JP6324851B2 - Welding power supply device and rectifier for welding power supply device - Google Patents

Welding power supply device and rectifier for welding power supply device Download PDF

Info

Publication number
JP6324851B2
JP6324851B2 JP2014178400A JP2014178400A JP6324851B2 JP 6324851 B2 JP6324851 B2 JP 6324851B2 JP 2014178400 A JP2014178400 A JP 2014178400A JP 2014178400 A JP2014178400 A JP 2014178400A JP 6324851 B2 JP6324851 B2 JP 6324851B2
Authority
JP
Japan
Prior art keywords
rectifier
rectifying
phase side
elements
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014178400A
Other languages
Japanese (ja)
Other versions
JP2016052661A (en
Inventor
正和 山崎
正和 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2014178400A priority Critical patent/JP6324851B2/en
Publication of JP2016052661A publication Critical patent/JP2016052661A/en
Application granted granted Critical
Publication of JP6324851B2 publication Critical patent/JP6324851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rectifiers (AREA)
  • Arc Welding Control (AREA)

Description

本発明は、抵抗溶接機等に用いられる溶接用電源装置、及び溶接用電源装置の整流器に関する。   The present invention relates to a welding power source device used in a resistance welding machine and the like, and a rectifier of the welding power source device.

抵抗溶接機等に用いられる溶接用電源装置においてインバータ回路や溶接トランスを備える構成のものでは、溶接トランスの一次側のインバータ回路にて高周波交流電力を生成し、溶接トランスにて電圧変換された二次側の高周波交流電力を整流器を含む直流変換回路にて溶接に適した直流電力に変換することが行われている。整流器としては、例えば特許文献1〜3等にて開示されているように、整流素子(ダイオード)を用いた全波整流を行うものが知られている。   In a welding power source apparatus used in a resistance welding machine or the like having an inverter circuit and a welding transformer, high-frequency AC power is generated by an inverter circuit on the primary side of the welding transformer, and the voltage is converted by the welding transformer. The secondary high-frequency AC power is converted to DC power suitable for welding by a DC conversion circuit including a rectifier. As a rectifier, there is known a rectifier that performs full-wave rectification using a rectifying element (diode) as disclosed in Patent Documents 1 to 3, for example.

特開平6−14543号公報JP-A-6-14543 特開2011−212690号公報JP 2011-212690 A 特開2011−251339号公報JP 2011-251339 A

ところで、整流器において電流容量を増加させるためには、整流素子を複数並列接続することがなされる。その際、整流素子の入出力端子をどのような組み合わせで接続するかによって整流素子を流れる電流の流れ易さに優劣が生じ、結果的に整流器全体の出力電流の許容値が制限を受けることになる。   By the way, in order to increase the current capacity in the rectifier, a plurality of rectifying elements are connected in parallel. At that time, depending on the combination of the input / output terminals of the rectifying element, the easiness of the flow of the current flowing through the rectifying element occurs, and as a result, the allowable value of the output current of the entire rectifier is limited. Become.

本発明は、上記課題を解決するためになされたものであって、その目的は、整流素子を流れる電流が好適な流れとなる接続態様とし、出力電流の許容値の向上を図ることができる整流器、及びその整流器を備える溶接用電源装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a connection mode in which a current flowing through a rectifying element is a suitable flow, and to improve an allowable value of an output current. And a welding power supply device including the rectifier.

上記課題を解決する溶接用電源装置は、一次側で生成された高周波交流電力を電圧変換する溶接トランスと、その溶接トランスの二次側コイルから出力された高周波交流電力を直流変換する整流器とを備えた溶接用電源装置であって、前記整流器は、前記二次側コイルのセンタータップを用いる全波整流器であり、前記二次側コイルの第1端子に接続され正相半波の整流を行う正相側整流部と、前記二次側コイルの第2端子に接続され逆相半波の整流を行う逆相側整流部とを備え、各整流部の出力端子同士を接続してなるものであり、前記正相側整流部は、並列接続の複数の正相側整流素子を備えると共に、前記逆相側整流部は、並列接続の複数の逆相側整流素子を備え、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成される。   A welding power supply apparatus that solves the above problems includes a welding transformer that converts a high-frequency AC power generated on a primary side into a voltage, and a rectifier that converts a high-frequency AC power output from a secondary coil of the welding transformer into a DC. A welding power supply apparatus provided, wherein the rectifier is a full-wave rectifier using a center tap of the secondary coil, and is connected to a first terminal of the secondary coil to rectify a positive-phase half-wave. It comprises a positive phase side rectification unit and a negative phase side rectification unit connected to the second terminal of the secondary side coil to rectify the reverse phase half-wave, and the output terminals of each rectification unit are connected to each other. And the positive phase side rectification unit includes a plurality of parallel phase connected positive phase side rectification elements, and the negative phase side rectification unit includes a plurality of parallel connection negative phase side rectification elements, and the same phase rectification elements Rectification of different phases before connecting the cathodes of Configured to connect the cathodes of the child first.

この構成によれば、正相側整流部として並列接続される複数の正相側整流素子と、逆相側整流部として並列接続される複数の逆相側整流素子とにおいて、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士が先に接続される。つまり、異なる相の整流素子のカソード同士が先に接続されることで、その接続点では全波電流となる。これにより、直後に全波電流となる整流素子は電流が流れ易い状況となることから、整流器の出力電流の許容値の向上を図ることが期待できる。   According to this configuration, a plurality of positive phase side rectifying elements connected in parallel as the positive phase side rectifying unit and a plurality of negative phase side rectifying elements connected in parallel as the negative phase side rectifying unit have the same phase rectifying element. Before the cathodes are connected, the cathodes of the rectifying elements of different phases are connected first. That is, the cathodes of the rectifying elements of different phases are connected first, so that a full-wave current is obtained at the connection point. As a result, the rectifying element that becomes a full-wave current immediately after that is in a state in which current easily flows, so that it is expected to improve the allowable value of the output current of the rectifier.

また、上記の溶接用電源装置において、前記正相側整流部及び前記逆相側整流部は、前記整流素子を同数の偶数個用い、全ての整流素子において、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成されることが好ましい。   Further, in the above welding power supply apparatus, the positive phase side rectifying unit and the negative phase side rectifying unit use an even number of the same number of the rectifying elements, and in all the rectifying elements, the cathodes of the rectifying elements of the same phase are connected to each other. It is preferable that the cathodes of the rectifying elements of different phases are connected first before connection.

この構成によれば、正相側整流部及び逆相側整流部の各整流素子は同数の偶数個であり、全ての整流素子において同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士が先に接続される。これにより、全ての整流素子において電流が流れ易い状況となることから、整流器の出力電流の許容値をより確実に向上できる。   According to this configuration, the rectifying elements of the positive phase side rectifying unit and the negative phase side rectifying unit are an even number of the same number, and before connecting the cathodes of the rectifying elements of the same phase in all the rectifying elements, different phases are connected. The cathodes of the rectifier elements are connected first. As a result, the current easily flows in all the rectifying elements, so that the allowable value of the output current of the rectifier can be improved more reliably.

また、上記の溶接用電源装置において、前記整流器は、中央部に絶縁部材を備えその絶縁部材の両側に前記整流素子のアノード側を配置し、外側に向けて前記整流素子が順次配置されて構成されることが好ましい。   Further, in the above welding power supply apparatus, the rectifier includes an insulating member in a central portion, the anode side of the rectifying element is disposed on both sides of the insulating member, and the rectifying elements are sequentially disposed outward. It is preferred that

この構成によれば、整流器は、中央部に設けた絶縁部材の両側に整流素子のアノード側を配置し、外側に向けて整流素子を順次配置する構成としたことから、中央部の絶縁部材を起点としてコンパクトに構成することが期待できる。   According to this configuration, the rectifier is configured such that the anode side of the rectifying element is arranged on both sides of the insulating member provided in the central part, and the rectifying element is sequentially arranged outward, so that the insulating member in the central part is arranged. It can be expected to be compact as a starting point.

また、上記課題を解決する溶接用電源装置の整流器は、一次側で生成された高周波交流電力を電圧変換する溶接トランスと、その溶接トランスの二次側コイルから出力された高周波交流電力を直流変換する整流器とを備えた溶接用電源装置のその整流器であって、前記整流器は、前記二次側コイルのセンタータップを用いる全波整流器であり、前記二次側コイルの第1端子に接続され正相半波の整流を行う正相側整流部と、前記二次側コイルの第2端子に接続され逆相半波の整流を行う逆相側整流部とを備え、各整流部の出力端子同士を接続してなるものであり、前記正相側整流部は、並列接続の複数の正相側整流素子を備えると共に、前記逆相側整流部は、並列接続の複数の逆相側整流素子を備え、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成される。   Moreover, the rectifier of the welding power supply apparatus which solves the said subject is a direct current converting the high frequency alternating current power output from the welding transformer which converts the high frequency alternating current power produced | generated by the primary side, and the secondary side coil of the welding transformer A rectifier of a welding power supply apparatus comprising: a rectifier that is a full-wave rectifier that uses a center tap of the secondary coil, and is connected to a first terminal of the secondary coil. A positive phase side rectification unit that rectifies a half phase wave, and a negative phase side rectification unit that is connected to the second terminal of the secondary side coil and performs rectification of a negative phase half wave. The positive phase side rectifying unit includes a plurality of parallel phase connected positive phase side rectifying elements, and the negative phase side rectifying unit includes a plurality of parallel phase connected negative phase side rectifying elements. Connect the cathodes of rectifying elements of the same phase That in front, configured to connect previously the cathodes of the rectifying elements of different phases.

この構成によれば、出力電流の許容値の向上を図ることが期待できる溶接用電源装置の整流器として提供できる。   According to this structure, it can provide as a rectifier of the power supply apparatus for welding which can anticipate improvement of the allowable value of output current.

本発明の溶接用電源装置及び溶接用電源装置の整流器によれば、整流素子を流れる電流が好適な流れとなる接続態様となり、出力電流の許容値の向上を図ることができる。   According to the welding power supply device and the rectifier of the welding power supply device of the present invention, a connection mode in which the current flowing through the rectifying element becomes a suitable flow is achieved, and the allowable value of the output current can be improved.

一実施形態における抵抗溶接機の溶接用電源装置の構成図である。It is a block diagram of the power supply apparatus for welding of the resistance welder in one Embodiment. (a)〜(c)は、一実施形態における整流器の説明図である。(A)-(c) is explanatory drawing of the rectifier in one Embodiment. (a)〜(c)は、比較例における整流器の説明図である。(A)-(c) is explanatory drawing of the rectifier in a comparative example. (a)(b)は、変形例における整流器の説明図である。(A) (b) is explanatory drawing of the rectifier in a modification.

以下、溶接用電源装置(溶接用電源装置の整流器)の一実施形態について説明する。
図1に示すように、抵抗溶接機1に用いる溶接用電源装置2は、コンバータ回路3、インバータ回路4、溶接トランス5、整流器6、及び制御回路7を備えている。
Hereinafter, an embodiment of a welding power supply device (rectifier of the welding power supply device) will be described.
As shown in FIG. 1, the welding power supply device 2 used in the resistance welding machine 1 includes a converter circuit 3, an inverter circuit 4, a welding transformer 5, a rectifier 6, and a control circuit 7.

コンバータ回路3は、交流電源8からの商用交流電力を直流電力に変換してインバータ回路4に出力する。インバータ回路4は、制御回路7の制御に基づいて、コンバータ回路3から出力される直流電力から高周波交流電力を生成し、溶接トランス5の一次側コイル5aに出力する。溶接トランス5は、一次側コイル5aにて受けたインバータ回路4からの高周波交流電力を電圧変換して二次側コイル5bから出力する。整流器6は、溶接トランス5の二次側コイル5bから出力された高周波交流電力を整流し、抵抗溶接に適した直流の出力電力に変換する。   The converter circuit 3 converts commercial AC power from the AC power supply 8 into DC power and outputs it to the inverter circuit 4. The inverter circuit 4 generates high-frequency AC power from the DC power output from the converter circuit 3 based on the control of the control circuit 7 and outputs the high-frequency AC power to the primary coil 5 a of the welding transformer 5. The welding transformer 5 converts the high-frequency AC power from the inverter circuit 4 received by the primary coil 5a into a voltage and outputs it from the secondary coil 5b. The rectifier 6 rectifies the high-frequency AC power output from the secondary coil 5b of the welding transformer 5 and converts it into DC output power suitable for resistance welding.

整流器6は、溶接トランス5の二次側コイル5bのセンタータップ5cを用いる全波整流器であり、二組の整流部D1,D2を備えている。正相(正側)半波の整流を行う正相側整流部D1は二次側コイル5bの第1端子(5x)に接続され、逆相(負側)半波の整流を行う逆相側整流部D2は二次側コイル5bの第2端子(5y)に接続され、整流部D1,D2の出力端子同士が互いに接続されている。整流部D1,D2の出力端子は電源装置2の第1出力端子o1に接続され、電源装置2の第2出力端子o2は二次側コイル5bのセンタータップ5cと接続されている。第1及び第2出力端子o1,o2からは、電源装置2内で生成した直流の出力電力が出力される。   The rectifier 6 is a full-wave rectifier that uses the center tap 5c of the secondary coil 5b of the welding transformer 5, and includes two sets of rectifiers D1 and D2. The positive phase side rectifier D1 that rectifies the positive phase (positive side) half wave is connected to the first terminal (5x) of the secondary side coil 5b, and the negative phase side that rectifies the negative phase (negative side) half wave. The rectifier D2 is connected to the second terminal (5y) of the secondary coil 5b, and the output terminals of the rectifiers D1 and D2 are connected to each other. The output terminals of the rectifiers D1 and D2 are connected to the first output terminal o1 of the power supply device 2, and the second output terminal o2 of the power supply device 2 is connected to the center tap 5c of the secondary coil 5b. From the first and second output terminals o1 and o2, DC output power generated in the power supply device 2 is output.

電源装置2の第1出力端子o1は、抵抗溶接機1の第1アーム9aの電極9xと接続され、電源装置2の第2出力端子o2は、抵抗溶接機1の第2アーム9bの電極9yと接続される。そして、溶接時には、対向する電極9x,9y間に被溶接物M1,M2が配置され、電源装置2にて生成された直流の出力電力の供給により被溶接物M1,M2の電極9x,9y間の部分が抵抗となって発熱して溶接されるものである。   The first output terminal o1 of the power supply device 2 is connected to the electrode 9x of the first arm 9a of the resistance welding machine 1, and the second output terminal o2 of the power supply device 2 is connected to the electrode 9y of the second arm 9b of the resistance welding machine 1. Connected. At the time of welding, the workpieces M1 and M2 are arranged between the opposing electrodes 9x and 9y, and the DC output power generated by the power supply device 2 is supplied between the electrodes 9x and 9y of the workpieces M1 and M2. These parts become resistance and generate heat and are welded.

このような溶接用電源装置2において、出力電流の増大を図るのに伴い、整流器6の電流容量を増大させることが行われる。図2は、本実施形態(本案)の整流器6の具体構成を示す。因みに本実施形態では、溶接トランス5と整流器6とが一体的に組み付けられた整流器付きトランス装置として構成されている。   In such a welding power supply device 2, the current capacity of the rectifier 6 is increased as the output current is increased. FIG. 2 shows a specific configuration of the rectifier 6 of the present embodiment (the present plan). Incidentally, in this embodiment, it is comprised as a transformer apparatus with a rectifier by which the welding transformer 5 and the rectifier 6 were assembled | attached integrally.

図2(a)の回路図に示すように、本実施形態の整流器6は、電流容量の増加を図るべく、正相側整流部D1として正相側第1整流素子D11及び正相側第2整流素子D12を備え、逆相側整流部D2として逆相側第1整流素子D21及び逆相側第2整流素子D22を備えている。   As shown in the circuit diagram of FIG. 2A, the rectifier 6 of the present embodiment has a positive phase side first rectifier D11 and a positive phase side second rectifier D1 as the positive phase side rectifier D1 in order to increase the current capacity. A rectifying element D12 is provided, and a negative-phase side first rectifying element D21 and a negative-phase side second rectifying element D22 are provided as the negative-phase side rectifying unit D2.

正相側第1及び第2整流素子D11,D12は、電流容量の増加のために互いに並列接続とすべく、それぞれのアノードが溶接トランス5の二次側コイル5bの第1端子5xに接続され、それぞれのカソードが互いに接続されている。また、逆相側第1及び第2整流素子D21,D22は、同様に互いに並列接続とすべく、それぞれのアノードが溶接トランス5の二次側コイル5bの第2端子5yに接続され、それぞれのカソードが互いに接続されている。   The positive phase side first and second rectifying elements D11 and D12 have their anodes connected to the first terminal 5x of the secondary side coil 5b of the welding transformer 5 so as to be connected in parallel to each other in order to increase the current capacity. The respective cathodes are connected to each other. Similarly, the negative-phase side first and second rectifying elements D21 and D22 are connected to the second terminal 5y of the secondary coil 5b of the welding transformer 5 in order to connect them in parallel to each other. The cathodes are connected to each other.

また本実施形態においては、正相側第1及び第2整流素子D11,D12のカソードが互いに接続する手前、並びに逆相側第1及び第2整流素子D21,D22のカソードが互いに接続する手前で、それぞれ正相側第1及び逆相側第1整流素子D11,D21のカソードが先に互いに接続され、正相側第2及び逆相側第2整流素子D12,D22のカソードが先に互いに接続される。つまり、正相側第1及び逆相側第1整流素子D11,D21のカソードを先に互いに接続し、また正相側第2及び逆相側第2整流素子D12,D22のカソードを先に互いに接続してから、正相側第1及び逆相側第1整流素子D11,D21のカソードと、正相側第2及び逆相側第2整流素子D12,D22のカソードとが互いに接続される。   In the present embodiment, the positive phase side first and second rectifying elements D11 and D12 are connected to each other before the negative phase side first and second rectifying elements D21 and D22 are connected to each other. The cathodes of the positive-phase side first and negative-phase side first rectifier elements D11 and D21 are first connected to each other, and the positive-phase side second and negative-phase side second rectifier elements D12 and D22 are first connected to each other. Is done. That is, the positive phase side first and negative phase side first rectifier elements D11 and D21 are connected to each other first, and the positive phase side second and negative phase side second rectifier elements D12 and D22 are first connected to each other. After the connection, the cathodes of the positive-phase side first and negative-phase side first rectifier elements D11 and D21 and the positive-phase side second and negative-phase side second rectifier elements D12 and D22 are connected to each other.

こうして、正相側整流部D1として正相側第1及び第2整流素子D11,D12が並列接続となり、逆相側整流部D2として逆相側第1及び第2整流素子D21,D22が並列接続となって、互いに接続されたカソードが電源装置2の第1出力端子o1に接続される。本実施形態の整流器6は、このような接続態様となるような構造的構成となっている。   Thus, the positive phase side first rectifying elements D11 and D12 are connected in parallel as the positive phase side rectifying part D1, and the negative phase side first and second rectifying elements D21 and D22 are connected in parallel as the negative phase side rectifying part D2. Thus, the cathodes connected to each other are connected to the first output terminal o1 of the power supply device 2. The rectifier 6 of the present embodiment has a structural configuration that provides such a connection mode.

図2(b)の構造図に示すように、本実施形態の整流器6は、整流器6の中央部には板状の絶縁部材10が配置され、その一方側で正相側第1及び逆相側第1整流素子D11,D21が並設され、他方側で正相側第2及び逆相側第2整流素子D12,D22が並設されている。   As shown in the structural diagram of FIG. 2B, in the rectifier 6 of the present embodiment, a plate-like insulating member 10 is disposed at the center of the rectifier 6, and the positive phase side first and reverse phases are arranged on one side thereof. Side first rectifier elements D11 and D21 are arranged in parallel, and the positive phase side second and reverse phase side second rectifier elements D12 and D22 are arranged in parallel on the other side.

詳しくは、絶縁部材10の一側面から外側に向けて順に説明すると、絶縁部材10の一側面に固着されるアノード側端子導体Ta1には逆相側第1整流素子D21の整流素子本体21のアノード側が固着され、整流素子本体21のカソード側にはカソード側共用端子導体Ta2が固着されている。カソード側共用端子導体Ta2は、逆相側第1整流素子D21と正相側第1整流素子D11とで共用となっている。カソード側共用端子導体Ta2には正相側第1整流素子D11の整流素子本体11のカソード側が固着され、整流素子本体11のアノード側にはアノード側端子導体Ta3が固着されている。   Specifically, in order from one side to the outside of the insulating member 10, the anode terminal conductor Ta1 fixed to one side of the insulating member 10 is connected to the anode of the rectifying device body 21 of the reverse-phase side first rectifying device D21. The cathode side common terminal conductor Ta <b> 2 is fixed to the cathode side of the rectifying element body 21. The cathode-side shared terminal conductor Ta2 is shared by the negative-phase side first rectifier element D21 and the positive-phase side first rectifier element D11. The cathode side of the rectifying element main body 11 of the positive phase side first rectifying element D11 is fixed to the cathode side common terminal conductor Ta2, and the anode side terminal conductor Ta3 is fixed to the anode side of the rectifying element main body 11.

一方、絶縁部材10の他側面から外側に向けて順に説明すると、絶縁部材10の他側面に固着されるアノード側端子導体Ta4には正相側第2整流素子D12の整流素子本体12のアノード側が固着され、整流素子本体12のカソード側にはカソード側共用端子導体Ta5が固着されている。カソード側共用端子導体Ta5は、正相側第2整流素子D12と逆相側第2整流素子D22とで共用となっている。カソード側共用端子導体Ta5には逆相側第2整流素子D22の整流素子本体22のカソード側が固着され、整流素子本体22のアノード側にはアノード側端子導体Ta6が固着されている。   On the other hand, in order from the other side surface of the insulating member 10 to the outside, the anode side terminal conductor Ta4 fixed to the other side surface of the insulating member 10 is connected to the anode side of the rectifying element body 12 of the positive phase side second rectifying element D12. The cathode side common terminal conductor Ta5 is fixed to the cathode side of the rectifying element main body 12. The cathode-side shared terminal conductor Ta5 is shared by the positive-phase side second rectifying element D12 and the negative-phase side second rectifying element D22. The cathode side common terminal conductor Ta5 is fixed with the cathode side of the rectifying element body 22 of the reverse-phase side second rectifying element D22, and the anode side terminal conductor Ta6 is fixed on the anode side of the rectifying element body 22.

そして、アノード側端子導体Ta3,Ta4がそれぞれ二次側コイル5bの第1端子5xに接続、アノード側端子導体Ta1,Ta6がそれぞれ二次側コイル5bの第2端子5yに接続され、カソード側共用端子導体Ta2,Ta5がそれぞれ電源装置2の第1出力端子o1に接続されることで、図2(a)の回路図に示す接続態様となる。   The anode side terminal conductors Ta3 and Ta4 are connected to the first terminal 5x of the secondary side coil 5b, respectively, and the anode side terminal conductors Ta1 and Ta6 are connected to the second terminal 5y of the secondary side coil 5b, respectively. By connecting the terminal conductors Ta2 and Ta5 to the first output terminal o1 of the power supply device 2, respectively, the connection mode shown in the circuit diagram of FIG.

ここで、図3(a)において、比較例における整流器6xを示す。比較例の整流器6xは、同様に、正相側整流部D1として正相側第1及び第2整流素子D11,D12を備え、逆相側整流部D2として逆相側第1及び第2整流素子D21,D22を備えている。   Here, in Fig.3 (a), the rectifier 6x in a comparative example is shown. Similarly, the rectifier 6x of the comparative example includes the positive-phase side first and second rectifier elements D11 and D12 as the positive-phase side rectifier D1, and the negative-phase side first and second rectifier elements as the negative-phase side rectifier D2. D21 and D22 are provided.

正相側第1及び正相側第2整流素子D11,D12は、電流容量の増加のために互いに並列接続とすべく、それぞれのアノードが溶接トランス5の二次側コイル5bの第1端子5xに接続され、それぞれのカソードが互いに接続されている。また、逆相側第1及び逆相側第2整流素子D21,D22は、同様に互いに並列接続とすべく、それぞれのアノードが溶接トランス5の二次側コイル5bの第2端子5yに接続され、それぞれのカソードが互いに接続されている。   The positive phase side first and positive phase side second rectifier elements D11 and D12 are connected to each other in parallel in order to increase the current capacity, and each anode is connected to the first terminal 5x of the secondary side coil 5b of the welding transformer 5. And the respective cathodes are connected to each other. Similarly, the negative-phase side first and negative-phase side second rectifying elements D21 and D22 are connected to the second terminal 5y of the secondary coil 5b of the welding transformer 5 so that their anodes are similarly connected in parallel. The respective cathodes are connected to each other.

この比較例においては、正相側第1及び第2整流素子D11,D12のカソードが互いに接続する手前、並びに逆相側第1及び第2整流素子D21,D22のカソードが互いに接続する手前で、先に正相側第1及び逆相側第1整流素子D11,D21のカソードが互いに接続され、次いで正相側第2及び逆相側第2整流素子D12,D22のカソードが互いに接続される。つまり、正相側第1及び逆相側第1整流素子D11,D21のカソードを先に互いに接続し、次いで正相側第2及び逆相側第2整流素子D12,D22のカソードを接続し、正相側第1及び逆相側第1整流素子D11,D21のカソードと、正相側第2及び逆相側第2整流素子D12,D22のカソードとが互いに接続される。この比較例の整流器6xは、本実施形態の整流器6と異なり、構造的構成からこのような接続態様になったことが推察される。   In this comparative example, before the cathodes of the positive phase side first and second rectifying elements D11 and D12 are connected to each other, and before the cathodes of the negative phase side first and second rectifying elements D21 and D22 are connected to each other, First, the cathodes of the positive phase side first and negative phase side first rectifier elements D11 and D21 are connected to each other, and then the positive phase side second and negative phase side second rectifier elements D12 and D22 are connected to each other. That is, the cathodes of the positive phase side first and negative phase side first rectifier elements D11, D21 are first connected to each other, and then the positive phase side second and negative phase side second rectifier elements D12, D22 are connected to each other, The cathodes of the positive-phase side first and negative-phase side first rectifier elements D11 and D21 and the positive-phase side second and negative-phase side second rectifier elements D12 and D22 are connected to each other. Unlike the rectifier 6 of the present embodiment, the rectifier 6x of the comparative example is presumed to have such a connection mode from the structural configuration.

図3(b)の構造図に示すように、比較例の整流器6xは、整流器6xの中央部にはカソード側共用端子導体Tx1が配置され、該端子導体Tx1を含めた一方側で正相側第1及び第2整流素子D11,D12が並設され、同じく端子導体Tx1を含めた他方側で逆相側第1及び第2整流素子D21,D22が並設されている。   As shown in the structural diagram of FIG. 3B, in the rectifier 6x of the comparative example, the cathode side shared terminal conductor Tx1 is disposed at the center of the rectifier 6x, and the positive phase side on one side including the terminal conductor Tx1 The first and second rectifying elements D11 and D12 are arranged in parallel, and the opposite-phase first and second rectifying elements D21 and D22 are arranged in parallel on the other side including the terminal conductor Tx1.

詳しくは、比較例の整流器6xにおいては、正相側第1整流素子D11と逆相側第1整流素子D21との間にカソード側共用端子導体Tx1が、正相側第1及び第2整流素子D11,D12間にアノード側共用端子導体Tx2が、逆相側第1及び第2整流素子D21,D22間にアノード側共用端子導体Tx3がそれぞれ設けられている。カソード側共用端子導体Tx1の一側面には正相側第1整流素子D11の整流素子本体11のカソード側が固着され、整流素子本体11のアノード側にはアノード側共用端子導体Tx2が固着されている。アノード側共用端子導体Tx2には正相側第2整流素子D12の整流素子本体12のアノード側が固着され、整流素子本体12のカソード側にはカソード側端子導体Tx4が固着されている。   Specifically, in the rectifier 6x of the comparative example, the cathode-side shared terminal conductor Tx1 is provided between the positive-phase side first rectifier element D11 and the negative-phase side first rectifier element D21, and the positive-phase side first and second rectifier elements. An anode side shared terminal conductor Tx2 is provided between D11 and D12, and an anode side shared terminal conductor Tx3 is provided between the first and second rectifying elements D21 and D22. The cathode side of the rectifying element main body 11 of the positive phase side first rectifying element D11 is fixed to one side surface of the cathode side common terminal conductor Tx1, and the anode side common terminal conductor Tx2 is fixed to the anode side of the rectifying element main body 11. . The anode side common terminal conductor Tx2 is fixed with the anode side of the rectifying element body 12 of the positive phase side second rectifying element D12, and the cathode side terminal conductor Tx4 is fixed to the cathode side of the rectifying element body 12.

カソード側共用端子導体Tx1の他側面には逆相側第1整流素子D21の整流素子本体21のカソード側が固着され、整流素子本体21のアノード側にはアノード側共用端子導体Tx3が固着されている。アノード側共用端子導体Tx3には逆相側第2整流素子D22の整流素子本体22のアノード側が固着され、整流素子本体22のカソード側にはカソード側端子導体Tx5が固着されている。   The cathode side of the rectifying element main body 21 of the reverse phase side first rectifying element D21 is fixed to the other side surface of the cathode side common terminal conductor Tx1, and the anode side common terminal conductor Tx3 is fixed to the anode side of the rectifying element main body 21. . The anode side of the rectifying element main body 22 of the negative phase side second rectifying element D22 is fixed to the anode side common terminal conductor Tx3, and the cathode side terminal conductor Tx5 is fixed to the cathode side of the rectifying element main body 22.

そして、アノード側共用端子導体Tx2が二次側コイル5bの第1端子5xに、アノード側共用端子導体Tx3が二次側コイル5bの第2端子5yにそれぞれ接続され、カソード側共用端子導体Tx1とカソード側端子導体Tx4,Tx5とが互いに接続されて電源装置2の第1出力端子o1に接続されることで、図3(a)の回路図に示す接続態様となる。このような比較例の整流器6xにおいては、元々正相側第1整流素子D11と逆相側第1整流素子D21とを備えたものをベースに正相側第2整流素子D12と逆相側第2整流素子D22とを後に追加することで、電流容量の増加を図るようにしたことが窺える。比較例の整流器6xは、本実施形態の整流器6よりも端子導体が少なく構成でき、絶縁部材10を用いない点では有利に見える。   The anode side common terminal conductor Tx2 is connected to the first terminal 5x of the secondary coil 5b, the anode side common terminal conductor Tx3 is connected to the second terminal 5y of the secondary side coil 5b, and the cathode side common terminal conductor Tx1. The cathode side terminal conductors Tx4 and Tx5 are connected to each other and connected to the first output terminal o1 of the power supply device 2, so that the connection mode shown in the circuit diagram of FIG. In such a rectifier 6x of the comparative example, the positive-phase side second rectifier element D12 and the negative-phase side first rectifier element D11 and the negative-phase side first rectifier element D21 are originally provided with the positive-phase side first rectifier element D11 and the negative-phase side first rectifier element D21. It can be seen that the current capacity is increased by adding the two rectifying elements D22 later. The rectifier 6x of the comparative example can be configured with fewer terminal conductors than the rectifier 6 of the present embodiment, and looks advantageous in that the insulating member 10 is not used.

しかしながら、比較例の整流器6xは、本実施形態の整流器6よりも出力電流の許容値が小さくなってしまう。
図3(c)は、比較例の整流器6xの各箇所a〜h(図中は、マルa〜h)の電流波形を示す。二次側コイル5bの第1端子5xである箇所aの電流波形は、正相(正側)半波の電流波形であり、二次側コイル5bの第2端子5yである箇所bの電流波形は、逆相(負側)半波の電流波形である。つまり、正相側整流部D1(正相側第1及び第2整流素子D11,D12)、並びに逆相側整流部D2(逆相側第1及び第2整流素子D21,D22)の入力電流である。各整流素子D11,D12,D21,D22のカソード(箇所c〜f)の電流波形は、それぞれ半波電流となる。
However, the rectifier 6x of the comparative example has a smaller output current allowable value than the rectifier 6 of the present embodiment.
FIG.3 (c) shows the current waveform of each location ah of the rectifier 6x of a comparative example (maru ah in the figure). The current waveform at the location a, which is the first terminal 5x of the secondary coil 5b, is a positive phase (positive side) half-wave current waveform, and the current waveform at the location b, which is the second terminal 5y of the secondary coil 5b. Is a negative-phase (negative-side) half-wave current waveform. That is, the input currents of the positive phase side rectification unit D1 (positive phase side first and second rectification elements D11 and D12) and the negative phase side rectification unit D2 (negative phase side first and second rectification elements D21 and D22) is there. The current waveforms at the cathodes (locations c to f) of the rectifying elements D11, D12, D21, and D22 are half-wave currents.

このとき、正相側第2及び逆相側第2整流素子D12,D22のカソード(箇所c,f)の半波電流は、正相側第1及び逆相側第1整流素子D11,D21のカソード(箇所d,e)の半波電流と比べて電流降下量が大きくなってしまう。これは、正相側第1及び逆相側第1整流素子D11,D21のカソードが直後に互いに接続されることでその接続点(箇所g)にて全波電流となる一方で、正相側第2及び逆相側第2整流素子D12,D22のカソードは同接続点後の合流点までそれぞれ正相半波電流、逆相半波電流のままであるためである。   At this time, the half-wave currents at the cathodes (locations c and f) of the positive-phase side second and negative-phase side second rectifier elements D12 and D22 are the positive-phase side first and negative-phase side first rectifier elements D11 and D21. The amount of current drop is larger than the half-wave current of the cathode (locations d and e). This is because the positive-phase side first and negative-phase side first rectifier elements D11 and D21 are connected to each other immediately after that, so that a full-wave current is obtained at the connection point (location g). This is because the cathodes of the second and reverse-phase side second rectifier elements D12 and D22 remain in the positive-phase half-wave current and the negative-phase half-wave current until the junction after the connection point.

つまり、直後に全波電流となる正相側第1及び逆相側第1整流素子D11,D21は電流が流れ易いが、直後で半波電流のままの正相側第2及び逆相側第2整流素子D12,D22は電流の流れ易さが若干劣る状況となっている。結果、合流点(箇所h)では全波電流とこれよりも電流降下量の大きい正相半波電流及び逆相半波電流とが合流するため、出力端子o1から出力される出力電流の許容値は小さくなってしまう。   In other words, the positive phase side first and negative phase side first rectifier elements D11 and D21 that become full-wave current immediately after the current flow easily, but immediately after that, the positive phase side second and negative phase side second currents remain as half-wave currents. The two rectifying elements D12 and D22 are in a slightly inferior current flow. As a result, since the full-wave current and the positive-phase half-wave current and the negative-phase half-wave current having a larger current drop amount merge at the junction (location h), the allowable value of the output current output from the output terminal o1. Will get smaller.

これに対し本実施形態の整流器6は、比較例の整流器6xよりも出力電流の許容値を大きくすることが可能である。
図2(c)は、本実施形態の整流器6の各箇所a〜i(図中は、マルa〜i)の電流波形を示す。
On the other hand, the rectifier 6 of this embodiment can increase the allowable value of the output current more than the rectifier 6x of the comparative example.
FIG.2 (c) shows the current waveform of each location ai (maru ai in the figure) of the rectifier 6 of this embodiment.

本実施形態の整流器6では、正相側第1及び第2整流素子D11,D12と逆相側第1及び第2整流素子D21,D22の各カソード(箇所c〜f)の半波電流は、何れも電流降下量が小さい。これは、正相側第1及び逆相側第1整流素子D11,D21のカソードが直後に互いに接続され、正相側第2及び逆相側第2整流素子D12,D22のカソードが直後に互いに接続されるため、何れの接続点(箇所g,h)においても全波電流となるためである。   In the rectifier 6 of the present embodiment, the half-wave currents at the cathodes (locations cf) of the positive-phase side first and second rectifier elements D11 and D12 and the negative-phase side first and second rectifier elements D21 and D22 are: In either case, the amount of current drop is small. This is because the positive phase side first and negative phase side first rectifier elements D11 and D21 are connected to each other immediately after, and the positive phase side second and negative phase side second rectifier elements D12 and D22 are immediately connected to each other. This is because a full-wave current is generated at any connection point (locations g and h) because they are connected.

つまり、本実施形態では、直後に全波電流となる正相側第1及び逆相側第1整流素子D11,D21、正相側第2及び逆相側第2整流素子D12,D22の何れにおいても同等に電流が流れ易い状況となっている。結果、合流点(箇所i)では電流降下量の小さい全波電流同士が合流するため、出力端子o1から出力される出力電流の許容値を大きくすることが可能となっている。このように本実施形態の整流器6では、出力電流の許容値を向上できる構成となっている。   That is, in this embodiment, in any of the positive phase side first and negative phase side first rectifier elements D11 and D21, and positive phase side second and negative phase side second rectifier elements D12 and D22, which are full-wave currents immediately thereafter. However, the current is equally easy to flow. As a result, since the full-wave currents having a small current drop amount merge at the junction (location i), the allowable value of the output current output from the output terminal o1 can be increased. As described above, the rectifier 6 of the present embodiment is configured to improve the allowable value of the output current.

次に、本実施形態の特徴的な効果を記載する。
(1)整流器6の正相側整流部D1として並列接続される正相側第1及び第2整流素子D11,D12と、逆相側整流部D2として並列接続される逆相側第1及び第2整流素子D21,D22とにおいて、同じ相の整流素子(D11とD12、D21とD22)のカソード同士を接続する手前で、異なる相の整流素子(D11とD21、D12とD22)のカソード同士が先に接続される。つまり、異なる相の整流素子(D11とD21、D12とD22)のカソード同士が先に接続されることで、その接続点では全波電流となる。これにより、直後に全波電流となる整流素子D11,D12,D21,D22は電流が流れ易い状況となることから、整流器6の出力電流の許容値の向上を図ることができる。
Next, characteristic effects of the present embodiment will be described.
(1) The positive-phase side first and second rectifier elements D11 and D12 connected in parallel as the positive-phase side rectifier D1 of the rectifier 6, and the negative-phase side first and second connected in parallel as the negative-phase side rectifier D2. In the two rectifying elements D21 and D22, before connecting the cathodes of the rectifying elements of the same phase (D11 and D12, D21 and D22), the rectifying elements of the different phases (D11 and D21, D12 and D22) are connected to each other. Connected first. That is, the cathodes of the rectifying elements of different phases (D11 and D21, D12 and D22) are connected first, and a full-wave current is obtained at the connection point. As a result, the rectifier elements D11, D12, D21, and D22, which become full-wave currents immediately after that, are in a state in which current easily flows, so that the allowable value of the output current of the rectifier 6 can be improved.

(2)正相側整流部D1及び逆相側整流部D2の各整流素子D11,D12,D21,D22は同数の偶数個(それぞれ2個)であり、全ての整流素子D11,D12,D21,D22において同じ相の整流素子(D11とD12、D21とD22)のカソード同士を接続する手前で、異なる相の整流素子(D11とD21、D12とD22)のカソード同士が先に接続される。これにより本実施形態では、全ての整流素子D11,D12,D21,D22において電流が流れ易い状況となることから、整流器6の出力電流の許容値をより確実に向上できる構成である。   (2) The rectifying elements D11, D12, D21, and D22 of the positive phase side rectifying unit D1 and the negative phase side rectifying unit D2 are the same number of even numbers (two each), and all the rectifying elements D11, D12, D21, Prior to connecting the cathodes of the rectifying elements (D11 and D12, D21 and D22) of the same phase in D22, the cathodes of the rectifying elements (D11 and D21, D12 and D22) of different phases are connected first. Thereby, in this embodiment, since it will be in the condition where an electric current flows easily in all the rectification elements D11, D12, D21, and D22, it is the structure which can improve the allowable value of the output current of the rectifier 6 more reliably.

(3)本実施形態の整流器6は、中央部に設けた絶縁部材10の両側に整流素子D21,D12のアノード側を配置し、外側に向けて整流素子D11,D22を順次配置する構成としていることから、中央部の絶縁部材10を起点としてコンパクトに構成することが可能である。   (3) The rectifier 6 of the present embodiment is configured such that the anode sides of the rectifying elements D21 and D12 are arranged on both sides of the insulating member 10 provided in the central portion, and the rectifying elements D11 and D22 are sequentially arranged outward. For this reason, it is possible to form a compact structure with the insulating member 10 at the center as a starting point.

なお、上記実施形態は、以下のように変更してもよい。
・整流器6の正相側整流部D1と逆相側整流部D2とを、それぞれ2つの整流素子D11,D12、整流素子D21,D22の並列接続にて構成したが、並列接続する整流素子の数はこれに限らず、適宜変更してもよい。
In addition, you may change the said embodiment as follows.
The rectifier 6 has the positive phase side rectification unit D1 and the reverse phase side rectification unit D2 configured by parallel connection of two rectification elements D11 and D12 and rectification elements D21 and D22, respectively. Is not limited to this, and may be changed as appropriate.

例えば図4(a)(b)に示す整流器6aは、図2に示す整流器6の正相側第1及び第2整流素子D11,D12、逆相側第1及び第2整流素子D21,D22に対して、更に各相側に2つの整流素子をそれぞれ追加するものである。つまり、正相側第3及び第4整流素子D13,D14、逆相側第3及び第4整流素子D23,D24が追加されている。   For example, the rectifier 6a shown in FIGS. 4A and 4B is connected to the positive-phase side first and second rectifier elements D11 and D12 and the negative-phase side first and second rectifier elements D21 and D22 of the rectifier 6 shown in FIG. On the other hand, two rectifier elements are added to each phase side. That is, the positive phase side third and fourth rectifying elements D13 and D14 and the negative phase side third and fourth rectifying elements D23 and D24 are added.

図4(b)の構造図に示すように、整流器6aは、図2に示す整流器6の最も外側に位置していたアノード側端子導体Ta3,Ta6がアノード側共用端子導体Ta7,Ta10に置換され、アノード側共用端子導体Ta7には正相側第3整流素子D13の整流素子本体13のアノード側が固着され、整流素子本体13のカソード側にはカソード側共用端子導体Ta8が固着されている。カソード側共用端子導体Ta8には逆相側第3整流素子D23の整流素子本体23が固着され、整流素子本体23のアノード側にはアノード側端子導体Ta9が固着されている。   As shown in the structural diagram of FIG. 4B, the rectifier 6a has the anode-side terminal conductors Ta3 and Ta6 located on the outermost side of the rectifier 6 shown in FIG. 2 replaced with anode-side shared terminal conductors Ta7 and Ta10. The anode side of the rectifying element main body 13 of the positive phase side third rectifying element D13 is fixed to the anode side common terminal conductor Ta7, and the cathode side common terminal conductor Ta8 is fixed to the cathode side of the rectifying element main body 13. The rectifying element main body 23 of the reverse phase side third rectifying element D23 is fixed to the cathode side common terminal conductor Ta8, and the anode side terminal conductor Ta9 is fixed to the anode side of the rectifying element main body 23.

また、アノード側共用端子導体Ta10には逆相側第4整流素子D24の整流素子本体24のアノード側が固着され、整流素子本体24のカソード側にはカソード側共用端子導体Ta11が固着されている。カソード側共用端子導体Ta11には正相側第4整流素子D14の整流素子本体14が固着され、整流素子本体14のアノード側にはアノード側端子導体Ta12が固着されている。   Further, the anode side of the rectifying element body 24 of the reverse phase side fourth rectifying element D24 is fixed to the anode side common terminal conductor Ta10, and the cathode side common terminal conductor Ta11 is fixed to the cathode side of the rectifying element body 24. The rectifying element body 14 of the positive phase side fourth rectifying element D14 is fixed to the cathode side common terminal conductor Ta11, and the anode side terminal conductor Ta12 is fixed to the anode side of the rectifying element body 14.

そして、アノード側共用端子導体Ta7とアノード側端子導体Ta4,Ta12とがそれぞれ二次側コイル5bの第1端子5xに接続、アノード側共用端子導体Ta10とアノード側端子導体Ta1,Ta9がそれぞれ二次側コイル5bの第2端子5yに接続され、カソード側共用端子導体Ta2,Ta5,Ta8,Ta11がそれぞれ電源装置2の第1出力端子o1に接続されることで、図4(a)の回路図に示す接続態様となる。   The anode side common terminal conductor Ta7 and the anode side terminal conductors Ta4 and Ta12 are respectively connected to the first terminal 5x of the secondary side coil 5b, and the anode side common terminal conductor Ta10 and the anode side terminal conductors Ta1 and Ta9 are secondary. The cathode side shared terminal conductors Ta2, Ta5, Ta8, Ta11 are connected to the first output terminal o1 of the power supply device 2 respectively connected to the second terminal 5y of the side coil 5b, whereby the circuit diagram of FIG. The connection mode shown in FIG.

このような整流器6aにおいても各整流素子D11〜D14,D21〜D24のカソードが直後に異なる相同士で接続されて全波電流となることから、整流器6aの出力電流の許容値を向上できる構成である。つまり、図2及び図4の態様のように、各整流部D1,D2を2つ、4つの整流素子を用いるというように、整流素子を同数で偶数個用いるのが好ましい。   Also in such a rectifier 6a, the cathodes of the rectifier elements D11 to D14 and D21 to D24 are connected immediately after different phases to form a full-wave current, so that the allowable value of the output current of the rectifier 6a can be improved. is there. That is, it is preferable to use an even number of rectifier elements in the same number, such as using two rectifiers D1 and D2 and four rectifier elements as in the embodiments of FIGS.

・整流器6,6aの中央部に板状の絶縁部材10を用いたが、絶縁する手段はこれに限らない。また、端子導体を離間配置する等、空気やその他の流体にて絶縁を図る構成としてもよい。   -Although the plate-shaped insulation member 10 was used in the center part of the rectifiers 6 and 6a, the means to insulate is not restricted to this. Moreover, it is good also as a structure which aims at insulation with air or another fluid, such as arranging a terminal conductor apart.

・抵抗溶接機1に用いる溶接用電源装置2の整流器6,6aに適用したが、この整流器6,6aを抵抗溶接機以外の溶接用電源装置に適用してもよく、また溶接以外の電源装置に適用してもよい。   Although applied to the rectifiers 6 and 6a of the welding power supply device 2 used in the resistance welding machine 1, the rectifiers 6 and 6a may be applied to welding power supply devices other than the resistance welding machine, and power supply devices other than welding You may apply to.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)請求項1〜3の何れか1項に記載の溶接用電源装置は、抵抗溶接機に用いるものであることを特徴とする溶接用電源装置。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(B) The welding power supply apparatus according to any one of claims 1 to 3 is used for a resistance welding machine.

2 溶接用電源装置
5 溶接トランス
5b 二次側コイル
5c センタータップ
5x 第1端子
5y 第2端子
6 整流器
6a 整流器
10 絶縁部材
D1 正相側整流部
D11 正相側整流素子(正相側第1整流素子)
D12 正相側整流素子(正相側第2整流素子)
D13 正相側整流素子(正相側第3整流素子)
D14 正相側整流素子(正相側第4整流素子)
D2 逆相側整流部
D21 逆相側整流素子(逆相側第1整流素子)
D22 逆相側整流素子(逆相側第2整流素子)
D23 逆相側整流素子(逆相側第3整流素子)
D24 逆相側整流素子(逆相側第4整流素子)
DESCRIPTION OF SYMBOLS 2 Welding power supply device 5 Welding transformer 5b Secondary side coil 5c Center tap 5x 1st terminal 5y 2nd terminal 6 Rectifier 6a Rectifier 10 Insulation member D1 Positive phase side rectification part D11 Positive phase side rectification element (positive phase side 1st rectification) element)
D12 Positive phase side rectifying element (positive phase side second rectifying element)
D13 Positive phase side rectifier (positive phase third rectifier)
D14 Positive phase side rectifying element (positive phase side fourth rectifying element)
D2 Reverse phase side rectification part D21 Reverse phase side rectifier (Reverse phase side first rectifier)
D22 Reverse phase side rectifier (Reverse phase side second rectifier)
D23 Reverse-phase side rectifier (Reverse-phase side third rectifier)
D24 Negative-phase side rectifier element (negative-phase side fourth rectifier element)

Claims (4)

一次側で生成された高周波交流電力を電圧変換する溶接トランスと、その溶接トランスの二次側コイルから出力された高周波交流電力を直流変換する整流器とを備えた溶接用電源装置であって、
前記整流器は、前記二次側コイルのセンタータップを用いる全波整流器であり、前記二次側コイルの第1端子に接続され正相半波の整流を行う正相側整流部と、前記二次側コイルの第2端子に接続され逆相半波の整流を行う逆相側整流部とを備え、各整流部の出力端子同士を接続してなるものであり、
前記正相側整流部は、並列接続の複数の正相側整流素子を備えると共に、前記逆相側整流部は、並列接続の複数の逆相側整流素子を備え、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成されていることを特徴とする溶接用電源装置。
A welding power source apparatus comprising a welding transformer that converts a high-frequency AC power generated on a primary side into a voltage, and a rectifier that converts a high-frequency AC power output from a secondary coil of the welding transformer into a DC,
The rectifier is a full-wave rectifier that uses a center tap of the secondary side coil, and is connected to a first terminal of the secondary side coil and performs positive phase half-wave rectification, and the secondary side A negative phase side rectification unit connected to the second terminal of the side coil and rectifying the negative phase half wave, and connecting the output terminals of each rectification unit,
The positive phase side rectifying unit includes a plurality of positive phase side rectifying elements connected in parallel, and the negative phase side rectifying unit includes a plurality of negative phase side rectifying elements connected in parallel, and the cathodes of the rectifying elements of the same phase A welding power source apparatus configured to first connect cathodes of rectifying elements of different phases before connecting each other.
請求項1に記載の溶接用電源装置において、
前記正相側整流部及び前記逆相側整流部は、前記整流素子を同数の偶数個用い、全ての整流素子において、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成されていることを特徴とする溶接用電源装置。
In the welding power supply device according to claim 1,
The positive phase side rectifying unit and the negative phase side rectifying unit use an even number of the same number of rectifying elements, and in all the rectifying elements, before connecting the cathodes of the rectifying elements of the same phase, the rectifying elements of different phases A power supply device for welding characterized in that the cathodes are connected first.
請求項1又は2に記載の溶接用電源装置において、
前記整流器は、中央部に絶縁部材を備えその絶縁部材の両側に前記整流素子のアノード側を配置し、外側に向けて前記整流素子が順次配置されて構成されていることを特徴とする溶接用電源装置。
In the welding power supply device according to claim 1 or 2,
The rectifier includes an insulating member at a central portion, the anode side of the rectifying element is disposed on both sides of the insulating member, and the rectifying elements are sequentially disposed toward the outside. Power supply.
一次側で生成された高周波交流電力を電圧変換する溶接トランスと、その溶接トランスの二次側コイルから出力された高周波交流電力を直流変換する整流器とを備えた溶接用電源装置のその整流器であって、
前記整流器は、前記二次側コイルのセンタータップを用いる全波整流器であり、前記二次側コイルの第1端子に接続され正相半波の整流を行う正相側整流部と、前記二次側コイルの第2端子に接続され逆相半波の整流を行う逆相側整流部とを備え、各整流部の出力端子同士を接続してなるものであり、
前記正相側整流部は、並列接続の複数の正相側整流素子を備えると共に、前記逆相側整流部は、並列接続の複数の逆相側整流素子を備え、同じ相の整流素子のカソード同士を接続する手前で、異なる相の整流素子のカソード同士を先に接続するように構成されていることを特徴とする溶接用電源装置の整流器。
The welding rectifier includes a welding transformer that converts a high-frequency AC power generated on the primary side into a voltage and a rectifier that converts a high-frequency AC power output from a secondary coil of the welding transformer into a DC. And
The rectifier is a full-wave rectifier that uses a center tap of the secondary side coil, and is connected to a first terminal of the secondary side coil and performs positive phase half-wave rectification, and the secondary side A negative phase side rectification unit connected to the second terminal of the side coil and rectifying the negative phase half wave, and connecting the output terminals of each rectification unit,
The positive phase side rectifying unit includes a plurality of positive phase side rectifying elements connected in parallel, and the negative phase side rectifying unit includes a plurality of negative phase side rectifying elements connected in parallel, and the cathodes of the rectifying elements of the same phase A rectifier for a welding power supply apparatus, wherein the cathodes of rectifying elements of different phases are connected to each other before connecting each other.
JP2014178400A 2014-09-02 2014-09-02 Welding power supply device and rectifier for welding power supply device Active JP6324851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178400A JP6324851B2 (en) 2014-09-02 2014-09-02 Welding power supply device and rectifier for welding power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178400A JP6324851B2 (en) 2014-09-02 2014-09-02 Welding power supply device and rectifier for welding power supply device

Publications (2)

Publication Number Publication Date
JP2016052661A JP2016052661A (en) 2016-04-14
JP6324851B2 true JP6324851B2 (en) 2018-05-16

Family

ID=55744094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178400A Active JP6324851B2 (en) 2014-09-02 2014-09-02 Welding power supply device and rectifier for welding power supply device

Country Status (1)

Country Link
JP (1) JP6324851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531254B1 (en) 2024-06-26 2024-08-09 敏夫 関 Program and method for generating data for generating flowcharts from source code

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120795U (en) * 1980-02-18 1981-09-14
JPH0614543A (en) * 1992-06-22 1994-01-21 Fuji Electric Co Ltd Method of connecting switching elements in parallel
JPH115173A (en) * 1997-06-11 1999-01-12 Dengensha Mfg Co Ltd Simplified three phases rectifying resistance welding machine
JP2003204677A (en) * 2002-01-08 2003-07-18 Toshiba Corp Power converter
JP2006187791A (en) * 2005-01-07 2006-07-20 Miyachi Technos Corp Power source apparatus for inverter type resistance welding
JP5629664B2 (en) * 2011-09-07 2014-11-26 東芝三菱電機産業システム株式会社 3-level power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531254B1 (en) 2024-06-26 2024-08-09 敏夫 関 Program and method for generating data for generating flowcharts from source code

Also Published As

Publication number Publication date
JP2016052661A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
Akagi et al. Power-loss breakdown of a 750-V 100-kW 20-kHz bidirectional isolated DC–DC converter using SiC-MOSFET/SBD dual modules
CN107748292B (en) Alternating current insulation detection circuit, system and method
US10044278B2 (en) Power conversion device
JP2017526331A (en) DC-DC converter having a transformer
JP2012143104A (en) Power conversion system
JP2011511608A5 (en)
JP5687373B1 (en) DC / DC converter
US9281755B2 (en) Inverter with coupled inductances
JP2016046973A (en) Resonance type dc-dc converter
JP2013074767A (en) Dc/dc converter
JP6140007B2 (en) Power converter
JP6324851B2 (en) Welding power supply device and rectifier for welding power supply device
US10284110B2 (en) Power supply having four quadrant converter and techniques for operation
US9425696B2 (en) Rectifying circuit and method for an unbalanced two phase DC grid
JP2008529466A (en) Method and inverter for converting DC voltage to three-phase AC output
US11984812B2 (en) Dual active bridge converter cell with split energy transfer inductor for optimized current balancing in the medium frequency transformer (MFT)
KR102665350B1 (en) Dual-Active-Bridge CONVERTER and BIPOLAR DC POWER DISTRIBUTION DEVICE
JP2013062904A (en) Regenerative motor end surge voltage suppression apparatus, motor drive system, and regenerative motor end surge voltage suppression method
CN105048827A (en) Voltage multiplying rectification circuit
RU2373627C1 (en) Ac-to-dc converter
JP2008211946A (en) Power conversion apparatus
JP2014138427A (en) Dc/dc converter
CN209805682U (en) ISOP-based high-voltage direct current converter
CN209948959U (en) Isolated Z-source direct-current converter with multiple windings supplying power simultaneously
US20150222177A1 (en) High efficient single stage half bridge power factor correction converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180411

R150 Certificate of patent or registration of utility model

Ref document number: 6324851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250