JP6324112B2 - Manufacturing method for prefabricated steel pipe columns - Google Patents

Manufacturing method for prefabricated steel pipe columns Download PDF

Info

Publication number
JP6324112B2
JP6324112B2 JP2014036090A JP2014036090A JP6324112B2 JP 6324112 B2 JP6324112 B2 JP 6324112B2 JP 2014036090 A JP2014036090 A JP 2014036090A JP 2014036090 A JP2014036090 A JP 2014036090A JP 6324112 B2 JP6324112 B2 JP 6324112B2
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
mold
diameter
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014036090A
Other languages
Japanese (ja)
Other versions
JP2015161094A (en
Inventor
紀行 星
紀行 星
Original Assignee
ヨシモトポール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヨシモトポール株式会社 filed Critical ヨシモトポール株式会社
Priority to JP2014036090A priority Critical patent/JP6324112B2/en
Publication of JP2015161094A publication Critical patent/JP2015161094A/en
Application granted granted Critical
Publication of JP6324112B2 publication Critical patent/JP6324112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

本発明は、第1管〜第3管からなる複数の鋼管を嵌合させて鋼管柱を製造する組立式鋼管柱製造方法に関する The present invention relates to a method of manufacturing prefabricated steel columns fitted a plurality of steel pipes comprising a first pipe through third tube to produce a steel column

具体的には、例えば、照明、道路標識、信号機、通信アンテナなどに用いる円形鋼管や角鋼管を使用した組立式鋼管柱製造方法に関する。 Specifically, for example, lighting, road signs, traffic lights, a method of manufacturing a prefabricated steel columns using Tubular or angular steel pipes used like the communication antenna.

組立式鋼管柱の製造方法に関しては従来から種々の提案がなされており、例えば、下記特許文献1には、旋削加工及びサンドブラスト処理が施された金型の表面に、ダイアモンドライクカーボンからなる膜厚3〜10μmのコーティングを施した摩擦係数0.1〜0.3の金型を用いて、溶融亜鉛メッキ鋼管の管端を冷間プレスして拡径または縮径し、好ましくは、前記旋削加工が施された金型の表面粗さは、最大高さRzがダイアモンドライクカーボンの膜厚の0.4〜1.0倍とすることにより、高い潤滑特性を得ることができ、加工油やポリエチレンシートを使用することなく、効率的なプレス作業を実現することができる組立式鋼管柱のプレス加工方法が記載されている。   Various proposals have heretofore been made with respect to a method for manufacturing a prefabricated steel pipe column. For example, in Patent Document 1 below, a film thickness of diamond-like carbon is formed on the surface of a die that has been subjected to turning and sandblasting. Using a die having a friction coefficient of 0.1 to 0.3 with a coating of 3 to 10 μm, the end of the hot dip galvanized steel pipe was cold-pressed to expand or reduce the diameter, and preferably the turning process was performed. The surface roughness of the mold is such that the maximum height Rz is 0.4 to 1.0 times the film thickness of diamond-like carbon, so that high lubrication characteristics can be obtained without using processing oil or polyethylene sheets. A method for pressing an assembling-type steel pipe column capable of realizing a typical pressing operation is described.

しかし、特許文献1に記載されている発明は、組立式鋼管柱のプレス加工方法であって、本発明が対象とする、第1管〜第3管からなる複数の鋼管を嵌合させて製造する組立式鋼管柱およびその製造方法については、十分検討なされていなかった。   However, the invention described in Patent Document 1 is a method for press-working an assembling-type steel pipe column, and is manufactured by fitting a plurality of steel pipes composed of a first pipe to a third pipe targeted by the present invention. The assembled steel pipe column and the manufacturing method thereof have not been sufficiently studied.

特開2013−56351号公報JP 2013-56351 A

本発明は、前述のような従来技術の問題点を解決し、第1管〜第3管からなる複数の鋼管を嵌合させて製造する組立式鋼管柱の製造方法において、第2管の元口の拡径を省略することができる組立式鋼管柱製造方法を提供することを課題とする。 The present invention solves the problems of the prior art as described above, and in the manufacturing method of the assembling-type steel pipe column manufactured by fitting a plurality of steel pipes composed of the first pipe to the third pipe, to provide a method for manufacturing a prefabricated steel column can be omitted enlarged mouth to challenge.

本発明は、前述の課題を解決するために、第1管〜第3管からなる複数の鋼管を嵌合させて鋼管柱を製造する組立式鋼管柱製造方法において、第1管〜第3管の末口及び元口の縮径及び拡径方法について鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)第1管〜第3管からなる複数の鋼管を嵌合させて鋼管柱を製造する組立式鋼管柱の製造方法において、第1管の外径よりも大きい外径を有する第2管の末口を15〜20%縮径して第1管に嵌合させるとともに、第2管の外径よりも大きい外径を有する第3管の末口を20〜30%縮径して第2管の元口に嵌合させ、 前記第3管の末口の縮径は、ダイ半角が10°以上20°以下で、前記ダイ半角を規定する曲面の曲率半径が60mm以上70mm未満の金型を用いることを特徴とする組立式鋼管柱の製造方法。
前記金型がDLC被膜を有することを特徴とする、(2)に記載の組立式鋼管柱の製造方法。
The present invention is to solve the problems described above, in the manufacturing method of the prefabricated steel columns fitted a plurality of steel pipes comprising a first pipe through third tube to produce a tubular columns, the first pipe to third As a result of intensive studies on the diameter reduction and diameter expansion methods of the end and the end of the pipe, the gist of the invention is as follows.
(1) In a method for manufacturing an assembling-type steel pipe column in which a plurality of steel pipes composed of a first pipe to a third pipe are fitted to manufacture a steel pipe column , a second pipe having an outer diameter larger than the outer diameter of the first pipe The diameter of the end of the third pipe is reduced by 15 to 20% and fitted to the first pipe, and the diameter of the end of the third pipe having an outer diameter larger than the outer diameter of the second pipe is reduced by 20 to 30%. is fitted to the bottom end of the second tube, the diameter of the mouth end of the third tube, the die half angle 20 ° or less 10 ° or higher, the curvature radius of the curved surface defining the die half angle is less than 70mm above 60mm A method for manufacturing a prefabricated steel pipe column, wherein a mold is used .
(2) the mold is characterized and Turkey that having a DLC coating, producing how prefabricated steel tube column as recited in (2).

<作用>
(1)の発明の組立式鋼管柱製造方法によれば、第3管の末口を20〜30%縮径して第2管の元口に嵌合させることにより、第2管の元口を拡径しなくても第3管の末口を第2管の元口に嵌合させることができるので、第2管の元口の拡径を省略することができる。また、ダイ半角が10°以上20°以下で、前記ダイ半角を規定する曲面の曲率半径が60mm以上70mm未満の金型を用いることにより、第3管の末口の縮径加工時の荷重を低く抑えることができる。
)の発明の組立式鋼管柱の製造方法によれば、前記第3管の末口の縮径は、DLC被膜を有する金型を用いることにより、第3管の末口を20〜30%縮径して第2管の元口に嵌合させることができる。ここに、DLC被膜とは、ダイアモンドライクカーボン(Diamond- Like Carbon)によるコーティング処理により、CVD、PVD、レーザーなどを用いて金型の表面にアモルファス構造のカーボン被膜を形成した被膜を云う。
<Action>
According to the method for manufacturing an assembling-type steel pipe column of the invention of (1) , the diameter of the end of the third pipe is reduced by 20 to 30% and fitted to the base of the second pipe. Since the end of the third pipe can be fitted to the base of the second pipe without expanding the diameter of the mouth, the diameter of the base of the second pipe can be omitted. Further, by using a die having a die half angle of 10 ° or more and 20 ° or less and a curvature radius of the curved surface defining the die half angle of 60 mm or more and less than 70 mm, the load at the time of reducing the diameter of the end of the third pipe is reduced. It can be kept low.
According to the manufacturing method of the assembling-type steel pipe column of the invention of ( 2 ), the diameter of the end of the third pipe is reduced to 20 to 30 by using a mold having a DLC coating. % Diameter can be fitted to the former port of the second pipe. Here, the DLC film refers to a film in which a carbon film having an amorphous structure is formed on the surface of a mold using CVD, PVD, laser, or the like by a coating process using diamond-like carbon.

本発明によれば、第1管〜第3管からなる複数の鋼管を嵌合させて鋼管柱を製造する組立式鋼管柱製造方法において、第2管の元口の拡径を省略することができる組立式鋼管柱製造方法を提供することができ、産業上有用な著しい効果を奏する。 According to the present invention, in the manufacturing method of an assembling-type steel pipe column in which a plurality of steel pipes composed of the first pipe to the third pipe are fitted to manufacture a steel pipe column , the diameter expansion of the former port of the second pipe is omitted. Therefore, it is possible to provide a method for manufacturing an assembling-type steel pipe column , which has a significant industrially useful effect.

従来及び本発明の組立式鋼管柱およびその製造方法の実施形態を例示する図である。It is a figure which illustrates embodiment of the assembly-type steel pipe pillar of the past and this invention, and its manufacturing method. 従来の組立式鋼管柱の製造方法を例示する細図である。It is a fine figure which illustrates the manufacturing method of the conventional assembly-type steel pipe pillar. 絞り口加工力を決める諸因子とダイ半角の関係として、一般的に知られている模式図である。It is a schematic diagram generally known as the relationship between various factors that determine the drawing port working force and the die half angle. 本発明の組立式鋼管柱の製造方法におけるダイ半角(°)と曲率半径:mmを示す図である。It is a figure which shows the die half angle (degree) and the curvature radius: mm in the manufacturing method of the assembly-type steel pipe pillar of this invention. 本発明の組立式鋼管柱の製造方法の実施例に用いた金型を例示する図である。It is a figure which illustrates the metal mold | die used for the Example of the manufacturing method of the assembly-type steel pipe pillar of this invention. 本発明の組立式鋼管柱の製造方法の実施例におけるストロークと荷重の推移を示す図である。It is a figure which shows transition of the stroke and load in the Example of the manufacturing method of the assembly-type steel pipe pillar of this invention. 本発明の組立式鋼管柱の製造方法の実施例における鋼管先端からの距離と外径分布との関係を示す図である。It is a figure which shows the relationship between the distance from the steel pipe front-end | tip, and outer-diameter distribution in the Example of the manufacturing method of the assembly-type steel pipe pillar of this invention. 本発明の組立式鋼管柱の製造方法の実施例における曲率半径が20mmと30mmの直線部が成型されていく過程を示す図である。It is a figure which shows the process in which the linear part with a curvature radius of 20 mm and 30 mm is shape | molded in the Example of the manufacturing method of the assembly-type steel pipe pillar of this invention.

発明を実施するための形態について、図1〜図4を用いて詳細に説明する。一般に高強度タイプの柱は防災用の柱として使用されており、地震・津波などの災害時に遠方への拡声用のスピーカーやアンテナ等の機器を取り付けている。   EMBODIMENT OF THE INVENTION The form for inventing is demonstrated in detail using FIGS. 1-4. In general, high-strength type pillars are used as disaster prevention pillars, and are equipped with loudspeakers and antennas for sounding far away during disasters such as earthquakes and tsunamis.

このような高強度タイプの鋼管は、通常のタイプと位置付けている鋼管よりもその外径が一規格ずつ上回っていることから、今後の高需要が見込まれている柱の一つである。   Such a high-strength type steel pipe is one of the pillars for which high demand is expected in the future because its outer diameter is larger by one standard than a steel pipe positioned as a normal type.

上記が今回の発明の背景としてあり、本製品の柱の需要増に対応していくため、より生産性を向上し製造の効率化を目的として柱の接合部分の改良を行った。   The above is the background of the present invention, and in order to respond to the increasing demand for the pillars of this product, the joints of the pillars have been improved for the purpose of improving productivity and increasing the efficiency of manufacturing.

図1は、従来及び本発明の組立式鋼管柱およびその製造方法の実施形態を例示する図である。従来の高強度タイプの柱は、図1(a)に示されているように第1管から第3管の3本で構成されている。各管は、第1管が外径190.7mm-板厚5.5mm、第2管が外径216.3mm-板厚7.0mm、第3管が外径267.4mm-板厚7.0mmである。第2管の末口を例えば外径216.3mmから176.7mmまで18%、第1管との嵌合に好ましい範囲として15〜20%絞り、元口の内径を202.3mmから220.5mmまで9%拡げ、第3管の末口を外径267.4mmから218.4mmまで18%絞り、第2管を第1管に、第3管を第2管に嵌合し、ボルト接合をしている。ここに、末口とは鋼管の細い方の端部をいい、元口とは太い方の端部をいう。   FIG. 1 is a diagram illustrating an embodiment of a conventional assembling-type steel pipe column and a manufacturing method thereof according to the present invention. A conventional high-strength type pillar is composed of three tubes, a first tube to a third tube, as shown in FIG. In each tube, the first tube has an outer diameter of 190.7 mm and a thickness of 5.5 mm, the second tube has an outer diameter of 216.3 mm and a thickness of 7.0 mm, and the third tube has an outer diameter of 267.4 mm and a thickness of 7.0 mm. For example, the end of the second pipe is narrowed by 18% from 216.3mm to 176.7mm outside diameter, 15-20% as the preferred range for fitting with the first pipe, and the inner diameter of the main pipe is expanded by 9% from 202.3mm to 220.5mm. The end of the third pipe is 18% narrowed from an outer diameter of 267.4 mm to 218.4 mm, the second pipe is fitted to the first pipe, the third pipe is fitted to the second pipe, and bolted. Here, the end port refers to the narrow end of the steel pipe, and the base port refers to the thick end.

図2は従来の組立式鋼管柱の製造工程を示している。図2の(a)、(b)では図1(a)の第2管の元口の拡径加工工程を示す。まずプレス機1に金型2を取り付け、次に鋼管3 (図1(a)の第2管)をセットし、2か所のクランプ4で固定する。金型2はプレス機1により前進されていき、金型2を鋼管3の元口部に押圧し、鋼管3を拡径させていく。その際、金型2の先端は鋼管3の内径より小さくなっており、金型2が挿入されていくことで鋼管3の元口は端部から拡げられていく。   FIG. 2 shows a manufacturing process of a conventional assembling steel pipe column. 2 (a) and 2 (b) show the diameter expansion process of the base port of the second pipe in FIG. 1 (a). First, the die 2 is attached to the press machine 1, then the steel pipe 3 (second pipe in FIG. 1 (a)) is set and fixed with the clamps 4 at two places. The mold 2 is moved forward by the press machine 1, and the mold 2 is pressed against the former opening of the steel pipe 3 to expand the diameter of the steel pipe 3. At that time, the tip of the mold 2 is smaller than the inner diameter of the steel pipe 3, and the former port of the steel pipe 3 is expanded from the end as the mold 2 is inserted.

図2の(c)、(d)では図1(a)の第3管の末口の縮径加工工程を示す。まずプレス機1に金型5を取り付け、次に鋼管6(図1(a)の第3管)をセットし、2か所のクランプ4で固定する。金型5はプレス機1により前進されていき、金型5を鋼管6の末口部に押圧し、鋼管6を縮径させていく。   FIGS. 2 (c) and 2 (d) show the process of reducing the diameter of the end of the third pipe in FIG. 1 (a). First, the die 5 is attached to the press machine 1, and then the steel pipe 6 (the third pipe in FIG. 1 (a)) is set and fixed with the clamps 4 at two places. The mold 5 is moved forward by the press machine 1, and the mold 5 is pressed against the end portion of the steel pipe 6 to reduce the diameter of the steel pipe 6.

その際、図2(c)及び(d)に示す金型5の先端内径8は鋼管6の外径より大きくなっており、金型5が挿入されていくことで鋼管6の末口は端部から絞られていく。また、図1の第2管の末口を絞る時は別の内径の金型を使用し、拡げ加工を行った鋼管3の他端部を上記の図2(c)、(d)と同じ工程で絞っていく。   At that time, the inner diameter 8 of the tip 5 of the mold 5 shown in FIGS. 2 (c) and 2 (d) is larger than the outer diameter of the steel pipe 6, and the end of the steel pipe 6 is the end when the mold 5 is inserted. It is squeezed from the department. Also, when narrowing the end of the second pipe in FIG. 1, a mold with a different inner diameter is used, and the other end of the expanded steel pipe 3 is the same as in FIGS. 2 (c) and (d) above. We narrow down by process.

しかしながら、上記のように、高強度タイプの柱の加工工程では拡径と縮径合わせて3回の加工工程を行う必要がある。さらに拡径と縮径を行うための各金型は大型の重量物のため、加工工程を変える際にプレス機1に金型を付け替える作業や、使用する鋼管は第1管が5.5m、第2管が6.6m、第3管が6.1mもあるため搬入搬出の段取りに多大な時間を要する。特に第2管においては、縮径と拡径加工を両端部に行うため鋼管を反転させる必要があり、作業効率の低下が問題となっていた。さらに、高荷重での拡径や縮径加工であるため、金型と鋼管の間の摩擦が非常に大きく、金型の損耗が激しいことが問題であった。   However, as described above, in the processing process of the high-strength type column, it is necessary to perform the processing process three times in combination with the diameter expansion and the diameter reduction. Furthermore, each die for expanding and reducing the diameter is a large heavy object, so when changing the machining process, the work to change the die to the press machine 1 and the steel pipe to be used is 5.5m, the first pipe Since the 2 pipes are 6.6m and the 3rd pipe is 6.1m, it takes a lot of time to carry in and out. Particularly in the second pipe, it is necessary to invert the steel pipe in order to perform the diameter reduction and diameter expansion processing at both ends, and there has been a problem of a reduction in work efficiency. Further, since the diameter is increased or reduced at a high load, the friction between the mold and the steel pipe is very large, and the mold is severely worn.

この問題に対し、図1の第2管の拡径加工工程を削減することで作業効率を上げ、生産性を向上させる。これは同時に、プレス機1の稼働数も減らすことにつながり、プレス機1の高寿命化につなげられる。また、金型と鋼管の間の摩擦力を低減することで、金型の損耗を軽減し、高耐久性を図る。   In response to this problem, the work efficiency is increased and the productivity is improved by reducing the diameter expansion process of the second pipe in FIG. At the same time, this also leads to a reduction in the number of operations of the press machine 1, leading to a longer life of the press machine 1. In addition, by reducing the frictional force between the mold and the steel pipe, wear of the mold is reduced and high durability is achieved.

本発明では、図1(b)で示されるように図1の第2管と第3管の接合部において、第3管の末口を従来の218.4mmまで18%絞る工程から例えば200mmまで25%、第2管との嵌合に好ましい範囲として20〜30%絞る工程に変更することで、第2管の元口部の拡径加工工程を無くし、工程削減を達成することができる。第3管の末口の縮径率が20%未満では第2管の元口の拡径を省略することができないうえ、第3管の末口の縮径率が30%を超えると絞り加工時に鋼管の軸方向に過大な荷重がかかって座屈を引き起こす可能性があるからである。なお、本発明に用いる第2管の末口は従来通り、例えば外径216.3mmから176.7mmまで18%、第1管との嵌合に好ましい範囲として15〜20%絞る。   In the present invention, as shown in FIG. 1 (b), at the junction between the second tube and the third tube in FIG. %, By changing to a process of narrowing by 20 to 30% as a preferable range for fitting with the second pipe, it is possible to eliminate the diameter expansion process of the former port portion of the second pipe and achieve process reduction. If the diameter reduction ratio of the end of the third pipe is less than 20%, the diameter expansion of the original opening of the second pipe cannot be omitted, and if the diameter reduction ratio of the end of the third pipe exceeds 30%, drawing is performed. This is because sometimes an excessive load is applied in the axial direction of the steel pipe to cause buckling. Note that the end of the second pipe used in the present invention is, for example, 18% from an outer diameter of 216.3 mm to 176.7 mm, and 15 to 20% as a preferable range for fitting with the first pipe.

しかし、図2(e)9で示したように、従来の金型形状のままでは高荷重がかかってしまい、鋼管6に座屈が発生してしまった。そこで、25%の縮径加工を達成できる形状の金型を検討した。図3に、口絞り加工力を決める諸因子とダイ半角の関係として、一般的に知られている模式図を示す。プレスによる口絞り加工に必要な加工力は、(1)管径の減少に必要な力、(2)摩擦力によるもの、(3)曲げ変形に要する力の合力といわれているが、この図からもダイ半角と摩擦力が、口絞り荷重の主な要因と確認できる。また今回のように、絞られた後に直線部が続く金型形状において、直線部成型荷重には曲率半径が影響を与える。よって本発明の金型では、25%の縮径加工を達成するために、絞り口形状において図4(a)に示す適切なダイ半角、金型と鋼管との摩擦力の低減、適切な曲率半径を検討した。   However, as shown in FIG. 2 (e) 9, with the conventional mold shape, a high load was applied, and the steel pipe 6 was buckled. Therefore, a mold having a shape capable of achieving 25% diameter reduction was examined. FIG. 3 is a schematic diagram that is generally known as the relationship between the factors that determine the squeezing force and the die half angle. The processing force required for squeezing by press is said to be (1) the force required to reduce the pipe diameter, (2) the frictional force, and (3) the resultant force required for bending deformation. Therefore, it can be confirmed that the die half-angle and the frictional force are the main factors of the aperture drawing load. Further, as in this case, in the mold shape in which the straight portion continues after being squeezed, the radius of curvature affects the straight portion molding load. Therefore, in the mold of the present invention, in order to achieve 25% diameter reduction processing, an appropriate die half angle as shown in FIG. 4 (a) in the aperture shape, a reduction in frictional force between the mold and the steel pipe, and an appropriate curvature are achieved. The radius was examined.

本発明の実施例について図5〜図8を用いて詳細に説明する。まず、金型と鋼管との摩擦力の低減効果措置として、DLC(Diamond-Like Carbon)被膜を検討した。DLC被膜は一般的に、低摩擦性、耐摩耗性、高耐久性といった特徴を有しており、本発明における金型と鋼管の間の摩擦力の低減のためには不可欠と判断し、金型と鋼管が互いに摺動する部分の金型側に必要なため、金型の内面全周に渡って付着させる。実物大の金型を検討する上で、まず外径89.1mm-板厚2.8mmの鋼管を外径66.4mmまで25%絞る構造の、絞り口の形状がそれぞれ異なる1/3スケールの金型4タイプで実験を行った。図5に4タイプの図面を示し、表1に4タイプのダイ半角と曲率半径をまとめたものを示す。なお、この4タイプにもDLC被膜を施している。   Embodiments of the present invention will be described in detail with reference to FIGS. First, DLC (Diamond-Like Carbon) coating was examined as a measure to reduce the frictional force between the mold and the steel pipe. The DLC coating generally has characteristics such as low friction, wear resistance, and high durability, and is judged to be indispensable for reducing the frictional force between the mold and the steel pipe in the present invention. Since the mold and the steel pipe are necessary on the mold side where the mold slides, the mold and the steel pipe are attached to the entire inner surface of the mold. When considering a full-scale mold, first, a 1/3 scale mold 4 with a structure that squeezes 25% of a steel pipe with an outer diameter of 89.1 mm and a thickness of 2.8 mm to an outer diameter of 66.4 mm. Experiments were conducted with the type. FIG. 5 shows four types of drawings, and Table 1 shows a summary of the four types of die half-angle and curvature radius. These four types also have a DLC coating.

図6は図5で示した4タイプの、横軸がストローク(=押し込んだ距離)、縦軸が荷重のストロークに対する荷重の推移を示す。   FIG. 6 shows the transition of the load with respect to the stroke of the four types shown in FIG. 5, the horizontal axis is the stroke (= indented distance) and the vertical axis is the load stroke.

図7に図5に示した4タイプの成型した鋼管の、横軸が鋼管先端からの距離、縦軸が鋼管の外径分布図を示す。   FIG. 7 shows the distance from the tip of the steel pipe, and the vertical axis shows the outer diameter distribution of the steel pipe of the four types shown in FIG.

図6から、BとCでは鋼管が金型の直線部分に入っている70mm付近を過ぎたあとも、荷重が上昇し続ける挙動が見られた。一方Aでは90mm、Dでは140mm辺りから荷重の上昇が見られなくなった。また、ダイ半角が小さいほど、絞り部分での荷重の上がり方が緩くなっている。150mm押し込んだ今回の実験の最終荷重を見ると、D<A<C<Bの順で、Dが最も低く、Bが最も高くなった。よって、この実験からダイ半角は20°以下のDがよいと判断した。なお、ダイ半角の下限は問わないが、10°未満では必要な絞り加工ができないので10°以上が好ましい範囲である。   From FIG. 6, it was observed that the load continued to increase in B and C even after the vicinity of 70 mm where the steel pipe entered the straight part of the mold. On the other hand, the load increased from 90mm in A and from 140mm in D. Also, the smaller the die half-angle, the more slowly the load increases at the throttle portion. Looking at the final load of this experiment with 150 mm indentation, D was the lowest and B was the highest in the order of D <A <C <B. Therefore, it was judged from this experiment that the die half angle should be 20 ° or less. The lower limit of the die half angle is not limited, but if it is less than 10 °, the necessary drawing cannot be performed, so 10 ° or more is a preferable range.

図7から、成型後の鋼管の直線部分の外径が、AとDでは66.0mmとなり、一方BとCでは66.4mmになった。この理由について、図8に曲率半径が20mmと30mmの直線部が成型されていく過程の図を示す。   From FIG. 7, the outer diameter of the straight portion of the steel pipe after molding was 66.0 mm for A and D, while it was 66.4 mm for B and C. For this reason, FIG. 8 shows a diagram of a process in which straight portions having a radius of curvature of 20 mm and 30 mm are formed.

図8から、曲率半径が20mmであるAとDは、金型が66.4mmあるのに対し、成型後の鋼管の直線成型部分は66.0mmとなっていることから、鋼管が絞り口から直線部に差し掛かったあとに、先端だけが常に金型と接触しながら鋼管が絞られていき、荷重の上昇は抑えられていったと考えられる。一方、曲率半径が30mmであるBとCは、金型が66.4mmあるのに対し、成型後の鋼管の直線成型部分は66.4mmとなっていることから、先端だけでなくそのあとも金型に沿うように鋼管が絞られていき、金型との摩擦による力がAとD以上に常に鋼管にかかり、荷重が上昇し続ける結果となったと考えられる。よって、この実験から曲率半径は少なくとも30mmより小さい(実機では曲率半径:70mm未満)ほうがよいと判断できる。なお、曲率半径の下限は問わないが、20mm未満では金型の消耗が激しいので20mm以上が好ましい範囲である。以上から、金型の絞り口の形状はDを参考にして、実物大の金型を製作した。   From Fig. 8, A and D with a radius of curvature of 20mm have a die of 66.4mm, whereas the straight formed part of the steel pipe after molding is 66.0mm. After reaching the point, the steel pipe was squeezed while only the tip was always in contact with the mold, and it is thought that the increase in load was suppressed. On the other hand, B and C, which have a radius of curvature of 30 mm, have a die of 66.4 mm, whereas the straight-formed part of the steel pipe after molding is 66.4 mm. The steel pipe was squeezed so that the force due to friction with the mold was always applied to the steel pipe more than A and D, and the load continued to rise. Therefore, it can be judged from this experiment that the radius of curvature is preferably at least smaller than 30 mm (in the actual machine, the radius of curvature is less than 70 mm). The lower limit of the radius of curvature is not limited, but if it is less than 20 mm, the mold is consumed very much, so 20 mm or more is a preferred range. Based on the above, the shape of the mold aperture was made with reference to D, and a full-size mold was produced.

1 プレス機
2 金型
3 鋼管
4 クランプ
5、7 金型
6 鋼管
8 金型先端の内径
9 座屈発生部
1 Press machine
2 Mold
3 Steel pipe
4 Clamp
5, 7 Mold
6 Steel pipe
8 Inner diameter of mold tip
9 Buckling area

Claims (2)

第1管〜第3管からなる複数の鋼管を嵌合させて鋼管柱を製造する組立式鋼管柱の製造方法において、第1管の外径よりも大きい外径を有する第2管の末口を15〜20%縮径して第1管に嵌合させるとともに、第2管の外径よりも大きい外径を有する第3管の末口を20〜30%縮径して第2管の元口に嵌合させ、 前記第3管の末口の縮径は、ダイ半角が10°以上20°以下で、前記ダイ半角を規定する曲面の曲率半径が60mm以上70mm未満の金型を用いることを特徴とする組立式鋼管柱の製造方法。 In the manufacturing method of an assembling-type steel pipe column in which a plurality of steel pipes composed of a first pipe to a third pipe are fitted to manufacture a steel pipe column, the end of a second pipe having an outer diameter larger than the outer diameter of the first pipe 15 to 20%, and fitted to the first pipe, and the end of the third pipe having an outer diameter larger than the outer diameter of the second pipe is reduced by 20 to 30% to reduce the diameter of the second pipe. fitted to the bottom end, reduced diameter mouth end of the third tube, the die half angle 20 ° or less 10 ° or more, the mold than the die half angle radius of curvature defining a 60mm or 70mm A method for producing a prefabricated steel pipe column, characterized by being used . 前記金型がDLC被膜を有することを特徴とする、請求項に記載の組立式鋼管柱の製造方法。 The mold is characterized and Turkey that having a DLC coating method for producing a prefabricated steel tube column as recited in claim 1.
JP2014036090A 2014-02-27 2014-02-27 Manufacturing method for prefabricated steel pipe columns Active JP6324112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036090A JP6324112B2 (en) 2014-02-27 2014-02-27 Manufacturing method for prefabricated steel pipe columns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036090A JP6324112B2 (en) 2014-02-27 2014-02-27 Manufacturing method for prefabricated steel pipe columns

Publications (2)

Publication Number Publication Date
JP2015161094A JP2015161094A (en) 2015-09-07
JP6324112B2 true JP6324112B2 (en) 2018-05-16

Family

ID=54184390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036090A Active JP6324112B2 (en) 2014-02-27 2014-02-27 Manufacturing method for prefabricated steel pipe columns

Country Status (1)

Country Link
JP (1) JP6324112B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5777447U (en) * 1980-10-28 1982-05-13
JPH02247032A (en) * 1989-03-20 1990-10-02 Nippon Steel Corp Manufacture of duplex pipe reducer fitting
US7854564B1 (en) * 2006-03-31 2010-12-21 Uncommon Usa, Inc. Pole assembly
JP5882641B2 (en) * 2011-09-08 2016-03-09 ヨシモトポール株式会社 Steel pipe pressing method

Also Published As

Publication number Publication date
JP2015161094A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
CN104364027B (en) The manufacture method of reducing tubular member and shaping dies
JP2007203342A (en) Method for manufacturing cylindrical shaft
JPWO2018168563A1 (en) Manufacturing method of press mold and steel pipe
JPWO2017145856A1 (en) Molded material manufacturing method and molded material
JP6324112B2 (en) Manufacturing method for prefabricated steel pipe columns
RU2015101559A (en) METHOD OF DIRECT OR REVERSE EXTRUSION OF METAL PIPES, CORE FOR EXTRUSION OF METAL PIPES, PRESS FOR EXTRUSION OF METAL PIPES AND EXTRUDED METAL PIPE
CN104271279A (en) Method for manufacturing steel pipe
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JP6428790B2 (en) Manufacturing method of widened metal tube
CN104209407A (en) Automotive chassis stamping die
JP2011006087A5 (en)
JPWO2014188599A1 (en) Steel pipe manufacturing method
JP4798875B2 (en) Method for expanding metal pipe end
JP5749708B2 (en) Manufacturing method of wheel rim for vehicle
JP2011005534A (en) Method for manufacturing deformed cross-sectional bar
US11833570B2 (en) Method for manufacturing shaped part
RU2528927C1 (en) Method to fabricate unequal tees from tubular billet
JP5598434B2 (en) Manufacturing method of molded member
KR101679623B1 (en) High Strength Bending Pipe
CN203892858U (en) High strength special section tube
JP6735182B2 (en) End press bending device for taper pipe
JP2016147295A (en) Method for manufacturing thickened steel pipe
CN205732687U (en) Canister thinning drawing and forming device and thinning Drawing Die supporter
JP6665644B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
CN108714649B (en) Forming die and forming method for 180-degree bent pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R150 Certificate of patent or registration of utility model

Ref document number: 6324112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250