JP6318561B2 - Stretchable transfer film - Google Patents

Stretchable transfer film Download PDF

Info

Publication number
JP6318561B2
JP6318561B2 JP2013233761A JP2013233761A JP6318561B2 JP 6318561 B2 JP6318561 B2 JP 6318561B2 JP 2013233761 A JP2013233761 A JP 2013233761A JP 2013233761 A JP2013233761 A JP 2013233761A JP 6318561 B2 JP6318561 B2 JP 6318561B2
Authority
JP
Japan
Prior art keywords
layer
transfer
resin
film
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013233761A
Other languages
Japanese (ja)
Other versions
JP2015093420A (en
Inventor
友美 樋爪
友美 樋爪
渡邉 学
学 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013233761A priority Critical patent/JP6318561B2/en
Priority to PCT/JP2014/005570 priority patent/WO2015072112A1/en
Priority to TW103138978A priority patent/TW201536591A/en
Publication of JP2015093420A publication Critical patent/JP2015093420A/en
Application granted granted Critical
Publication of JP6318561B2 publication Critical patent/JP6318561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • B44C1/1729Hot stamping techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties

Description

本発明は、三次元立体形状を有する被転写基材表面に対して、機能性および意匠性を付与するための転写フィルムに関する。更に詳しくは、真空圧空成形を用いて、被転写基材表面に対して、機能性および意匠性を付与するために好適に用いられる転写フィルムに関する。 The present invention is, with respect to the transfer substrate surface having a three-dimensional shape, functionality and about the transfer fill arm for imparting design properties. More specifically, using vacuum pressure forming, with respect to the transfer substrate surface, directed to suitably transfer fill arm used to impart functionality and design.

従来から、塗装の代替として、基材フィルム上に保護層(ハードコート層)と接着層、あるいは保護層、加飾層及び接着層からなる転写層が形成されたハードコート転写フィルムを使用した、転写方式の加飾・機能付与技術が提案されている。例えば、射出成形と同時に転写層を樹脂成形品上に転写する方法や、熱ロールの熱圧で転写層を被転写体へ転写する方法、真空及び圧空、加熱機を利用して被転写体へ転写する方法など、様々な方法が存在する。
これらのうち、真空及び圧空、加熱機を用いる場合は、以下のようにして被転写体に対して転写が行なわれる。まず、被転写基材である立体成形品の表面上に、転写層を具備した熱成形性を有する転写フィルムを加熱軟化した状態で保持する。次に、被転写基材と加熱軟化した転写フィルムの間にある空気を真空吸引し、合わせて必要に応じて転写フィルムの背面側に圧縮空気を導入する。こうすることで、転写フィルムの両面における空気に圧力差を発生させて、転写フィルムを被転写基材表面の三次元立体形状に沿うように成形および密着させる。密着した転写フィルムから、転写層が被転写基材表面に対して均一に転写され、転写層から基材フィルムを剥離させることで転写が完了する。
Conventionally, as an alternative to coating, a hard coat transfer film in which a transfer layer comprising a protective layer (hard coat layer) and an adhesive layer, or a protective layer, a decorative layer and an adhesive layer is used on a base film, Transfer-type decoration and function-providing technologies have been proposed. For example, a method of transferring a transfer layer onto a resin molded product at the same time as injection molding, a method of transferring a transfer layer to a transfer target with the heat pressure of a hot roll, a vacuum and pressure air, and a heater to the transfer target. There are various methods such as a transfer method.
Among these, when using vacuum, compressed air, and a heater, transfer is performed on the transfer target as follows. First, on the surface of a three-dimensional molded product that is a substrate to be transferred, a transfer film having a transfer layer and having thermoformability is held in a heat-softened state. Next, the air between the substrate to be transferred and the heat-softened transfer film is sucked in vacuum, and compressed air is introduced to the back side of the transfer film as necessary. By doing so, a pressure difference is generated in the air on both surfaces of the transfer film, and the transfer film is molded and closely adhered along the three-dimensional solid shape of the surface of the transfer substrate. From the adhered transfer film, the transfer layer is uniformly transferred to the surface of the substrate to be transferred, and the transfer is completed by peeling the substrate film from the transfer layer.

真空圧空成形を用いた転写方法は、被転写基材の材質を限定せず、また比較的複雑な形状の被転写基材に対しても対応できることから、金属筐体や家電製品、車用部材等の加飾に多く用いられている。   The transfer method using vacuum / pressure forming is not limited to the material of the substrate to be transferred, and can also be applied to the substrate having a relatively complicated shape. It is often used for decoration.

このような真空圧空成形による転写方法に使用する転写フィルムにおいては、その基材フィルムとして、被転写基材の形状に追従するための延伸性が必要となる。また、基材フィルムに用いる樹脂が熱可塑性樹脂であり、その軟化温度が、成形時の加熱温度範囲内にあることが求められる。そのため、基材フィルムには、ポリ塩化ビニル樹脂(例えば特許文献1参照)、非結晶性ポリエチレンテレフタラート樹脂(例えば特許文献2参照)、非晶質ポリエチレンテレフタラート樹脂(例えば特許文献3参照)等からなるフィルムが広く用いられている。   In the transfer film used in such a transfer method by vacuum / pressure forming, the base film needs to have stretchability to follow the shape of the base material to be transferred. In addition, the resin used for the base film is a thermoplastic resin, and the softening temperature is required to be within the heating temperature range during molding. Therefore, for the base film, polyvinyl chloride resin (for example, see Patent Document 1), amorphous polyethylene terephthalate resin (for example, see Patent Document 2), amorphous polyethylene terephthalate resin (for example, see Patent Document 3), etc. The film which consists of is widely used.

特許第3175057号公報Japanese Patent No. 3175057 特許第4402227号公報Japanese Patent No. 4402227 特開2000−296591号公報JP 2000-296591 A

しかしながら、前記熱可塑性樹脂は熱成形性に優れる一方で、熱で変形しやすく、フィルムへの印刷・塗工時の乾燥温度が制限されるという問題がある。また、基材フィルムの材質によっては耐溶剤性に劣るものもあり、使用可能な樹脂材料が制限されるという欠点もある。   However, while the thermoplastic resin is excellent in thermoformability, it is easily deformed by heat, and there is a problem that the drying temperature during printing / coating on the film is limited. In addition, depending on the material of the base film, there are some which are inferior in solvent resistance, and there is a disadvantage that usable resin materials are limited.

本発明は、このような事情を鑑みてなされたものであり、その目的は、熱可塑性樹脂の熱成形性を損なうことなく、印刷・塗工時の加熱乾燥による変形を防ぎ、かつ、耐溶剤性を付与した延伸性転写フィルムを提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to prevent deformation due to heating and drying during printing and coating without impairing the thermoformability of the thermoplastic resin, and to resist solvent. and to provide a stretched transcription fill beam imparted with sex.

上記の課題を解決するために、本発明の転写フィルムは、基材フィルムの両方の面に形状安定層が設けられ、一方の形状安定層については少なくとも転写層が積層されていることを基本構成とする。   In order to solve the above problems, the basic structure of the transfer film of the present invention is that a shape stabilizing layer is provided on both sides of the base film, and at least the transfer layer is laminated on one shape stabilizing layer. And

すなわち、本発明の請求項1に係る発明は、基材フィルムと、転写層とを含んでなる転写フィルムにおいて、前記基材フィルムの両面に形状安定層が設けられ、かつ、前記形状安定層のうち一方の面上には、少なくとも表面保護層と接着層がこの順に積層されてなる転写層が設けられており、前記形状安定層は、少なくともアクリルポリオールをイソシアネート化合物で架橋したアクリルウレタン樹脂を含有する樹脂、または、活性エネルギー線硬化型アクリル樹脂組成物を架橋硬化してなる樹脂のいずれかを含み、前記形状安定層の厚さをa、前記基材フィルムの厚さをρとしたときに、前記基材フィルムの厚さρは25μm以上250μm以下の範囲内であり、且つ、0.004ρ≦a≦0.2ρの関係を満足することを特徴とする転写フィルムである
た、本発明の請求項に係る発明は、前記形状安定層の破断伸度が、熱成形温度において80%以上400%未満であることを特徴とする、請求項1に記載の転写フィルムである。
また、本発明の請求項に係る発明は、前記形状安定層の軟化温度Tが80℃<T<150℃であることを特徴とする、請求項1または2に記載の転写フィルムである。
また、本発明の請求項に係る発明は、前記基材フィルムが、ポリ塩化ビニル樹脂を主成分とする樹脂からなることを特徴とする、請求項1乃至に記載の転写フィルムである
That is, the invention according to claim 1 of the present invention is a transfer film comprising a base film and a transfer layer, wherein a shape stable layer is provided on both sides of the base film, and the shape stable layer is On one of the surfaces, a transfer layer in which at least a surface protective layer and an adhesive layer are laminated in this order is provided , and the shape stabilizing layer contains at least an acrylic urethane resin obtained by crosslinking an acrylic polyol with an isocyanate compound. Or a resin obtained by crosslinking and curing an active energy ray-curable acrylic resin composition, when the thickness of the shape stabilizing layer is a and the thickness of the base film is ρ , the thickness ρ of the base film is in the range of 25μm or 250μm or less, and, transfer Fi characterized that you satisfy the relation 0.004ρ ≦ a ≦ 0.2ρ It is a non.
Also, the invention according to claim 2 of the present invention, the elongation at break of the form-stable layer, characterized in that at thermoforming temperatures less than 80% to 400% transfer film according to claim 1 It is.
The invention according to claim 3 of the present invention is the transfer film according to claim 1 or 2 , wherein the softening temperature T of the shape stabilizing layer is 80 ° C <T <150 ° C.
The invention according to claim 4 of the present invention is the transfer film according to any one of claims 1 to 3 , wherein the base film is made of a resin mainly composed of a polyvinyl chloride resin .

本発明によれば、熱変形耐性と耐溶剤性を有し、熱成形性に優れる延伸性転写フィルムを提供することが可能となる。 According to the present invention, it has a thermal deformation resistance and solvent resistance, it is possible to provide stretchability transfer fill beam excellent in thermoformability.

本発明における転写フィルムの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transfer film in this invention. 本発明における転写フィルムの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the transfer film in this invention.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
本発明に係る転写フィルム6は、図1に示すように、基材フィルム1の両面に形状安定層2が積層され、前記形状安定層の一方の面上には、少なくとも表面保護層4と接着層5がこの順に積層されてなる転写層3が設けられていることを基本構成とする。
また、図面では明記していないが、表面保護層4と接着層5の間に加飾層があっても良い。加飾層は、任意の絵柄や色、外観上の効果を成形品に付与するための層であり、このような構成とすることで成形品の意匠性を飛躍的に向上させることが出来る。
なお、加飾層としては、印刷絵柄層、スパッタや蒸着などの金属光沢層、あるいは金属調印刷層などが利用でき、求められる意匠に応じて設けることが可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the transfer film 6 according to the present invention has the shape stabilizing layer 2 laminated on both surfaces of the base film 1, and at least the surface protective layer 4 is bonded on one surface of the shape stabilizing layer. The basic configuration is that a transfer layer 3 in which the layers 5 are laminated in this order is provided.
Although not clearly shown in the drawings, a decorative layer may be provided between the surface protective layer 4 and the adhesive layer 5. The decorative layer is a layer for imparting an arbitrary pattern, color, and appearance effect to the molded product. With such a configuration, the design of the molded product can be dramatically improved.
As the decorative layer, a printed pattern layer, a metallic gloss layer such as sputtering or vapor deposition, or a metallic print layer can be used, and can be provided according to a required design.

形状安定層2は、基材フィルム1に熱変形耐性と耐溶剤性を付与するための層である。一般に、真空圧空成形用途に用いられる基材フィルムは、熱成形性には優れるが、一方で印刷・塗工時の乾燥の際に加熱されることにより変形しやすい。そのため、乾燥温度を基材フィルムの熱変形温度以上に設定することができない。その結果、得られる転写フィルムに残留する溶剤が多くなりやすいという欠点があった。転写フィルムに残留した溶剤は、真空圧空成形時の加熱で気化して膨れや白化などの外観不良を発生させることがある。一方、基材フィルムが熱変形しないような低温での乾燥により残留溶剤を低減させるためには、乾燥時間を長くする必要があり、工程時間が長くなるなどコスト高につながってしまう。
また、基材フィルムには、用いられる材質によっては耐溶剤性に劣るものもあり、印刷・塗工時に使用できる溶剤の種類が限られてしまう欠点があった。
しかし、基材フィルム1の両面に、熱変形耐性・耐溶剤性に優れた形状安定層2を設けることによって上記のような工程上の不都合を解消することが可能となる。
The shape stable layer 2 is a layer for imparting heat deformation resistance and solvent resistance to the base film 1. In general, a base film used for vacuum / pressure forming is excellent in thermoformability, but on the other hand, it is easily deformed by being heated during drying during printing / coating. Therefore, the drying temperature cannot be set higher than the heat deformation temperature of the base film. As a result, there is a drawback that the amount of solvent remaining in the obtained transfer film tends to increase. The solvent remaining on the transfer film may be vaporized by heating during vacuum / pressure forming to cause appearance defects such as swelling and whitening. On the other hand, in order to reduce the residual solvent by drying at a low temperature so that the base film is not thermally deformed, it is necessary to lengthen the drying time, leading to high costs such as a long process time.
In addition, some base films have poor solvent resistance depending on the materials used, and there is a drawback that the types of solvents that can be used during printing and coating are limited.
However, by providing the shape stabilizing layer 2 excellent in heat deformation resistance and solvent resistance on both surfaces of the base film 1, the above-described inconveniences in the process can be solved.

前記形状安定層2は、基材フィルム1の両面に設けられることが必要である。基材フィルム1の一方の面上のみに形状安定層2が形成される場合、基材フィルム1の面のうち形状安定層2が形成されていない側の面のみ耐熱性が低く、熱変形が大きくなるため、基材フィルム1全体に反りや変形が起こりやすくなる。   The shape stabilizing layer 2 needs to be provided on both surfaces of the base film 1. When the shape stable layer 2 is formed only on one surface of the base film 1, only the surface of the surface of the base film 1 on which the shape stable layer 2 is not formed has low heat resistance and heat deformation is not caused. Since it becomes large, curvature and a deformation | transformation will occur easily in the base film 1 whole.

前記形状安定層2の厚みaは、基材フィルム1の厚みをρとしたときに0.004ρ≦a≦0.2ρの関係を満足することが望ましい。形状安定層2の厚みが前述の量より厚すぎると、形状安定層2の塗工形成時に、形状安定層2自体の熱収縮や硬化収縮の影響が大きくなり、基材フィルム1が変形しやすくなる。一方、形状安定層2の厚みが前述の量より薄すぎると、熱変形耐性および耐溶剤性の付与が不十分となる。   The thickness a of the shape stabilizing layer 2 desirably satisfies the relationship of 0.004ρ ≦ a ≦ 0.2ρ when the thickness of the base film 1 is ρ. If the thickness of the shape stabilizing layer 2 is too thick than the above-described amount, the influence of the heat shrinkage or curing shrinkage of the shape stabilizing layer 2 itself increases during the formation of the shape stabilizing layer 2 and the base film 1 is likely to be deformed. Become. On the other hand, if the thickness of the shape stabilizing layer 2 is too thin than the above-mentioned amount, the imparting of heat deformation resistance and solvent resistance becomes insufficient.

前記形状安定層2の熱成形温度における破断伸度は、80%以上400%未満であるものが好適である。破断伸度が前述の値よりも小さいと熱成形時に被転写体への形状追従性が乏しくなり、転写可能な被転写体の形状が大きく制限される。一方、破断伸度が前述の値よりも大きすぎると、印刷・塗工時の加熱乾燥により変形しやすくなり、形状安定層としての機能を果たさない。   The elongation at break at the thermoforming temperature of the shape stable layer 2 is preferably 80% or more and less than 400%. When the elongation at break is smaller than the above-mentioned value, the shape followability to the transferred material becomes poor during thermoforming, and the shape of the transferred material that can be transferred is greatly limited. On the other hand, if the elongation at break is too larger than the above-mentioned value, it tends to be deformed by heating and drying during printing and coating, and does not function as a shape-stable layer.

前記形状安定層2の軟化温度Tは、80℃<T<150℃であることが好ましい。軟化温度が低すぎると印刷・塗工時の加熱乾燥により変形しやすくなり、形状安定層としての機能を果たさない。一方、軟化温度が高すぎると真空圧空成形時の加熱温度を通常よりも高く設定する必要があり、熱エネルギー効率や工程時間の点で不利である。   The softening temperature T of the shape stabilizing layer 2 is preferably 80 ° C. <T <150 ° C. If the softening temperature is too low, it will be easily deformed by heating and drying during printing and coating, and will not function as a shape stabilizing layer. On the other hand, if the softening temperature is too high, it is necessary to set the heating temperature during vacuum / pressure forming higher than usual, which is disadvantageous in terms of thermal energy efficiency and process time.

また、本発明に係る転写フィルム6は、図2に示すように、形状安定層2と表面保護層4との間に離型層7を設けても良い。しかし、工程数及び材料の削減とコストの低減という観点からすると、形状安定層2に離型層の機能を持たせることがより望ましい。   The transfer film 6 according to the present invention may be provided with a release layer 7 between the shape stabilizing layer 2 and the surface protective layer 4 as shown in FIG. However, from the viewpoint of reducing the number of processes and materials, and reducing the cost, it is more desirable to give the shape stabilizing layer 2 the function of a release layer.

次に、本発明に係る転写フィルムを構成する各材料、及び転写フィルムの製造方法について説明する。   Next, each material which comprises the transfer film which concerns on this invention, and the manufacturing method of a transfer film are demonstrated.

(基材フィルム)
基材フィルム1の材料としては、軟化温度Tが80℃<T<150℃であるものが好適に用いられ、一般に真空成形及び/または圧空成形に用いられる樹脂を使用することができる。例えば、ポリ塩化ビニル樹脂、非結晶性ポリエチレンテレフタラート樹脂、非晶質ポリエチレンテレフタラート樹脂、ポリプロレン樹脂、アクリル系樹脂などが挙げられるが、中でもポリ塩化ビニル樹脂は成形可能な温度範囲が広く、また安価であることから、より好ましい。
基材フィルム1の厚みとしては25μm以上250μm以下程度のものが好ましく、38μm以上150μm以下程度のものがより好適に用いられる。基材フィルム1の厚みが前述の範囲より薄すぎると真空圧空成形時に破断しやすくなり、一方、基材フィルム1の厚みが前述の範囲より厚すぎると成形性が劣ることに加え、材料費が高価となるため好ましくない。
(Base film)
As the material for the base film 1, one having a softening temperature T of 80 ° C. <T <150 ° C. is preferably used, and a resin generally used for vacuum forming and / or pressure forming can be used. For example, polyvinyl chloride resin, non-crystalline polyethylene terephthalate resin, amorphous polyethylene terephthalate resin, polyprolene resin, acrylic resin, etc. are mentioned. It is more preferable because it is inexpensive.
The thickness of the base film 1 is preferably about 25 μm or more and 250 μm or less, and more preferably about 38 μm or more and 150 μm or less. If the thickness of the base film 1 is less than the above range, it is easy to break during vacuum / pressure forming. On the other hand, if the thickness of the base film 1 is too thick than the above range, the moldability is inferior and the material cost is low. Since it becomes expensive, it is not preferable.

(形状安定層)
形状安定層2は、少なくとも耐熱性、耐溶剤性、上塗り性、延伸性が必要であり、かつ、基材フィルム1が熱変形しない塗工条件で形成する必要がある。これらの要求を満たす形成方法として、以下の2つの方法を用いることができる。
まず第1の方法としては、少なくともアクリルポリオールをイソシアネート化合物で架橋したアクリルウレタン樹脂を含有する樹脂で形状安定層2を形成する方法が挙げられる。この場合、アクリルポリオールとイソシアネート化合物の架橋反応が、室温〜50℃程度の低い温度領域でエージングすることにより進むため、高温下にさらす必要がない。従って、高温下での硬化反応の進行で想定される基材フィルムのシワ発生や熱収縮、結晶化などの不具合を抑えることができる。
また、第2の方法としては、活性エネルギー線硬化型樹脂を基材フィルムに塗布し、紫外線等を照射して架橋硬化させることで形状安定層2を形成する方法が挙げられる。ここで、活性エネルギー線硬化型樹脂組成物として、特に無溶剤型のものを用いれば、耐熱性だけでなく耐溶剤性に劣る基材フィルムに対しても形状安定層2を容易に形成することが可能となる。
(Shape stable layer)
The shape stable layer 2 needs to have at least heat resistance, solvent resistance, top coatability and stretchability, and needs to be formed under coating conditions in which the base film 1 is not thermally deformed. The following two methods can be used as a forming method that satisfies these requirements.
First, as a first method, there is a method in which the shape stabilizing layer 2 is formed of a resin containing at least an acrylic urethane resin obtained by crosslinking an acrylic polyol with an isocyanate compound. In this case, the crosslinking reaction between the acrylic polyol and the isocyanate compound proceeds by aging in a low temperature range of about room temperature to about 50 ° C., and thus it is not necessary to expose to a high temperature. Accordingly, it is possible to suppress problems such as wrinkle generation, heat shrinkage, and crystallization of the base film assumed in the progress of the curing reaction at a high temperature.
Moreover, as a 2nd method, the active energy ray hardening-type resin is apply | coated to a base film, The method of forming the shape stable layer 2 by irradiating an ultraviolet-ray etc. and carrying out cross-linking hardening is mentioned. Here, as the active energy ray-curable resin composition, in particular, when a solvent-free type is used, the shape stable layer 2 can be easily formed not only on heat resistance but also on a substrate film having poor solvent resistance. Is possible.

(表面保護層)
表面保護層4は、転写に用いる前の転写フィルムにおいてはタックフリー状態(溶剤分を蒸発させただけでべとつきがなくなる状態)であり、被転写体に転写した後には、活性エネルギー線を照射することで架橋できる樹脂からなることが好ましい。転写後に活性エネルギー線を照射して架橋させる理由としては、予め架橋した状態の表面保護層4を備える転写フィルムを用いて真空圧空成形してしまうと、転写フィルムが被転写体の表面に追従しようと延伸する際に表面保護層4にクラックが生じやすく、外観不良の原因となってしまうためである。表面保護層4を構成する樹脂としては、耐候性、耐摩耗性、耐傷性、耐薬品性等の要求される諸物性に対して満足できるものであれば特に規定されるものではなく、ウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂等から適宜選択できる。転写に用いる前の転写フィルムにおいて、表面保護層4がタックフリー状態となるための方法としては、主に以下の3つの方法がある。第1の方法は、表面保護層4を構成する樹脂として、高分子型のアクリレートやメタクリレートを使用する方法である。第2の方法は、表面保護層4を構成する樹脂として、活性エネルギー線硬化型樹脂の他に、イソシアネート/ポリオール樹脂やエポキシ樹脂/アミン類などの架橋反応物を含有させて、適度に硬化させることでタックフリーとする方法である。第3の方法は、表面保護層4を構成する樹脂として、活性エネルギー線硬化型樹脂を用い、被転写体への形状追従性を損なわない範囲内で、活性エネルギー線を適量照射して活性エネルギー線硬化型樹脂を半硬化状態とする方法である。
上記いずれかの方法を用いて得られた表面保護層4は、熱可塑性を保持しているため、被転写体の表面形状に追従させつつ転写することができる。そして、転写後に活性エネルギー線を照射することにより、前記表面保護層4を完全に架橋、硬化せしめる。これにより、前記表面保護層4は十分な硬度(ハードコート性)と成形性を両立させることができる。
表面保護層4の厚さは、3〜20μm程度が好適である。
(Surface protective layer)
The surface protective layer 4 is in a tack-free state (a state in which the stickiness is eliminated simply by evaporating the solvent component) in the transfer film before being used for transfer, and after being transferred to the transfer target, it is irradiated with active energy rays. It is preferable that it consists of resin which can be bridge | crosslinked by this. The reason for crosslinking by irradiating active energy rays after transfer is that if the transfer film provided with the surface protection layer 4 in a pre-crosslinked state is vacuum-compressed, the transfer film will follow the surface of the transfer object. This is because the surface protective layer 4 is liable to crack when it is stretched, causing a poor appearance. The resin constituting the surface protective layer 4 is not particularly specified as long as it satisfies the required physical properties such as weather resistance, abrasion resistance, scratch resistance, chemical resistance, and the like. It can be suitably selected from resins, acrylic resins, polyester resins and the like. There are mainly the following three methods for bringing the surface protective layer 4 into a tack-free state in the transfer film before being used for transfer. The first method is a method of using a polymer acrylate or methacrylate as the resin constituting the surface protective layer 4. In the second method, as the resin constituting the surface protective layer 4, in addition to the active energy ray-curable resin, a crosslinking reaction product such as isocyanate / polyol resin or epoxy resin / amines is contained and cured appropriately. This is a method of tack-free. The third method uses an active energy ray-curable resin as a resin constituting the surface protective layer 4 and irradiates an appropriate amount of active energy rays within a range that does not impair the shape followability to the transfer target. This is a method of making a linear curable resin into a semi-cured state.
Since the surface protective layer 4 obtained by using any of the above methods retains thermoplasticity, it can be transferred while following the surface shape of the transfer target. Then, the surface protective layer 4 is completely cross-linked and cured by irradiating active energy rays after the transfer. Thereby, the said surface protective layer 4 can make sufficient hardness (hard-coat property) and moldability compatible.
The thickness of the surface protective layer 4 is preferably about 3 to 20 μm.

(接着層)
接着層6の材料としては、接着性及び/又は粘着性を持てばよく、いわゆる接着剤、粘着剤、ホットメルトと呼ばれるものも含み、特に限定されるものではない。
例えば、アクリル系、エポキシ系、酢酸ビニル系、塩化ビニル系、イソシアネート系、シリコーン系、スチレン−ブタジエン系、塩化ビニル−酢酸ビニル系、エチレン−酢酸ビニル系、ポリエステル系、塩化ゴム系、塩素化ポリプロピレン系、ポリウレタン系などの樹脂を単独で使用、またはこれらの混合物を主成分とするエマルジョン系樹脂や有機溶剤型樹脂、水溶性樹脂などが挙げられる。
接着層6の厚さは、特に制限は無いが、通常0.5μm〜10μm程度である。
(Adhesive layer)
The material of the adhesive layer 6 is not particularly limited as long as it has adhesiveness and / or tackiness, and includes what are called adhesives, adhesives, and hot melts.
For example, acrylic, epoxy, vinyl acetate, vinyl chloride, isocyanate, silicone, styrene-butadiene, vinyl chloride-vinyl acetate, ethylene-vinyl acetate, polyester, rubber chloride, chlorinated polypropylene Examples thereof include emulsion resins, organic solvent-type resins, water-soluble resins, etc., each of which uses a single resin such as a polyurethane resin or a polyurethane resin alone, or a mixture thereof.
Although there is no restriction | limiting in particular in the thickness of the contact bonding layer 6, Usually, it is about 0.5 micrometer-10 micrometers.

以下、実施例に基づいて本発明について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited only to a following example.

<実施例1>
基材フィルム1として、厚さ50μmのポリ塩化ビニル樹脂フィルムを用いた。前記基材フィルム1の両面に、アクリルポリオール100質量部に対してイソシアネート化合物を10質量部、水酸基を含有するアクリルシリコーン樹脂を1質量部、それぞれ添加した樹脂塗工液を、乾燥後の厚さが0.2μmとなるようにマイクログラビア法で塗布し、形状安定層2を形成した。
次に、前記形状安定層2の一方の面上に、転写層3として以下の層を順次積層した。まず、リバースグラビアコート法で、タックフリー性紫外線硬化型樹脂を、乾燥後の厚さが10.0μmになるように塗布し、表面保護層4を形成した。
次に、前記表面保護層4の表面に、アクリル樹脂系接着層5を、乾燥後の厚さが2.0μmになるようにグラビア印刷により積層し、本発明に係る転写フィルム6を得た。
前記転写フィルム6を用いて、上部に高低差5mm、開口部50mm角の凹部のあるポリカーボネートABSアロイ樹脂成形品の表面に対して、転写フィルム6の表面温度が100℃になるように加熱した状態で真空圧空成形して密着させ、冷却後に転写フィルム6の基材フィルム1及び形状安定層2を剥離除去したところ、転写部に欠けや割れの無い転写成形品を得ることができた。
<Example 1>
A polyvinyl chloride resin film having a thickness of 50 μm was used as the base film 1. The thickness of the resin coating solution obtained by adding 10 parts by weight of an isocyanate compound and 1 part by weight of an acrylic silicone resin containing a hydroxyl group to 100 parts by weight of an acrylic polyol on both sides of the base film 1 after drying. Was applied by a micro gravure method so as to be 0.2 μm to form the shape stable layer 2.
Next, the following layers were sequentially laminated as the transfer layer 3 on one surface of the shape stabilizing layer 2. First, a surface-protecting layer 4 was formed by applying a tack-free UV curable resin by a reverse gravure coating method so that the thickness after drying was 10.0 μm.
Next, the acrylic resin adhesive layer 5 was laminated on the surface of the surface protective layer 4 by gravure printing so that the thickness after drying was 2.0 μm, thereby obtaining a transfer film 6 according to the present invention.
The transfer film 6 is heated so that the surface temperature of the transfer film 6 is 100 ° C. with respect to the surface of a polycarbonate ABS alloy molded article having a concave portion with a height difference of 5 mm and an opening of 50 mm square on the top. Then, the substrate film 1 and the shape stabilizing layer 2 of the transfer film 6 were peeled and removed after cooling, and a transfer molded product free from chipping or cracking in the transfer portion could be obtained.

<実施例2>
基材フィルム1として、厚さ100μmの非結晶性ポリエチレンテレフタラート樹脂フィルムを用いた。前記基材フィルム1の両面に、紫外線硬化型アクリル樹脂100質量部に対して光重合開始剤を5質量部添加した樹脂塗工液を、硬化後の厚さが20μmとなるようにマイクログラビア法で塗布した。その後、高圧水銀灯80W/cmを用いて、積算光量が400mJ/cmになるように紫外線を照射して架橋硬化させ、形状安定層2を形成した。
次に、前記形状安定層2の一方の面上に、転写層3として以下の層を順次積層した。まず、リバースグラビアコート法で、タックフリー性紫外線硬化型樹脂を、乾燥後の厚さが10.0μmになるように塗布し、表面保護層4を形成した。
次に、前記表面保護層4の表面に、グラビア印刷により、印刷インキによる絵柄層を形成し、さらにアクリル樹脂系接着層5を、乾燥後の厚さが2.0μmになるように積層し、本発明に係る転写フィルム6を得た。
前記転写フィルム6を用いて、実施例1と同一の条件にて転写を行ったところ、絵柄層を含めた転写部に欠けや割れの無い転写成形品を得ることができた。
<Example 2>
As the base film 1, an amorphous polyethylene terephthalate resin film having a thickness of 100 μm was used. A microgravure method in which a resin coating solution in which 5 parts by mass of a photopolymerization initiator is added to 100 parts by mass of an ultraviolet curable acrylic resin on both surfaces of the base film 1 is 20 μm after curing. It was applied with. Thereafter, using a high-pressure mercury lamp 80 W / cm, the shape stabilizing layer 2 was formed by irradiating with ultraviolet rays so that the accumulated light amount was 400 mJ / cm 2 to be crosslinked and cured.
Next, the following layers were sequentially laminated as the transfer layer 3 on one surface of the shape stabilizing layer 2. First, a surface-protecting layer 4 was formed by applying a tack-free UV curable resin by a reverse gravure coating method so that the thickness after drying was 10.0 μm.
Next, on the surface of the surface protective layer 4, by gravure printing, a pattern layer by printing ink is formed, and further, an acrylic resin adhesive layer 5 is laminated so that the thickness after drying becomes 2.0 μm, A transfer film 6 according to the present invention was obtained.
When the transfer film 6 was used for transfer under the same conditions as in Example 1, it was possible to obtain a transfer molded product having no chipping or cracking in the transfer portion including the pattern layer.

<比較例1>
基材フィルム1として、厚さ50μmのポリ塩化ビニル樹脂フィルムを用いた。前記基材フィルム1の一方の面に、表面保護層4として、リバースグラビアコート法で、タックフリー性紫外線硬化型樹脂を、乾燥後の厚さが10.0μmになるように塗布したところ、塗布時の希釈溶剤である酢酸ノルマルブチルによって基材フィルムの表面が侵されて、基材フィルム表面の平滑性が下がり、転写フィルム6を得ることができなかった。
<Comparative Example 1>
A polyvinyl chloride resin film having a thickness of 50 μm was used as the base film 1. When one surface of the base film 1 was coated with a tack-free UV curable resin as a surface protective layer 4 by a reverse gravure coating method so that the thickness after drying was 10.0 μm, The surface of the base film was eroded by normal butyl acetate, which was a diluting solvent at the time, and the smoothness of the base film surface was lowered, and the transfer film 6 could not be obtained.

<比較例2>
基材フィルム1として、厚さ50μmのポリ塩化ビニル樹脂フィルムを用いた。前記基材フィルム1の両面に、アクリルポリオール100質量部に対してイソシアネート化合物を10質量部、水酸基を含有するアクリルシリコーン樹脂を1質量部、それぞれ添加した樹脂塗工液を、乾燥後の厚さが0.1μmとなるようにマイクログラビア法で塗布し、形状安定層2を形成した。
次に、前記形状安定層2の一方の面上に、表面保護層4として、リバースグラビアコート法で、タックフリー性紫外線硬化型樹脂を、乾燥後の厚さが10.0μmになるように塗布したところ、塗布液を乾燥させる際にかける熱の影響により基材フィルム1に大きくシワが発生してしまい、転写フィルム6を得ることができなかった。
<Comparative example 2>
A polyvinyl chloride resin film having a thickness of 50 μm was used as the base film 1. The thickness of the resin coating solution obtained by adding 10 parts by weight of an isocyanate compound and 1 part by weight of an acrylic silicone resin containing a hydroxyl group to 100 parts by weight of an acrylic polyol on both sides of the base film 1 after drying. Was applied by a microgravure method so that the thickness became 0.1 μm, and the shape stable layer 2 was formed.
Next, a tack-free UV curable resin is applied as a surface protective layer 4 on one surface of the shape stabilizing layer 2 by a reverse gravure coating method so that the thickness after drying becomes 10.0 μm. As a result, the substrate film 1 was greatly wrinkled due to the influence of heat applied to dry the coating solution, and the transfer film 6 could not be obtained.

<比較例3>
基材フィルム1として、厚さ100μmの非結晶性ポリエチレンテレフタラート樹脂フィルムを用いた。前記基材フィルム1の両面に、紫外線硬化型アクリル樹脂100質量部に対して光重合開始剤を5質量部添加した樹脂塗工液を、硬化後の厚さが30μmとなるようにマイクログラビア法で塗布した。その後、高圧水銀灯80W/cmを用いて、積算光量が400mJ/cmになるように紫外線を照射して架橋硬化させ、形状安定層2を形成したところ、前記形状安定層2の硬化収縮により基材フィルム1全体に大きくうねり状の変形が発生してしまい、転写フィルム6を得ることができなかった。
<Comparative Example 3>
As the base film 1, an amorphous polyethylene terephthalate resin film having a thickness of 100 μm was used. A microgravure method in which a resin coating liquid in which 5 parts by mass of a photopolymerization initiator is added to 100 parts by mass of an ultraviolet curable acrylic resin on both surfaces of the base film 1 is 30 μm in thickness after curing. It was applied with. Then, using a high pressure mercury lamp 80W / cm, integrated light quantity is crosslinked and cured by irradiation with ultraviolet rays to be 400 mJ / cm 2, it was formed a shape-stable layer 2, the shape stability layer 2 of curing shrinkage by group Large waviness-like deformation occurred in the entire material film 1, and the transfer film 6 could not be obtained.

1…基材フィルム
2…形状安定層
3…転写層
4…表面保護層
5…接着層
6…転写フィルム
7…離型層
DESCRIPTION OF SYMBOLS 1 ... Base film 2 ... Shape stabilization layer 3 ... Transfer layer 4 ... Surface protective layer 5 ... Adhesive layer 6 ... Transfer film 7 ... Release layer

Claims (4)

基材フィルムと、転写層とを含んでなる転写フィルムにおいて、前記基材フィルムの両面に形状安定層が設けられ、かつ、前記形状安定層のうち一方の面上には、少なくとも表面保護層と接着層がこの順に積層されてなる転写層が設けられており、
前記形状安定層は、少なくともアクリルポリオールをイソシアネート化合物で架橋したアクリルウレタン樹脂を含有する樹脂、または、活性エネルギー線硬化型アクリル樹脂組成物を架橋硬化してなる樹脂のいずれかを含み、
前記形状安定層の厚さをa、前記基材フィルムの厚さをρとしたときに、前記基材フィルムの厚さρは25μm以上250μm以下の範囲内であり、且つ、0.004ρ≦a≦0.2ρの関係を満足することを特徴とする転写フィルム。
In a transfer film comprising a base film and a transfer layer, a shape stabilizing layer is provided on both surfaces of the base film, and at least a surface protective layer is provided on one surface of the shape stabilizing layer. A transfer layer in which adhesive layers are laminated in this order is provided ,
The shape stabilizing layer includes at least one of a resin containing an acrylic urethane resin obtained by crosslinking an acrylic polyol with an isocyanate compound, or a resin obtained by crosslinking and curing an active energy ray-curable acrylic resin composition,
When the thickness of the shape stabilizing layer is a and the thickness of the base film is ρ, the thickness ρ of the base film is in the range of 25 μm or more and 250 μm or less, and 0.004ρ ≦ a transfer film characterized that you satisfy the relationship ≦ 0.2ρ.
前記形状安定層の破断伸度が、熱成形温度において80%以上400%未満であることを特徴とする、請求項1に記載の転写フィルム。 The transfer film according to claim 1, wherein the elongation at break of the shape-stable layer is 80% or more and less than 400% at a thermoforming temperature. 前記形状安定層の軟化温度Tが80℃<T<150℃であることを特徴とする、請求項1または2に記載の転写フィルム。 Wherein the softening temperature T of the form-stable layer is 80 ℃ <T <150 ℃, transfer film according to claim 1 or 2. 前記基材フィルムが、ポリ塩化ビニル樹脂を主成分とする樹脂からなることを特徴とする、請求項1乃至に記載の転写フィルム。 It said substrate film, characterized by comprising a resin as a main component a polyvinyl chloride resin, a transfer film according to claims 1 to 3.
JP2013233761A 2013-11-12 2013-11-12 Stretchable transfer film Active JP6318561B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013233761A JP6318561B2 (en) 2013-11-12 2013-11-12 Stretchable transfer film
PCT/JP2014/005570 WO2015072112A1 (en) 2013-11-12 2014-11-05 Transfer film and transfer molded article produced using same
TW103138978A TW201536591A (en) 2013-11-12 2014-11-11 Transfer film and transfer molded article produced using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233761A JP6318561B2 (en) 2013-11-12 2013-11-12 Stretchable transfer film

Publications (2)

Publication Number Publication Date
JP2015093420A JP2015093420A (en) 2015-05-18
JP6318561B2 true JP6318561B2 (en) 2018-05-09

Family

ID=53057065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233761A Active JP6318561B2 (en) 2013-11-12 2013-11-12 Stretchable transfer film

Country Status (3)

Country Link
JP (1) JP6318561B2 (en)
TW (1) TW201536591A (en)
WO (1) WO2015072112A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742760B2 (en) * 1990-04-20 1995-05-10 株式会社巴コーポレーション How to construct a prestressed truss beam
JP3175057B2 (en) * 1991-10-09 2001-06-11 大日本印刷株式会社 Transfer sheet for vacuum forming, transfer method and painting molded product
JPH09295497A (en) * 1996-04-30 1997-11-18 Toppan Printing Co Ltd Transfer sheet and transfer method using that
JP3959825B2 (en) * 1998-02-24 2007-08-15 凸版印刷株式会社 Decorative sheet
JP4402227B2 (en) * 1999-12-17 2010-01-20 大日本印刷株式会社 Transfer sheet
JP2012192614A (en) * 2011-03-16 2012-10-11 Dainippon Printing Co Ltd In-molding transfer foil
JP5990983B2 (en) * 2011-04-07 2016-09-14 東レ株式会社 Laminated film for simultaneous molding transfer

Also Published As

Publication number Publication date
TW201536591A (en) 2015-10-01
JP2015093420A (en) 2015-05-18
WO2015072112A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP2012210755A (en) Laminate hard coat film for molding, method for manufacturing the same, and method for manufacturing resin molding
JP6163925B2 (en) Matte-like transfer film and molded product using the same
US20160046052A1 (en) Transfer film for in-mold molding, method for producing in-mold molded body, and molded body
JP2014104705A (en) Transfer film
WO2014119271A1 (en) Transfer film for decoration
WO2014068925A1 (en) Transfer film, process for producing molded product, and molded product
KR101103409B1 (en) High-glossy curved surface decoration panel and manufacturing method of the same
JP2011011122A (en) Method of manufacturing hard coat laminate
JP2009291996A (en) Transfer sheet, method for producrion of transfer sheet, method of producing transfer molded article, and transfer molded article
TWI640431B (en) Adhesive sheet
JP6260219B2 (en) Transfer film for in-mold molding and molded product using the same
KR101578074B1 (en) Transfer coating material having improved release property and transfer method using same
JP2012210756A (en) Laminate hard coat film for molding, method for manufacturing the same, and method for manufacturing resin molding
JP6318561B2 (en) Stretchable transfer film
KR20160137862A (en) Coating composition for decorative sheet, and decorative sheet
JP2009262521A (en) Transfer foil
JP2015205410A (en) Hard coat transfer foil and molding using the same
JP2011104804A (en) Laminated film and method for producing molded body
JP2004299384A (en) Decorative sheet with protecting sheet and method for manufacturing decorative molding
JP6232879B2 (en) Transfer sheet and covering member using the same
JP4338512B2 (en) Transfer foil and method for producing the same, and method for producing simultaneously decorated decorative molded product
JP6416176B2 (en) Printable functional hard coat film and method for producing the same
JP2013139105A (en) Laminate hard coat film for molding, method for manufacturing the same, and method for manufacturing resin molding
JP2011161888A (en) Self healing nature transfer foil
KR20110010941A (en) Gasket tape for lens mold and method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6318561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250