JP6322173B2 - Air conditioning system and air conditioning method - Google Patents

Air conditioning system and air conditioning method Download PDF

Info

Publication number
JP6322173B2
JP6322173B2 JP2015183118A JP2015183118A JP6322173B2 JP 6322173 B2 JP6322173 B2 JP 6322173B2 JP 2015183118 A JP2015183118 A JP 2015183118A JP 2015183118 A JP2015183118 A JP 2015183118A JP 6322173 B2 JP6322173 B2 JP 6322173B2
Authority
JP
Japan
Prior art keywords
power
air conditioning
ehp
ghp
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015183118A
Other languages
Japanese (ja)
Other versions
JP2017058074A (en
Inventor
優磨 古橋
優磨 古橋
陽 阿部
陽 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2015183118A priority Critical patent/JP6322173B2/en
Publication of JP2017058074A publication Critical patent/JP2017058074A/en
Application granted granted Critical
Publication of JP6322173B2 publication Critical patent/JP6322173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、室内の空気を調和させる空気調和システムおよび空気調和方法に関する。   The present invention relates to an air conditioning system and an air conditioning method that harmonize indoor air.

空気調和システムとして、ガスエンジンを駆動源としたエンジン駆動式圧縮機を含んで構成されるGHP(ガスヒートポンプエアコン)や、電動機を駆動源とした電気駆動式圧縮機を含んで構成されるEHP(電気式ヒートポンプエアコン)が採用されている。   As an air conditioning system, a GHP (gas heat pump air conditioner) configured to include an engine driven compressor using a gas engine as a drive source, or an EHP (including an electric drive compressor using an electric motor as a drive source) Electric heat pump air conditioner) is adopted.

ここで、EHPは、ガスエンジンを備えないため、GHPに必要なエンジンオイルの補充や交換、オイルフィルタの交換、点火プラグの点検や交換等のメンテナンスを行う必要がなく、メンテナンスに要するコストがかからない。一方、GHPは、ヒートポンプによる暖房(室内空気の加熱)に加えて、ガスエンジンの排熱を回収して空気を加熱することができるため、EHPと比較して効率的に室内を暖めることが可能となる。また、GHPは、ほとんど電力を消費しないため、EHPと比較して、消費電力を大幅に削減することができるという利点がある。   Here, since the EHP does not include a gas engine, it is not necessary to perform maintenance such as replenishment and replacement of engine oil necessary for GHP, replacement of an oil filter, inspection and replacement of a spark plug, and the maintenance cost is not required. . On the other hand, GHP can heat the air by collecting the exhaust heat of the gas engine in addition to heating by the heat pump (heating the room air), so it can heat the room more efficiently than EHP. It becomes. In addition, since GHP consumes little power, there is an advantage that power consumption can be greatly reduced compared to EHP.

このように、GHPとEHPとはそれぞれ異なる利点を有している。そこで、それぞれの利点を活かしつつ、所定の時間毎に、外気温と空調負荷に基づいてランニングコストが最小となるEHPとGHPの運転負荷率を導出する技術が提案されている(例えば、特許文献1)。   Thus, GHP and EHP have different advantages. Therefore, a technique for deriving the operating load factor of EHP and GHP that minimizes the running cost based on the outside air temperature and the air conditioning load at every predetermined time while utilizing each advantage has been proposed (for example, Patent Documents). 1).

特開2012−7834号公報JP 2012-7834 A

特許文献1のような、外気温と空調負荷に基づいてEHPとGHPの運転負荷率を導出する技術を採用すると、例えば、所定の制御タイミング毎に、このままのトレンドでEHPおよびGHPを利用し続けた場合、次の電力使用量の判定タイミングにおいて、電力使用量がどの程度になるかを予測し、その値が契約電力を超えそうになると、EHPの運転負荷率を抑制するといった空気調和制御が行われることになる。   If the technique of deriving the operation load factor of EHP and GHP based on the outside air temperature and the air conditioning load as in Patent Document 1, for example, the EHP and the GHP are continuously used in the same trend at every predetermined control timing. In this case, the air conditioning control that predicts how much the power usage will be at the next power usage determination timing, and suppresses the operation load factor of the EHP when the value is likely to exceed the contract power. Will be done.

しかし、制御タイミングが経過する毎に、判定タイミングでの電力使用量のみ予測する上記の空気調和制御では、その制御によりEHPやGHPの運転負荷率の変動幅が大きくなる。そうすると、EHPおよびGHPを高効率で運転できなくなり、結果的に、電力およびガスの合計料金が高くなってしまう。ここで、単に、制御タイミングを短縮したり、制御閾値を細分化することにより、EHPやGHPの運転負荷率の変動幅を小さくすることは可能であるが、演算処理負荷やメモリ容量の増大化を招いてしまう。   However, in the above air conditioning control that predicts only the power consumption at the determination timing each time the control timing elapses, the fluctuation range of the operating load factor of EHP or GHP increases due to the control. If it does so, it will become impossible to drive | operate EHP and GHP with high efficiency, and the total charge of electric power and gas will become high as a result. Here, it is possible to reduce the fluctuation range of the operation load factor of EHP or GHP by simply shortening the control timing or subdividing the control threshold value, but increasing the processing load and the memory capacity. Will be invited.

本発明は、このような課題に鑑み、演算処理負荷やメモリ容量の増大化を招くことなく、EHPおよびGHPを効率良く運転させることが可能な空気調和システムおよび空気調和方法を提供することを目的としている。   In view of such problems, the present invention has an object to provide an air conditioning system and an air conditioning method capable of operating EHP and GHP efficiently without causing an increase in arithmetic processing load and memory capacity. It is said.

上記課題を解決するために、本発明の空気調和システムは、少なくとも、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくとも、ガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPと、を備え、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、施設における、EHPおよびGHPを除く電力推移である施設電力推移を導出する施設電力推移導出部と、過去の施設電力推移と、未来の予測外気温とから、未来の施設電力推移を推定する施設電力推移推定部と、契約電力から未来の施設電力推移を減算し、EHPおよびGHPで利用可能な電力推移である空調電力推移を導出する空調電力推移導出部と、空調電力推移に基づき、相異なる複数の空調負荷率それぞれに対し、空調負荷率を満たすようにEHPとGHPの運転負荷率を按分した組み合わせを複数生成し、その組み合わせの中で電力およびガスの料金の合計が最小となる組み合わせを空調負荷率に対するEHPとGHPの運転負荷率し、空調負荷率とEHPとGHPの運転負荷率とを対応付けた運転マップを生成する運転マップ生成部と、運転マップに従い、EHPおよびGHPを、必要な空調負荷率に応じた運転負荷率で運転する空調運転部と、をさらに備えることを特徴とする。 In order to solve the above problems, an air conditioning system of the present invention includes at least an EHP having an electrically driven compressor that compresses a refrigerant using an electric motor as a drive source, and an engine that compresses the refrigerant using at least a gas engine as a drive source. And a GHP having a driven compressor, the charge of power is determined at least according to contracted power, the charge of gas is determined at least according to the amount of use of the gas, and the power in the facility excluding EHP and GHP The facility power transition deriving unit that derives the facility power transition that is the transition, the facility power transition estimating unit that estimates the future facility power transition from the past facility power transition and the predicted outside temperature in the future, and the future from the contract power The air conditioning power transition deriving unit for deriving the air conditioning power transition that is the power transition available for EHP and GHP, The basis, for each plurality of different air-conditioning load factor, the combination of ratably driving load factor of EHP and GHP to meet the air conditioning load factor and multiple product, the sum of the electricity and gas rates in the combination a combination which minimizes the EHP and GHP operation load ratio with respect to the air conditioning load factor, the operation map generator for generating an operation map that associates and the air conditioning load factor and EHP and GHP operation load ratio of, in accordance with an operation map, And an air conditioning operation unit that operates EHP and GHP at an operation load factor corresponding to a required air conditioning load factor.

上記課題を解決するために、本発明の他の空気調和システムは、少なくとも、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくとも、ガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPと、を備え、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、施設における、EHPおよびGHPを除く電力推移である施設電力推移を導出する施設電力推移導出部と、過去の施設電力推移と、未来の予測外気温とから、未来の施設電力推移を推定する施設電力推移推定部と、契約電力から未来の施設電力推移を減算し、EHPおよびGHPで利用可能な電力推移である空調電力推移を導出する空調電力推移導出部と、段階的に設けた複数の空調電力推移それぞれに基づき、相異なる複数の空調負荷率それぞれに対し、電力およびガスの料金の合計が最小となるようにEHPとGHPの運転負荷率を導出し、空調負荷率とEHPとGHPの運転負荷率とを対応付けた運転マップを生成する運転マップ生成部と、施設において実測した電力使用量が契約電力以下となるように、複数の運転マップを切り換え、運転マップに従い、EHPおよびGHPを、必要な空調負荷率に応じた運転負荷率で運転する空調運転部と、をさらに備えることを特徴とする。In order to solve the above problems, another air conditioning system of the present invention includes at least an EHP having an electrically driven compressor that compresses a refrigerant using an electric motor as a drive source, and compresses the refrigerant using at least a gas engine as a drive source. A GHP having an engine-driven compressor, wherein a charge for power is determined at least according to contracted power, a charge for gas is determined according to at least the amount of gas used, and EHP and GHP at the facility are determined. Facility power transition deriving unit for deriving facility power transitions, excluding power transitions, facility power transition estimating unit for estimating future facility power transitions from past facility power transitions and future predicted outside temperatures, and contract power The air conditioning power transition deriving unit that subtracts the future facility power transition from the power and derives the air conditioning power transition that is the power transition that can be used in EHP and GHP, Based on each of the provided air conditioning power transitions, the EHP and GHP operating load factors are derived for each of a plurality of different air conditioning load factors so that the sum of the electricity and gas charges is minimized. An operation map generation unit that generates an operation map in which EHP and GHP operation load factors are associated with each other, and a plurality of operation maps are switched so that the power consumption actually measured in the facility is equal to or less than the contract power, and according to the operation map, And an air conditioning operation unit that operates EHP and GHP at an operation load factor corresponding to a required air conditioning load factor.

上記課題を解決するために、少なくとも電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくともガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPとを備えた空気調和システムにおける本発明の空気調和方法では、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、施設における、EHPおよびGHPを除く電力推移である施設電力推移を導出し、過去の施設電力推移と、未来の予測外気温とから、未来の施設電力推移を推定し、契約電力から未来の施設電力推移を減算し、EHPおよびGHPで利用可能な電力推移である空調電力推移を導出し、空調電力推移に基づき、相異なる複数の空調負荷率それぞれに対し、空調負荷率を満たすようにEHPとGHPの運転負荷率を按分した組み合わせを複数生成し、その組み合わせの中で電力およびガスの料金の合計が最小となる組み合わせを空調負荷率に対するEHPとGHPの運転負荷率とし、空調負荷率とEHPとGHPの運転負荷率とを対応付けた運転マップを生成し、運転マップに従い、EHPとGHPを、必要な空調負荷率に応じた運転負荷率で運転することを特徴とする。In order to solve the above-described problems, the system includes an EHP having an electric drive compressor that compresses refrigerant using at least an electric motor as a drive source, and a GHP having an engine drive compressor that compresses refrigerant using at least a gas engine as a drive source. In the air conditioning method of the present invention in the air conditioning system, the power charge is determined at least according to the contract power, the gas charge is determined at least according to the amount of gas used, and excludes EHP and GHP in the facility. The facility power transition, which is the power transition, is derived, the future facility power transition is estimated from the past facility power transition and the predicted outside temperature in the future, the future facility power transition is subtracted from the contract power, and EHP and GHP The air conditioning power transition, which is the power transition that can be used in the system, is derived, and based on the air conditioning power transition, EHP and GHP operation for the air conditioning load factor is generated by generating a plurality of combinations that distribute the operating load factors of EHP and GHP so as to satisfy the air conditioning load factor. Generate an operation map that associates the air conditioning load factor with the EHP and GHP operating load factors, and operates the EHP and GHP at the operating load factor corresponding to the required air conditioning load factor according to the operation map. It is characterized by.

上記課題を解決するために、少なくとも電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくともガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPとを備えた空気調和システムにおける本発明の他の空気調和方法では、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、施設における、EHPおよびGHPを除く電力推移である施設電力推移を導出し、過去の施設電力推移と、未来の予測外気温とから、未来の施設電力推移を推定し、契約電力から未来の施設電力推移を減算し、EHPおよびGHPで利用可能な電力推移である空調電力推移を導出し、段階的に設けた複数の空調電力推移それぞれに基づき、相異なる複数の空調負荷率それぞれに対し、電力およびガスの料金の合計が最小となるようにEHPとGHPの運転負荷率を導出し、空調負荷率とEHPとGHPの運転負荷率とを対応付けた運転マップを生成し、施設において実測した電力使用量が契約電力以下となるように、複数の運転マップを切り換え、運転マップに従い、EHPとGHPを、必要な空調負荷率に応じた運転負荷率で運転することを特徴とする。
In order to solve the above-described problems, the system includes an EHP having an electric drive compressor that compresses refrigerant using at least an electric motor as a drive source, and a GHP having an engine drive compressor that compresses refrigerant using at least a gas engine as a drive source. In another air conditioning method of the present invention in an air conditioning system, the charge of power is determined at least according to contracted power, the charge of gas is determined at least according to the amount of gas used, and EHP and GHP at the facility The facility power transition, which is the power transition excluding, is derived, the future facility power transition is estimated from the past facility power transition and the predicted outside temperature in the future, the future facility power transition is subtracted from the contract power, and the EHP and air conditioning power transition of a power transition available derived in GHP, based on the plurality of air conditioning power transition provided stepwise, different phases For each of a plurality of air conditioning load factors, an operation load factor of EHP and GHP is derived so that the sum of electric power and gas charges is minimized, and an operation in which the air conditioner load factor is associated with the operation load factors of EHP and GHP A map is generated , and multiple operation maps are switched so that the power consumption actually measured in the facility is less than or equal to the contract power, and according to the operation map, EHP and GHP are operated at an operation load factor corresponding to the required air conditioning load factor. It is characterized by doing.

本発明によれば、演算処理負荷やメモリ容量の増大化を招くことなく、EHPおよびGHPを効率良く運転させることが可能となる。   According to the present invention, it is possible to efficiently operate EHP and GHP without causing an increase in calculation processing load and memory capacity.

空気調和システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of the air conditioning system. EHPおよびGHPそれぞれの運転負荷率を随時変更する例を説明するための図である。It is a figure for demonstrating the example which changes the driving load factor of each of EHP and GHP at any time. EHPおよびGHPの運転負荷率と効率との関係を示した説明図である。It is explanatory drawing which showed the relationship between the operating load factor and efficiency of EHP and GHP. 空気調和方法の処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of a process of an air conditioning method. 空調電力推移導出処理を説明するための説明図である。It is explanatory drawing for demonstrating an air-conditioning electric power transition derivation | leading-out process. 運転マップの一例を示した説明図である。It is explanatory drawing which showed an example of the driving | running map. 運転負荷率の決定手順を示すための説明図である。It is explanatory drawing for showing the determination procedure of a driving load factor. 運転負荷率の決定手順を示すための説明図である。It is explanatory drawing for showing the determination procedure of a driving load factor. 運転マップの他の例を示した説明図である。It is explanatory drawing which showed the other example of the driving | operation map. 空調運転処理を説明するための説明図である。It is explanatory drawing for demonstrating an air conditioning driving | operation process.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(空気調和システム100)
図1は、空気調和システム100の接続関係を示した説明図である。空気調和システム100は、ビルや学校等の施設10において契約単位で配される空気調和装置110と、施設10と離隔して設けられ、空気調和装置110と、無線または有線による双方向の通信が可能に接続された管理サーバ120とを含んで構成される。
(Air conditioning system 100)
FIG. 1 is an explanatory diagram showing a connection relationship of the air conditioning system 100. The air conditioning system 100 is provided separately from the air conditioning apparatus 110 and the facility 10 that are arranged in a contract unit in the facility 10 such as a building or a school, and performs bidirectional communication with the air conditioning apparatus 110 wirelessly or by wire. The management server 120 is configured to be connected.

空気調和装置110は、EHP112と、GHP114と、空調通信部116と、空調制御部118とを含んで構成される。ここでは、説明の便宜上、一つの空調制御部118にEHP112およびGHP114が一つずつ接続される例を挙げて説明するが、EHP112やGHP114の数に制限はなく、一つの空調制御部118に複数のEHP112やGHP114が接続されてもよい。   The air conditioner 110 includes an EHP 112, a GHP 114, an air conditioning communication unit 116, and an air conditioning control unit 118. Here, for convenience of explanation, an example in which one EHP 112 and one GHP 114 are connected to one air conditioning control unit 118 will be described. However, the number of EHP 112 and GHP 114 is not limited, and a plurality of one air conditioning control unit 118 is provided. EHP 112 and GHP 114 may be connected.

EHP112では、電動機140を駆動源として冷媒を圧縮する電気駆動式圧縮機142によって冷媒が循環され(冷媒回路)、室外のEHP室外熱交換器144において冷媒と室外の空気との熱交換が行われ、室内のEHP室内熱交換器146において冷媒と室内の空気との熱交換が行われる。   In the EHP 112, the refrigerant is circulated (refrigerant circuit) by an electrically driven compressor 142 that compresses the refrigerant using the electric motor 140 as a drive source, and heat exchange between the refrigerant and the outdoor air is performed in the outdoor EHP outdoor heat exchanger 144. In the indoor EHP indoor heat exchanger 146, heat exchange between the refrigerant and the indoor air is performed.

GHP114では、ガスエンジン150を駆動源として冷媒を圧縮するエンジン駆動式圧縮機152によって冷媒が循環され(冷媒回路)、室外のGHP室外熱交換器154において冷媒と室外の空気との熱交換が行われ、室内のGHP室内熱交換器156において冷媒と室内の空気との熱交換が行われる。   In the GHP 114, the refrigerant is circulated by an engine-driven compressor 152 that compresses the refrigerant using the gas engine 150 as a driving source (refrigerant circuit), and heat exchange between the refrigerant and the outdoor air is performed in the outdoor GHP outdoor heat exchanger 154. In the indoor GHP indoor heat exchanger 156, heat exchange between the refrigerant and the indoor air is performed.

空調通信部116は、管理サーバ120との通信を行う。空調制御部118は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、EHP112およびGHP114を制御する。また、空調制御部118は、プログラムを動作させることで、施設電力推移送信部170、空調運転部172として機能する。かかる空調制御部118の各機能部の動作は後程詳述する。   The air conditioning communication unit 116 communicates with the management server 120. The air conditioning control unit 118 is configured by a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing programs, a RAM as a work area, and the like, and controls the EHP 112 and the GHP 114. The air conditioning control unit 118 functions as the facility power transition transmission unit 170 and the air conditioning operation unit 172 by operating the program. The operation of each functional unit of the air conditioning control unit 118 will be described in detail later.

管理サーバ120は、管理通信部122と、データ保持部124と、管理制御部126とを含んで構成される。管理通信部122は、複数の空気調和装置110との通信を行う。データ保持部124は、RAM、フラッシュメモリ、HDD等で構成され、管理制御部126の各機能部の処理に必要な様々な情報を保持する。管理制御部126は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、プログラムを動作させることで、施設電力推移導出部178、施設電力推移推定部180、空調電力推移導出部182、運転マップ生成部184として機能する。かかる管理制御部126の各機能部の動作は後程詳述する。   The management server 120 includes a management communication unit 122, a data holding unit 124, and a management control unit 126. The management communication unit 122 communicates with the plurality of air conditioners 110. The data holding unit 124 includes a RAM, a flash memory, an HDD, and the like, and holds various information necessary for processing of each function unit of the management control unit 126. The management control unit 126 is constituted by a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing a program, a RAM as a work area, and the like. By operating the program, the facility power transition deriving unit 178, It functions as a facility power transition estimating unit 180, an air conditioning power transition deriving unit 182 and an operation map generating unit 184. The operation of each functional unit of the management control unit 126 will be described in detail later.

続いて、空気調和システム100における、EHP112の電動機140、および、GHP114のガスエンジン150それぞれの運転負荷率の設計思想について説明する。   Next, the design concept of the operating load factors of the electric motor 140 of the EHP 112 and the gas engine 150 of the GHP 114 in the air conditioning system 100 will be described.

(運転負荷率の設計思想)
EHP112を構成する電動機140は電力で駆動力を発生させ、GHP114を構成するガスエンジン150はガスで駆動力を発生させる。したがって、EHP112およびGHP114を双方とも運転させる場合、電力およびガスのいずれもが必要となり、電力供給会社やガス供給会社から電力およびガスを購入することとなる。
(Design concept for operating load factor)
The electric motor 140 constituting the EHP 112 generates driving force with electric power, and the gas engine 150 constituting the GHP 114 generates driving force with gas. Therefore, when both the EHP 112 and the GHP 114 are operated, both power and gas are required, and power and gas are purchased from a power supply company or a gas supply company.

電力およびガスの料金は、基本となる基本料金と、予め設定された単価と使用量とに応じて決定される従量料金との2つの料金体系の合計で構成される。ただし、ガスと電力とでは、基本料金および従量料金の計算が異なる。例えば、ガスの料金は、基本料金および従量料金のいずれも使用量に依存しており、使用量が多いほど高くなる。なお、一般的に、基本料金は、電力の方がガスよりも高く、従量料金は、ガスの方が電力よりも高いことが多い。   Electricity and gas charges are composed of a total of two charge systems: a basic charge as a basic and a pay-as-you-go charge determined according to a preset unit price and usage. However, the calculation of basic charge and metered charge differs between gas and electric power. For example, both the basic charge and the metered charge depend on the use amount, and the gas charge increases as the use amount increases. In general, the basic fee is higher for electricity than for gas, and the metered rate is often higher for gas than for electricity.

一方、電力の基本料金は、施設10における契約電力に基づいて決定される。ここで、契約電力は、所定時間(例えば、30分間)毎の平均使用電力である需要電力(デマンド)の所定期間(例えば、12ヶ月)における最大値である最大需要電力(最大デマンド)に基づいて決定される。ただし、契約電力は、かかる場合に限らず、供給事業者との協議により決定する等、様々な決定の仕方がある。なお、契約電力を超えて電力を使用すると(最大需要電力が更新されると)、その当月以降1年間の契約電力が、更新された最大需要電力に基づいて決定されるので、結果的に基本料金が上昇してしまう。また、電力供給事業者との協議により契約電力を決定している場合、契約超過金が科せられる場合もある。   On the other hand, the basic charge of power is determined based on contract power at the facility 10. Here, the contract power is based on the maximum demand power (maximum demand), which is the maximum value in a predetermined period (for example, 12 months) of demand power (demand), which is the average used power every predetermined time (for example, 30 minutes). Determined. However, the contract power is not limited to such a case, and there are various ways of determination such as determination by consultation with a supplier. Note that if power is used beyond the contracted power (when the maximum demand power is updated), the contract power for one year from that month is determined based on the updated maximum power demand. Charges will rise. In addition, when contract power is determined through discussion with a power supply company, a contract surplus may be imposed.

したがって、契約電力を超えない範囲であれば、使用量が同一である場合、基本料金(契約電力)が小さいほど電力の料金(基本料金と従量料金との合計)は安くなる。そのため、可能な限り契約電力を小さくすることが望ましい。ただし、契約電力を小さくしすぎると、使用量が契約電力を超える頻度が高くなり、基本料金も高くなって却って電力の料金が増加してしまうおそれもある。そこで、契約電力を適切に小さく設定し、契約電力を超えない電力使用量で、必要な空調負荷をEHP112およびGHP114で按分するのが望ましい。   Therefore, if the usage amount is the same as long as it does not exceed the contract power, the lower the basic charge (contract power), the lower the power charge (the sum of the basic charge and the metered charge). Therefore, it is desirable to reduce the contract power as much as possible. However, if the contract power is made too small, the frequency of usage exceeding the contract power will increase, and the basic charge will also increase, which may increase the power charge. Therefore, it is desirable to set the contract power appropriately small and apportion the necessary air conditioning load between the EHP 112 and the GHP 114 with the power consumption not exceeding the contract power.

ここで、電力の基本料金(契約電力)を対象とするのは以下の理由からである。すなわち、一般的に、電力の基本料金とガスの基本料金とを比較すると電力の基本料金の方が高いため、電力の基本料金を小さくする方がメリットが大きい。したがって、本実施形態では、電力の基本料金が左右される契約電力のみに着目し、契約電力を超えないように電力使用量を制御する例を挙げるが、かかる場合に限らず、ガスの基本料金を対象とすることもできる。   Here, the basic charge of power (contract power) is targeted for the following reason. That is, in general, when the basic charge for power and the basic charge for gas are compared, the basic charge for power is higher, so it is more advantageous to reduce the basic charge for power. Accordingly, in the present embodiment, an example is given in which the amount of power used is controlled so as not to exceed the contracted power, focusing only on the contracted power that is affected by the basic charge of power. Can also be targeted.

図2は、EHP112およびGHP114それぞれの運転負荷率を随時変更する例を説明するための図である。図2(a)は、施設全体の電力使用量の推移を示し、図2(b)は、EHP112およびGHP114それぞれの運転負荷率を示す。ここでは、所定の制御タイミング(30分/4)毎に、このままのトレンドでEHP112およびGHP114を利用し続けた場合、次の電力使用量の判定タイミング(30分毎)には電力使用量がどの程度になるかを予測し、その値が契約電力を超えそうになると、EHP112の運転負荷率を抑制するといった空気調和制御を行うとする。   FIG. 2 is a diagram for explaining an example in which the operation load factors of the EHP 112 and the GHP 114 are changed as needed. FIG. 2 (a) shows the transition of the power consumption of the entire facility, and FIG. 2 (b) shows the operating load factors of the EHP 112 and the GHP 114, respectively. Here, if the EHP 112 and GHP 114 continue to be used at the predetermined control timing (30 minutes / 4), the power usage amount will be determined at the next power usage determination timing (every 30 minutes). It is assumed that the air conditioning control is performed such that the operating load factor of the EHP 112 is suppressed when the value is predicted to exceed the contract power.

例えば、図2(a)の時点Aの制御タイミングでは、このままのトレンドでEHP112およびGHP114を利用し続けると、破線で示すように時点Bの判定タイミングには、電力使用量が契約電力を超えてしまうと予測できるので、時点Aの制御タイミングにおいて、EHP112の運転負荷率を図2(b)のように低下させる。ただし、要求される空調負荷を満たすため、GHP114の運転負荷率は図2(b)の一点鎖線で示すように上昇させられる。こうして、最初の30分に関し、使用電力量が契約電力内に収まることとなる。   For example, at the control timing at time point A in FIG. 2A, if the EHP 112 and GHP 114 are continuously used in this trend, the power consumption exceeds the contracted power at the determination timing at time point B as shown by the broken line. Therefore, the operating load factor of the EHP 112 is reduced as shown in FIG. However, in order to satisfy the required air conditioning load, the operating load factor of the GHP 114 is increased as shown by the one-dot chain line in FIG. Thus, for the first 30 minutes, the amount of power used falls within the contract power.

その後、次の30分に関し、図2(a)の時点Cの制御タイミングでは、このままのトレンドでEHP112を利用し続けても、破線で示すように時点Dの判定タイミングには、電力使用量が契約電力の半分にも満たないと予測できるので、図2(b)のように、EHP112の運転負荷率を上げ、GHP114の運転負荷率を低下させる。また、時点Eの判定タイミングで、図2(b)のように、EHP112の運転負荷率を低下させ、GHP114の運転負荷率を上げて、電力使用量が契約電力を超えないようにしている。   After that, regarding the next 30 minutes, at the control timing at time point C in FIG. 2 (a), even if the EHP 112 continues to be used with the trend as it is, the power usage amount is at the determination timing at time point D as shown by the broken line. Since it can be predicted that it will be less than half of the contract power, the operating load factor of the EHP 112 is increased and the operating load factor of the GHP 114 is decreased as shown in FIG. Further, as shown in FIG. 2B, the operation load factor of the EHP 112 is decreased and the operation load factor of the GHP 114 is increased at the determination timing of the time point E so that the power consumption does not exceed the contract power.

しかし、上記のように、単純に制御タイミング(30分/4)が経過する毎に、判定タイミング(30分)での電力使用量のみ予測する制御では、図2(b)に示すように、EHP112やGHP114の運転負荷率の変動幅が大きくなってしまう。   However, as described above, in the control in which only the power consumption at the determination timing (30 minutes) is predicted every time the control timing (30 minutes / 4) elapses, as shown in FIG. The fluctuation range of the operation load factor of the EHP 112 and the GHP 114 becomes large.

図3は、EHP112およびGHP114の運転負荷率と効率(COP)との関係を示した説明図である。図3を参照して理解できるように、EHP112およびGHP114のいずれにおいても、特定の運転負荷率において効率が最大となり、実際の運転負荷率と効率が最大となる特定の運転負荷率との差が大きくなるに連れ効率が低下する。ここで、上記のように、EHP112およびGHP114いずれにおいても運転負荷率の変動幅が大きくなると、それぞれ、特定の運転負荷率から離隔した運転負荷率での運転が多くなる。そうすると、EHP112およびGHP114を高効率で運転できなくなり、結果的に、電力およびガスの合計料金が高くなってしまう。このとき、単に、制御タイミングを短縮したり、制御閾値を細分化することにより、EHP112やGHP114の運転負荷率の変動幅を小さくすることは可能であるが、演算処理負荷やメモリ容量の増大化を招いてしまう。   FIG. 3 is an explanatory diagram showing the relationship between the operating load factor of the EHP 112 and the GHP 114 and the efficiency (COP). As can be understood with reference to FIG. 3, in both the EHP 112 and the GHP 114, the efficiency is the maximum at a specific operation load factor, and the difference between the actual operation load factor and the specific operation load factor at which the efficiency is the maximum is As it grows, the efficiency decreases. Here, as described above, in both the EHP 112 and the GHP 114, when the fluctuation range of the operation load factor becomes large, the operation with the operation load factor separated from the specific operation load factor increases. If it does so, it will become impossible to drive EHP112 and GHP114 with high efficiency, and, as a result, the total charge of electric power and gas will become high. At this time, it is possible to reduce the fluctuation range of the operation load factor of the EHP 112 and the GHP 114 by simply shortening the control timing or subdividing the control threshold, but the calculation processing load and the memory capacity are increased. Will be invited.

ここで、翌日等、未来の予測外気温等を通じ、一日単位で未来の電力推移を予測し、それに従ってEHP112およびGHP114の運転負荷率を制御することが考えられる。しかし、EHP112やGHP114に依存する電力推移(単に「空調電力推移」という)と、EHP112やGHP114を除く施設の電力推移(単に「施設電力推移」という)との変動態様が異なるため、単純に両者を合わせて予測しても、実際に要求される空調負荷との差が生じてしまう。   Here, it is conceivable to predict the future power transition on a daily basis through the predicted outside air temperature in the future, such as the next day, and to control the operating load factors of the EHP 112 and GHP 114 accordingly. However, since the power changes depending on the EHP 112 and GHP 114 (simply referred to as “air conditioning power transition”) and the power transitions of facilities other than the EHP 112 and GHP 114 (simply referred to as “facility power transition”) are different, both are simply Even if predicted together, a difference from the actually required air conditioning load will occur.

そこで、施設電力推移と空調電力推移を分けて考え、施設電力推移を定量的な変動とみなして未来の予測外気温等から推定し、予測した施設電力推移で進行することを前提とする運転マップにより、空調電力推移の変動に応じて、その都度、EHP112およびGHP114の運転負荷率を制御する。かかる構成により、要求される空調負荷を満たしつつ、電力使用量が契約電力を超えない範囲で、EHP112およびGHP114の運転負荷を適切に調整できる。したがって、演算処理負荷やメモリ容量の増大化を招くことなく、EHP112およびGHP114の運転負荷率の変動を抑制して効率良く運転させ、合計料金を最小限に抑えることが可能となる。   Therefore, the operation map is based on the assumption that the facility power transition and the air conditioning power transition are considered separately, the facility power transition is regarded as a quantitative fluctuation, estimated from the predicted outside temperature in the future, etc., and progressed with the predicted facility power transition Thus, the operating load factor of the EHP 112 and the GHP 114 is controlled each time according to the fluctuation of the air conditioning power transition. With such a configuration, it is possible to appropriately adjust the operation loads of the EHP 112 and the GHP 114 within a range in which the power consumption does not exceed the contract power while satisfying the required air conditioning load. Therefore, it is possible to efficiently operate by suppressing fluctuations in the operation load factor of the EHP 112 and the GHP 114 without causing an increase in arithmetic processing load and memory capacity, and it is possible to minimize the total fee.

(空気調和方法)
図4は、空気調和方法の処理の流れを説明するためのフローチャートである。ここで、空気調和方法は、施設10全体における電力推移を送信する施設電力推移送信処理(S200)、施設10におけるEHP112およびGHP114を除く過去の施設電力推移を導出する施設電力推移導出処理(S202)、過去の施設電力推移と、未来の予測外気温とから、未来の施設電力推移を推定する施設電力推移推定処理(S204)、契約電力から未来の施設電力推移を減算し、EHP112およびGHP114で利用可能な電力推移である空調電力推移を導出する空調電力推移導出処理(S206)、空調電力推移に基づき、相異なる複数の空調負荷率それぞれに対し、電力およびガスの料金の合計が最小となるようにEHP112とGHP114の運転負荷率を導出して運転マップを生成する運転マップ生成処理(S208)、運転マップに従い、EHP112とGHP114を、必要な空調負荷率に応じた運転負荷率で運転する空調運転処理(S210)の順で処理が遂行される。
(Air conditioning method)
FIG. 4 is a flowchart for explaining the flow of processing of the air conditioning method. Here, the air conditioning method includes a facility power transition transmission process (S200) for transmitting a power transition in the entire facility 10, and a facility power transition derivation process (S202) for deriving past facility power transitions excluding the EHP 112 and GHP 114 in the facility 10. The facility power transition estimation process for estimating the future facility power transition from the past facility power transition and the predicted outside temperature in the future (S204), subtracting the future facility power transition from the contract power, and used by the EHP 112 and GHP 114 Based on the air-conditioning power transition deriving process (S206) for deriving the air-conditioning power transition that is a possible power transition, and the air-conditioning power transition, the sum of the electric power and gas charges is minimized for each of a plurality of different air-conditioning load factors. The driving map generation process (S) for generating the driving map by deriving the driving load factors of the EHP 112 and the GHP 114 08), in accordance with an operation map, a EHP112 and GHP114, forward in the process of air-conditioning operation processing (S210) operating at operating load rate corresponding to the required air-conditioning load rate is performed.

(施設電力推移送信処理S200)
施設電力推移送信部170は、施設10全体における電力推移を例えば30分毎に実測し、それと並行して駆動しているEHP112およびGHP114の使用履歴とともに管理サーバ120に送信する。
(Facility power transition transmission processing S200)
The facility power transition transmission unit 170 measures the power transition of the entire facility 10 every 30 minutes, for example, and transmits it to the management server 120 together with the usage history of the EHP 112 and GHP 114 that are driven in parallel therewith.

(施設電力推移導出処理S202)
施設電力推移導出部178は、EHP112およびGHP114の使用履歴に基づいてEHP112およびGHP114の電力推移の推測値を導出し、施設電力推移送信部170より受信した施設10全体における電力推移から、EHP112およびGHP114の電力推移の推測値を減算して、EHP112を除く電力推移である過去の複数(複数日分)の施設電力推移を導出する。かかる複数の施設電力推移には、その日の各時刻の外気温または平均外気温が関連付けられている。なお、ここでは、EHP112およびGHP114に関する空調機について施設電力推移から除外しているが、EHP112およびGHP114に関連していない、例えば、個別に制御される空調機等は施設電力推移に含まれる。かかる施設電力推移は外気温と相関を有する。
(Facility power transition derivation process S202)
The facility power transition deriving unit 178 derives an estimated value of the power transition of the EHP 112 and the GHP 114 based on the usage history of the EHP 112 and the GHP 114, and the EHP 112 and the GHP 114 from the power transition in the entire facility 10 received from the facility power transition transmitting unit 170. Subtracting the estimated value of the power transition of the past, a plurality of past (for a plurality of days) facility power transitions that are power transitions excluding the EHP 112 are derived. The plurality of facility power transitions are associated with the outside temperature or the average outside temperature at each time of the day. Here, the air conditioners related to EHP 112 and GHP 114 are excluded from the facility power transition, but, for example, individually controlled air conditioners that are not related to EHP 112 and GHP 114 are included in the facility power transition. The facility power transition has a correlation with the outside temperature.

(施設電力推移推定処理S204)
施設電力推移推定部180は、施設電力推移導出部178が導出した過去の複数の施設電力推移と、推定対象となる未来の予測外気温、例えば、翌日の予測外気温とから、未来(翌日)の施設電力推移を推定する。具体的に、過去の複数の施設電力推移に関連付けられた外気温と、翌日の予測外気温とを比較し、外気温の推移または平均外気温が一番近似している過去の施設電力推移を、未来の施設電力推移として導出する。ここで、参照する過去の施設電力推移は、現在から所定日数(例えば7日間)以内の施設電力推移としてもよいし、昨年またはそれ以前における同時期の施設電力推移としてもよい。また、推定対象となる未来は、翌日に限らず、外気温を予測できる翌日以降の所定の日でもよい。かかる施設電力推移の導出手法は、特開2015−90639号公報のエネルギー消費量予測方法等、既存の様々な手法を利用できるので、ここでは、その詳細な説明を省略する。
(Facility power transition estimation process S204)
The facility power transition estimation unit 180 calculates the future (next day) from the plurality of past facility power transitions derived by the facility power transition deriving unit 178 and the predicted outside temperature of the future to be estimated, for example, the predicted outside temperature of the next day. Estimate the facility power transition. Specifically, the outside air temperature associated with multiple past facility power transitions is compared with the predicted outside air temperature of the next day, and the past facility power transition that is the closest to the transition of the outside air temperature or the average outside air temperature is calculated. Derived as future facility power transition. Here, the past facility power transition to be referred to may be a facility power transition within a predetermined number of days (for example, seven days) from the present time, or may be a facility power transition in the same period last year or earlier. The future to be estimated is not limited to the next day, but may be a predetermined day after the next day when the outside air temperature can be predicted. As the facility power transition deriving method, various existing methods such as the energy consumption prediction method disclosed in Japanese Patent Application Laid-Open No. 2015-90639 can be used, and detailed description thereof is omitted here.

(空調電力推移導出処理S206)
図5は、空調電力推移導出処理S206を説明するための説明図である。空調電力推移導出部182は、施設10に対し契約電力から、施設電力推移推定部180が推定した未来(例えば翌日)の施設電力推移を減算し、EHP112およびGHP114で利用可能な電力推移である空調電力推移を導出する。かかる空調電力推移は、実際に要求される空調負荷とは関係なく、あくまで、契約電力内でEHP112およびGHP114が利用できる電力の上限値を示している。
(Air conditioning power transition derivation process S206)
FIG. 5 is an explanatory diagram for explaining the air conditioning power transition deriving process S206. The air conditioning power transition deriving unit 182 subtracts the future (for example, the next day) facility power transition estimated by the facility power transition estimating unit 180 from the contract power for the facility 10, and is an air conditioning that is a power transition that can be used by the EHP 112 and the GHP 114. Derive power transition. This air conditioning power transition shows the upper limit value of power that can be used by the EHP 112 and the GHP 114 within the contract power regardless of the actually required air conditioning load.

(運転マップ生成処理S208)
運転マップ生成部184は、空調電力推移に基づき、相異なる複数の空調負荷率(EHP112の運転負荷率+GHP114の運転負荷率)に対し、電力およびガスの料金の合計が最小となるようにEHP112およびGHP114の運転負荷率を導出して運転マップを生成する。
(Driving map generation process S208)
Based on the air conditioning power transition, the operation map generation unit 184 has the EHP 112 and the EHP 112 and the gas charges so that the sum of the electric power and gas charges is minimized for a plurality of different air conditioning load factors (operating load factor of the EHP 112 + operating load factor of the GHP 114). An operation map is generated by deriving the operation load factor of the GHP 114.

図6は、運転マップの一例を示した説明図である。ここでは、横軸に時刻、縦軸に空調負荷率が示されている。そして、全ての時刻において、想定される全ての空調負荷率(≦10、≦20、…、≦100%、>100%)それぞれが要求された場合のEHP112およびGHP114の運転負荷率を導出する。例えば、図6の13:00において、要求される空調負荷率が50%より大きく、60%以下であれば(≦60%)、EHP112の運転負荷率を60%に、GHP114の運転負荷率を60%に設定している。ここで、EHP112およびGHP114の運転負荷率は以下のように求まる。   FIG. 6 is an explanatory diagram showing an example of an operation map. Here, the horizontal axis represents time, and the vertical axis represents the air conditioning load factor. Then, at all times, the operating load factors of the EHP 112 and the GHP 114 when all the assumed air conditioning load factors (≦ 10, ≦ 20,... ≦ 100%,> 100%) are requested are derived. For example, at 13:00 in FIG. 6, if the required air conditioning load factor is greater than 50% and 60% or less (≦ 60%), the operation load factor of the EHP 112 is set to 60%, and the operation load factor of the GHP 114 is set. 60% is set. Here, the operating load factors of the EHP 112 and the GHP 114 are obtained as follows.

図7および図8は、運転負荷率の決定手順を示すための説明図である。ただし、時刻13:00の予測外気温は35℃、契約電力内でEHP112およびGHP114が利用できる電力は7kW(空調電力推移から求まる)、電力従量料金は20円/kWh、ガス従量料金は100円/m、EHP112の定格能力は28kW、定格消費電力は10kW、GHP114の定格能力は56kW、定格消費電力1kW、定格ガス消費量は40kW、要求された空調負荷率は60%であるとして計算する。なお、ここでは、EHP112およびGHP114を冷房として利用する場合を述べており、暖房として利用する場合は、異なるパラメータが参照される。また、運転マップ生成処理S208において用いられる上記の料金(例えば、電力従量料金、ガス従量料金)は、固定的に決定されたり、所定時間毎に更新されており(変動しており)、運転マップの生成時に、対象となる期間(例えば翌日)の料金を参照し、その更新された料金を反映して運転マップを生成するとしてもよい。こうして、空調環境の変化に拘わらず、適切な運転マップを生成することができる。 7 and 8 are explanatory diagrams for illustrating the procedure for determining the operating load factor. However, the predicted outside temperature at 13:00 is 35 ° C, the power available to the EHP 112 and GHP 114 within the contracted power is 7 kW (determined from the air conditioning power transition), the power metered charge is 20 yen / kWh, and the gas metered charge is 100 yen / M 3 , EHP112 rated capacity is 28 kW, rated power consumption is 10 kW, GHP114 rated capacity is 56 kW, rated power consumption is 1 kW, rated gas consumption is 40 kW, and the required air conditioning load factor is 60%. . Here, a case where the EHP 112 and the GHP 114 are used for cooling is described, and different parameters are referred to when used for heating. In addition, the above-described charges (for example, electric power usage charges and gas usage charges) used in the operation map generation process S208 are fixedly determined or updated (changed) every predetermined time, and the operation map At the time of generating, the charge for the target period (for example, the next day) may be referred to and the driving map may be generated reflecting the updated charge. Thus, an appropriate operation map can be generated regardless of changes in the air-conditioning environment.

まず、要求される空調負荷率60%を満たすべく、図7のように、EHP112およびGHP114の運転負荷率を按分した組み合わせを複数挙げる。具体的に、運転マップ生成部184は、EHP112の運転負荷率を0〜100%に振り分け、EHP112の定格である28kWを乗じて、それぞれの負荷を導出する。ここで、要求された空調負荷は、(EHP112の定格28kW+GHP114の定格56kW)に60%を乗じた50.4kWなので、50.4kWに満たない負荷をGHP114で負担する。したがって、GHP114の負荷は50.4kWからEHP112の負荷を減算した値となり、そのGHP114の負荷の定格56kWとの比がGHP114の運転負荷率となる。   First, in order to satisfy the required air conditioning load factor of 60%, as shown in FIG. 7, a plurality of combinations in which the operation load factors of the EHP 112 and the GHP 114 are prorated are listed. Specifically, the operation map generation unit 184 assigns the operation load factor of the EHP 112 to 0 to 100%, and multiplies the EHP 112 rating of 28 kW to derive each load. Here, since the requested air conditioning load is 50.4 kW obtained by multiplying 60% by the rating (EHP 112 rating 28 kW + GHP 114 rating 56 kW), the GHP 114 bears a load less than 50.4 kW. Therefore, the load of the GHP 114 is a value obtained by subtracting the load of the EHP 112 from 50.4 kW, and the ratio of the load of the GHP 114 to the rated 56 kW becomes the operating load factor of the GHP 114.

続いて、運転マップ生成部184は、図8(a)の運転負荷率(%)と入力比(入力/定格)との関係、および、図8(b)の外気温(℃)と入力比(入力/定格)との関係を参照し、導出したEHP112およびGHP114の運転負荷率、EHP112の定格消費電力10kW、GHP114の定格消費電力1kW、定格ガス消費量40kW、および、図8(a),(b)の関係から、EHP112の消費電力、GHP114の消費電力、GHP114の消費ガスを導出する。   Subsequently, the operation map generation unit 184 determines the relationship between the operation load factor (%) and the input ratio (input / rated) in FIG. 8A and the outside air temperature (° C.) and the input ratio in FIG. With reference to the relationship with (input / rated), the derived operating load factor of EHP 112 and GHP 114, rated power consumption of EHP 112, 10 kW, rated power consumption of 1 kW of GHP 114, rated gas consumption of 40 kW, and FIG. From the relationship (b), the power consumption of the EHP 112, the power consumption of the GHP 114, and the gas consumption of the GHP 114 are derived.

次に、運転マップ生成部184は、EHP112の消費電力とGHP114の消費電力を加算して合計消費電力を導出し、電力従量料金20円/kWhと0.5時間を乗じて電力料金を導出する。同様に、運転マップ生成部184は、GHP114の消費ガスを体積に換算し直し、ガス従量料金は100円/mと0.5時間を乗じてガス料金を導出する。最後に、運転マップ生成部184は、電力料金とガス料金とを加算して合計料金を導出する。 Next, the operation map generation unit 184 derives the total power consumption by adding the power consumption of the EHP 112 and the power consumption of the GHP 114, and multiplies the power consumption rate 20 yen / kWh by 0.5 hours to derive the power rate. . Similarly, the operation map generation unit 184 converts the gas consumed by the GHP 114 back into a volume, and derives a gas charge by multiplying the gas metered charge by 100 yen / m 3 and 0.5 hours. Finally, the operation map generation unit 184 derives a total charge by adding the power charge and the gas charge.

ここで、契約電力内でEHP112およびGHP114が利用できる電力は7kWであるという条件を考慮すると、合計消費電力が7kW以下となるのは、EHP112の運転負荷率が0〜60%に対応する組み合わせに限定され、その中では、EHP112の運転負荷率60%、GHP114の運転負荷率60%の組み合わせの合計料金が136円と最小となる。したがって、図6の如く、当該時刻13:00の要求される空調負荷率60%におけるEHP112の運転負荷率を60%に、GHP114の運転負荷率を60%に設定する。こうして、相異なる複数の空調負荷率に対し、電力およびガスの料金の合計が最小となるようにEHP112およびGHP114の運転負荷率を設定することが可能となる。   Here, in consideration of the condition that the power that can be used by the EHP 112 and the GHP 114 within the contract power is 7 kW, the total power consumption is 7 kW or less in the combination corresponding to the operation load factor of the EHP 112 of 0 to 60%. Among them, the total charge of the combination of the operation load factor 60% of the EHP 112 and the operation load factor 60% of the GHP 114 is the minimum of 136 yen. Therefore, as shown in FIG. 6, the operation load factor of the EHP 112 at the required air conditioning load factor 60% at the time 13:00 is set to 60%, and the operation load factor of the GHP 114 is set to 60%. In this way, it is possible to set the operating load factors of the EHP 112 and the GHP 114 so that the sum of the electric power and gas charges is minimized with respect to a plurality of different air conditioning load factors.

ところで、上述したように、本実施形態では、施設電力推移と空調電力推移を分けて考え、施設電力推移を定量的な変動とみなして未来の予測外気温等から推定し、予測した施設電力推移で進行することを前提とする運転マップにより、空調電力推移の変動に応じて、その都度、EHP112およびGHP114の運転負荷率を制御している。したがって、EHP112およびGHP114を除く電力推移が施設電力推移通りであれば、すなわち、使用電力量が、契約電力/30分の傾きを有する一次曲線(以下、単に「基準曲線」という)で推移すれば、EHP112およびGHP114の運転負荷率を制御するだけで、所定の時間(例えば30分)での電力使用量はほぼ契約電力と等しくなるはずである。   By the way, as described above, in this embodiment, the facility power transition and the air conditioning power transition are considered separately, the facility power transition is regarded as a quantitative fluctuation, estimated from the predicted outside temperature in the future, and the predicted facility power transition The operation load factor of the EHP 112 and the GHP 114 is controlled each time according to the change in the air conditioning power transition, based on the operation map on the assumption that the vehicle travels in the above. Therefore, if the power transition excluding EHP 112 and GHP 114 is in accordance with the facility power transition, that is, if the amount of power used changes with a primary curve (hereinafter simply referred to as “reference curve”) having a slope of contract power / 30 minutes. By simply controlling the operating load factors of the EHP 112 and the GHP 114, the power usage for a predetermined time (for example, 30 minutes) should be approximately equal to the contract power.

しかし、EHP112およびGHP114を除く実際の電力推移が施設電力推移とずれてしまうと、EHP112およびGHP114の運転負荷率を適切に制御したとしても、電力使用量は契約電力と異なることとなってしまう。そこで、本実施形態では、空調電力推移の異なる複数の運転マップを準備し、使用電力量が基準曲線からずれると、複数の運転マップを切り換えることで、基準曲線に近づくよう適切に制御する。   However, if the actual power transition excluding EHP 112 and GHP 114 deviates from the facility power transition, even if the operating load factor of EHP 112 and GHP 114 is appropriately controlled, the power consumption will differ from the contract power. Therefore, in the present embodiment, a plurality of operation maps having different air-conditioning power transitions are prepared, and when the amount of power used deviates from the reference curve, the plurality of operation maps are switched to appropriately control to approach the reference curve.

図9は、運転マップの他の例を示した説明図である。ここでも、横軸に時刻、縦軸に空調負荷率が示されている。ここで、空調電力推移導出部182は、施設電力推移推定部180が求めた施設電力推移に加え、施設電力推移が変動する場合を踏まえ、基準となる空調電力推移の他に、段階的に設けた複数(ここでは2つ)の施設電力推移に基づいて複数の空調電力推移を導出する。そして、運転マップ生成部184は、基準となる空調電力推移に基づく図6に示した運転マップに加え、図9(a)、(b)に示したように、段階的に設けた相異なる複数(ここでは2つ)の空調電力推移に基づいて複数の運転マップを生成する。   FIG. 9 is an explanatory diagram showing another example of the driving map. Again, the horizontal axis represents time, and the vertical axis represents the air conditioning load factor. Here, in addition to the facility power transition obtained by the facility power transition estimating unit 180, the air conditioning power transition deriving unit 182 is provided in stages in addition to the standard air conditioning power transition based on the case where the facility power transition varies. Further, a plurality of air conditioning power transitions are derived based on a plurality of (here, two) facility power transitions. And the operation map production | generation part 184 adds to the operation map shown in FIG. 6 based on air-conditioning electric power transition used as a reference | standard, as shown in FIG. A plurality of operation maps are generated based on the air conditioning power transition (two here).

例えば、図9(a)に示される−(マイナス)レベルの運転マップは、施設電力推移が予想より低くなり、EHP112やGHP114の消費電力を増やせる場合に用いられる。一方、図9(b)に示される+(プラス)レベルの運転マップは、施設電力推移が予想より高くなり、EHP112やGHP114の消費電力を減らさなければならない場合に用いられる。かかる複数の運転マップの切換制御は後程詳述する。なお、ここでは、説明の便宜上、基準となる運転マップに加え、+と−の2段階の運転マップを準備する例を挙げて説明したが、かかる運転マップの数および分解能は、任意に設定できる。   For example, the minus (−) level operation map shown in FIG. 9A is used when the facility power transition is lower than expected and the power consumption of the EHP 112 and GHP 114 can be increased. On the other hand, the + (plus) level operation map shown in FIG. 9B is used when the facility power transition is higher than expected and the power consumption of the EHP 112 and GHP 114 must be reduced. The switching control of the plurality of operation maps will be described in detail later. Here, for convenience of explanation, an example has been described in which an operation map in two steps, + and −, is prepared in addition to a reference operation map. However, the number and resolution of such operation maps can be arbitrarily set. .

(空調運転処理S210)
空調運転部172は、運転マップ生成部184が生成した運転マップに従い、EHP112とGHP114を、必要な空調負荷率に応じた運転負荷率で運転する。そして、空調運転部172は、施設において実測した電力使用量に応じ、電力使用量が契約電力以下となるように、所定の時間毎に、複数の運転マップを切り換える。
(Air conditioning operation processing S210)
The air conditioning operation unit 172 operates the EHP 112 and the GHP 114 at an operation load factor corresponding to a required air conditioning load factor according to the operation map generated by the operation map generation unit 184. And the air-conditioning driving | operation part 172 switches a some driving | operation map for every predetermined time so that an electric power usage may become below contract electric power according to the electric power usage actually measured in the plant | facility.

図10は、空調運転処理S210を説明するための説明図である。空調運転部172は、図6に示した基準レベルの運転マップを参照して、その時刻の要求される空調負荷率に従い、EHP112とGHP114それぞれの運転負荷率を決定する。そして、制御タイミング(例えば10秒)毎に運転マップを見直し、運転マップが切り換わったら、その切り換わった運転マップに従って、EHP112とGHP114それぞれの運転負荷率を決定する。運転マップの切換判定は、以下のように行う。すなわち、このままのトレンドでEHP112およびGHP114を利用し続けた場合、次の電力使用量の判定タイミングにおいて、電力使用量がどの程度になるかを予測し、その値が契約電力の90%以下になると、図9(a)に示した−レベルの運転マップに切り換え、契約電力の90%より大きく、かつ、100%以下になると、図6に示した基準レベルの運転マップに切り換え、契約電力の100%より大きくなると、図9(b)に示した+レベルの運転マップに切り換える。   FIG. 10 is an explanatory diagram for explaining the air conditioning operation processing S210. The air conditioning operation unit 172 refers to the operation map at the reference level shown in FIG. 6 and determines the operation load factors of the EHP 112 and the GHP 114 according to the required air conditioning load factor at that time. Then, the operation map is reviewed at each control timing (for example, 10 seconds), and when the operation map is switched, the operation load factors of the EHP 112 and the GHP 114 are determined according to the switched operation map. The operation map switching determination is performed as follows. In other words, if EHP112 and GHP114 are continuously used in this trend, the amount of power usage will be predicted at the next power usage determination timing, and the value will be 90% or less of the contract power. 9 (a), switching to the -level operation map. When the contract power is greater than 90% and less than 100%, the operation is switched to the reference level operation map shown in FIG. When it becomes larger than%, the operation is switched to the + level operation map shown in FIG.

例えば、図10の例では、実線で示した使用電力量が破線で示した基準曲線上を推移するのが望ましい。しかし、使用電力量の推移が基準曲線から離脱し、時点Aにおいて、その接線が契約電力の90%以下を示すと、空調運転部172は、運転マップを、−レベルの運転マップに切り換える。こうして、使用電力量は基準曲線に近づく。また、時点Bにおいて、その接線が契約電力の90%より大きく、かつ、100%以下になると、空調運転部172は、運転マップを、基準レベルの運転マップに戻す。また、時点Cにおいて、その接線が契約電力の100%より大きくなると、空調運転部172は、運転マップを、+レベルの運転マップに切り換える。こうして、使用電力量は基準曲線に近づく。また、時点Dにおいて、その接線が契約電力の90%より大きく、かつ、100%以下になると、空調運転部172は、運転マップを、基準レベルの運転マップに戻す。   For example, in the example of FIG. 10, it is desirable that the amount of power used indicated by a solid line changes on a reference curve indicated by a broken line. However, if the transition of the power consumption deviates from the reference curve and the tangent indicates 90% or less of the contract power at time A, the air conditioning operation unit 172 switches the operation map to the −level operation map. Thus, the amount of power used approaches the reference curve. When the tangent is greater than 90% of the contracted power and equal to or less than 100% at time B, the air conditioning operation unit 172 returns the operation map to the reference level operation map. When the tangent line becomes larger than 100% of the contract power at the time point C, the air conditioning operation unit 172 switches the operation map to the + level operation map. Thus, the amount of power used approaches the reference curve. Further, when the tangent is greater than 90% of the contract power and equal to or less than 100% at time D, the air conditioning operation unit 172 returns the operation map to the reference level operation map.

かかる運転マップを切り換える構成により、使用電力量が基準曲線に近づくよう適切に制御される。なお、ここでは、使用電力量が基準曲線を超過しないように、使用電力量の目標値を契約電力の95%とし、最終的に契約電力の90%より大きく、かつ、100%以下に収まるようにしている。   With the configuration for switching the operation map, the power consumption is appropriately controlled so as to approach the reference curve. In this case, the target value of the power consumption is set to 95% of the contract power so that the power consumption does not exceed the reference curve, and finally it is larger than 90% of the contract power and within 100% or less. I have to.

このように運転マップを用いてEHP112とGHP114との運転負荷率を制御することで以下の効果を奏する。すなわち、本実施形態では、施設電力推移と空調電力推移を分けて考え、定量的に変化する施設電力推移を前提として、その時点の要求される空調負荷率に合わせてEHP112とGHP114を制御している。したがって、EHP112およびGHP114を除く電力推移が施設電力推移通りであれば、電力使用量の判定タイミングでの電力使用量を予測することなく、電力使用量は、高精度に基準曲線に近い値で推移することになる。   Thus, the following effects are produced by controlling the driving load factor between the EHP 112 and the GHP 114 using the driving map. In other words, in the present embodiment, the facility power transition and the air conditioning power transition are considered separately, and the EHP 112 and the GHP 114 are controlled in accordance with the required air conditioning load factor at that time on the assumption that the facility power transition changes quantitatively. Yes. Therefore, if the power transition excluding EHP112 and GHP114 is in line with the facility power transition, the power usage will change at a value close to the reference curve with high accuracy without predicting the power usage at the power usage determination timing. Will do.

また、使用電力量が基準曲線からはずれたとしても、適切に基準曲線近傍に復帰させる複数の運転マップを切り換えることで、迅速に基準曲線に近づけることができる。したがって、EHP112およびGHP114の運転負荷率の変動を抑制して効率良く運転させ、合計料金を最小限に抑えることが可能となる。   Even if the amount of power used deviates from the reference curve, it can be brought close to the reference curve quickly by switching a plurality of operation maps that are appropriately returned to the vicinity of the reference curve. Therefore, it is possible to efficiently operate by suppressing fluctuations in the operation load factor of the EHP 112 and the GHP 114, and to minimize the total fee.

また、空調運転部172は、一旦、複数の運転マップを取得すると、運転マップで定められている期間が終了するまで通信を要さないので、管理サーバ120との通信負荷を最小限に留めることができる。   In addition, once the air-conditioning operation unit 172 acquires a plurality of operation maps, communication is not required until the period defined in the operation map ends, so the communication load with the management server 120 is minimized. Can do.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上述した実施形態においては、制御タイミングにおいて、このままのトレンドでEHP112およびGHP114を利用し続けた場合、次の電力使用量の判定タイミングにおいて、電力使用量がどの程度になるかを予測し、その値が契約電力の何%に相当するかに応じて複数の運転マップを切り換える、所謂、オープン制御の例を挙げて説明した。しかし、制御方式はかかる場合に限らず、次の電力使用量の判定タイミングにおいて、電力使用量がどの程度になるかを予測し、その値をフィードバックすることで、契約電力を目標とするクローズ制御(フィードバック制御)等、既存の様々な制御方式を採用することが可能である。   For example, in the above-described embodiment, when the EHP 112 and the GHP 114 are continuously used in the control timing as they are, the power usage amount is predicted at the next power usage determination timing, An example of so-called open control in which a plurality of operation maps are switched according to what percentage of the contract power corresponds to the value has been described. However, the control method is not limited to such a case, and at the next power usage determination timing, the amount of power usage is predicted, and the value is fed back, thereby closing control for contract power as a target. Various existing control methods such as (feedback control) can be employed.

また、上述した実施形態では、EHP112とGHP114とを独立して構成し、それぞれが室外熱交換器、室内熱交換器、冷媒回路を個々に有する例を挙げて説明したが、かかる場合に限らず、電動機140および電気駆動式圧縮機142と、ガスエンジン150およびエンジン駆動式圧縮機152とが独立してさえいれば、いずれか1または複数の構成要素を共通化して、一体的に構成してもよい。例えば、EHP112およびGHP114の室内熱交換器と冷媒回路とを共通化し、ハイブリッドタイプとしてもよいし、EHP112およびGHP114の室外熱交換器と室内熱交換器と冷媒回路とを共通化し、オールインワンタイプとすることもできる。   In the above-described embodiment, the EHP 112 and the GHP 114 are configured independently and each has an outdoor heat exchanger, an indoor heat exchanger, and a refrigerant circuit, but the present invention is not limited thereto. As long as the electric motor 140 and the electrically driven compressor 142 and the gas engine 150 and the engine driven compressor 152 are independent from each other, any one or a plurality of components are shared and configured integrally. Also good. For example, the EHP 112 and GHP 114 indoor heat exchangers and refrigerant circuits may be shared, and a hybrid type may be used, or the EHP 112 and GHP 114 outdoor heat exchangers, indoor heat exchangers, and refrigerant circuits may be shared to be an all-in-one type. You can also

また、上述した実施形態においては、管理サーバ120と空気調和装置110とを別体として説明したが、空気調和装置110の計算能力が許せば、管理サーバ120の機能部を空気調和装置110で実行し、空気調和装置110のみで当該実施形態を実現することもできる。   Moreover, in embodiment mentioned above, although the management server 120 and the air conditioning apparatus 110 were demonstrated as a different body, if the calculation capability of the air conditioning apparatus 110 permits, the function part of the management server 120 will be performed with the air conditioning apparatus 110 However, the embodiment can be realized only by the air conditioner 110.

また、上述した実施形態においては、翌日等、未来の予測外気温等を通じ、一日単位で未来の電力推移を予測し、一日単位の運転マップを生成する例を挙げて説明したが、その期間は日に限らず、時間や分、または、年単位でもよい。例えば、1時間単位で運転マップを更新している場合、未来の予測外気温等が変化すると、それを反映し、新たに運転マップを生成し直して、対象となる期間が開始される前に運転マップを更新することもできる。かかる構成により、リアルタイムにEHP112およびGHP114を効率良く運転させることが可能となる。   Further, in the above-described embodiment, an example has been described in which the future power transition is predicted on a daily basis through the predicted outside temperature in the future, such as the next day, and a daily operation map is generated. The period is not limited to days, but may be hours, minutes, or years. For example, when the driving map is updated on an hourly basis, if the predicted outside temperature changes in the future, it will be reflected, and a new driving map will be generated again before the target period starts. The driving map can also be updated. With this configuration, the EHP 112 and the GHP 114 can be efficiently operated in real time.

また、コンピュータを空気調和装置110や管理サーバ120として機能させるプログラムや、当該プログラムを記録した、コンピュータで読み取り可能なフレキシブルディスク、光磁気ディスク、ROM、CD、DVD、BD等の記憶媒体も提供される。ここで、プログラムは、任意の言語や記述方法にて記述されたデータ処理手段をいう。   Also provided are a program for causing the computer to function as the air conditioning apparatus 110 and the management server 120, and a computer-readable storage medium such as a flexible disk, a magneto-optical disk, a ROM, a CD, a DVD, and a BD on which the program is recorded. The Here, the program refers to data processing means described in an arbitrary language or description method.

なお、本明細書の空気調和方法の各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。   In addition, each process of the air conditioning method of this specification does not necessarily need to process in time series along the order described as a flowchart, and may include the process by parallel or a subroutine.

本発明は、室内の空気を調和させる空気調和システムおよび空気調和方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an air conditioning system and an air conditioning method for conditioning indoor air.

10 施設
100 空気調和システム
110 空気調和装置
112 EHP
114 GHP
120 管理サーバ
122 管理通信部
140 電動機
142 電気駆動式圧縮機
144 EHP室外熱交換器
146 EHP室内熱交換器
150 ガスエンジン
152 エンジン駆動式圧縮機
154 GHP室外熱交換器
156 GHP室内熱交換器
170 施設電力推移導出部
172 空調運転部
180 施設電力推移推定部
182 空調電力推移導出部
184 運転マップ生成部
10 Facility 100 Air Conditioning System 110 Air Conditioning Device 112 EHP
114 GHP
120 Management Server 122 Management Communication Unit 140 Electric Motor 142 Electric Drive Compressor 144 EHP Outdoor Heat Exchanger 146 EHP Indoor Heat Exchanger 150 Gas Engine 152 Engine Driven Compressor 154 GHP Outdoor Heat Exchanger 156 GHP Indoor Heat Exchanger 170 Facility Power transition deriving unit 172 Air conditioning operation unit 180 Facility power transition estimating unit 182 Air conditioning power transition deriving unit 184 Operation map generating unit

Claims (4)

少なくとも、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、
少なくとも、ガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPと、
を備え、
電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、
施設における、前記EHPおよび前記GHPを除く電力推移である施設電力推移を導出する施設電力推移導出部と、
過去の前記施設電力推移と、未来の予測外気温とから、未来の前記施設電力推移を推定する施設電力推移推定部と、
前記契約電力から前記未来の施設電力推移を減算し、前記EHPおよび前記GHPで利用可能な電力推移である空調電力推移を導出する空調電力推移導出部と、
前記空調電力推移に基づき、相異なる複数の空調負荷率それぞれに対し、該空調負荷率を満たすように前記EHPと前記GHPの運転負荷率を按分した組み合わせを複数生成し、その組み合わせの中で前記電力および前記ガスの料金の合計が最小となる組み合わせを該空調負荷率に対する該EHPと該GHPの運転負荷率し、該空調負荷率と該EHPと該GHPの運転負荷率とを対応付けた運転マップを生成する運転マップ生成部と、
前記運転マップに従い、前記EHPおよび前記GHPを、必要な空調負荷率に応じた運転負荷率で運転する空調運転部と、
をさらに備えることを特徴とする空気調和システム。
EHP having at least an electrically driven compressor that compresses refrigerant using an electric motor as a drive source;
GHP having at least an engine-driven compressor that compresses refrigerant using a gas engine as a drive source;
With
The price of electricity is determined at least according to the contracted power, the price of gas is determined at least according to the amount of gas used,
A facility power transition deriving unit for deriving a facility power transition that is a power transition excluding the EHP and the GHP in the facility;
A facility power transition estimating unit that estimates the facility power transition in the future from the past facility power transition and the predicted outside temperature in the future,
An air conditioning power transition deriving unit that subtracts the future facility power transition from the contract power and derives an air conditioning power transition that is a power transition usable in the EHP and the GHP;
Based on the air conditioning power transition, for each of a plurality of different air conditioning load factors , a plurality of combinations that apportion the operating load factors of the EHP and the GHP so as to satisfy the air conditioning load factor are generated. and the operating load factor of the EHP and the GHP combinations total price for electric power and the gas is minimized with respect to the air conditioning load factor, associating the the air conditioning load factor and the EHP and operating load factor of the GHP An operation map generator for generating an operation map;
In accordance with the operation map, an air conditioning operation unit that operates the EHP and the GHP at an operation load factor corresponding to a required air conditioning load factor;
An air conditioning system further comprising:
少なくとも、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、
少なくとも、ガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPと、
を備え、
電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、
施設における、前記EHPおよび前記GHPを除く電力推移である施設電力推移を導出する施設電力推移導出部と、
過去の前記施設電力推移と、未来の予測外気温とから、未来の前記施設電力推移を推定する施設電力推移推定部と、
前記契約電力から前記未来の施設電力推移を減算し、前記EHPおよび前記GHPで利用可能な電力推移である空調電力推移を導出する空調電力推移導出部と、
段階的に設けた複数の前記空調電力推移それぞれに基づき、相異なる複数の空調負荷率それぞれに対し、前記電力および前記ガスの料金の合計が最小となるように前記EHPと前記GHPの運転負荷率を導出し、該空調負荷率と該EHPと該GHPの運転負荷率とを対応付けた運転マップを生成する運転マップ生成部と、
前記施設において実測した電力使用量が契約電力以下となるように、複数の前記運転マップを切り換え、該運転マップに従い、前記EHPおよび前記GHPを、必要な空調負荷率に応じた運転負荷率で運転する空調運転部と、
をさらに備えることを特徴とする空気調和システム。
EHP having at least an electrically driven compressor that compresses refrigerant using an electric motor as a drive source;
GHP having at least an engine-driven compressor that compresses refrigerant using a gas engine as a drive source;
With
The price of electricity is determined at least according to the contracted power, the price of gas is determined at least according to the amount of gas used,
A facility power transition deriving unit for deriving a facility power transition that is a power transition excluding the EHP and the GHP in the facility;
A facility power transition estimating unit that estimates the facility power transition in the future from the past facility power transition and the predicted outside temperature in the future,
An air conditioning power transition deriving unit that subtracts the future facility power transition from the contract power and derives an air conditioning power transition that is a power transition usable in the EHP and the GHP;
Based on each of the plurality of air conditioning power transitions provided in stages, for each of a plurality of different air conditioning load factors, the operating load factors of the EHP and the GHP are such that the sum of the charges of the power and the gas is minimized. And an operation map generation unit that generates an operation map in which the air conditioning load factor, the EHP, and the operation load factor of the GHP are associated with each other;
The plurality of operation maps are switched so that the power consumption actually measured in the facility is equal to or less than the contract power, and the EHP and the GHP are operated at an operation load factor corresponding to a required air conditioning load factor according to the operation map. An air-conditioning operation unit,
An air conditioning system further comprising:
少なくとも電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくともガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPとを備えた空気調和システムにおける空気調和方法であって、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、
施設における、前記EHPおよび前記GHPを除く電力推移である施設電力推移を導出し、
過去の前記施設電力推移と、未来の予測外気温とから、未来の前記施設電力推移を推定し、
前記契約電力から前記未来の施設電力推移を減算し、前記EHPおよび前記GHPで利用可能な電力推移である空調電力推移を導出し、
前記空調電力推移に基づき、相異なる複数の空調負荷率それぞれに対し、該空調負荷率を満たすように前記EHPと前記GHPの運転負荷率を按分した組み合わせを複数生成し、その組み合わせの中で前記電力および前記ガスの料金の合計が最小となる組み合わせを該空調負荷率に対する該EHPと該GHPの運転負荷率し、該空調負荷率と該EHPと該GHPの運転負荷率とを対応付けた運転マップを生成し、
前記運転マップに従い、前記EHPと前記GHPを、必要な空調負荷率に応じた運転負荷率で運転することを特徴とする空気調和方法。
An air conditioning method in an air conditioning system comprising at least an EHP having an electrically driven compressor that compresses refrigerant using a motor as a driving source, and a GHP having an engine driven compressor that compresses refrigerant using at least a gas engine as a driving source The charge of power is determined at least according to the contracted power, the charge of gas is determined at least according to the amount of gas used,
Deriving a facility power transition that is a power transition excluding the EHP and the GHP in the facility,
Estimating the future facility power transition from the past facility power transition and the predicted outside temperature in the future,
Subtracting the future facility power transition from the contract power, and deriving an air conditioning power transition that is a power transition usable in the EHP and the GHP,
Based on the air conditioning power transition, for each of a plurality of different air conditioning load factors , a plurality of combinations that apportion the operating load factors of the EHP and the GHP so as to satisfy the air conditioning load factor are generated. and the operating load factor of the EHP and the GHP combinations total price for electric power and the gas is minimized with respect to the air conditioning load factor, associating the the air conditioning load factor and the EHP and operating load factor of the GHP Generate a driving map,
According to the operation map, the EHP and the GHP are operated at an operation load factor corresponding to a required air conditioning load factor.
少なくとも電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機を有するEHPと、少なくともガスエンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機を有するGHPとを備えた空気調和システムにおける空気調和方法であって、電力の料金は少なくとも契約電力に応じて決定され、ガスの料金は少なくとも当該ガスの使用量に応じて決定され、
施設における、前記EHPおよび前記GHPを除く電力推移である施設電力推移を導出し、
過去の前記施設電力推移と、未来の予測外気温とから、未来の前記施設電力推移を推定し、
前記契約電力から前記未来の施設電力推移を減算し、前記EHPおよび前記GHPで利用可能な電力推移である空調電力推移を導出し、
段階的に設けた複数の前記空調電力推移それぞれに基づき、相異なる複数の空調負荷率それぞれに対し、前記電力および前記ガスの料金の合計が最小となるように前記EHPと前記GHPの運転負荷率を導出し、該空調負荷率と該EHPと該GHPの運転負荷率とを対応付けた運転マップを生成し、
前記施設において実測した電力使用量が契約電力以下となるように、複数の前記運転マップを切り換え、該運転マップに従い、前記EHPと前記GHPを、必要な空調負荷率に応じた運転負荷率で運転することを特徴とする空気調和方法。
An air conditioning method in an air conditioning system comprising at least an EHP having an electrically driven compressor that compresses refrigerant using a motor as a driving source, and a GHP having an engine driven compressor that compresses refrigerant using at least a gas engine as a driving source The charge of power is determined at least according to the contracted power, the charge of gas is determined at least according to the amount of gas used,
Deriving a facility power transition that is a power transition excluding the EHP and the GHP in the facility,
Estimating the future facility power transition from the past facility power transition and the predicted outside temperature in the future,
Subtracting the future facility power transition from the contract power, and deriving an air conditioning power transition that is a power transition usable in the EHP and the GHP,
Based on each of the plurality of air conditioning power transitions provided in stages, for each of a plurality of different air conditioning load factors, the operating load factors of the EHP and the GHP are such that the sum of the charges of the power and the gas is minimized. And generating an operation map in which the air conditioning load factor, the EHP, and the operation load factor of the GHP are associated with each other,
The plurality of operation maps are switched so that the power consumption actually measured in the facility is equal to or less than the contract power, and the EHP and the GHP are operated at an operation load factor corresponding to a required air conditioning load factor according to the operation map. An air conditioning method characterized by:
JP2015183118A 2015-09-16 2015-09-16 Air conditioning system and air conditioning method Active JP6322173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183118A JP6322173B2 (en) 2015-09-16 2015-09-16 Air conditioning system and air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183118A JP6322173B2 (en) 2015-09-16 2015-09-16 Air conditioning system and air conditioning method

Publications (2)

Publication Number Publication Date
JP2017058074A JP2017058074A (en) 2017-03-23
JP6322173B2 true JP6322173B2 (en) 2018-05-09

Family

ID=58389596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183118A Active JP6322173B2 (en) 2015-09-16 2015-09-16 Air conditioning system and air conditioning method

Country Status (1)

Country Link
JP (1) JP6322173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034215A (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Air conditioning system
JP2021143810A (en) * 2020-03-13 2021-09-24 東京瓦斯株式会社 Air conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270929B2 (en) * 2003-04-24 2009-06-03 三菱電機株式会社 Air conditioning management device and air conditioning management system
JP4951976B2 (en) * 2006-01-11 2012-06-13 ダイキン工業株式会社 Air conditioner group control device
JP2009041801A (en) * 2007-08-07 2009-02-26 Daikin Ind Ltd Electricity/gas mixed-air conditioning control system
JP2015082880A (en) * 2013-10-22 2015-04-27 三菱化学エンジニアリング株式会社 Power demand prediction method
JP6282864B2 (en) * 2014-01-10 2018-02-21 東京瓦斯株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2017058074A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6420912B2 (en) Management server, management method and management system
EP2719971A1 (en) Operating method for heat pump, and heat pump system
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
EP3046199A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
JP2018033273A (en) Power management system, power management method, aggregator system, user power management system, and program
KR20140075614A (en) Method for making smart energy consumption indicator
JP7443161B2 (en) Storage battery management device, storage battery management method, and storage battery management program
WO2014192849A1 (en) Air-conditioner control device, air-conditioner control method, and program
KR20160128781A (en) Apparatus and method for charge and discharge scheduling in energy storage device
JP6322173B2 (en) Air conditioning system and air conditioning method
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
JP6379567B2 (en) Consumer power management system
JP4607533B2 (en) Operation method of power storage system
JP5986945B2 (en) Gas and electricity supply system and method
JP2007252085A (en) Power generation system
JP2021013231A (en) Information processing device, information processing method, and program
JP6315563B2 (en) Equipment operation system and equipment operation method
JP6651361B2 (en) Generator control system
JP6075206B2 (en) Power facility operation planning system and method
Chen et al. Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations
JP7066948B2 (en) Storage battery control device, storage battery control program
WO2017022000A1 (en) Information processing apparatus, charge or discharge scheduling method, and program
JP5995804B2 (en) Storage system management device and control target value determination method
US20190121308A1 (en) Method for ascertaining an optimum strategy
JP6534038B2 (en) Demand power control apparatus and demand power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171002

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171002

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6322173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250