JP6321026B2 - 画像テクスチャ特徴を用いる統合表現型解析 - Google Patents
画像テクスチャ特徴を用いる統合表現型解析 Download PDFInfo
- Publication number
- JP6321026B2 JP6321026B2 JP2015542383A JP2015542383A JP6321026B2 JP 6321026 B2 JP6321026 B2 JP 6321026B2 JP 2015542383 A JP2015542383 A JP 2015542383A JP 2015542383 A JP2015542383 A JP 2015542383A JP 6321026 B2 JP6321026 B2 JP 6321026B2
- Authority
- JP
- Japan
- Prior art keywords
- image texture
- image
- feature
- interest
- features
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
- G06T7/45—Analysis of texture based on statistical description of texture using co-occurrence matrix computation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30068—Mammography; Breast
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261728441P | 2012-11-20 | 2012-11-20 | |
| US61/728,441 | 2012-11-20 | ||
| PCT/IB2013/059663 WO2014080305A2 (en) | 2012-11-20 | 2013-10-25 | Integrated phenotyping employing image texture features. |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2016505289A JP2016505289A (ja) | 2016-02-25 |
| JP2016505289A5 JP2016505289A5 (enExample) | 2017-10-12 |
| JP6321026B2 true JP6321026B2 (ja) | 2018-05-09 |
Family
ID=49955416
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2015542383A Expired - Fee Related JP6321026B2 (ja) | 2012-11-20 | 2013-10-25 | 画像テクスチャ特徴を用いる統合表現型解析 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9552649B2 (enExample) |
| EP (1) | EP2923336B1 (enExample) |
| JP (1) | JP6321026B2 (enExample) |
| CN (1) | CN104798105B (enExample) |
| BR (1) | BR112015011289A2 (enExample) |
| RU (1) | RU2653108C2 (enExample) |
| WO (1) | WO2014080305A2 (enExample) |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2901340A2 (en) * | 2012-12-20 | 2015-08-05 | Siemens Aktiengesellschaft | Determination of a probability indicator value |
| CN104217213B (zh) * | 2014-08-20 | 2018-04-27 | 哈尔滨工程大学 | 一种基于对称性理论的医学图像多阶段分类方法 |
| FR3025317B1 (fr) * | 2014-08-26 | 2022-09-23 | Imabiotech | Methode de caracterisation d'un echantillon par imagerie par spectrometrie de masse |
| AU2015334840B2 (en) * | 2014-10-24 | 2021-10-21 | Innosign B.V. | Assessment of TGF-beta cellular signaling pathway activity using mathematical modelling of target gene expression |
| CN105184300A (zh) * | 2015-09-01 | 2015-12-23 | 中国矿业大学(北京) | 一种基于图像lbp的煤岩识别方法 |
| CN105354577A (zh) * | 2015-10-26 | 2016-02-24 | 中国矿业大学(北京) | 一种用于煤岩识别的b-cdtm纹理特征提取方法 |
| US10215830B2 (en) | 2015-12-16 | 2019-02-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Automated cancer detection using MRI |
| US10127660B2 (en) * | 2015-12-30 | 2018-11-13 | Case Western Reserve University | Radiomic features on diagnostic magnetic resonance enterography |
| US10078895B2 (en) * | 2015-12-30 | 2018-09-18 | Case Western Reserve University | Prediction of recurrence of non-small cell lung cancer with tumor infiltrating lymphocyte (TIL) graphs |
| US10898079B2 (en) * | 2016-03-04 | 2021-01-26 | University Of Manitoba | Intravascular plaque detection in OCT images |
| CN106127672B (zh) * | 2016-06-21 | 2019-03-12 | 南京信息工程大学 | 基于fpga的图像纹理特征提取算法 |
| CN109690613B (zh) * | 2016-09-16 | 2023-10-13 | 凯杰有限公司 | 邻近影响补偿 |
| CN108241865B (zh) * | 2016-12-26 | 2021-11-02 | 哈尔滨工业大学 | 基于超声图像的多尺度多子图肝纤维化多级量化分期方法 |
| EP3351956B1 (de) * | 2017-01-19 | 2022-03-16 | Siemens Healthcare GmbH | Verfahren zur klassifikation von mittels einer magnetresonanz- fingerprinting methode von einem untersuchungsobjekt erfassten magnetresonanz-messdaten |
| WO2018172990A1 (en) * | 2017-03-24 | 2018-09-27 | Pie Medical Imaging B.V. | Method and system for assessing vessel obstruction based on machine learning |
| EP3451286B1 (de) * | 2017-08-30 | 2019-08-28 | Siemens Healthcare GmbH | Verfahren zum segmentieren einer organstruktur eines untersuchungsobjekts in medizinischen bilddaten |
| CN107895139B (zh) * | 2017-10-19 | 2021-09-21 | 金陵科技学院 | 一种基于多特征融合的sar图像目标识别方法 |
| EP3486674A1 (en) * | 2017-11-17 | 2019-05-22 | Koninklijke Philips N.V. | Artificial intelligence-enabled localization of anatomical landmarks |
| CN110135227B (zh) * | 2018-02-09 | 2022-06-03 | 电子科技大学 | 一种基于机器学习的激光点云室外场景自动分割方法 |
| CN108596275A (zh) * | 2018-05-10 | 2018-09-28 | 句容沣润塑料制品有限公司 | 一种应用图像关联度的图像模糊分类方法 |
| CN108665431A (zh) * | 2018-05-16 | 2018-10-16 | 南京信息工程大学 | 基于k-均值聚类的分数阶图像纹理增强方法 |
| FR3082650B1 (fr) * | 2018-06-19 | 2021-08-27 | Hera Mi | Systeme et procede pour le traitement d'au moins une region polluante d'une image numerique d'un element expose a des rayons x |
| US10818015B2 (en) | 2019-01-28 | 2020-10-27 | Florida Analytical Imaging Solutions, LLC. | Automatic region of interest selection in centrosome analysis |
| CN110909652B (zh) * | 2019-11-16 | 2022-10-21 | 中国水利水电科学研究院 | 纹理特征优选的农作物种植结构月尺度动态提取方法 |
| CN111260636B (zh) * | 2020-01-19 | 2023-07-25 | 郑州大学 | 模型训练方法及设备、图像处理方法及设备以及介质 |
| EP4042378A1 (en) * | 2020-01-24 | 2022-08-17 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating three dimensional geometric models of anatomical regions |
| CN112633082B (zh) * | 2020-12-04 | 2023-08-18 | 西安理工大学 | 一种多特征融合杂草检测方法 |
| JP7605711B2 (ja) * | 2021-07-29 | 2024-12-24 | 株式会社日立製作所 | 画像識別システム及び画像識別方法 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5426684A (en) * | 1993-11-15 | 1995-06-20 | Eastman Kodak Company | Technique for finding the histogram region of interest for improved tone scale reproduction of digital radiographic images |
| JP2873955B1 (ja) * | 1998-01-23 | 1999-03-24 | 東京工業大学長 | 画像処理方法および装置 |
| IL153189A0 (en) * | 2000-06-19 | 2003-06-24 | Correlogic Systems Inc | Heuristic method of classification |
| US7461048B2 (en) * | 2003-07-21 | 2008-12-02 | Aureon Laboratories, Inc. | Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition |
| EP2070045B1 (en) * | 2006-09-22 | 2018-06-27 | Koninklijke Philips N.V. | Advanced computer-aided diagnosis of lung nodules |
| US8787633B2 (en) * | 2007-01-16 | 2014-07-22 | Purdue Research Foundation | System and method of organism identification |
| US20080195322A1 (en) * | 2007-02-12 | 2008-08-14 | The Board Of Regents Of The University Of Texas System | Quantification of the Effects of Perturbations on Biological Samples |
| GB0705223D0 (en) * | 2007-03-19 | 2007-04-25 | Univ Sussex | Method, apparatus and computer program for analysing medical image data |
| US8774479B2 (en) * | 2008-02-19 | 2014-07-08 | The Trustees Of The University Of Pennsylvania | System and method for automated segmentation, characterization, and classification of possibly malignant lesions and stratification of malignant tumors |
| WO2011008262A2 (en) * | 2009-07-13 | 2011-01-20 | H. Lee Moffitt Cancer Center & Research Institute | Methods and apparatus for diagnosis and/or prognosis of cancer |
| CN102122356A (zh) * | 2011-03-16 | 2011-07-13 | 中国人民解放军第二军医大学 | 计算机辅助判别胰腺癌超声内镜图像的方法 |
| CN102509113B (zh) * | 2011-11-08 | 2013-04-24 | 浙江大学 | 一种脑瘤mib-1指数范围检测方法 |
-
2013
- 2013-10-25 CN CN201380060670.6A patent/CN104798105B/zh not_active Expired - Fee Related
- 2013-10-25 JP JP2015542383A patent/JP6321026B2/ja not_active Expired - Fee Related
- 2013-10-25 EP EP13820908.5A patent/EP2923336B1/en not_active Not-in-force
- 2013-10-25 BR BR112015011289A patent/BR112015011289A2/pt not_active Application Discontinuation
- 2013-10-25 RU RU2015124052A patent/RU2653108C2/ru active
- 2013-10-25 US US14/443,786 patent/US9552649B2/en not_active Expired - Fee Related
- 2013-10-25 WO PCT/IB2013/059663 patent/WO2014080305A2/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| RU2653108C2 (ru) | 2018-05-07 |
| RU2015124052A (ru) | 2017-01-10 |
| CN104798105A (zh) | 2015-07-22 |
| BR112015011289A2 (pt) | 2017-07-11 |
| WO2014080305A2 (en) | 2014-05-30 |
| CN104798105B (zh) | 2019-06-07 |
| WO2014080305A3 (en) | 2014-07-24 |
| EP2923336A2 (en) | 2015-09-30 |
| JP2016505289A (ja) | 2016-02-25 |
| EP2923336B1 (en) | 2017-12-13 |
| US9552649B2 (en) | 2017-01-24 |
| US20150310632A1 (en) | 2015-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6321026B2 (ja) | 画像テクスチャ特徴を用いる統合表現型解析 | |
| Rathore et al. | Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1 | |
| US10575774B2 (en) | Predicting immunotherapy response in non-small cell lung cancer with serial radiomics | |
| Hsieh et al. | Quantitative glioma grading using transformed gray-scale invariant textures of MRI | |
| US11011265B2 (en) | Predicting prostate cancer risk of progression with multiparametric magnetic resonance imaging using machine learning and peritumoral radiomics | |
| Eskildsen et al. | Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning | |
| Bi et al. | Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies | |
| Gut et al. | Benchmarking of deep architectures for segmentation of medical images | |
| US9483822B2 (en) | Co-occurrence of local anisotropic gradient orientations | |
| CN109191422B (zh) | 基于常规ct图像的缺血性脑卒中早期检测系统和方法 | |
| US10055842B2 (en) | Entropy-based radiogenomic descriptions on magnetic resonance imaging (MRI) for molecular characterization of breast cancer | |
| US20180325461A1 (en) | Systems and Methods for Producing Quantitatively Calibrated Grayscale Values in Magnetic Resonance Images | |
| US11464473B2 (en) | Distinguishing minimally invasive carcinoma and adenocarcinoma in situ from invasive adenocarcinoma with intratumoral and peri-tumoral textural features | |
| Florez et al. | Emergence of radiomics: novel methodology identifying imaging biomarkers of disease in diagnosis, response, and progression | |
| Theek et al. | Automation of data analysis in molecular cancer imaging and its potential impact on future clinical practice | |
| Mohammed et al. | RADIOHEAD | |
| Chen et al. | Breast density in MRI: an AI-based quantification and relationship to assessment in mammography | |
| WO2023200990A1 (en) | Automated methods for determining fibroglandular density on mammograms | |
| US20250037868A1 (en) | Methods and Systems for Medical Prediction Using Collagen Fiber Architecture of Lesions | |
| JP2025133054A (ja) | 放射線医学レポートを生成するためのシステムおよび方法 | |
| Jajamovich et al. | Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma | |
| US11120888B2 (en) | Systems and methods for predicting lung cancer immune therapy responsiveness using quantitative textural analysis | |
| Tzanoukos et al. | SPNsim: A database of simulated solitary pulmonary nodule PET/CT images facilitating computer aided diagnosis | |
| Liu | Machine Learning Models on Prognostic Outcome Prediction for Cancer Images with Multiple Modalities | |
| Napel | Principles and rationale of radiomics and radiogenomics |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161021 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170904 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170904 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170921 |
|
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170925 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171010 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180404 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6321026 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |