JP6317636B2 - Sputtering target for magnetic recording media - Google Patents
Sputtering target for magnetic recording media Download PDFInfo
- Publication number
- JP6317636B2 JP6317636B2 JP2014141771A JP2014141771A JP6317636B2 JP 6317636 B2 JP6317636 B2 JP 6317636B2 JP 2014141771 A JP2014141771 A JP 2014141771A JP 2014141771 A JP2014141771 A JP 2014141771A JP 6317636 B2 JP6317636 B2 JP 6317636B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- sputtering target
- magnetic recording
- sio
- crti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005477 sputtering target Methods 0.000 title claims description 44
- 230000005291 magnetic effect Effects 0.000 title claims description 38
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 229910052906 cristobalite Inorganic materials 0.000 claims description 17
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 24
- 238000005245 sintering Methods 0.000 description 20
- 239000002245 particle Substances 0.000 description 19
- 239000002994 raw material Substances 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910000905 alloy phase Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 amorphous Inorganic materials 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
本発明は、磁気記録媒体用スパッタリングターゲットに関し、特に垂直磁気記録方式を採用するハードディスクの磁気記録媒体用スパッタリングターゲットに関する。 The present invention relates to a sputtering target for a magnetic recording medium, and more particularly to a sputtering target for a magnetic recording medium of a hard disk that employs a perpendicular magnetic recording method.
垂直磁気記録媒体の記録層には六方晶構造を持つCo基強磁性材料が用いられている。媒体ノイズを低減するために、10〜20nm厚の薄膜中に5〜8nm程度の面内粒径をもつ強磁性結晶粒子を磁気的に孤立化させたナノメートルオーダーでの微細組織を実現することが必須である。このため、垂直磁気記録媒体では相分離材料としてSiO2を混合したCoPtCr−SiO2系複合材が記録層材料として実用化されている(非特許文献1)。 A Co-based ferromagnetic material having a hexagonal crystal structure is used for the recording layer of the perpendicular magnetic recording medium. In order to reduce medium noise, to achieve a nanometer-order microstructure in which ferromagnetic crystal grains having an in-plane grain size of about 5 to 8 nm are magnetically isolated in a 10 to 20 nm thick thin film Is essential. For this reason, in a perpendicular magnetic recording medium, a CoPtCr—SiO 2 composite material in which SiO 2 is mixed as a phase separation material has been put to practical use as a recording layer material (Non-patent Document 1).
垂直磁気記録媒体の記録層は、同じ成分組成を有するスパッタリングターゲットをスパッタリングして、基板上に磁性膜を成膜して製造される。CoPtCr−SiO2系複合材を記録層として成膜するには、CoPtCr合金相を磁気的に分離させる非磁性の無機物粒子であるSiO2を分散させた酸化物分散型スパッタリングターゲットが用いられている。 The recording layer of the perpendicular magnetic recording medium is manufactured by sputtering a sputtering target having the same component composition and forming a magnetic film on the substrate. In order to form a CoPtCr—SiO 2 composite material as a recording layer, an oxide-dispersed sputtering target in which SiO 2 that is nonmagnetic inorganic particles for magnetically separating a CoPtCr alloy phase is dispersed is used. .
しかし、非磁性の無機物粒子であるSiO2は凝集して偏析しやすいため、スパッタリング時に異常放電を起こしやすく、異常放電により破壊されたパーティクルを発生することが問題であった。かかるパーティクル発生の問題を解決するため種々の方法が提案されている。 However, since SiO 2 which is a non-magnetic inorganic particle tends to aggregate and segregate easily, abnormal discharge is likely to occur during sputtering, and there is a problem of generating particles destroyed by abnormal discharge. Various methods have been proposed to solve the problem of particle generation.
CoPtCr−SiO2系スパッタリングターゲットは、原材料となる金属粒子又は合金粒子とSiO2粒子とを混合して焼結する粉末焼結法により製造することができる。焼結する際にSiO2が結晶化してクリストバライトが形成され、スパッタリング中にパーティクルを発生させる原因となることから、焼結温度を1120℃以下として焼結中のクリストバライト形成を抑制し、非晶質SiO2としてスパッタリングターゲット中に存在させること(特許文献1)、又はSiO2の原料として石英を用いてクリストバライト形成を抑制すること(特許文献2)が提案されている。特許文献1に記載の方法では、焼結温度を1120℃以下に維持することが必要となる。低い焼結温度では焼結組織内に空隙が残るため、スパッタリングターゲットの相対密度が低く、結果として、スパッタリング時のパーティクル発生が多くなる。特許文献2は、特許文献1に記載の方法では解決できなかった相対密度の問題を解決するため、原料として石英を使用して焼結温度を下げずにクリストバライト化を抑制するとしている。 The CoPtCr—SiO 2 -based sputtering target can be produced by a powder sintering method in which metal particles or alloy particles as raw materials and SiO 2 particles are mixed and sintered. During sintering, SiO 2 is crystallized to form cristobalite, which causes particles to be generated during sputtering. Therefore, the sintering temperature is set to 1120 ° C. or lower to suppress cristobalite formation during sintering. It has been proposed to make SiO 2 exist in a sputtering target (Patent Document 1), or to suppress the formation of cristobalite by using quartz as a raw material for SiO 2 (Patent Document 2). In the method described in Patent Document 1, it is necessary to maintain the sintering temperature at 1120 ° C. or lower. Since voids remain in the sintered structure at a low sintering temperature, the relative density of the sputtering target is low, and as a result, the generation of particles during sputtering increases. In Patent Document 2, in order to solve the problem of relative density that could not be solved by the method described in Patent Document 1, quartz is used as a raw material to suppress cristobalite formation without lowering the sintering temperature.
しかし、特許文献2に記載の方法では原料として石英を使用するという制約がある。 However, the method described in Patent Document 2 has a restriction that quartz is used as a raw material.
また、アーキングを低減し、安定した放電が得られ、高密度でパーティクル発生の少ない非磁性材粒子分散型磁性材スパッタリングターゲットを得るために、Cr粉末、Pt粉末、Co粉末、SiO2粉末及びCr2O3粉末を混合して真空雰囲気中1150℃でホットプレスして、CrPtCo合金相に2.0μm2以下の平均面積を有するSiO2酸化物相を分散させ、SiO2酸化物相内又はその表面に0.3mol%以上1.0mol%未満のCr2O3を含有するターゲットを得る方法が提案されている(特許文献3)。特許文献3には、Cr2O3粉末を添加しない場合には、SiO2酸化物相の各粒子が大きく成長してパーティクルの発生を抑制できないことが記載されている。 In addition, in order to obtain a non-magnetic material particle-dispersed magnetic material sputtering target with reduced arcing, stable discharge, high density and low particle generation, Cr powder, Pt powder, Co powder, SiO 2 powder and Cr 2 O 3 powder is mixed and hot pressed in a vacuum atmosphere at 1150 ° C. to disperse the SiO 2 oxide phase having an average area of 2.0 μm 2 or less in the CrPtCo alloy phase, and within the SiO 2 oxide phase or its There has been proposed a method of obtaining a target containing 0.3 mol% or more and less than 1.0 mol% of Cr 2 O 3 on the surface (Patent Document 3). Patent Document 3 describes that when the Cr 2 O 3 powder is not added, each particle of the SiO 2 oxide phase grows large and the generation of particles cannot be suppressed.
本発明の目的は、原料となるSiO2の制約がなく、バーンイン時間を長期化することなく焼結温度を1200℃以上の高温にしてクリストバライトを含んでいてもスパッタリング中のパーティクル発生を抑制し、高い相対密度を達成できるCoPtCr−SiO2系磁気記録媒体用スパッタリングターゲットを提供することにある。 The purpose of the present invention is to suppress the generation of particles during sputtering even if cristobalite is included at a high sintering temperature of 1200 ° C. or higher without extending the burn-in time without extending the raw material SiO 2 . It is an object of the present invention to provide a sputtering target for a CoPtCr—SiO 2 magnetic recording medium that can achieve a high relative density.
本発明者らは、上記課題を解決するため鋭意研究した結果、SiO2に加えてCrTi2O5を含む酸化物相を金属相に分散させることで、クリストバライトが存在してもマイクロクラック及びパーティクルの発生が少ない磁気記録媒体用スパッタリングターゲットが得られることを知見し、本発明を完成した。具体的には、本発明は以下の態様を含む。
[1]Cr:0mol%を超えて10mol%、Pt:11mol%を超えて25mol%以下、残余がCo及び不可避不純物からなる金属相80mol%以上100mol%未満と、CrTi2O5及びSiO2を含む酸化物相0mol%を超えて20mol%以下と、を含むことを特徴とする磁気記録媒体用スパッタリングターゲット。
[2]SiO2はクリストバライトであることを特徴とする[1]に記載の磁気記録媒体用スパッタリングターゲット。
[3]CrTi2O5の含有量が0mol%を超えて10mol%以下であることを特徴とする[1]に記載の磁気記録媒体用スパッタリングターゲット。
[4]前記酸化物相が、TiO2、Cr2O3、B2O3、CoO、Co3O4から選択される1種以上をさらに含むことを特徴とする[1]〜[3]のいずれに記載の磁気記録媒体用スパッタリングターゲット。
[5]相対密度が97%以上であることを特徴とする[1]〜[4]のいずれかに記載の磁気記録媒体用スパッタリングターゲット。
As a result of diligent research to solve the above problems, the present inventors have dispersed an oxide phase containing CrTi 2 O 5 in addition to SiO 2 in a metal phase, so that microcracks and particles can be formed even if cristobalite is present. As a result, it was found that a sputtering target for a magnetic recording medium with a small amount of generation was obtained, and the present invention was completed. Specifically, the present invention includes the following aspects.
[1] Cr: more than 0 mol% to 10 mol%, Pt: more than 11 mol% to 25 mol% or less, the remainder of the metal phase consisting of Co and inevitable impurities 80 mol% to less than 100 mol%, CrTi 2 O 5 and SiO 2 The sputtering target for magnetic recording media characterized by including the oxide phase containing 0 mol% and 20 mol% or less.
[2] The sputtering target for magnetic recording media according to [1], wherein SiO 2 is cristobalite.
[3] The sputtering target for a magnetic recording medium according to [1], wherein the content of CrTi 2 O 5 is more than 0 mol% and 10 mol% or less.
[4] The oxide phase further includes one or more selected from TiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4 [1] to [3] The sputtering target for magnetic recording media as described in any of the above.
[5] The sputtering target for magnetic recording media according to any one of [1] to [4], wherein the relative density is 97% or more.
本発明の磁気記録媒体用スパッタリングターゲットは、クリストバライトが存在してもパーティクルの発生が少ない。したがって、焼結温度を1120℃以下に維持してクリストバライトの形成を抑制する必要がなく、スパッタリングターゲットの相対密度を高くすることができる。 The sputtering target for a magnetic recording medium of the present invention generates less particles even when cristobalite is present. Therefore, it is not necessary to suppress the formation of cristobalite by maintaining the sintering temperature at 1120 ° C. or lower, and the relative density of the sputtering target can be increased.
また、ターゲット中にクリストバライトの存在を許容するものであるから、原料SiO2としてアモルファス、クリストバライト、石英のいずれも使用することができる。 Further, since cristobalite is allowed to exist in the target, any of amorphous, cristobalite, and quartz can be used as the raw material SiO 2 .
本発明の磁気記録媒体用スパッタリングターゲットは、マグネトロンスパッタ装置でスパッタリングする際に、不活性ガスの電離効果が効率的に進行するため安定した放電が得られる。また、SiO2の凝集を抑制できるためスパッタイング時にパーティクルの発生を抑制することができ、低コストで磁性体薄膜を製造することができる。 The sputtering target for a magnetic recording medium of the present invention can provide a stable discharge because the ionization effect of the inert gas efficiently proceeds when sputtering with a magnetron sputtering apparatus. Further, it is possible to suppress the generation of particles during sputtering queuing can be suppressed aggregation of SiO 2, it is possible to produce a magnetic thin film at a low cost.
本発明によれば、Cr:0mol%を超えて10mol%、Pt:11mol%を超えて25mol%以下、残余がCo及び不可避不純物からなる金属相80mol%以上100mol%未満と、CrTi2O5及びSiO2を含む酸化物相0mol%を超えて20mol%以下と、を含むことを特徴とする磁気記録媒体用スパッタリングターゲットが提供される。 According to the present invention, Cr: more than 0 mol% and 10 mol%, Pt: more than 11 mol% and less than or equal to 25 mol%, and the remainder of the metal phase consisting of Co and unavoidable impurities 80 mol% or more and less than 100 mol%, CrTi 2 O 5 And an oxide phase containing SiO 2 in excess of 0 mol% and 20 mol% or less. A sputtering target for a magnetic recording medium is provided.
金属相は、磁性相として機能し、Cr:0mol%を超えて10mol%、Pt:11mol%を超えて25mol%以下、残余がCo及び不可避不純物からなる合金相であることが好ましい。不可避不純物は限りなく含まれていないことが好ましく、原料となるCr、Pt、Coに含まれている不純物、及び混合時又は焼結時に形成される不純物が不可避的に残留してしまうことを考慮したものである。高純度の原料を用いて、焼結雰囲気及び条件を制御して不可避不純物をできるだけ排除することが好ましいことはいうまでもない。 The metal phase functions as a magnetic phase, and is preferably an alloy phase composed of Cr: more than 0 mol% and 10 mol%, Pt: more than 11 mol% and not more than 25 mol%, with the remainder being Co and inevitable impurities. It is preferable that inevitable impurities are not included as much as possible, considering that impurities contained in Cr, Pt, Co as raw materials, and impurities formed during mixing or sintering will inevitably remain. It is a thing. It goes without saying that it is preferable to eliminate inevitable impurities as much as possible by using a high-purity raw material and controlling the sintering atmosphere and conditions.
酸化物相は、金属相を磁気的に分離する機能を有する。酸化物相は、CrTi2O5及びSiO2を含むものであれば、他の酸化物をさらに含んでいてもよい。他の酸化物としては、TiO2、Cr2O3、B2O3、CoO、Co3O4から選択される1種以上を好適に用いることができる。また、酸化物相としてCrTi2O5を原料として添加した場合に限らず、原料として添加していなくとも製造工程で形成される場合を含む。たとえば、酸化物相の原料としてTiO2及びSiO2を使用した場合にも製造条件によってCrTi2O5が形成される。CrTi2O5の含有量は、磁気記録媒体用スパッタリングターゲット中0mol%を超えて10mol%以下であることが好ましい。CrTi2O5が存在しない場合には、SiO2の凝集を抑制できず、CrTi2O5が10mol%を越えて存在すると、スパッタリングターゲットの相対密度が低くなり、また磁性特性が変化してスパッタリングによって所望の磁性膜を形成することが困難となる。 The oxide phase has a function of magnetically separating the metal phase. As long as the oxide phase contains CrTi 2 O 5 and SiO 2 , it may further contain other oxides. As the other oxide, one or more selected from TiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4 can be preferably used. Moreover, it is not limited to the case where CrTi 2 O 5 is added as a raw material as an oxide phase, but includes a case where it is formed in the manufacturing process even if it is not added as a raw material. For example, even when TiO 2 and SiO 2 are used as raw materials for the oxide phase, CrTi 2 O 5 is formed depending on the manufacturing conditions. The content of CrTi 2 O 5 is preferably more than 0 mol% and 10 mol% or less in the sputtering target for magnetic recording media. If the CrTi 2 O 5 does not exist can not suppress aggregation of SiO 2, the CrTi 2 O 5 is present beyond 10 mol%, sputtering relative density of the target becomes low, and the magnetic characteristics change sputtering This makes it difficult to form a desired magnetic film.
本発明において、酸化物相がCrTi2O5及びSiO2を含むため、CrTi2O5が介在することでSiO2が凝集することを抑制することができる。したがって、SiO2は石英でもアモルファスでもクリストバライトであってもよいが、自己粉砕しやすいクリストバライトである場合に本発明の効果がより発揮される。クリストバライトは金属との濡れ性が悪く、金属相と酸化物相が隣接していても密着強度が極端に低い。一方、CrTi2O5は金属との濡れ性がよく、金属相との密着強度が高い。 In the present invention, since the oxide phase contains a CrTi 2 O 5 and SiO 2, it is possible to prevent the SiO 2 to aggregate by CrTi 2 O 5 is interposed. Therefore, SiO 2 may be quartz, amorphous, or cristobalite, but the effect of the present invention is more exhibited when cristobalite is easily pulverized. Cristobalite has poor wettability with metals, and the adhesion strength is extremely low even if the metal phase and the oxide phase are adjacent to each other. On the other hand, CrTi 2 O 5 has good wettability with metal and high adhesion strength with the metal phase.
金属相と酸化物相との比率は、金属相が80mol%以上100mol%未満であり、酸化物相が0mol%を超えて20mol%以下であり、金属相が84mol%以上92mol%以下及び酸化物相が8mol%以上16mol%以下であることが好ましい。 The ratio of the metal phase to the oxide phase is such that the metal phase is 80 mol% or more and less than 100 mol%, the oxide phase is more than 0 mol% and 20 mol% or less, the metal phase is 84 mol% or more and 92 mol% or less, and the oxide The phase is preferably 8 mol% or more and 16 mol% or less.
本発明の磁気記録媒体用スパッタリングターゲットは相対密度97%以上、好ましくは98%以上を達成することができる。 The sputtering target for magnetic recording media of the present invention can achieve a relative density of 97% or more, preferably 98% or more.
本発明の磁気記録媒体用スパッタリングターゲットは、原料となるCr、Pt及びCo金属粉を所定の配合割合となるように秤量して、合金浴湯を調製し、ガスアトマイズを行って合金アトマイズ粉末を調製し、次いで合金アトマイズ粉末に酸化物粉末を混合分散させて混合粉末を調製し、焼結することによって製造することができる。 In the sputtering target for magnetic recording medium of the present invention, Cr, Pt and Co metal powders as raw materials are weighed so as to have a predetermined blending ratio, alloy bath water is prepared, and gas atomization is performed to prepare alloy atomized powder. Then, the oxide powder can be mixed and dispersed in the alloy atomized powder to prepare a mixed powder and sintered.
酸化物粉末としては少なくともSiO2及びTiO2、少なくともSiO2、TiO2及びCoO又はCo3O4、若しくは少なくともSiO2及びCrTi2O5を用い、磁気記録媒体用スパッタリングターゲットの所望の組成に基づいて他の酸化物粉末を添加する。実施例において後述するように、上記酸化物の組み合わせを添加することで最終製品であるスパッタリングターゲット中にCrTi2O5の存在が確認された。 As the oxide powder, at least SiO 2 and TiO 2 , at least SiO 2 , TiO 2 and CoO or Co 3 O 4 , or at least SiO 2 and CrTi 2 O 5 are used, based on the desired composition of the sputtering target for the magnetic recording medium. Add another oxide powder. As will be described later in Examples, the presence of CrTi 2 O 5 was confirmed in the sputtering target as the final product by adding the combination of the above oxides.
正確な反応機構を解明したわけではないが、Cr基合金粉末とTiO2及びCoO又はCo3O4が混在することによって、焼結工程で下記式1又は2に示すようにCrTi2O5が形成されたと考えられる。 Although the exact reaction mechanism has not been elucidated, the Cr-based alloy powder and TiO 2 and CoO or Co 3 O 4 are mixed, so that CrTi 2 O 5 is formed in the sintering process as shown in the following formula 1 or 2. It is thought that it was formed.
また、焼結時に微量の酸素が存在する場合には、CoOやCo3O4等のCo酸化物を添加しなくても、下記式3に示すようにCrTi2O5が形成されると考えられる。 Also, when a small amount of oxygen is present during sintering, it is considered that CrTi 2 O 5 is formed as shown in the following formula 3 without adding Co oxide such as CoO or Co 3 O 4. It is done.
したがって、最終製品であるスパッタリングターゲット中にCrTi2O5が存在していればよく、原料酸化物粉末としてCrTi2O5を含む必要はない。原料となるSiO2は、アモルファスでもクリストバライトでも石英でもよい。 Therefore, it is sufficient that CrTi 2 O 5 is present in the sputtering target as the final product, and it is not necessary to include CrTi 2 O 5 as the raw material oxide powder. The raw material SiO 2 may be amorphous, cristobalite, or quartz.
焼結温度は相対密度が97%以上を達成できる温度であれば特に限定されず、1120℃を超える高温とすることができるが、費用対効果の点から焼結温度の好適範囲は1120℃を超え1300℃以下である。 The sintering temperature is not particularly limited as long as the relative density can achieve 97% or more, and can be a high temperature exceeding 1120 ° C. However, the preferred range of the sintering temperature is 1120 ° C from the viewpoint of cost effectiveness. It is over 1300 ° C.
焼結雰囲気は、金属相を構成する金属の酸化を防ぐため、真空もしくは不活性ガス雰囲気とする。焼結は、真空ホットプレス、プラズマ放電焼結、熱間静水圧焼結など公知の方法で行うことができる。 The sintering atmosphere is a vacuum or an inert gas atmosphere in order to prevent oxidation of the metal constituting the metal phase. Sintering can be performed by a known method such as vacuum hot pressing, plasma discharge sintering, hot isostatic pressing.
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[原料]
実施例において用いた原料は以下のとおりである。
[material]
The raw materials used in the examples are as follows.
金属原材料としては、純度99%以上の電解Coインゴット、純度99%以上の電解Crインゴット、純度99.5%以上のPtインゴットを使用し、酸化物としては、平均粒径1.0μmのアモルファス型SiO2粉末、平均粒径1μmのエスコライト型Cr2O3粉末、平均粒径0.1μmのルチル型TiO2粉末、平均粒径1μmのCoO粉末を使用した。 As the metal raw material, an electrolytic Co ingot having a purity of 99% or more, an electrolytic Cr ingot having a purity of 99% or more, and a Pt ingot having a purity of 99.5% or more are used, and the oxide is an amorphous type having an average particle diameter of 1.0 μm. SiO 2 powder, escorite-type Cr 2 O 3 powder having an average particle diameter of 1 μm, rutile-type TiO 2 powder having an average particle diameter of 0.1 μm, and CoO powder having an average particle diameter of 1 μm were used.
[酸化物相の成分分析]
実施例において製造した磁気記録媒体用スパッタリングターゲットの一部を切出し、塩酸を添加して加熱溶解し、さらに硝酸を添加して加熱溶解させ、ろ過して得た残渣を十分に洗浄して酸を洗い流した後、80℃の乾燥炉にて乾燥させ、その後空冷して、酸化物のみを抽出した。次いで、抽出した酸化物のXRD分析(リガク社製SmartLab)を行い、得られたX線回折スペクトラムから成分を同定した。
[Component analysis of oxide phase]
A part of the sputtering target for magnetic recording media produced in the examples was cut out, hydrochloric acid was added and dissolved by heating, further nitric acid was added and dissolved by heating, and the residue obtained by filtration was washed thoroughly to remove the acid. After washing away, it was dried in a drying oven at 80 ° C. and then air-cooled to extract only the oxide. Next, XRD analysis (SmartLab manufactured by Rigaku Corporation) of the extracted oxide was performed, and components were identified from the obtained X-ray diffraction spectrum.
X線回折スペクトル測定条件は、管電圧40kV、管電流30mA、スキャンスピード4゜/min、ステップ0.02゜、測定範囲2θ=15゜〜60゜とした。 The X-ray diffraction spectrum measurement conditions were tube voltage 40 kV, tube current 30 mA, scan speed 4 ° / min, step 0.02 °, and measurement range 2θ = 15 ° -60 °.
[相対密度]
アルキメデス法により測定した密度を用いることが最も信頼性が高いが、簡易測定法としてスパッタリングターゲットの寸法と重量とを測定して絶対密度を計算することもできる。こうして測定された絶対密度を、各分子が組成比に混在しているとして計算した理論密度で除算して相対密度を計算することができる。
[Relative density]
It is most reliable to use the density measured by the Archimedes method, but as a simple measurement method, the absolute density can be calculated by measuring the dimensions and weight of the sputtering target. The relative density can be calculated by dividing the absolute density thus measured by the theoretical density calculated by assuming that each molecule is mixed in the composition ratio.
[漏洩磁束]
ASTM F2086−1
[実施例1]
Co:80.38at%、Cr:7.93at%、Pt:11.72at%となるように各金属原材料を秤量し、1700℃まで加熱して合金溶湯とし、ガスアトマイズを行って、80.38Co−7.93Cr−11.72Pt合金粉末を調製した。調製したアトマイズ合金粉末を150メッシュのふるいで分級して、粒径がφ106μm以下の分級後アトマイズ合金粉末を得た。
[Leakage magnetic flux]
ASTM F2086-1
[Example 1]
Each metal raw material was weighed so that Co: 80.38 at%, Cr: 7.93 at%, and Pt: 11.72 at%, and heated to 1700 ° C. to form a molten alloy, followed by gas atomization. A 7.93Cr-11.72Pt alloy powder was prepared. The prepared atomized alloy powder was classified with a 150-mesh sieve to obtain a post-classification atomized alloy powder with a particle size of φ106 μm or less.
次に、分級後アトマイズ合金粉末:87mol%、SiO2:5mol%、TiO2:4mol%、Cr2O3:2mol%、CoO:2mol%になるように計量し、Zrボールミルにて混合して、分級後アトマイズ合金粉末に酸化物粒子を分散させた混合粉末を得た。 Then, classification after atomized alloy powder: 87mol%, SiO 2: 5mol %, TiO 2: 4mol%, Cr 2 O 3: 2mol%, CoO: weighed such that 2 mol%, were mixed with Zr ball mill After classification, a mixed powder in which oxide particles were dispersed in an atomized alloy powder was obtained.
この混合粉末を、焼結温度:1250℃、圧力:24.5MPa、保持時間:180分、真空雰囲気:5×10−2Pa以下の条件でホットプレスして、φ165.1mm×厚さ4.0mmのスパッタリングターゲットを作製した。作製したスパッタリングターゲットの相対密度は98.1%であった。 This mixed powder was hot-pressed under the conditions of sintering temperature: 1250 ° C., pressure: 24.5 MPa, holding time: 180 minutes, vacuum atmosphere: 5 × 10 −2 Pa or less, φ165.1 mm × thickness 4. A 0 mm sputtering target was prepared. The relative density of the produced sputtering target was 98.1%.
スパッタリングターゲットから試料を切出し、塩酸を添加して加熱溶解し、さらに硝酸を添加して加熱溶解させ、ろ過して得た残渣を十分に洗浄して酸を洗い流した後、80℃の乾燥炉にて乾燥させ、その後空冷して、酸化物相のみを抽出した後、X線回折分析を行い、酸化物がクリストバライト型SiO2、エスコライト型Cr2O3及びCrTi2O5であることを確認した(図1)。 A sample is cut out from the sputtering target, and hydrochloric acid is added and dissolved by heating. Further, nitric acid is added and dissolved by heating, and the residue obtained by filtration is thoroughly washed to wash away the acid, and then placed in a drying oven at 80 ° C. After drying, air cooling, and extracting only the oxide phase, X-ray diffraction analysis is performed to confirm that the oxide is cristobalite type SiO 2 , escorite type Cr 2 O 3 and CrTi 2 O 5 (FIG. 1).
作製したスパッタリングターゲットから分析用サンプルを削り出し、塩酸及び硝酸を用いて分析用サンプルを溶解させ、その後、ろ過して、ろ液と残渣に分けた。残渣をアルカリ溶解法により溶液として、ろ液と再び混合させた混合液をICP分析装置により分析した。XRD分析により酸化物がSiO2、CrTi2O5及びCr2O3であることが確認されていることから、ICP分析によるSi及びTiをそれぞれSiO2及びCrTi2O5として原材料の酸化物と酸素量からCr2O3を定量し、最終組成は、91(Co−5.38Cr−11.21Pt)−5SiO2−2CrTi2O5−2Cr2O3、又は75.9Co−4.9Cr−10.2Pt−5SiO2−2CrTi2O5−2Cr2O3であることを確認した。 The sample for analysis was cut out from the produced sputtering target, the sample for analysis was dissolved using hydrochloric acid and nitric acid, and then filtered to separate the filtrate and the residue. The residue was made into a solution by an alkali dissolution method, and the mixed solution was mixed again with the filtrate, and analyzed by an ICP analyzer. Since the oxide by XRD analysis has been confirmed to be a SiO 2, CrTi 2 O 5 and Cr 2 O 3, and oxides of the raw materials of Si and Ti by ICP analysis as SiO 2 and CrTi 2 O 5, respectively Cr 2 O 3 was quantified from the amount of oxygen, and the final composition was 91 (Co-5.38Cr-11.21Pt) -5SiO 2 -2CrTi 2 O 5 -2Cr 2 O 3 , or 75.9Co-4.9Cr- It was confirmed that it was 10.2Pt-5SiO 2 -2CrTi 2 O 5 -2Cr 2 O 3 .
[比較例1]
焼結温度:1050℃、保持時間:60分に代えた以外は実施例1と同様に行い、φ165.1mm×厚さ4.0mmのスパッタリングターゲットを作製した。作製したスパッタリングターゲットの相対密度は97.1%であった。
[Comparative Example 1]
A sputtering target of φ165.1 mm × thickness 4.0 mm was produced in the same manner as in Example 1 except that the sintering temperature was 1050 ° C. and the holding time was 60 minutes. The relative density of the produced sputtering target was 97.1%.
得られたスパッタリングターゲットから実施例1と同様に酸化物を抽出してX線回折による成分分析を行ったところ、アモルファス型SiO2、エスコライト型Cr2O3を確認した(図2)。しかし、CrTi2O5及びルチル型TiO2は明確には確認できなかった。 An oxide was extracted from the obtained sputtering target in the same manner as in Example 1, and component analysis was performed by X-ray diffraction. As a result, amorphous SiO 2 and escorite Cr 2 O 3 were confirmed (FIG. 2). However, CrTi 2 O 5 and rutile TiO 2 could not be clearly confirmed.
本発明のスパッタリングターゲットは、磁気記録媒体の磁性体薄膜、特に垂直磁気記録方式を採用したハードディスクのグラニュラー磁気記録相の成膜に用いることができる。 The sputtering target of the present invention can be used for film formation of a magnetic thin film of a magnetic recording medium, particularly a granular magnetic recording phase of a hard disk employing a perpendicular magnetic recording method.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014141771A JP6317636B2 (en) | 2014-07-09 | 2014-07-09 | Sputtering target for magnetic recording media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014141771A JP6317636B2 (en) | 2014-07-09 | 2014-07-09 | Sputtering target for magnetic recording media |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016017215A JP2016017215A (en) | 2016-02-01 |
JP6317636B2 true JP6317636B2 (en) | 2018-04-25 |
Family
ID=55232659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014141771A Active JP6317636B2 (en) | 2014-07-09 | 2014-07-09 | Sputtering target for magnetic recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6317636B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130206591A1 (en) * | 2010-12-17 | 2013-08-15 | Jx Nippon Mining & Metals Corporation | Sputtering Target for Magnetic Recording Film and Method for Producing Same |
JP5505844B2 (en) * | 2011-07-28 | 2014-05-28 | 光洋応用材料科技股▲ふん▼有限公司 | Alloy sputtering target based on CoCrPt with cobalt oxide and non-magnetic oxide and method for producing the same |
-
2014
- 2014-07-09 JP JP2014141771A patent/JP6317636B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016017215A (en) | 2016-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10937455B2 (en) | Fe—Pt based magnetic material sintered compact | |
JP5497904B2 (en) | Sputtering target for magnetic recording film | |
JP5226155B2 (en) | Fe-Pt ferromagnetic sputtering target | |
JP5587495B2 (en) | Fe-Pt sputtering target in which C particles are dispersed | |
JP5623552B2 (en) | Fe-Pt ferromagnetic sputtering target and manufacturing method thereof | |
US10600440B2 (en) | Sputtering target for forming magnetic recording film and method for producing same | |
JP5847203B2 (en) | Co-Cr-Pt-based sputtering target and method for producing the same | |
JP6881643B2 (en) | Sputtering target for magnetic recording medium and magnetic thin film | |
JP5801496B2 (en) | Sputtering target | |
TWI753073B (en) | Magnetic material sputtering target and manufacturing method thereof | |
JP6005767B2 (en) | Sputtering target for magnetic recording media | |
TWI582250B (en) | A magnetite sputtering target containing chromium oxide | |
JP6317636B2 (en) | Sputtering target for magnetic recording media | |
JP2016030857A (en) | Sputtering target for magnetic recording medium | |
WO2017141558A1 (en) | Sputtering target for magnetic recording medium, and magnetic thin film | |
JP5505844B2 (en) | Alloy sputtering target based on CoCrPt with cobalt oxide and non-magnetic oxide and method for producing the same | |
JP5946922B2 (en) | Sputtering target for magnetic recording media | |
TWI616545B (en) | Strong magnetic material sputtering target | |
JP5876155B2 (en) | Sputtering target for magnetic recording film and carbon raw material used for manufacturing the same | |
JP5826945B2 (en) | Sputtering target for magnetic recording media | |
WO2021014760A1 (en) | Sputtering target member for non-magnetic layer formation | |
US20130008784A1 (en) | Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof | |
TWI727334B (en) | Sputtering target and powder used for manufacturing sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6317636 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |