patent/JP2015101504A/en
Application granted granted Critical
Publication of JP6328407B2 publication Critical patent/JP6328407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は新規な構造を有するチタニア・ナノ構造体及びその製造方法に関する。本発明は更にこのチタニア・ナノ構造体を含む紫外線吸収剤、紫外線吸収被覆材、及びこの紫外線吸収被覆を行った物品に関する。   The present invention relates to a titania nanostructure having a novel structure and a method for producing the same. The present invention further relates to an ultraviolet absorber containing the titania nanostructure, an ultraviolet absorbing coating material, and an article subjected to the ultraviolet absorbing coating.

チタニア及びチタン酸塩は、豊富に存在し、無毒性であり、また安定性が高いため、太陽光発電、光触媒作用による汚染の分解、光触媒作用によるHの生産等の光反応に主にかかわる多くの用途のための重要な材料である(非特許文献1〜3)。チタニアのナノ構造制御は、性能を最適化しまた新規な用途を探索するための実績のある方法である(例えば、非特許文献4の固体酸触媒)。それゆえに、ナノチューブやナノシート(及びそれぞれの集積構造もしくは集積物)のような多くのチタニア・ナノ構造が活発に合成されてきた(非特許文献5〜11)。 Since titania and titanate are abundant, non-toxic and highly stable, they are mainly involved in photoreactions such as solar power generation, degradation of contamination by photocatalysis, and production of H 2 by photocatalysis. It is an important material for many applications (Non-Patent Documents 1 to 3). Titania nanostructure control is a proven method for optimizing performance and searching for new applications (eg, solid acid catalyst of Non-Patent Document 4). Therefore, many titania nanostructures such as nanotubes and nanosheets (and respective integrated structures or aggregates) have been actively synthesized (Non-Patent Documents 5 to 11).

本発明は、新規なナノ構造を有するチタニア・ナノ構造体を提供し、またこれによってチタニアやチタン酸塩を利用可能な用途を更に拡張することを課題とする。   It is an object of the present invention to provide a titania nanostructure having a novel nanostructure, and thereby further expand the applications in which titania and titanate can be used.

本発明の一側面によれば、下式
xyTi2-(x+ny)/44(Mはアルカリ金属及びアルカリ土類金属からなる群から選ばれた一つの元素、nはその価数、x及びyは0<x+ny<8を満たす正の数値)で表され、多空芯構造を有するナノファイバー形状のチタニア・ナノ構造体が与えられる。
According to one aspect of the present invention, the formula H x M y Ti 2- (x + ny) / 4 O 4 (M is one element selected from the group consisting of alkali metals and alkaline earth metals, n represents The valence, x and y are represented by positive values satisfying 0 <x + ny <8), and a nanofiber- shaped titania nanostructure having a multi-core structure is given.

ここで、外径が2〜10nmであってよい。   Here, the outer diameter may be 2 to 10 nm.

また、長さが100〜1000nmであってよい。   Moreover, length may be 100-1000 nm.

また、空芯の内径が0.5〜1nmであってよい。   The inner diameter of the air core may be 0.5 to 1 nm.

また、屈折率が1.5〜1.7であってよい。   Moreover, a refractive index may be 1.5-1.7.

本発明の他の側面によれば、層状チタン酸塩を四級アンモニウム、水酸化物及びフッ化物からなる群から選択された少なくとも一の存在下で水熱処理することによる、上記何れかのチタニア・ナノ構造体の製造方法が与えられる。   According to another aspect of the present invention, any one of the above titania and titania by hydrothermally treating the layered titanate in the presence of at least one selected from the group consisting of quaternary ammonium, hydroxide and fluoride. A method of manufacturing a nanostructure is provided.

ここで、前記層状チタン酸塩はKTiであってよい。 Here, the layered titanate may be K 2 Ti 2 O 5 .

また、四級アンモニウム、水酸化物及びフッ化物からなる群は水酸化テトラプロピルアンモニウム及びフッ化アンモニウムを含んでよい。   The group consisting of quaternary ammonium, hydroxide and fluoride may also include tetrapropylammonium hydroxide and ammonium fluoride.

また、前記水熱処理の温度は250℃以下であってよい。   The hydrothermal treatment temperature may be 250 ° C. or lower.

また、前記水熱処理によるゲル状生成物を水で洗浄してよい。   Moreover, you may wash | clean the gel-like product by the said hydrothermal treatment with water.

本発明の更に他の側面によれば、上記何れかのチタニア・ナノ構造体を含む紫外線吸収剤が与えられる。   According to still another aspect of the present invention, there is provided an ultraviolet absorber containing any one of the above titania nanostructures.

本発明の更に他の側面によれば、上記何れかのチタニア・ナノ構造体と有機ポリマーとを含む、紫外線吸収被覆材が与えられる。   According to still another aspect of the present invention, there is provided an ultraviolet absorbing coating material comprising any of the above titania nanostructures and an organic polymer.

本発明の更に他の側面によれば、上記何れかのチタニア・ナノ構造体と有機ポリマーとを含む紫外線吸収被覆を有する物品が与えられる。   According to still another aspect of the present invention, there is provided an article having an ultraviolet absorbing coating containing any of the above titania nanostructures and an organic polymer.

本願の新規なチタニア・ナノ構造体は、低屈折率、低光触媒活性などの、従来のチタン酸塩やチタニアでは得られなかった特性を提供することができる。   The novel titania nanostructure of the present application can provide characteristics such as low refractive index and low photocatalytic activity that could not be obtained with conventional titanates and titania.

(a)、(b)本発明の実施例で使用したKTiのSEM像。(c)本発明の実施例のチタニアMCNFのSEM像。(d)本発明の実施例のチタニアMCNFのHRTEM像。(e)本発明の実施例のチタニアMCNFのEDSスペクトルを示す図。(A), (b) SEM images of K 2 Ti 2 O 5 used in Examples of the present invention. (C) SEM image of titania MCNF of an example of the present invention. (D) HRTEM image of titania MCNF of an example of the present invention. (E) The figure which shows the EDS spectrum of the titania MCNF of the Example of this invention. (a)KTi及びチタニアMCNFのX線回折パターンを示す図。差し込み図はKTiの結晶構造を示す図(球は層間のKイオンを示す)。(b)KTi及びチタニアMCNFのN吸着/脱着等温線を示す図。 (A) K 2 Ti 2 O 5 and shows the X-ray diffraction pattern of the titania MCNF. The inset shows the crystal structure of K 2 Ti 2 O 5 (the sphere shows the K ions between the layers). (B) N 2 adsorption / desorption isotherm of K 2 Ti 2 O 5 and titania MCNF. (a)P25、チタニアMCNF及びKTiの拡散反射型UV−visスペクトル、並びにチタニアMCNFの水による溶出液のUV−bis吸収スペクトルを示す図。(b)光触媒作用によるシクロヘキサン(CH)からの、シクロヘキサノン(CHone)、シクロヘキサノール(CHnol)及びCOの生成量の時間累積を示す図。光触媒としてP25を使用した場合のデータ及びチタニアMCNFを使用した場合のデータを示している。反応条件は以下のとおりである:CH(2mL)、O飽和アセトニトリル(18mL)、触媒(60mg)、光照射(照度1000W・m−2、波長>320nmの太陽光シミュレーターを使用)。(c)チタニアMCNFの屈折率を求めるための液浸法試験の様子を示す写真。10mgの粉末試料を10mLの有機溶媒に分散した。(A) P25, shows diffuse reflective UV-vis spectra of titania MCNF and K 2 Ti 2 O 5, as well as UV-bis absorption spectra of the eluate with water titania MCNF. (B) from cyclohexane by photocatalysis (CH), cyclohexanone (CHone), shows the time accumulation of cyclohexanol (CHnol) and the amount of CO 2. Data when P25 is used as a photocatalyst and data when titania MCNF is used are shown. The reaction conditions are as follows: CH (2 mL), O 2 saturated acetonitrile (18 mL), catalyst (60 mg), light irradiation (using a solar simulator with an illuminance of 1000 W · m −2 and a wavelength> 320 nm). (C) A photograph showing the state of the immersion method test for determining the refractive index of titania MCNF. 10 mg powder sample was dispersed in 10 mL organic solvent. 被覆なし、並びにP25入りPCL被覆及びチタニアMCNF入りPCL被覆付きのローダミン101膜のUV劣化試験結果を示す写真。The photograph which shows the UV deterioration test result of the rhodamine 101 film | membrane without a coating | cover, and a PCL coating containing P25 and a PCL coating containing titania MCNF.

本願では、ゼオライト合成にヒントを得た方法によって合成され、入手可能なチタニアのほとんどのものが決して示さない光特性を有する新規なチタニア・ナノ構造体を提供する。すなわち、本ナノ構造体は、全体としてはナノファイバーであるが、更に1本のナノファイバー中にナノファイバーの長手方向に沿った複数のチャネル(孔)が開いている。本願では、この構造を、中空、すなわち空の芯が複数(2本、またはそれよりも多くの)本入っているという意味で、多空芯構造と呼ぶ。本ナノ構造体の外径は2〜10nm程度、長さは100〜1000nm程度、内部のチャネル数は2〜10本程度、各チャネルの内径は0.5〜1nm程度の範囲である。また、その物質の化学式は
Ti2−(x+ny)/4(Mはアルカリ金属及びアルカリ土類金属からなる群から選ばれた一つの元素、nはその価数、x及びyは0<x+ny<8を満たす正の数値)
で表される。本願のチタニア・ナノ構造体は、その多空芯構造により、比重、屈折率とも従来のチタニア系材料に比べて低く、それぞれ2.5〜3.5程度及び1.5〜1.7程度を実現可能である。
The present application provides novel titania nanostructures that are synthesized by methods inspired by zeolite synthesis and have optical properties that none of the available titanias will ever exhibit. That is, the nanostructure is a nanofiber as a whole, but a plurality of channels (holes) along the longitudinal direction of the nanofiber are further opened in one nanofiber. In the present application, this structure is referred to as a multi-air core structure in the sense that there are a plurality of hollow cores (that is, two or more) empty cores. The outer diameter of the nanostructure is about 2 to 10 nm, the length is about 100 to 1000 nm, the number of internal channels is about 2 to 10, and the inner diameter of each channel is about 0.5 to 1 nm. The chemical formula H x M y Ti 2- (x + ny) / 4 O 4 (M is one element selected from the group consisting of alkali metals and alkaline earth metals of the material, n represents the valence, x and y is a positive value satisfying 0 <x + ny <8)
It is represented by The titania nanostructure of the present application has a specific gravity and refractive index lower than those of conventional titania-based materials due to its multi-core structure, which is about 2.5 to 3.5 and about 1.5 to 1.7, respectively. It is feasible.

ゼオライト、すなわち産業上広く使用されているマイクロポーラス・アルミノケイ酸塩の合成は伝統的に試行錯誤によるものであったが、もっと合理的な手法が最近利用できるようになった。これらの手法の一つとして、あるゼオライトを別のゼオライトへ水熱転換すること、つまりゼオライト転換(interzeolite conversion)が注目を集めている(非特許文献12〜14)。ゼオライト転換では、熱水条件下であるゼオライトが分解されて、局所的な秩序構造を有するアルミノケイ酸塩種(以下、「ナノ部品」という)を形成する。この構造は元のゼオライトの局所的構造と類似している。このようなナノ部品は構造規定剤(structure-directing agent)や鉱化剤(mineralizer)の助けを借りて組み立てられ、別のゼオライトとなる。このゼオライト転換法は、新規で貴重なあるいは高品質のゼロライトを安価で豊富に存在するゼオライトから合成するために、成功裏に使用されている(非特許文献14)。   Although the synthesis of zeolites, or microporous aluminosilicates that are widely used in the industry, has traditionally been trial and error, more rational approaches have recently become available. As one of these methods, hydrothermal conversion of one zeolite to another zeolite, that is, zeolite conversion (interzeolite conversion) has attracted attention (Non-Patent Documents 12 to 14). In zeolite conversion, the zeolite under hydrothermal conditions is decomposed to form an aluminosilicate species having a local ordered structure (hereinafter referred to as “nanopart”). This structure is similar to the local structure of the original zeolite. Such nanoparts are assembled with the help of structure-directing agents and mineralizers to become another zeolite. This zeolite conversion method has been successfully used to synthesize new, valuable or high-quality zerolite from cheap and abundant zeolites (Non-Patent Document 14).

本願では、ゼオライト転換に類似した方法により、層状のチタン酸塩、これに限定するものではないがたとえばKTi、を変換して一次元の複数チャネルを有する新規なナノファイバー状構造を取るチタニア・ナノ構造体を得ることができることを示す。この新規なチタニア・ナノ構造体はユニークなナノ構造の結果として光触媒活性をほとんど示さず、また屈折率が極めて低い。この特徴により、本発明のナノファイバー状チタニア・ナノ構造体は、一般に使用されている有機ポリマーに埋め込まれる紫外線(UV)吸収剤として使用して、UV感受性の高い基材上の非常に有効な透明UV保護被覆とすることができる。 In this application, a novel nanofibrous structure having a one-dimensional multiple channel by converting a layered titanate, such as but not limited to K 2 Ti 2 O 5 , by a method similar to zeolite conversion. It shows that titania nanostructures can be obtained. This novel titania nanostructure exhibits little photocatalytic activity as a result of the unique nanostructure and has a very low refractive index. Due to this feature, the nanofibrous titania nanostructures of the present invention can be used as UV (UV) absorbers embedded in commonly used organic polymers and are very effective on UV sensitive substrates. It can be a transparent UV protective coating.

チタニアはこのようなUV吸収剤として使用することが求められてきた。しかしながら、チタニアの光触媒活性及び高い屈折率により、それを埋め込んだポリマーにそれぞれポリマーの光劣化及び白濁という問題を引き起こすため、この分野でのチタニアの用途に大きな制約が課せられていた。局所的構造の異なる各種のチタニアが入手可能であるため、本発明の合成方法はチタニア・ナノ構造の合理的な合成法となって、チタニアの応用を、ほとんどの既存のチタニア・ナノ構造では実現できない、精密に制御された光特性が求められる分野(例えばUV吸収剤(非特許文献15)、ポリマーへの充填材(非特許文献16)、ファインケミカル合成用の光触媒(非特許文献17、18)など)へ拡大することが可能となる。また、高性能かつ新規な用途を持つ他の金属酸化物ナノ構造材料も、このゼオライト変換にヒントを得た本発明の方法によって設計することが可能となる。
なお、埋め込み先の有機ポリマーの屈折率がこのチタニア・ナノ構造体の屈折率とほとんど同じであれば、埋め込み後の複合材料は極めて透明になる。しかし、両屈折率がある程度異なっていたとしても、後述するようにこのナノ構造体の屈折率は他のチタニア系材料に比べて有機ポリマーの屈折率にかなり近いので、白濁の程度は小さく、従って、わずかの程度の白濁を許容する分野への新たな応用が期待される。
Titania has been sought to be used as such a UV absorber. However, the photocatalytic activity and high refractive index of titania cause problems of polymer photodegradation and white turbidity in the polymer in which it is embedded, respectively, which places great restrictions on the use of titania in this field. Since various titanias with different local structures are available, the synthesis method of the present invention becomes a rational synthesis method of titania nanostructures, and the application of titania is realized in most existing titania nanostructures. Fields that require highly controlled optical properties that cannot be performed (for example, UV absorbers (Non-Patent Document 15), fillers for polymers (Non-Patent Document 16), photocatalysts for fine chemical synthesis (Non-Patent Documents 17 and 18) Etc.). Also, other metal oxide nanostructured materials with high performance and novel applications can be designed by the method of the present invention inspired by this zeolite conversion.
If the refractive index of the organic polymer at the embedding destination is almost the same as the refractive index of the titania nanostructure, the composite material after embedding becomes extremely transparent. However, even if both refractive indexes differ to some extent, the refractive index of this nanostructure is much closer to the refractive index of the organic polymer than other titania-based materials, as will be described later. A new application is expected in a field that allows a slight degree of cloudiness.

本願発明者は、ゼオライト転換を層状チタン酸化合物KTi(非特許文献19)に初めて適用して新規なチタニア・ナノ構造を設計した。KTiは板状のモルフォロジーを有している。その横方向サイズは数μm、厚さは数百nmまでの大きさであって(図1(a)、(b))、TiOの三角両錐の対からなる波形の層及び層間のKイオンとでできており、基本面間隔(層の繰り返しの間隔)が0.64nmとなっている(図2(a)の差し込み図)。水酸化テトラプロピルアンモニウム(tetrapropylammonium hydroxide;TPAOH)及びフッ化アンモニウム(NHF)の存在下でのアルカリ条件で水熱処理することにより、KTiは全く新規な生成物に変換される。なお、ここで使用したTPAOH及びNHFは、ゼオライト転換においてそれぞれ鉱化剤及び/または構造指示剤並びに鉱化剤としてしばしば使用される。また、この水熱処理も、上に書いた特定の試薬や処理条件に限定されるものではない。たとえば、TPAOHやNHFの代わりにあらゆる四級アンモニウム、水酸化物、フッ化物を利用することができ、また温度範囲も一般的な水熱処理温度領域(〜250℃)まで上げることができる。反応時間も種々の条件等により変化する。 The inventor of the present application designed a novel titania nanostructure by applying zeolite conversion to the layered titanate compound K 2 Ti 2 O 5 (Non-patent Document 19) for the first time. K 2 Ti 2 O 5 has a plate-like morphology. The lateral size is several μm and the thickness is several hundreds of nanometers (FIGS. 1A and 1B), and a corrugated layer composed of a pair of triangular TiO 5 pyramids and K between the layers. It is made of ions, and the basic surface interval (repetition interval between layers) is 0.64 nm (inset of FIG. 2A). Hydrothermal treatment under alkaline conditions in the presence of tetrapropylammonium hydroxide (TPAOH) and ammonium fluoride (NH 4 F) converts K 2 Ti 2 O 5 into a completely new product. . The TPAOH and NH 4 F used here are often used as mineralizers and / or structure indicators and mineralizers in the zeolite conversion, respectively. Also, this hydrothermal treatment is not limited to the specific reagents and processing conditions described above. For example, any quaternary ammonium, hydroxide, or fluoride can be used in place of TPAOH or NH 4 F, and the temperature range can be increased to a general hydrothermal treatment temperature range (˜250 ° C.). The reaction time varies depending on various conditions.

以下、実施例に基づいて本発明をさらに詳細に説明するが、当然のこととして、当該実施例は本発明をいかなる意味でも限定するものではなく、本発明の理解を助ける目的で提示するものであることに注意する必要がある。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, it should be understood that the examples are not intended to limit the present invention in any way, but are presented for the purpose of assisting understanding of the present invention. It should be noted that there are.

本発明の新規なチタニア・ナノ構造体は、具体的には以下のようにして作製した。先ず、非特許文献19に示すようにして、KCOとTiO(ルチル型)との固相反応によりKTiを作製した。これをテフロン(登録商標)(「テフロン(登録商標)」はイー アイ デュポン ドゥ ヌムール アンド カンパニーの登録商標)で裏打ちしたステンレス鋼製オートクレーブ中においてTPAOH、水及びNHFをモル比KTi:TPAOH:HO:NHF=1:0.8:5:0.2で混合し、この混合物を170℃に加熱して1週間保持した。この水熱処理の後、乾燥したゲル状生成物を水で洗浄し、70℃で乾燥した。 The novel titania nanostructure of the present invention was specifically produced as follows. First, as shown in Non-Patent Document 19, K 2 Ti 2 O 5 was prepared by a solid-phase reaction between K 2 CO 3 and TiO 2 (rutile type). In a stainless steel autoclave lined with Teflon (registered trademark) (“Teflon (registered trademark)” is a registered trademark of EI DuPont de Nemours and Company), TPAOH, water, and NH 4 F were mixed in a molar ratio of K 2 Ti 2. O 5 : TPAOH: H 2 O: NH 4 F = 1: 0.8: 5: 0.2 The mixture was heated to 170 ° C. and held for 1 week. After this hydrothermal treatment, the dried gel product was washed with water and dried at 70 ° C.

この生成物は直径が数nmまでであり長さが数百nmまでの、図1(c)に示す走査型電子顕微鏡(SEM)像に見られるような繊維状のモルフォロジー(ナノファイバー)を有する。この生成物(以下、チタニアMCNF(titanate multi-channel nanofiber)と称する)は出発物質であるKTiとはほとんど全く異なるX線回折(XRD)パターンを示した(図2(a))。チタニアMCNFは、図2(b)のN吸着/脱着等温線に見られるように、低い分圧において急峻なN吸収を示したが、これは微小(マイクロ)孔の存在を示している。図1(d)に示す高分解能透過型電子顕微鏡像(HRTEM)から、各ナノファイバーは直径が約0.9nmの一次元チャネルをいくつか有していることが分かった。なお、本生成物が層状構造ではあり得ず、実際に一次元多チャネル構造を有していることについては後述する。SEMやHRTEMによって詳細に検討したが、ナノチューブや孔なしのナノファイバー(ナノロッド)等の、MCNF以外の粒子は見いだされなかった。 This product has a fibrous morphology (nanofibers) up to several nanometers in diameter and up to several hundred nanometers in length as seen in the scanning electron microscope (SEM) image shown in FIG. . This product (hereinafter referred to as titania MCNF (titanate multi-channel nanofiber)) showed an X-ray diffraction (XRD) pattern almost completely different from the starting material K 2 Ti 2 O 5 (FIG. 2 (a)). ). Titania MCNF showed steep N 2 absorption at low partial pressure, as seen in the N 2 adsorption / desorption isotherm in FIG. 2 (b), indicating the presence of micro (micro) pores. . From the high-resolution transmission electron microscope image (HRTEM) shown in FIG. 1 (d), it was found that each nanofiber had several one-dimensional channels having a diameter of about 0.9 nm. The fact that this product cannot have a layered structure and actually has a one-dimensional multichannel structure will be described later. Although it examined in detail by SEM and HRTEM, particles other than MCNF, such as a nanotube and a nanofiber (nanorod) without a hole, were not found.

図1(e)に示すエネルギー分散X線分光(energy-dispersive X-ray spectroscopy、EDS)により、チタニアMCNF中にはO,K及びTiは存在するが、Fは存在しないことが分かった。溶解したチタニアMCNFの誘導結合プラズマ原子発光分光(ICP−AES)により、Ti及びKの含有量を求めた(Ti:42.1wt%、K:12.1wt%)。空気中で記録したチタニアMCNFの示差熱熱重量同時分析(TG−DTA)曲線はTPAの酸化分解に起因する重量減少を示さなかったが、これによりTPAがチタニアMCNFに取り込まれていなかったことが確認された。従って、TPAOHは構造指示剤としてよりは、鉱化剤として機能していたことがわかる。このTG−DTA曲線はまた、表面OH基の脱水及び凝縮に帰せられる重量減少(約2.3wt%)を示した。Ti、K及びOHの量に基づいて、チタニアMCNFの化学式を計算したところ、H0.520.60Ti1.72(HはOHとして存在)となった。 It was found from energy-dispersive X-ray spectroscopy (EDS) shown in FIG. 1 (e) that O, K and Ti are present in titania MCNF but F is not present. The contents of Ti and K were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) of dissolved titania MCNF (Ti: 42.1 wt%, K: 12.1 wt%). The differential thermo-thermogravimetric analysis (TG-DTA) curve of titania MCNF recorded in air showed no weight loss due to oxidative degradation of TPA, indicating that TPA was not incorporated into titania MCNF. confirmed. Therefore, it can be seen that TPAOH functions as a mineralizer rather than as a structure indicator. This TG-DTA curve also showed a weight loss (about 2.3 wt%) attributed to dehydration and condensation of surface OH groups. When the chemical formula of titania MCNF was calculated based on the amounts of Ti, K and OH, it was H 0.52 K 0.60 Ti 1.72 O 4 (H is present as OH).

0.520.60Ti1.72をドデシルアンモニウム(dodecylammonium)イオンを含む水溶液で処理すると、0.8mmol・g−1のアンモニウムイオンを吸着し、それと同時に、取り込まれているKイオンを半定量的な量(0.4mmol・g−1)だけ脱着した。すなわちドデシルアンモニウムが定量的にKイオンと1対1で交換され吸着したわけではないが、相当量吸着した。 When H 0.52 K 0.60 Ti 1.72 O 4 is treated with an aqueous solution containing dodecylammonium ions, 0.8 mmol · g −1 ammonium ions are adsorbed and simultaneously incorporated K Ions were desorbed by a semi-quantitative amount (0.4 mmol · g −1 ). That is, dodecyl ammonium was not quantitatively exchanged with K ions in a one-to-one manner and adsorbed, but a considerable amount was adsorbed.

このイオン交換処理は、より詳しくは以下のようにして行った。先ずチタニアMCNF粉末(200mg)をドデシルアミン塩酸塩の水溶液(100mL、19.4mmol・L−1)に溶解し、この混合液を室温で6時間攪拌した。その結果得られる生成物を遠心分離により分離し水洗してから、室温で乾燥した。吸着されたドデシルアンモニウム及び脱着されたKイオンの量はそれぞれ乾燥した生成物のTG−DTA曲線及び溶解した生成物のICP−AESから求めた。 More specifically, this ion exchange treatment was performed as follows. First, titania MCNF powder (200 mg) was dissolved in an aqueous solution of dodecylamine hydrochloride (100 mL, 19.4 mmol·L −1 ), and the mixture was stirred at room temperature for 6 hours. The resulting product was separated by centrifugation, washed with water and dried at room temperature. The amounts of adsorbed dodecylammonium and desorbed K ions were determined from the TG-DTA curve of the dried product and ICP-AES of the dissolved product, respectively.

この事実は、Kイオンが交換可能なイオンとして一次元チャネルの表面に位置していることを示唆している。ここで、Kを嵩張ったドデシルアンモニウムと交換した後でもH0.520.60Ti1.72のXRDパターンが大きく変わらないこと(例えば、最も低角度側の回折ピークが低2θ側へシフトしなかった等)に注目すべきである。これにより、H0.520.60Ti1.72は層構造を持っていないことが確認される(非特許文献20)。 This fact suggests that K ions are located on the surface of the one-dimensional channel as exchangeable ions. Here, even after replacing K with bulky dodecylammonium, the XRD pattern of H 0.52 K 0.60 Ti 1.72 O 4 does not change significantly (for example, the lowest diffraction peak has a low 2θ It should be noted that it did not shift to the side. Thus, H 0.52 K 0.60 Ti 1.72 O 4 has that do not have a layer structure is confirmed (Non-Patent Document 20).

TiからチタニアMCNFを形成する機構について検討した。KTi、TPAOH、NHF及び水を170℃で反応させると、乾燥したゲル状の生成物だけが見出された。この生成物を水で洗浄して、チタニアMCNFを得た。その収率はTi量に基づいて評価して76%であった。一方、水による無色透明な溶出液(つまり洗浄水)も得られたが、これには別に24%分のTiが入っているはずである。これより、この溶出液には、チタニアMCNFに組込まれたチタニア種(おそらく「チタニア・ナノ部品」)が残存していると考えられる。図3(a)に示す溶出液の紫外−可視(UV−vis)スペクトルでは、270nmを中心とする鋭い吸収ピークが観察された。この吸収ピークはチタニアMCNFのUV−visスペクトルには現れないものである。孤立した四面体Ti種(高度に分散したチタニア種)を有するゼオライトまたはメソポーラスシリカは、UV−visスペクトルにおいて220nmに吸収を示す(非特許文献21)。また、層状のチタニアの剥離(層間剥離)により得られたチタニア・ナノシートのUV−visスペクトル中には、270nmを中心として大きく成長した吸収ピークがしばしば観測される。このピークは分子レベルの厚さのナノシートの存在によって説明される(非特許文献7、22)。乾燥した溶出液のSEM像中には、KTiから導出されたナノシート状の粒子やその集合体は全く観察されなかった(対応するSEM−EDSスペクトルではTi、K及びOの存在が確認されたが、数百nmまでのサイズのKOH粒子が観察されただけである)。更には、チタニアMCNFのXRDパターン中にはKTiのチタニア層内の回折に起因する(020)ピークが依然として観察された(図2(a))。従って、溶出液中のTi種はKTiの完全な分解によるTi原子ではなく、KTiのTiO三角両錐単位(図2(a)の差し込み図)からなり、層剥離されたKTi単層ナノシートに比べて分子量が大幅に小さい「チタニア・ナノ部品」であると結論付けることができる。 The mechanism of forming titania MCNF from K 2 Ti 2 O 5 was examined. When K 2 Ti 2 O 5 , TPAOH, NH 4 F and water were reacted at 170 ° C., only a dry gel product was found. This product was washed with water to obtain titania MCNF. The yield was 76% evaluated based on the amount of Ti. On the other hand, a colorless and transparent eluate with water (that is, washing water) was also obtained, but this should contain 24% of Ti. From this, it is considered that the titania species (probably “titania nanoparts”) incorporated in the titania MCNF remain in the eluate. In the ultraviolet-visible (UV-vis) spectrum of the eluate shown in FIG. 3 (a), a sharp absorption peak centered at 270 nm was observed. This absorption peak does not appear in the UV-vis spectrum of titania MCNF. Zeolite or mesoporous silica having an isolated tetrahedral Ti species (highly dispersed titania species) exhibits absorption at 220 nm in the UV-vis spectrum (Non-patent Document 21). In addition, in the UV-vis spectrum of the titania nanosheet obtained by peeling of the layered titania (delamination), an absorption peak that grows largely around 270 nm is often observed. This peak is explained by the presence of nanosheets of molecular thickness (Non-Patent Documents 7 and 22). In the SEM image of the dried eluate, no nanosheet-like particles or aggregates derived from K 2 Ti 2 O 5 were observed (the presence of Ti, K and O in the corresponding SEM-EDS spectrum). Was confirmed, but only KOH particles up to several hundred nm in size were observed). Furthermore, in the XRD pattern of titania MCNF, the (020) peak due to diffraction in the titania layer of K 2 Ti 2 O 5 was still observed (FIG. 2 (a)). Therefore, Ti species in the eluate is not a Ti atom by complete decomposition of K 2 Ti 2 O 5, consists TiO 5 triangular bipyramidal units K 2 Ti 2 O 5 (inset of FIG. 2 (a)) It can be concluded that it is a “titania nanopart” with a significantly lower molecular weight than the delaminated K 2 Ti 2 O 5 single layer nanosheet.

TPAOH及び/またはNHFが出発混合物に添加されなかった場合には、結晶性及び多孔性がはるかに低い生成物が得られた。従って、これら2種類の鉱化剤がチタニアナノ部品の形成及びMCNFへの組み立てに当たって重要な役割を演じていた。 When TPAOH and / or NH 4 F was not added to the starting mixture, a much lower crystalline and porous product was obtained. Thus, these two mineralizers played an important role in the formation of titania nanoparts and assembly into MCNF.

TiO(アナターゼ相、ルチル相、ブルッカイト相、または非晶質相)が、有機アンモニウムやフッ化物を何も使用せずに、アルカリ性水熱条件の下でチタニア・ナノチューブに変換できることはよく知られており、またチタニア・ナノチューブの形成は、チタニア微粒子前駆体が分解し、その後再結晶して単層あるいは多層のナノシートとなり、次いでそれが丸められることによりなされる、ということが一般に認められている(非特許文献5)。同様な熱水条件だがもっと高温では、無孔性チタニア・ナノファイバー(あるいはナノロッド)が得られている(非特許文献5)。更には、KTiを酸で処理し(層間Kイオンをプロトンで置換)、次に加熱することで、繊維状モルフォロジーを有する無孔性アナターゼ(もしくはTiO(B))に変化することが報告されている(非特許文献23〜25)。ここで、本願のチタニアMCNFのXRDパターンが上述したような従来のチタニア・ナノ構造のものと一致していないことは注目に値する。この事実もまた、本願のチタニアMCNFは「チタニア・ナノ部品」の形成にかかわる新たなルートを経て形成されることを示している。 It is well known that TiO 2 (anatase phase, rutile phase, brookite phase, or amorphous phase) can be converted to titania nanotubes under alkaline hydrothermal conditions without using any organic ammonium or fluoride. In addition, it is generally accepted that the formation of titania nanotubes is done by decomposing titania microparticle precursors and then recrystallizing them into single or multilayer nanosheets which are then rolled. (Non-patent document 5). Non-porous titania nanofibers (or nanorods) have been obtained under similar hot water conditions but at higher temperatures (Non-Patent Document 5). Furthermore, K 2 Ti 2 O 5 is treated with acid (interlayer K ions are replaced with protons), and then heated to change to nonporous anatase (or TiO 2 (B)) having a fibrous morphology. It has been reported (Non-Patent Documents 23 to 25). Here, it is noteworthy that the XRD pattern of the titania MCNF of the present application does not match that of the conventional titania nanostructure as described above. This fact also indicates that the titania MCNF of the present application is formed through a new route related to the formation of “titania nanoparts”.

更に、層状ニオブ酸塩KNb17・3HOがチタニアMCNFの合成と同じ水熱条件下でナノチューブ状ニオブ酸塩に変化することにも注目すべきである。この事実は、本願の合成方法が多様な金属酸化物ナノ構造を作製するに当たって広く使用できることを強く示唆している。 Furthermore, it should also be noted that the layered niobate K 4 Nb 6 O 17 · 3H 2 O is changed in nanotube niobate in the same hydrothermal conditions as in the synthesis of titania MCNF. This fact strongly suggests that the synthesis method of the present application can be widely used in producing various metal oxide nanostructures.

本願のチタニアMCNFの光に関する特性を調べた。図3(a)は拡散反射型モードで記録したチタニアMCNFのUV−visスペクトルを、比較対象としての出発物質であるKTi及び市販のTiO微粒子であるP25のスペクトルとともに示す。チタニアMCNFの吸収端(380nm)はKTiの吸収端(345nm)よりも長波長側にシフトしていた。この結果は、本願のMCNFがUV吸収材料として有利であることを示している。それは、損傷を与える自然界のUV放射の大部分は290nmと350nmの間にあるからである(非特許文献26)。 The light-related characteristics of the titania MCNF of the present application were examined. 3 (a) it is shown with the spectrum of the K 2 Ti 2 O 5 and a commercially available TiO 2 particles P25 which is a starting material of the UV-vis spectra of titania MCNF recorded with diffuse reflective mode, for comparison. The absorption edge (380 nm) of titania MCNF was shifted to the longer wavelength side than the absorption edge (345 nm) of K 2 Ti 2 O 5 . This result shows that MCNF of the present application is advantageous as a UV absorbing material. This is because most of the damaging natural UV radiation is between 290 nm and 350 nm (26).

チタニアMCNFがP25と同じく効果的にUV光を吸収することは注目すべきである。これだけ見れば、チタニアMCNFはP25と同様に、UV光の照射を受けたとき光触媒活性を示すと考えられるかもしれないが、実際はそれとは反対の結果となった。図3(b)は太陽光シミュレーター(λ>320nm)を溶解酸素の存在下でP25あるいはチタニアMCNF上のシクロヘキサン(CH)に照射している間の生成物の収量の時間変化を示す。P25を使用した場合は、シクロヘキサノン(CHone)及びシクロヘキサノール(CHnol)、更にかなりの量のCOが発生した。これは、P25の価電子帯のホールあるいは価電子帯のホールによって還元されたOHに由来するヒドロキシル・ラジカルで還元されることで発生したシクロヘキシル・ラジカルが、ヒドロキシ・ラジカルや伝導帯電子によるOの還元で生成された超酸化物アニオンのような酸化種によって酸化されてCHone及びCHnolができ、またそれらが簡単に起こる過剰酸化によってCOとなったことによるものである(非特許文献27)。これとは対照的に、チタニアMCNFの方はCOでさえもほとんど生成しなかった。 It should be noted that titania MCNF absorbs UV light as effectively as P25. From this point of view, titania MCNF, like P25, may be considered to exhibit photocatalytic activity when irradiated with UV light, but the actual result was the opposite. FIG. 3 (b) shows the change over time in the yield of the product during irradiation of a solar simulator (λ> 320 nm) with cyclohexane (CH) on P25 or titania MCNF in the presence of dissolved oxygen. When P25 was used, cyclohexanone (CHone) and cyclohexanol (CHnol) and a considerable amount of CO 2 were generated. This is because the cyclohexyl radical generated by reduction with a hydroxyl radical derived from OH reduced by a hole in the valence band of P25 or a hole in the valence band is converted to O by a hydroxyl radical or a conduction band electron. This is because it is oxidized by an oxidizing species such as a superoxide anion generated by reduction of 2 to form CHone and CHnol, and they are converted to CO 2 by the overoxidation that occurs easily (Non-patent Document 27). ). In contrast, titania MCNF produced little CO 2 even.

このことは、チタニアMCNFをUV光で照射した時、無視できる程度の低い光触媒活性しか示さなかったことを意味する。この結果は本願のチタニアMCNFの長所とすることができる。というのは、今日の先端技術のチタニア・ナノ材料は、より大きな表面積などのいくつかの要因により、従来のチタニア(例えば約50m・g−1の表面積を持つP25)に比べて高い光活性を示すからである。例えば、焼成後のチタニア・ナノチューブは約150m・g−1の表面積を有し、各種の有機化合物の効果的なUV誘起光触媒である(焼成前のチタニア・ナノチューブでさえもそれなりの光触媒活性を有する(非特許文献28))。チタニアMCNFの表面積(図2(b)に示すように、約240m・g−1)は、最先端のチタニア・ナノ構造と比較しても更に優れているかあるいは同等である。チタニアMCNFがこのように極めて低い光触媒活性を有することの考えられる理由は、図2(a)に示すように、その結晶化度が低いことである。一般に、結晶化度が高い(あるいは表面及びバルク欠陥が少ない)チタニアの方が電子−ホール再結合速度が小さいために、各種の反応に対してより高い光触媒活性を示すと考えられている(非特許文献29)。有機化合物をCOまで完全酸化する光触媒活性が充分に抑制されているため、本願のチタニアMCNFは、後述するUV吸収剤としてだけでなく、焼成や金属の担持などの適切な修飾(非特許文献30)を行って、有機基質(organic substrate)を部分酸化するための(つまり基礎化学品を合成するための)光触媒(非特許文献17、18)としても使用できる可能性がある。 This means that when titania MCNF was irradiated with UV light, it showed only negligible photocatalytic activity. This result can be an advantage of the present titania MCNF. This is because today's advanced technology titania nanomaterials have higher photoactivity than conventional titania (eg, P25 with a surface area of about 50 m 2 · g −1 ) due to several factors such as a larger surface area. It is because it shows. For example, titania nanotubes after firing have a surface area of about 150 m 2 · g −1 and are effective UV-induced photocatalysts of various organic compounds (even titania nanotubes before firing have some photocatalytic activity. (Non-patent Document 28)). The surface area of titania MCNF (approximately 240 m 2 · g −1 as shown in FIG. 2B) is even better or equivalent to the state-of-the-art titania nanostructure. The possible reason that titania MCNF has such a very low photocatalytic activity is that its crystallinity is low, as shown in FIG. 2 (a). In general, titania having a higher degree of crystallinity (or fewer surface and bulk defects) is considered to exhibit higher photocatalytic activity for various reactions because of a lower electron-hole recombination rate (non-non-reactive). Patent Document 29). Since the photocatalytic activity to completely oxidize organic compounds to CO 2 is sufficiently suppressed, the titania MCNF of the present application is not only used as a UV absorber described later, but also suitable modifications such as firing and metal loading (non-patent literature) 30), and may be used as a photocatalyst (Non-patent Documents 17 and 18) for partially oxidizing an organic substrate (that is, for synthesizing a basic chemical).

チタニアMCNFの他の注目すべき特性は極めて低い屈折率である。チタニアMCNFの屈折率を液浸法を使って測定した。チタニアMCNF粉末(あるいは比較としてのP25)を屈折率の異なる各種の有機溶媒に分散させ、目視により観察した分散液の透明度からチタニアMCNFの屈折率を評価した(図3(c))。P25は全ての有機溶媒中で不透明であった。これは、P25は主にルチル型及びアナターゼ型TiOからなっているが、これらの屈折率はそれぞれ2.71及び2.53(非特許文献31)と、有機溶媒の屈折率よりも大幅に高いからであると説明できる(別の考えられる理由として、P25の一次粒子サイズは20nm程度であるが、これが溶媒中で凝集してより大きな粒子となって可視光を散乱したのかもしれない)。一方、チタニアMCNFは屈折率が1.74のジヨードメタン(diiodomethane)中でほとんど透明であり(屈折率マッチング)、これからその屈折率が1.7程度と見積もられた。この屈折率値はTiOの屈折率(2.4〜2.7(非特許文献31))に比べて極めて低い。結晶化合物の屈折率(n)と密度(d)はおおよそ
(n−1)/d=定数
という関係に従うことがわかっており、またこの関係はチタニアについてもよく当てはまることが見出されている(非特許文献31)。従って、本願のチタニアMCNFの屈折率がこのように非常に低いことの最も確からしい理由は、それが高度に多孔性であることから考えて、この物質の密度が低いことである。チタニアMCNFも有機溶媒中で凝集するかもしれない。しかし、図1(c)及び図2(b)から明らかなようにこの物質にはメソポアが存在することから、これらが凝集体の屈折率を低下させるように働く。
Another notable property of titania MCNF is its extremely low refractive index. The refractive index of titania MCNF was measured using the immersion method. Titania MCNF powder (or P25 as a comparison) was dispersed in various organic solvents having different refractive indexes, and the refractive index of titania MCNF was evaluated from the transparency of the dispersion observed visually (FIG. 3 (c)). P25 was opaque in all organic solvents. This is because P25 is mainly composed of rutile type and anatase type TiO 2 , and their refractive indexes are 2.71 and 2.53 (Non-patent Document 31), which are much larger than those of organic solvents. It can be explained that it is high (as another possible reason, the primary particle size of P25 is about 20 nm, but this may have aggregated in a solvent to scatter visible light into larger particles) . On the other hand, titania MCNF is almost transparent in diiodomethane having a refractive index of 1.74 (refractive index matching), and the refractive index is estimated to be about 1.7. This refractive index value is extremely lower than the refractive index of TiO 2 (2.4 to 2.7 (Non-patent Document 31)). It has been found that the refractive index (n) and density (d) of the crystalline compound approximately follows the relationship (n-1) / d = constant, and this relationship has also been found to be true for titania ( Non-patent document 31). Therefore, the most probable reason that the titania MCNF of the present application has such a very low refractive index is the low density of this material in view of its high porosity. Titania MCNF may also aggregate in organic solvents. However, as is apparent from FIGS. 1 (c) and 2 (b), since this substance has mesopores, these act to lower the refractive index of the aggregate.

上述したユニークな光特性により、本発明のチタニアMCNFは、一般に使用される有機ポリマーに埋め込むUV吸収剤として好適に使用できる。本願のチタニアMCNFの実際のUV保護性能を評価するため、UV感受性が非常に高い有機染料(ローダミン101)膜を、チタニアMCNFを埋め込んだポリカプロラクタム(polycaprolactam、PCL、屈折率1.53)で被覆し、このように被覆された膜を強いUV光(λ>300nm)で照射した。また、比較用に、チタニアMCNFの代わりにP25を埋め込んだPCLで被覆した膜も準備し、同じUV照射を行った。チタニアMCNFはPCL中に均一(肉眼で見て全体的に透明という意味で)に埋め込むことができ、チタニアMCNF入りPCLは有機染料膜上に高度に透明な被覆を形成することができた。   Due to the unique optical properties described above, the titania MCNF of the present invention can be suitably used as a UV absorber embedded in commonly used organic polymers. In order to evaluate the actual UV protection performance of the titania MCNF of the present application, a highly UV sensitive organic dye (rhodamine 101) film is coated with polycaprolactam (polycaprolactam, PCL, refractive index 1.53) embedded with titania MCNF. The film thus coated was irradiated with strong UV light (λ> 300 nm). For comparison, a film coated with PCL embedded with P25 instead of titania MCNF was also prepared, and the same UV irradiation was performed. The titania MCNF could be uniformly embedded in PCL (in the sense of being totally transparent when viewed with the naked eye), and the titania MCNF-containing PCL was able to form a highly transparent coating on the organic dye film.

この有機染料(ローダミン101)膜の作製、チタニアMCNFまたはP25入りPCLによる被覆、及びUV照射によるUV保護特性の評価は、具体的には以下のようにして行った。   The production of this organic dye (rhodamine 101) film, the coating with titania MCNF or PCL containing P25, and the evaluation of the UV protection properties by UV irradiation were specifically performed as follows.

ローダミン101(10.2mol・L−1)及び粘土(日本粘土学会が標準資料として配布している合成サポナイト、5.0g・L−1)をエタノール水溶液(30mL、v/v=1/1)と混合した混合液の一部(2mL)をガラス基板(幅28mm、長さ48mm)にキャストし、溶媒を蒸発させることで、ローダミン101膜を作製した。PCL(200mg)のクロロホルム(100mL)への溶液をMCNFまたはP25(それぞれ20mg)と混合し、当該混合液の一部(1.0mL)をローダミン101膜上にキャストした。溶媒の蒸発後、被覆された膜を室温において照度1000W・m−2の太陽光シミュレーターによりUV照射した(波長>300nm)。比較のため、被覆なしのローダミン101膜に対してもUV照射を行った。 Rhodamine 101 (10.2 mol·L −1 ) and clay (synthetic saponite distributed by the Japan Clay Society as standard data, 5.0 g · L −1 ) in ethanol aqueous solution (30 mL, v / v = 1/1) A part (2 mL) of the mixed solution mixed with was cast on a glass substrate (width 28 mm, length 48 mm), and the solvent was evaporated to produce a rhodamine 101 film. A solution of PCL (200 mg) in chloroform (100 mL) was mixed with MCNF or P25 (20 mg each), and a portion (1.0 mL) of the mixture was cast onto a Rhodamine 101 membrane. After evaporation of the solvent, the coated film was irradiated with UV light at a room temperature using a solar simulator with an illuminance of 1000 W · m −2 (wavelength> 300 nm). For comparison, UV irradiation was also applied to an uncoated Rhodamine 101 film.

図4は左列から被覆なし、P25入りPCL被覆、及びチタニアMCNF入りPCL被覆を行ったローダミン101膜に上述したUV照射を0分、240分(4時間)、及び1440分(24時間)行った結果の写真を示す。図4からわかるように、UV光照射の結果、チタニアMCNF入り被覆は有機染料のUV損傷(退色)を効果的に抑止することができた。これに対して、P25入りPCL被覆の場合は、P25の屈折率がPCLよりもはるかに高い上に、P25は高い光触媒活性を有するため、被覆のマトリクス(PCL)が白濁するとともに(照射0分時点で)、照射直後からマトリクスと有機染料の双方の光劣化が起こった。   FIG. 4 shows that the above-mentioned UV irradiation was performed for 0 minutes, 240 minutes (4 hours), and 1440 minutes (24 hours) on the rhodamine 101 film without coating, P25-filled PCL coating, and titania MCNF-filled PCL coating from the left column. The photograph of the result is shown. As can be seen from FIG. 4, as a result of UV light irradiation, the coating containing titania MCNF was able to effectively suppress UV damage (fading) of the organic dye. On the other hand, in the case of PCL coating containing P25, the refractive index of P25 is much higher than that of PCL, and P25 has high photocatalytic activity, so that the coating matrix (PCL) becomes cloudy (irradiation 0 minutes) At that time, photodegradation of both the matrix and the organic dye occurred immediately after irradiation.

チタニアは今日まで日焼け止め用の製品(主にUV遮蔽材料としてであって、UV吸収剤としてではない)に広く応用されてきた。しかしながら、このような用途のために、チタニアに対して、しばしば適切な表面処理を行うことでその高い光触媒活性を抑制することが求められる。また、チタニアは屈折率が高いために可視域で透明性を失うことで、光学デバイスのような高度の透明性が求められる用途への利用が大いに制限される。上述した全ての結果から、本願のチタニアMCNFはこのような問題のない万能のUV保護材料となる高い可能性を持っていることがわかる。   To date, titania has been widely applied to sunscreen products (primarily as UV shielding materials, not as UV absorbers). However, for such applications, it is often required to suppress the high photocatalytic activity of titania by performing an appropriate surface treatment. In addition, since titania has a high refractive index and loses transparency in the visible range, its use in applications that require high transparency such as optical devices is greatly limited. From all the results described above, it can be seen that the titania MCNF of the present application has a high possibility of becoming a universal UV protection material without such problems.

以上説明したように、多空芯構造を有する本願の新規なチタニア・ナノ構造体は低屈折率、低光触媒活性などの、従来のチタン酸塩やチタニアには見慣れなかった新規な特性を有するため、これに限定されるものではないが、透明かつ長寿命のポリマー用紫外線吸収剤などの新規分野に広く利用することができる。   As described above, the novel titania nanostructure of the present application having a multi-core structure has novel properties not familiar to conventional titanates and titania, such as low refractive index and low photocatalytic activity. Although not limited to this, it can be widely used in new fields such as a transparent and long-life UV absorber for polymers.

Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode.Nature 238, 37-38 (1972). O'Regan, B. & Graetzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2films. Nature 353, 737-740 (1991).O'Regan, B. & Graetzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2films.Nature 353, 737-740 (1991). Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582 (2008).Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena.Surf. Sci. Rep. 63, 515-582 (2008). Kitano, M., Nakajima, K., Kondo, J. N., Hayashi, S. & Hara, M. Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132, 6622-6623 (2010).Kitano, M., Nakajima, K., Kondo, J. N., Hayashi, S. & Hara, M. Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132, 6622-6623 (2010). Bavykin, D. V., Friedrich, J. M. & Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2907-2824 (2006).Bavykin, D. V., Friedrich, J. M. & Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications.Adv. Mater. 18, 2907-2824 (2006). Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891-2959 (2007).Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.Chem. Rev. 107, 2891-2959 (2007). Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503-2511 (2009).Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics.J. Mater. Chem. 19, 2503-2511 (2009). Roy, P., Berger, S. & Schmuki, P. TiO2nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904-2939 (2011).Roy, P., Berger, S. & Schmuki, P. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904-2939 (2011). Liu, S., Han, L., Duan, Y., Asahina, S., Terasaki, O., Cao, Y., Liu, B., Ma, L., Zhang, J. & Che, S. Synthesis of chiral TiO2 nanofiber with electron transition-based optical activity. Nat. Commun. 3, 1215-1220 (2012).Liu, S., Han, L., Duan, Y., Asahina, S., Terasaki, O., Cao, Y., Liu, B., Ma, L., Zhang, J. & Che, S. Synthesis of chiral TiO2 nanofiber with electron transition-based optical activity. Nat. Commun. 3, 1215-1220 (2012). Chen, D. & Caruso, R. A. Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv. Funct. Mater. 23, 1356-1374 (2013).Chen, D. & Caruso, R. A. Recent progress in the synthesis of spherical titania nanostructures and their applications.Adv. Funct. Mater. 23, 1356-1374 (2013). Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A. & Snaith, H. J. Mesoporous TiO2single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215-220 (2013).Crossland, E. J. W., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J. A. & Snaith, H. J. Mesoporous TiO2single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215-220 (2013). Subotic, B., Skrtic, D. & Smit, I. Transformation of zeolite A into hydroxysodalite I. An approach to the mechanism of transformation and its experimental evaluation. J. Cryst. Growth 50, 498-508 (1980).Subotic, B., Skrtic, D. & Smit, I. Transformation of zeolite A into hydroxysodalite I. An approach to the mechanism of transformation and its experimental evaluation.J. Cryst. Growth 50, 498-508 (1980). Jon, H., Ikawa, N., Oumi, Y. & Sano, T. An insight into the process involved in hydrothermal conversion of FAU to *BEA zeolite. Chem. Mater. 20, 4135-4141 (2008).Jon, H., Ikawa, N., Oumi, Y. & Sano, T. An insight into the process involved in hydrothermal conversion of FAU to * BEA zeolite. Chem. Mater. 20, 4135-4141 (2008). Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M. & Sano, T. Role of structural similarity between starting zeolite and product zeolite in the interzeolite conversion process. J. Nanosci. Nanotechnol. 13, 3020-3026 (2013).Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M. & Sano, T. Role of structural similarity between starting zeolite and product zeolite in the interzeolite conversion process. J. Nanosci. Nanotechnol. 13, 3020-3026 (2013). Cui, H., Zayat, M., Garcia, P. & Levy, D. Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates. Adv. Mater. 20, 65-68 (2008).Cui, H., Zayat, M., Garcia, P. & Levy, D. Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates. Adv. Mater. 20 , 65-68 (2008). Fuse, Y., Ide, Y. & Ogawa, M. Hybridization of epoxy resin with a layered titanate and UV light durability and controlled refractive index of the resulting nanocomposite. Polym. Chem. 1, 849-853 (2010).Fuse, Y., Ide, Y. & Ogawa, M. Hybridization of epoxy resin with a layered titanate and UV light durability and controlled refractive index of the resulting nanocomposite.Polym. Chem. 1, 849-853 (2010). Shiraishi, Y., Saito, N. & Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem. Soc. 127, 12820-12822 (2005).Shiraishi, Y., Saito, N. & Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide.J. Am. Chem. Soc. 127, 12820-12822 (2005). Ide, Y., Torii, M. & Sano, T. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis. J. Am. Chem. Soc. 135, 11784-11786 (2013).Ide, Y., Torii, M. & Sano, T. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis.J. Am. Chem. Soc. 135, 11784-11786 (2013) . Andersson, S. & Wadsley, A. D. Five co-ordinated titanium in K2Ti2O5. Nature 187, 499-500 (1960).Andersson, S. & Wadsley, A. D. Five co-ordinated titanium in K2Ti2O5. Nature 187, 499-500 (1960). Okada, T., Ide, Y. & Ogawa, M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chem. Asian J. 7, 1980-1992 (2012).Okada, T., Ide, Y. & Ogawa, M. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition.Chem. Asian J. 7, 1980-1992 (2012). Fan, F., Feng, Z. & Li, C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Acc. Chem. Res. 43, 378-387 (2010).Fan, F., Feng, Z. & Li, C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Acc. Chem. Res. 43, 378-387 (2010). Ide, Y. & Ogawa, M. Surface modification of a layered alkali titanate with organosilanes. Chem. Commun. 1262-1263 (2003).Ide, Y. & Ogawa, M. Surface modification of a layered alkali titanate with organosilanes. Chem. Commun. 1262-1263 (2003). He, M., Lu, X.-H., Feng, X., Yu, L. & Yang, Z.-H. A simple approach to mesoporous fibrous titania from potassium dititanate. Chem. Commun. 2202-2203 (2004).He, M., Lu, X.-H., Feng, X., Yu, L. & Yang, Z.-H.A simple approach to mesoporous fibrous titania from potassium dititanate. Chem. Commun. 2202-2203 (2004 ). Li, W., Liu, C., Zhou, Y., Bai, Y., Feng, X., Yang, Z., Lu, L., Lu, X. & Chan, K.-Y. Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber. J. Phys. Chem. C 112, 20539-20545 (2008).Li, W., Liu, C., Zhou, Y., Bai, Y., Feng, X., Yang, Z., Lu, L., Lu, X. & Chan, K.-Y.Enhanced photocatalytic activity in anatase / TiO2 (B) core-shell nanofiber. J. Phys. Chem. C 112, 20539-20545 (2008). Li, W., Bai, Y., Liu, W., Liu, C., Yang, Z., Feng, X., Lu, X. & Chan, K.-Y. Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. J. Mater. Chem. 21, 6718-6724 (2011).Li, W., Bai, Y., Liu, W., Liu, C., Yang, Z., Feng, X., Lu, X. & Chan, K.-Y.Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. J. Mater. Chem. 21, 6718-6724 (2011). Pospisil, J. & Nespurek, S. Photostabilization of coatings. Mechanisms and performance. Prog. Polym. Sci. 25, 1261-1335 (2000).Pospisil, J. & Nespurek, S. Photostabilization of coatings.Mechanisms and performance.Prog.Polym. Sci. 25, 1261-1335 (2000). Almquist, C. B. & Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A 214, 259-271 (2001).Almquist, C. B. & Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity.Appl. Catal. A 214, 259-271 (2001). Suetake, J., Nosaka, A. Y., Hodouchi, K., Matsubara, H. & Nosaka Y. Characteristics of titanate nanotube and the states of the confined sodium ions. J. Phys. Chem. C 112, 18474-18482 (2008).Suetake, J., Nosaka, AY, Hodouchi, K., Matsubara, H. & Nosaka Y. Characteristics of titanate nanotube and the states of the confined sodium ions.J. Phys. Chem. C 112, 18474-18482 (2008) . Kominami, H., Murakami, S., Kato, J., Kera, Y. & Ohtani, B. Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems. J. Phys. Chem. B 106, 10501-10507 (2002).Kominami, H., Murakami, S., Kato, J., Kera, Y. & Ohtani, B. Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems.J. Phys. Chem B 106, 10501-10507 (2002). Ide, Y., Kawamoto, N., Bando, Y., Hattori, H., Sadakane, M. & Sano, T. Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. Chem. Commun. 49, 3652-3654 (2013).Ide, Y., Kawamoto, N., Bando, Y., Hattori, H., Sadakane, M. & Sano, T. Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. Chem. Commun. 49, 3652 -3654 (2013). Rocquefelte, X., Goubin, F., Koo, H.-J., Whangbo, M.-H. & Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2phases. Inorg. Chem. 43, 2246-2251 (2004).Rocquefelte, X., Goubin, F., Koo, H.-J., Whangbo, M.-H. & Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2phases. Inorg. Chem. 43, 2246-2251 (2004).

Claims (10)

下式で表され、長手方向に沿った中空の複数本のチャネルが内部に設けられているナノファイバーであって、
外径が2〜10nmであり、
長さが100〜1000nmであり、
前記チャネルの内径が0.5〜1nmである
チタニア・ナノ構造体。
xyTi2-(x+ny)/44(Mはアルカリ金属及びアルカリ土類金属からなる群から選ばれた一の元素、nはその価数、x及びyは0<x+ny<8を満たす正の数値)
It is represented by the following formula, and is a nanofiber in which a plurality of hollow channels along the longitudinal direction are provided,
The outer diameter is 2 to 10 nm,
The length is 100-1000 nm,
A titania nanostructure having an inner diameter of the channel of 0.5 to 1 nm.
H x M y Ti 2- (x + ny) / 4 O 4 (M is one element selected from the group consisting of alkali metals and alkaline earth metals, n represents the valence, x and y are 0 <x + ny <Positive numerical value satisfying 8)
屈折率が1.5〜1.7である、請求項1に記載のチタニア・ナノ構造体。 The titania nanostructure according to claim 1, having a refractive index of 1.5 to 1.7. 層状チタン酸塩を四級アンモニウム、水酸化物及びフッ化物からなる群から選択された少なくとも一の存在下で水熱処理することによる、請求項1または2に記載のチタニア・ナノ構造体の製造方法。 The method for producing a titania nanostructure according to claim 1 or 2 , wherein the layered titanate is hydrothermally treated in the presence of at least one selected from the group consisting of quaternary ammonium, hydroxide and fluoride. . 前記層状チタン酸塩はK2Ti25である、請求項に記載のチタニア・ナノ構造体の製造方法。 The method for producing a titania nanostructure according to claim 3 , wherein the layered titanate is K 2 Ti 2 O 5 . 四級アンモニウム、水酸化物及びフッ化物からなる群は水酸化テトラプロピルアンモニウム及びフッ化アンモニウムを含む、請求項3または4に記載のチタニア・ナノ構造体の製造方法。 The method for producing a titania nanostructure according to claim 3 or 4 , wherein the group consisting of quaternary ammonium, hydroxide and fluoride contains tetrapropylammonium hydroxide and ammonium fluoride. 前記水熱処理の温度は250℃以下である、請求項3〜5の何れかに記載のチタニア・ナノ構造体の製造方法。 The method for producing a titania nanostructure according to any one of claims 3 to 5 , wherein a temperature of the hydrothermal treatment is 250 ° C or lower. 前記水熱処理によるゲル状生成物を水で洗浄する、請求項3〜6の何れかに記載のチタニア・ナノ構造体の製造方法。 The method for producing a titania nanostructure according to any one of claims 3 to 6 , wherein the gel-like product obtained by the hydrothermal treatment is washed with water. 請求項1または2に記載のチタニア・ナノ構造体を含む紫外線吸収剤。 UV absorber containing titania nanostructure according to claim 1 or 2. 請求項1または2に記載のチタニア・ナノ構造体と有機ポリマーとを含む、紫外線吸収被覆材。 An ultraviolet absorbing coating material comprising the titania nanostructure according to claim 1 or 2 and an organic polymer. 請求項1または2に記載のチタニア・ナノ構造体と有機ポリマーとを含む、紫外線吸収被覆を有する物品。 An article having an ultraviolet absorbing coating, comprising the titania nanostructure according to claim 1 or 2 and an organic polymer.
JP2013242820A 2013-11-25 2013-11-25 Titania nanostructure and manufacturing method thereof Active JP6328407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242820A JP6328407B2 (en) 2013-11-25 2013-11-25 Titania nanostructure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242820A JP6328407B2 (en) 2013-11-25 2013-11-25 Titania nanostructure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015101504A JP2015101504A (en) 2015-06-04
JP6328407B2 true JP6328407B2 (en) 2018-05-23

Family

ID=53377518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242820A Active JP6328407B2 (en) 2013-11-25 2013-11-25 Titania nanostructure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6328407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252614B2 (en) * 2019-05-24 2023-04-05 国立研究開発法人物質・材料研究機構 Nanowire structure, manufacturing method thereof, ion exchange material, photocatalyst material, and metal immobilization material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1419994B1 (en) * 2001-08-20 2009-02-18 Otsuka Chemical Company, Limited Layered titanic acid; lamellar titanic acid; lamellar titanium oxide and method for producing lamellar titanic acid
JP4093744B2 (en) * 2001-10-30 2008-06-04 触媒化成工業株式会社 Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP4706053B2 (en) * 2004-08-04 2011-06-22 独立行政法人産業技術総合研究所 Simple production method of titanium oxide nanotube structure and titanium oxide nanotube structure obtained by the production method

Also Published As

Publication number Publication date
JP2015101504A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
An et al. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution
Wang et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB
Jiang et al. Silver-loaded nitrogen-doped yolk–shell mesoporous TiO 2 hollow microspheres with enhanced visible light photocatalytic activity
Reddy et al. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis
Lv et al. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres
Zhang et al. Porous TiO 2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties
Pal et al. Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation
Hussain et al. Surfactant-assisted synthesis of MoO3 nanorods and its application in photocatalytic degradation of different dyes in aqueous environment
Yang et al. One-step synthesis of Bi 2 WO 6/TiO 2 heterojunctions with enhanced photocatalytic and superhydrophobic property via hydrothermal method
Hattori et al. Microporous titanate nanofibers for highly efficient UV-protective transparent coating
Khatamian et al. Visible‐light response photocatalytic water splitting over CdS/TiO2 and CdS–TiO2/metalosilicate composites
Chen et al. Reduced graphene oxide and titania nanosheet cowrapped coal fly ash microspheres alternately as a novel photocatalyst for water treatment
Tayade et al. Synthesis and characterization of titanium dioxide nanotubes for photocatalytic degradation of aqueous nitrobenzene in the presence of sunlight
Nair et al. Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals
Rhouta et al. Surfactant-modifications of Na+–beidellite for the preparation of TiO2–Bd supported photocatalysts: II—Physico-chemical characterization and photocatalytic properties
Vasanthakumar et al. MWCNT supported V2O5 quantum dot nanoparticles decorated Bi2O3 nanosheets hybrid system: efficient visible light driven photocatalyst for degradation of ciprofloxacin
Yan et al. Low-temperature S-doping on N-doped TiO2 films and remarkable enhancement on visible-light performance
Capeli et al. Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO 3 decorated with silver nanoparticles
JP3772217B2 (en) Porous oxide ultrathin film, core / shell particles having the ultrathin film as a shell, polymer core, porous hollow oxide shell structure derived from the core / shell particles, and methods for producing the same
Palhares et al. Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO 2-based nanocomposites with high photocatalytic performance
Zulfiqar et al. Synthesis and characterization of single-layer TiO2 nanotubes
Ponaryadov et al. Natural titanium dioxide nanotubes.
Ruiz-Castillo et al. Photocatalytic activity of Bi2O3/BiOCl heterojunctions under uv and visible light illumination for degradation of caffeine
Zhang et al. Ionic liquid-assisted synthesis of morphology-controlled TiO 2 particles with efficient photocatalytic activity
Shivaraju et al. Hydrothermal synthesis and characterization of TiO2 nanostructures on the ceramic support and their photo-catalysis performance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250