JP6315686B2 - Novel stannic oxide material, synthesis method thereof, and gas sensor material - Google Patents

Novel stannic oxide material, synthesis method thereof, and gas sensor material Download PDF

Info

Publication number
JP6315686B2
JP6315686B2 JP2014147349A JP2014147349A JP6315686B2 JP 6315686 B2 JP6315686 B2 JP 6315686B2 JP 2014147349 A JP2014147349 A JP 2014147349A JP 2014147349 A JP2014147349 A JP 2014147349A JP 6315686 B2 JP6315686 B2 JP 6315686B2
Authority
JP
Japan
Prior art keywords
sno
stannic oxide
rod
gas sensor
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147349A
Other languages
Japanese (ja)
Other versions
JP2016024001A (en
Inventor
淳司 村松
淳司 村松
澄志 蟹江
澄志 蟹江
木田 徹也
徹也 木田
昂一 末松
昂一 末松
憲剛 島ノ江
憲剛 島ノ江
兼安 一成
一成 兼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Figaro Engineering Inc
Original Assignee
Tohoku University NUC
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Figaro Engineering Inc filed Critical Tohoku University NUC
Priority to JP2014147349A priority Critical patent/JP6315686B2/en
Publication of JP2016024001A publication Critical patent/JP2016024001A/en
Application granted granted Critical
Publication of JP6315686B2 publication Critical patent/JP6315686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

この発明は、ガスセンサ等に適した新規な酸化第2スズ材料、及びその合成方法に関する。   The present invention relates to a novel stannic oxide material suitable for a gas sensor and the like, and a synthesis method thereof.

発明者らは、金属酸化物等の単分散ナノ粒子を、液相で合成することに取り組んできた。例えば特許文献1(JP2011-126746)では、立方体状のITO結晶子が単分散した透明導電性ナノ粒子のインクの合成を、液晶ディスプレイ等でのITO電極用に開示した。   The inventors have worked on synthesizing monodisperse nanoparticles such as metal oxides in the liquid phase. For example, in Patent Document 1 (JP2011-126746), the synthesis of ink of transparent conductive nanoparticles in which cubic ITO crystallites are monodispersed is disclosed for an ITO electrode in a liquid crystal display or the like.

ガスセンサ材料である酸化第2スズに関して、特許文献2(JP5234664)は、酸化第2スズのナノ粒子を合成することを開示している。例えばSnIVアセチルアセトナトの2塩化物を、ジベンジルエーテル等の水に不溶な溶媒に溶かし、水中に分散させてミセルとし、トリメチルアミンオキシド等の酸化剤から酸素を供給し、280℃等で還流することにより、酸化第2スズのナノ粒子とすることを開示している。しかしながらこのようにして得られる酸化第2スズの結晶子はロッド状ではなく、立方体状に近いとは言えるが、粒子の角が取れており、本願発明の酸化第2スズの結晶子とは形態が異なる。   Regarding stannic oxide, which is a gas sensor material, Patent Document 2 (JP5234664) discloses synthesizing stannic oxide nanoparticles. For example, SnIV acetylacetonate dichloride is dissolved in a water insoluble solvent such as dibenzyl ether, dispersed in water to form micelles, supplied with oxygen from an oxidizing agent such as trimethylamine oxide, and refluxed at 280 ° C. Thus, it is disclosed that stannic oxide nanoparticles are obtained. However, although the stannic oxide crystallite obtained in this way is not rod-shaped and can be said to be close to a cubic shape, the corners of the particles are taken, and the stannic oxide crystallite of the present invention is in the form Is different.

JP2011-126746JP2011-126746 JP5234664JP5234664

この発明は、新規な酸化第2スズ材料、及びその合成方法とガスセンサ材料とを提供することを課題とする。   An object of the present invention is to provide a novel stannic oxide material, a synthesis method thereof, and a gas sensor material.

この発明の酸化第2スズ材料は、ロッド状のSnO2結晶子から成り、ロッドの側面はSnO2結晶の(110)面であり、かつSnO2結晶子は単分散状態にある。この発明の酸化第2スズでは、個々の結晶子が1次粒子であり、2次粒子は未発達、即ち、酸化第2スズの結晶子が単分散している。結晶子の表面は(110)面が主で、(110)面の性質が表面の性質として現れ、例えばガスセンサ材料とすると、エタノールに特異的に高感度である等の特徴が生じる。 The stannic oxide material of the present invention is composed of rod-shaped SnO 2 crystallites, the side surface of the rod is the (110) plane of SnO 2 crystal, and the SnO 2 crystallite is in a monodispersed state. In the stannic oxide of the present invention, individual crystallites are primary particles, and secondary particles are not developed, that is, stannic oxide crystallites are monodispersed. The surface of the crystallite is mainly the (110) plane, and the properties of the (110) plane appear as surface properties. For example, when a gas sensor material is used, characteristics such as high sensitivity specifically to ethanol occur.

またこの発明の酸化第2スズ材料は、Sn4+イオンを含みかつ強酸性の水溶液を加熱することにより水熱合成される。そして水熱合成の条件を選ぶことにより、
・ ロッド状でかつロッドの側面にSnO2結晶の(110)面が露出している、単分散状態のSnO2結晶子、
・ 及び立方体状でかつ表面がSnO2結晶の(001)面である、単分散状態のSnO2結晶子を水熱合成できる。
The stannic oxide material of the present invention is hydrothermally synthesized by heating a strong acidic aqueous solution containing Sn 4+ ions. And by selecting the conditions for hydrothermal synthesis,
A monodispersed SnO 2 crystallite that is rod-shaped and has the (110) face of the SnO 2 crystal exposed on the side of the rod,
And hydrothermal synthesis of a monodispersed SnO 2 crystallite having a cubic shape and a surface of the (001) plane of SnO 2 crystal.

例えば水熱合成時に、トリエタノールアミン(TEOA:N-(C2H4OH)3)等を水溶液中に存在させると、ロッド状のSnO2結晶子が生成し、エチレンジアミン(EDA:NH2-CH2-CH2-NH2)あるいはモノエタノールアミン(MEA:NH2-(C2H4OH))を水溶液中に存在させると、立方体状のSnO2結晶子が生成する。 For example, when triethanolamine (TEOA: N- (C 2 H 4 OH) 3 ) or the like is present in an aqueous solution during hydrothermal synthesis, rod-shaped SnO 2 crystallites are produced, and ethylenediamine (EDA: NH 2- When CH 2 —CH 2 —NH 2 ) or monoethanolamine (MEA: NH 2 — (C 2 H 4 OH)) is present in an aqueous solution, cubic SnO 2 crystallites are formed.

水熱合成の好ましい温度は例えば160℃-250℃、反応時間は1時間−120時間である。また強酸性とは室温でのpHが1未満であることで、強酸性での水熱合成により、ナノ粒子は綺麗なロッド状あるいは立方体状に形態が揃い、かつ単分散となる。pHが1を越えると、立方体の角が取れてナノ粒子の形態のバラツキが大きくなり、かつ1次粒子が相互に結合した2次粒子が生じる。ロッド状の結晶子を水熱合成するには、pHは0.6以下0以上が好ましく、トリエタノールアミンの存在下に例えばpHが0.4でロッド状の結晶子が生成し、0.8で立方体状の結晶子が生成する。なお例えば塩酸により強酸性にするが、硝酸等を用いても良い。トリエタノールアミン等の有機アミノ化合物はpHの調整剤であり、NaOHでpHを調整すると立方体状粒子の角が取れる。   The preferred temperature for hydrothermal synthesis is, for example, 160 ° C.-250 ° C., and the reaction time is 1 hour-120 hours. Further, strong acidity means that the pH at room temperature is less than 1, and the nanoparticle has a beautiful rod shape or cubic shape and is monodispersed by hydrothermal synthesis under strong acidity. When the pH exceeds 1, cubic corners are formed, the variation in the form of nanoparticles increases, and secondary particles in which primary particles are bonded to each other are generated. For hydrothermal synthesis of rod-like crystallites, the pH is preferably 0.6 or less and 0 or more, and in the presence of triethanolamine, for example, pH is 0.4 and rod-like crystallites are generated, and 0.8 is a cubic crystallite. Produces. For example, it is made strongly acidic with hydrochloric acid, but nitric acid or the like may be used. Organic amino compounds such as triethanolamine are pH adjusters, and when the pH is adjusted with NaOH, the corners of cubic particles can be taken.

さらにこの発明は、ロッド状のSnO2結晶子から成り、ロッドの側面はSnO2結晶の(110)面であり、かつSnO2結晶子が単分散しているガスセンサ材料にある。このガスセンサ材料は、加熱下で、乾燥空気中でも湿潤な空気中でもエタノール感度が高く、呼気中のエタノールの検出等に適している。このガスセンサ材料を例えば膜状にし、一対の電極を接続し、加熱用のヒータを設けて、ガスセンサとする。またこのSnO2には、Pd,Pt,Au等の触媒を担持させても良い。 Further, the present invention is a gas sensor material comprising rod-shaped SnO 2 crystallites, the side surfaces of which are (110) faces of SnO 2 crystals, and the SnO 2 crystallites are monodispersed. This gas sensor material has high ethanol sensitivity in heated and dry air, and is suitable for detection of ethanol in exhaled air. The gas sensor material is formed into a film, for example, a pair of electrodes are connected, and a heater for heating is provided to form a gas sensor. Further, this SnO 2 may carry a catalyst such as Pd, Pt, Au or the like.

この発明の酸化第2スズは、ガスセンサ材料の他に、アンチモン等をドーピングすると、透明導電性膜を印刷するためのインク材料となる。形態が一定で、2次粒子が無いため、緻密な膜が得られ、低抵抗になる。立方体状のナノ粒子からなる酸化第2スズは、アンチモンフリーでは白色で、成型体の抵抗率は室温で例えば2.9×104Ω・cmであった。酸化第2スズナノ粒子の水熱合成時に、反応溶液に3塩化アンチモンを含有させると、Sbドープの酸化第2スズナノ粒子を合成できた。そしてSnO21モルに対し2.4mol%のSbをドープすると、色調は青色となり、室温での抵抗率は例えば1.3×101Ω・cmとなり、アンチモンのドーピングにより1/1000以下に減少した。 The stannic oxide of the present invention becomes an ink material for printing a transparent conductive film when doped with antimony or the like in addition to the gas sensor material. Since the shape is constant and there are no secondary particles, a dense film can be obtained and the resistance becomes low. The stannic oxide composed of cubic nanoparticles was white in antimony free, and the resistivity of the molded body was, for example, 2.9 × 10 4 Ω · cm at room temperature. In the hydrothermal synthesis of stannic oxide nanoparticles, when antimony trichloride was added to the reaction solution, Sb-doped stannic oxide nanoparticles could be synthesized. When 2.4 mol% Sb was doped with respect to 1 mol of SnO 2 , the color tone became blue, and the resistivity at room temperature became, for example, 1.3 × 10 1 Ω · cm, and decreased to 1/1000 or less by doping with antimony.

SnO2ナノ粒子は触媒、あるいは触媒の担体として用いることができる。例えば2-プロパノールにNi(acac)2(acacはアセチルアセトナト)を溶解させた溶液に、酸化第2スズのナノ粒子を分散させ、還流下に例えば82℃でNaBH4等の還元剤を加え、SnO21モル対し0.5-5mol%程度の金属Ni等を担持させた触媒を調製した。なおこの明細書において、1mol%はSnO21モルに対する0.01molを意味する。 SnO 2 nanoparticles can be used as a catalyst or a catalyst support. For example, stannic oxide nanoparticles are dispersed in a solution of Ni (acac) 2 (acac is acetylacetonato) dissolved in 2-propanol, and a reducing agent such as NaBH 4 is added at 82 ° C. under reflux. Then, a catalyst supporting about 0.5-5 mol% of metal Ni or the like with respect to 1 mol of SnO 2 was prepared. In this specification, 1 mol% means 0.01 mol with respect to 1 mol of SnO 2 .

ロッド状酸化第2スズナノ粒子のTEM像を示す図Diagram showing TEM image of rod-shaped stannic oxide nanoparticles ロッド状酸化第2スズナノ粒子のXRDパターンを示す図Diagram showing XRD pattern of rod-shaped stannic oxide nanoparticles 立方体状酸化第2スズナノ粒子のTEM像を示す図Diagram showing TEM image of cubic stannic oxide nanoparticles 立方体状酸化第2スズナノ粒子のXRDパターンを示す図Diagram showing XRD pattern of cubic stannic oxide nanoparticles ロッド状酸化第2スズナノ粒子の露出面の帰属を示す図The figure which shows attribution of the exposed surface of a rod-shaped stannic oxide nanoparticle 立方体状酸化第2スズナノ粒子の露出面の帰属を示す図The figure which shows attribution of the exposed surface of cubic stannic oxide nanoparticles ガスセンサの斜視図Perspective view of gas sensor 酸化第2スズナノ粒子のガス感度(乾燥空気中)を示す図で、(a)は200ppmのH2への感度を、(b)は200ppmのCOへの感度を、(c)は100ppmのエタノールへの感度を、(d)は50ppmのトルエンへの感度を示すThe figure shows the gas sensitivity (in dry air) of stannic oxide nanoparticles, (a) sensitivity to 200 ppm H2, (b) sensitivity to 200 ppm CO, and (c) to 100 ppm ethanol. (D) shows the sensitivity to 50 ppm of toluene. ロッド状 酸化第2スズナノ粒子(Pd無担持のものと、Pdを0.5mol%/SnO2担持のもの、及びPdを1.0mol%/SnO2担持のもの)のガス感度(乾燥空気中)を示す図で、(a)は200ppmのH2への感度を、(b)は200ppmのCOへの感度を、(c)は100ppmのエタノールへの感度を示すShows gas sensitivity (in dry air) of rod-shaped stannic oxide nanoparticles (Pd not supported, Pd 0.5 mol% / SnO 2 supported, and Pd 1.0 mol% / SnO 2 supported) In the figure, (a) shows the sensitivity to 200 ppm of H2, (b) shows the sensitivity to 200 ppm of CO, and (c) shows the sensitivity to 100 ppm of ethanol. ロッド状酸化第2スズナノ粒子の、乾燥空気中(a)、及び湿潤空気中(b)でのガス感度を示す図Diagram showing gas sensitivity of rod-shaped stannic oxide nanoparticles in dry air (a) and wet air (b)

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

合成例1: ロッド状酸化スズナノ粒子の合成
塩化第二スズ五水和物 (3.5 g, 10.0 mmol) を 3.0 mol/L 塩酸水溶液に室温で溶解し、メスフラスコを用いて総量を 100 mL とすることで、塩化第二スズを 0.10 mol/L 含む 3.0 mol/L 塩酸水溶液 (Sn 塩酸溶液) 100 mL を調製した。ついで,氷浴を用いて 上記のSn 溶液 100 mL を 0 ℃に冷却したのち、トリエタノールアミン (和光純薬工業製) 33 mL (250 mmol) を撹拌しながらゆっくり滴下した。滴下後、混合溶液にイオン交換水を加えて、混合溶液の容量を 200 mL に調整した。この際、溶液の pH は 0.40 であった。得られた混合溶液を内容積 23 mL のテトラフルオロエチレン内筒製オートクレーブに 10 mL ずつ分注し (計 20 本)、密栓後、200 ℃ のオーブン中にて、48 時間加熱静置した。水熱反応温度は160℃以上250℃が好ましく、反応時間は1-120時間が好ましい。
Synthesis Example 1: Synthesis of rod-shaped tin oxide nanoparticles Dissolve stannic chloride pentahydrate (3.5 g, 10.0 mmol) in a 3.0 mol / L aqueous hydrochloric acid solution at room temperature, and make up the total volume to 100 mL using a volumetric flask. Thus, 100 mL of a 3.0 mol / L hydrochloric acid aqueous solution (Sn hydrochloric acid solution) containing 0.10 mol / L of stannic chloride was prepared. Next, 100 mL of the above Sn solution was cooled to 0 ° C. using an ice bath, and 33 mL (250 mmol) of triethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) was slowly added dropwise with stirring. After the dropwise addition, ion exchange water was added to the mixed solution to adjust the volume of the mixed solution to 200 mL. At this time, the pH of the solution was 0.40. The obtained mixed solution was dispensed into an autoclave made of tetrafluoroethylene inner cylinder having an inner volume of 23 mL (20 in total), sealed, and then left to stand in an oven at 200 ° C. for 48 hours. The hydrothermal reaction temperature is preferably 160 ° C. or higher and 250 ° C., and the reaction time is preferably 1-120 hours.

加熱処理後のオートクレーブを冷水にて冷却後、得られた懸濁分散液に対し (計 20本)、遠心分離機を用いて固液分離することにより固形分を分離回収した。この際、分離条件は 18,000 rpm で 10 分間とした。回収した固形分にイオン交換水 20 mL を加え、超音波分散処理を行った後、前記と同条件の遠心分離操作により固液分離を行った。この操作を2回繰り返すことで固形分の洗浄を行った。得られた固形分を再びイオン交換水に超音波分散後、凍結乾燥を行うことにより、合成例1に係る SnO2 ナノ粒子が単分散した白色粉末を得た。 The autoclave after the heat treatment was cooled with cold water, and the resulting suspension dispersion (20 in total) was subjected to solid-liquid separation using a centrifuge to separate and recover the solid content. The separation conditions were 18,000 rpm for 10 minutes. 20 mL of ion-exchanged water was added to the collected solid content, and after ultrasonic dispersion treatment, solid-liquid separation was performed by centrifugation under the same conditions as described above. The solid content was washed by repeating this operation twice. The obtained solid content was again ultrasonically dispersed in ion-exchanged water and then freeze-dried to obtain a white powder in which SnO 2 nanoparticles according to Synthesis Example 1 were monodispersed.

透過型電子顕微鏡 (TEM)により、合成例1により得られたSnO2 粉末の形状観察を行った。得られた TEM 像を図1に示す。図1より、SnO2粉末の粒子形状は、ロッド状と判定された。SnO2 粉末の粉末X線回折測定を行った。結果を図2に示し、得られた回折パターンは正方晶ルチル型の SnO2 の回折パターンと一致しており、正方晶系を有する SnO2 の単一組成と同じ結晶構造であることが判明した。X線回折の半値幅から求めた結晶子径と、TEM画像から得られた粒子径とを比較することで、ロッド状の1次粒子は単一の結晶子から成ることが判明し、またTEM画像には2次粒子は見られず、結晶子から成る1次粒子が単分散していることが判明した。 The shape of the SnO 2 powder obtained in Synthesis Example 1 was observed with a transmission electron microscope (TEM). The obtained TEM image is shown in FIG. From FIG. 1, it was determined that the particle shape of the SnO 2 powder was rod-shaped. Powder X-ray diffraction measurement of SnO 2 powder was performed. The results are shown in FIG. 2, and the obtained diffraction pattern coincides with the diffraction pattern of tetragonal rutile SnO 2 , and it was found that the crystal structure is the same as that of a single composition of tetragonal SnO 2 . . By comparing the crystallite diameter obtained from the half width of X-ray diffraction with the particle diameter obtained from the TEM image, it was found that the rod-shaped primary particles consist of a single crystallite. No secondary particles were seen in the image, and it was found that primary particles composed of crystallites were monodispersed.

合成例2: 立方体型酸化スズナノ粒子の合成
塩化第二スズ五水和物 (1.75 g, 5.0 mmol) を 3.0 mol/L 塩酸水溶液に室温で溶解し、メスフラスコを用いて総量を 50 mL とすることで、塩化第二スズを 0.10 mol/L 含む 3.0 mol/L 塩酸水溶液 (Sn 塩酸溶液) 50 mL を調製した。ついで,氷浴を用いて上記の Sn 溶液 50 mL を 0 ℃に冷却したのち、エチレンジアミン (1,2-ジアミノエタン, 和光純薬工業製) 4.4 mL (65 mmol) を撹拌しながら滴下した。滴下後、混合溶液に 6.0 mol/L 塩酸水溶液を 0.60 mL 添加し、イオン交換水を加えて、混合溶液の容量を 100 mL に調整した。得られた混合溶液を内容積 23 mL のテトラフルオロエチレン内筒製オートクレーブに 10 mL ずつ分注し (計5本)、密栓後、200 ℃ のオーブン中にて、48 時間加熱静置した。水熱反応温度は160℃以上250℃が好ましく、反応時間は1-120時間が好ましい。
Synthesis Example 2: Synthesis of Cubic Tin Oxide Nanoparticles Stannic chloride pentahydrate (1.75 g, 5.0 mmol) is dissolved in 3.0 mol / L aqueous hydrochloric acid solution at room temperature, and the total volume is adjusted to 50 mL using a volumetric flask. Thus, 50 mL of a 3.0 mol / L hydrochloric acid aqueous solution (Sn hydrochloric acid solution) containing 0.10 mol / L of stannic chloride was prepared. Next, 50 mL of the above Sn solution was cooled to 0 ° C. using an ice bath, and then 4.4 mL (65 mmol) of ethylenediamine (1,2-diaminoethane, manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise with stirring. After dropping, 0.60 mL of 6.0 mol / L hydrochloric acid aqueous solution was added to the mixed solution, and ion exchange water was added to adjust the volume of the mixed solution to 100 mL. The obtained mixed solution was dispensed into an autoclave made of tetrafluoroethylene inner cylinder having an internal volume of 23 mL (5 bottles in total), sealed, and then left to stand in an oven at 200 ° C. for 48 hours. The hydrothermal reaction temperature is preferably 160 ° C. or higher and 250 ° C., and the reaction time is preferably 1-120 hours.

加熱処理後のオートクレーブを冷水にて冷却後、得られた懸濁分散液に対し (計5本)、遠心分離機を用いて固液分離することにより固形分を分離回収した。この際、分離条件は 18,000 rpm で 10 分間とした。回収した固形分にイオン交換水 20 mL を加え、超音波分散処理を行った後、前記と同条件の遠心分離操作により固液分離を行った。この操作を2回繰り返すことで固形分の洗浄を行った。得られた固形分を再びイオン交換水に超音波分散後、凍結乾燥を行うことにより、合成例2に係る SnO2 ナノ粒子が単分散した白色粉末を得た。 The autoclave after the heat treatment was cooled with cold water, and the resulting suspension dispersion (total of 5) was subjected to solid-liquid separation using a centrifuge to separate and recover the solid content. The separation conditions were 18,000 rpm for 10 minutes. 20 mL of ion-exchanged water was added to the collected solid content, and after ultrasonic dispersion treatment, solid-liquid separation was performed by centrifugation under the same conditions as described above. The solid content was washed by repeating this operation twice. The obtained solid content was again ultrasonically dispersed in ion-exchanged water and then freeze-dried to obtain a white powder in which SnO 2 nanoparticles according to Synthesis Example 2 were monodispersed.

透過型電子顕微鏡 (TEM)により、合成例2に係る SnO2 粉末の形状観察を行った。得られた TEM 像を図3に示す。下記により、SnO2粉末の粒子形状は、立方体形状と判定された。
SnO2 粉末の平均粒子径は、当該 TEM 写真上で重なり合っていない SnO2 粒子(一次粒子)100 個について、当該粒子の立方体の一辺を計測し、その平均値を計算することにより算出した。その結果、平均粒子径は、12.9 nm であった。この際、平均粒子径を求めた粒子 55 個の粒子径から計算した標準偏差は 2.0nm であった。標準偏差を平均粒子径で除して求めた変動係数は 15% であった。
The shape of the SnO 2 powder according to Synthesis Example 2 was observed with a transmission electron microscope (TEM). The obtained TEM image is shown in FIG. From the following, the particle shape of the SnO 2 powder was determined to be a cubic shape.
The average particle diameter of the SnO 2 powder was calculated by measuring one side of the cube of 100 SnO 2 particles (primary particles) that do not overlap on the TEM photograph and calculating the average value. As a result, the average particle size was 12.9 nm. At this time, the standard deviation calculated from the particle size of 55 particles whose average particle size was obtained was 2.0 nm. The coefficient of variation obtained by dividing the standard deviation by the average particle size was 15%.

SnO2 粉末の粉末 X 線回折測定を行った。結果を図4に示し、得られた回折パターンは正方晶ルチル型の SnO2 の回折パターンと一致しており、正方晶系を有する SnO2 の単一組成と同じ結晶構造であることが判明した。さらに、2θ角で 26.5 °(CuKa1線源)にピークが現れる (110) 回折ピークについて回折ピークの強度 Int.(110) と、半価幅 B とを算出し、シェラーの式 Dx=0.94λ/Bcosθ(但し、Dxは結晶子の大きさ、λは測定に用いたX線の波長 (CuKa1線源)、B は回折ピークの半価幅、θは回折ピークのブラッグ角である。)より、合成例2に係るSnO2粉末の結晶子径を求めたところ、12.7 nm であった。 Powder X-ray diffraction measurement of SnO 2 powder was performed. The results are shown in FIG. 4, and the obtained diffraction pattern is consistent with the diffraction pattern of tetragonal rutile SnO 2 , and was found to have the same crystal structure as a single composition of tetragonal SnO 2 . . Furthermore, a peak appears at 26.5 ° (CuKa1 source) at a 2θ angle. (110) The diffraction peak intensity Int. (110) and half-value width B are calculated for the diffraction peak, and Scherrer's equation Dx = 0.94λ. / Bcosθ (where Dx is the crystallite size, λ is the X-ray wavelength used for the measurement (CuKa1 source), B is the half-value width of the diffraction peak, and θ is the Bragg angle of the diffraction peak). The crystallite diameter of the SnO 2 powder according to Synthesis Example 2 was determined to be 12.7 nm.

(TEM写真より求めた平均粒子径)/(XRD回折ピークから求めた結晶子径)の値は、1.0 であった。このことは、見かけの平均粒径と結晶子径が等しいことを示している。すなわち本手法により合成されたSnO2 ナノ粒子は高い結晶性を有することが示唆された。 The value of (average particle diameter determined from TEM photograph) / (crystallite diameter determined from XRD diffraction peak) was 1.0. This indicates that the apparent average particle diameter is equal to the crystallite diameter. In other words, it was suggested that SnO 2 nanoparticles synthesized by this method have high crystallinity.

ロッド状酸化スズナノ粒子の成長面の帰属
高分解能 TEM 観察により、合成例1により合成したロッド状酸化スズナノ粒子の露出面の帰属を行った。結果を図5に示す。ロッドの長軸および短軸に平行な面の面間隔はそれぞれ 0.335 nm および 0.316 nmであった。これらの面間隔はそれぞれ正方晶ルチル型の SnO2 の (110) 面および (001) 面の格子面間隔である 0.3351 nm および 0.3187 nm に極めて近い値であった。以上のことから、ロッド状酸化スズナノ粒子の側面での露出面は (110) 面であると帰属された。
Assignment of growth surface of rod-shaped tin oxide nanoparticles By high-resolution TEM observation, attribution of the exposed surface of the rod-shaped tin oxide nanoparticles synthesized in Synthesis Example 1 was performed. The results are shown in FIG. The spacing between the surfaces parallel to the major and minor axes of the rod was 0.335 nm and 0.316 nm, respectively. These interplanar spacings were extremely close to the 0.3351 nm and 0.3187 nm lattice spacings of the (110) and (001) planes of tetragonal rutile SnO 2 , respectively. From the above, it was attributed that the exposed surface on the side surface of the rod-shaped tin oxide nanoparticles was the (110) surface.

立方体型酸化スズナノ粒子の成長面の帰属
高分解能 TEM 観察により、合成例2により合成した立方体型酸化スズナノ粒子の露出面の帰属を行った。結果を図6に示す。a- 軸および b- 軸方向それぞれの格子面間隔はいずれも 0.335 nm であり、これは、正方晶ルチル型の SnO2 の (110) 面の格子面間隔 0.3351 nm に一致した。この際、ふたつの (110) に垂直となる (001) 面が立方体型酸化スズナノ粒子の露出面となると帰属された。
Assignment of growth surface of cubic tin oxide nanoparticles By high-resolution TEM observation, the exposure surface of the cubic tin oxide nanoparticles synthesized in Synthesis Example 2 was assigned. The results are shown in FIG. The lattice spacing in each of the a-axis and b-axis directions was 0.335 nm, which coincided with the lattice spacing of the (110) plane of tetragonal rutile SnO 2 of 0.3351 nm. At this time, it was attributed that two (001) planes perpendicular to (110) were exposed surfaces of cubic tin oxide nanoparticles.

酸化スズナノ粒子へのパラジウムナノ粒子担持
合成例1,2で調製した酸化スズナノ粒子へのパラジウムナノ粒子の担持は以下の手順により行った。まず、塩化パラジウム (0.177 g, 1.0 mmol) を 0.10 mol/L の塩酸に溶解し、メスフラスコを用いて総量を 10 mL とすることにより、塩化パラジウムを 0.10 mol/L 含む 0.10 mol/L 塩酸水溶液を調製した。ついで、合成例1もしくは2で調製した酸化スズナノ粒子 (250 mg, 0.60 mmol) を秤量し、イオン交換水 10 mL に加え、超音波分散器を用いて酸化スズナノ粒子の水分散液を得た。次いで、先に調製しておいた塩化パラジウムを 0.10 mol/L 含む 0.10 mol/L 塩酸水溶液を加えた。この際の添加量は 30 mL もしくは 60 mL とすることで、パラジウムのスズに対する担持量がそれぞれ 0.50 もしくは 1.0 mol% となるようにした。
Palladium nanoparticles supported on tin oxide nanoparticles The palladium nanoparticles were supported on the tin oxide nanoparticles prepared in Synthesis Examples 1 and 2 according to the following procedure. First, palladium chloride (0.177 g, 1.0 mmol) was dissolved in 0.10 mol / L hydrochloric acid, and the total volume was adjusted to 10 mL using a volumetric flask, so that 0.10 mol / L hydrochloric acid aqueous solution containing 0.10 mol / L of palladium chloride was used. Was prepared. Subsequently, the tin oxide nanoparticles (250 mg, 0.60 mmol) prepared in Synthesis Example 1 or 2 were weighed, added to 10 mL of ion exchange water, and an aqueous dispersion of tin oxide nanoparticles was obtained using an ultrasonic disperser. Next, a 0.10 mol / L aqueous hydrochloric acid solution containing 0.10 mol / L of palladium chloride prepared previously was added. The amount added at this time was 30 mL or 60 mL, so that the supported amount of palladium on tin was 0.50 or 1.0 mol%, respectively.

得られた混合分散液にエタノールを 0.50 mL 加えたのち、分散液の pH が 2.0 になるように 1.0 mol/L の塩酸水溶液を滴下した。この際、分散液の pH は pH メーターによりモニターした。このようにして得られた分散液を石英製試験管に移し、磁気攪拌子を加えた後、セプタムキャップを用いて試験管を密封した。ついで、試験管の内容物に対し、高圧水銀灯を2時間、室温で照射した。この際、磁気攪拌子を用いて激しく撹拌した。高圧水銀灯照射後、遠心分離機を用いて分散液を固?液分離した。得られた固相を回収したのち、イオン交換水への分散、遠心沈降操作を2回繰り返すことで固相を洗浄した。このようにして得られた固相を 60 ℃のオーブン中で1日乾燥することで、目的としたパラジウムナノ粒子担持酸化スズナノ粒子を調製した。   After adding 0.50 mL of ethanol to the obtained mixed dispersion, 1.0 mol / L hydrochloric acid aqueous solution was added dropwise so that the pH of the dispersion was 2.0. At this time, the pH of the dispersion was monitored with a pH meter. The dispersion thus obtained was transferred to a quartz test tube, a magnetic stirrer was added, and the test tube was sealed using a septum cap. Next, the contents of the test tube were irradiated with a high-pressure mercury lamp for 2 hours at room temperature. At this time, the mixture was vigorously stirred using a magnetic stirring bar. After irradiation with a high-pressure mercury lamp, the dispersion was subjected to solid-liquid separation using a centrifuge. After the obtained solid phase was recovered, the solid phase was washed by repeating dispersion in ion-exchanged water and centrifugal sedimentation twice. The target solid phase-supported tin oxide nanoparticles were prepared by drying the solid phase thus obtained in an oven at 60 ° C. for one day.

酸化スズナノ粒子のガス感度
合成例1,2で調製した酸化スズナノ粒子、及び前記のPd担持の酸化スズナノ粒子を用いて、図7に示すガスセンサ2を作成し、ガス感度を調べた。ナノ粒子粉末をメノウ乳鉢中にて蒸留水と混ぜ合わせペーストを作製した。これを用いて、櫛形の金電極8を取り付けたアルミナ基板4上に、スクリーン印刷機によってセンサ膜6(膜厚20μm)を塗布した。櫛形電極8の線幅は180μm、電極間隔は90μmとした。10は白金線である。印刷した膜6を電気炉内にて、合成空気流通中、350℃で10時間熱処理した。
Gas Sensitivity of Tin Oxide Nanoparticles Using the tin oxide nanoparticles prepared in Synthesis Examples 1 and 2 and the Pd-supported tin oxide nanoparticles, a gas sensor 2 shown in FIG. 7 was prepared and the gas sensitivity was examined. The nanoparticle powder was mixed with distilled water in an agate mortar to prepare a paste. Using this, a sensor film 6 (film thickness 20 μm) was applied to the alumina substrate 4 on which the comb-shaped gold electrode 8 was attached by a screen printing machine. The line width of the comb-shaped electrode 8 was 180 μm, and the electrode interval was 90 μm. 10 is a platinum wire. The printed film 6 was heat-treated in an electric furnace at 350 ° C. for 10 hours while circulating synthetic air.

センサ感度の測定には、電気炉(加熱装置)を備えた一般的な流通式装置を用いた。ガスセンサ2を基準抵抗と直列につないだ回路に直流電圧を4V加え、基準抵抗の電圧を測定することで、ガスセンサ2の電気抵抗を測定した。ガスセンサ2をさらす雰囲気は、合成乾燥空気、合成乾燥空気に所定濃度の披検ガスを混合したもの、及びこれらを水中でバブリングして加湿したものとし、酸素センサと湿度センサとにより酸素濃度と相対湿度とを監視した。また被検ガスとの接触による電気抵抗変化から、ガスセンサ2のガス感度を測定した。ガス感度Sは、空気中の抵抗をRa、披検ガス中の抵抗をRgとして、S = Ra/Rgで定義した。 For the measurement of sensor sensitivity, a general flow-type device equipped with an electric furnace (heating device) was used. The electric resistance of the gas sensor 2 was measured by applying a DC voltage of 4 V to a circuit in which the gas sensor 2 was connected in series with the reference resistance and measuring the voltage of the reference resistance. The atmosphere to which the gas sensor 2 is exposed is the synthetic dry air, the synthetic dry air mixed with the test gas of a predetermined concentration, and those which are bubbled in water and humidified. The oxygen sensor and the humidity sensor The humidity was monitored. Further, the gas sensitivity of the gas sensor 2 was measured from the change in electrical resistance due to contact with the test gas. The sensitivity S is, the resistance in air R a, the resistance in披検gas as R g, defined S = R a / R g.

乾燥空気中250、300、350℃におけるガスセンサ2の感度を図8に示す。披検ガスとしては、200 ppm水素、200 ppm一酸化炭素、100 ppmエタノール、50 ppmトルエンを用いた。披検ガスは全て合成空気で希釈されているものを用いた。図8より、ガスセンサ2は非常に高いガス感度を示すことが明らかである。特にロッド状酸化スズは、エタノールに関して、250℃において4桁以上の電気抵抗変化を示しており、他のガスに対して圧倒的に高い感度、すなわち高いエタノール選択性を有することがわかる。   FIG. 8 shows the sensitivity of the gas sensor 2 at 250, 300, and 350 ° C. in dry air. The test gas used was 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, and 50 ppm toluene. The test gas used was diluted with synthetic air. From FIG. 8, it is clear that the gas sensor 2 exhibits a very high gas sensitivity. In particular, rod-shaped tin oxide shows an electric resistance change of 4 digits or more at 250 ° C. with respect to ethanol, and it is understood that it has an overwhelmingly high sensitivity to other gases, that is, high ethanol selectivity.

パラジウムナノ粒子を担持した酸化スズナノ粒子のガス感度
パラジウムナノ粒子担持酸化スズのガス感度を調べた。センサ感度の測定は前記の手法で行った。図9に、ロッド状酸化スズナノ粒子と、それにパラジウムナノ粒子を担持したもののガス感度を示す。披検ガスとしては、200 ppm水素、200 ppm一酸化炭素、100 ppmエタノールを用いた。一酸化炭素に対しては、パラジウム担持によりガス感度が減少した。これは、センサ膜6表面における一酸化炭素の燃焼がパラジウムによって促進されたためと考えられる。一方、水素とエタノールに対しては、パラジウム担持によって感度が上昇した。特に、エタノールに対しては、250℃において5桁近くの電気抵抗変化が生じており、パラジウム担持によって、エタノール選択性がさらに向上した。
Palladium nanoparticles were investigated gas sensitivity of the gas sensitivity palladium nanoparticles supported tin oxide loaded with tin oxide nanoparticles. Sensor sensitivity was measured by the method described above. FIG. 9 shows the gas sensitivity of rod-shaped tin oxide nanoparticles and palladium nanoparticles supported thereon. The test gas was 200 ppm hydrogen, 200 ppm carbon monoxide, and 100 ppm ethanol. For carbon monoxide, the gas sensitivity decreased due to palladium loading. This is presumably because the combustion of carbon monoxide on the surface of the sensor film 6 was promoted by palladium. On the other hand, for hydrogen and ethanol, the sensitivity increased due to palladium loading. In particular, with respect to ethanol, an electric resistance change of about 5 digits occurred at 250 ° C., and the ethanol selectivity was further improved by the palladium loading.

本材料の実用性を明らかにするために、湿潤空気中(水中ににバブリングして加湿)でのガス感度を測定した。披検ガスとしては、200 ppm水素、200 ppm一酸化炭素、100 ppmエタノール、40 ppmホルムアルデヒドを用いた。図10(a)に、乾燥空気中でのガス感度を、(b)に相対湿度45%でのガス感度を示す。ガス感度は乾燥空気中に比べて大きく減少したが、エタノールに対する感度は250℃において80程度あり、実用上は問題ない充分な感度であることがわかった。さらに、湿潤空気中でも、エタノールに対する高い選択性が維持されていることも判明した。このように、パラジウム担持ロッド状酸化スズが水蒸気の妨害を受けずにエタノールを検知できることから、ガスセンサ2は呼気中のエタノール検知に非常に有効である。   In order to clarify the practicality of this material, the gas sensitivity in wet air (bubbling in water and humidifying) was measured. The test gas was 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, and 40 ppm formaldehyde. FIG. 10A shows gas sensitivity in dry air, and FIG. 10B shows gas sensitivity at a relative humidity of 45%. Although the gas sensitivity was greatly reduced compared with that in dry air, the sensitivity to ethanol was about 80 at 250 ° C., and it was found that the sensitivity was sufficient with no problem in practical use. It has also been found that high selectivity to ethanol is maintained even in humid air. As described above, since the palladium-carrying rod-shaped tin oxide can detect ethanol without being disturbed by water vapor, the gas sensor 2 is very effective for detecting ethanol in exhaled breath.

2 ガスセンサ
4 アルミナ基板
6 センサ膜
8 金電極
10 白金線
2 Gas sensor 4 Alumina substrate 6 Sensor film 8 Gold electrode
10 Platinum wire

Claims (3)

ロッド状のSnO2結晶子から成り、前記ロッドの側面はSnO2結晶の(110)面であり、かつSnO2結晶子が単分散状態にある酸化第2スズ材料。 A stannic oxide material comprising rod-shaped SnO 2 crystallites, the side surfaces of the rod being the (110) plane of SnO 2 crystals, and the SnO 2 crystallites being in a monodispersed state. Sn4+イオンを含みかつ強酸性の水溶液を、160℃-250℃の反応温度でかつ1時間-120時間の反応時間の間、加熱することにより、
ロッド状でかつロッドの側面にSnO2結晶の(110)面が露出しているSnO2結晶子を単分散状態で水熱合成し、もしくは立方体状でかつ表面がSnO2結晶の(001)面であるSnO2結晶子を単分散状態で水熱合成する、酸化第2スズ材料の合成方法。
By heating a strongly acidic aqueous solution containing Sn 4+ ions at a reaction temperature of 160 ° C.-250 ° C. and for a reaction time of 1 hour-120 hours ,
Rod a and the side surface of the rod SnO 2 crystal (110) plane of SnO 2 crystallite exposed to hydrothermal synthesis at monodisperse or cubic shape a and the surface of the SnO 2 crystal (001) plane A method for synthesizing a stannic oxide material, wherein the SnO 2 crystallite is hydrothermally synthesized in a monodispersed state.
請求項1の酸化第2スズ材料から成る、ガスセンサ材料。   A gas sensor material comprising the stannic oxide material of claim 1.
JP2014147349A 2014-07-18 2014-07-18 Novel stannic oxide material, synthesis method thereof, and gas sensor material Active JP6315686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147349A JP6315686B2 (en) 2014-07-18 2014-07-18 Novel stannic oxide material, synthesis method thereof, and gas sensor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147349A JP6315686B2 (en) 2014-07-18 2014-07-18 Novel stannic oxide material, synthesis method thereof, and gas sensor material

Publications (2)

Publication Number Publication Date
JP2016024001A JP2016024001A (en) 2016-02-08
JP6315686B2 true JP6315686B2 (en) 2018-04-25

Family

ID=55270882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147349A Active JP6315686B2 (en) 2014-07-18 2014-07-18 Novel stannic oxide material, synthesis method thereof, and gas sensor material

Country Status (1)

Country Link
JP (1) JP6315686B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104813A1 (en) * 2015-12-17 2017-06-22 国立研究開発法人産業技術総合研究所 Composite particles and method for manufacturing same
EP3475218A4 (en) * 2016-06-27 2019-05-01 Okinawa Institute of Science and Technology School Corporation Ultrasensitive nitrogen dioxide gas sensor based on iron nanocubes

Also Published As

Publication number Publication date
JP2016024001A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Yu et al. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity
Liu et al. Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template
US9933382B2 (en) Gas sensor element
Arya et al. Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route
Susanti et al. WO 3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor
JP6315686B2 (en) Novel stannic oxide material, synthesis method thereof, and gas sensor material
Fardindoost et al. Detecting hydrogen using graphene quantum dots/WO3 thin films
JP2017510445A (en) Nanoparticles based on platinum and rare earth oxides and methods for their production
Jamalabadi et al. Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network
TWI618290B (en) Method for producing metal nanoparticle, method for producing carrier on which metal nanoparticle is placed, and carrier for mounting metal nanoparticle
Liu et al. Awakening the photoelectrochemical activity of α‐SnWO4 photoanodes with extraordinary crystallinity induced by reductive annealing
JP2017016853A (en) Carrier material for electrode and production method therefor
US20170146504A1 (en) Gas Sensor Element
Xie et al. Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes
Zhang et al. Enhanced triethylamine sensing characteristics of In-doped WO3 cubic nanoblocks at low operating temperature
Go et al. Solid solution precursors to gadolinia-doped ceria prepared via a low-temperature solution route
Fu et al. A first blue fluorescence composite film based on graphitic carbon nitride nanosheets/polyoxometalate for application in reversible electroluminescence switching
JP4869926B2 (en) Porous alumina particles and method for producing the same
Borhade et al. Synthesis, characterization and gas sensing performance of nano-crystalline ZrO 2, 5% Y/ZrO 2 and Ag–5% Y/ZrO 2 catalyst
JP6367666B2 (en) Oxygen sensor
CN114280111B (en) Cerium doped tungsten oxide composite material, hydrogen sulfide sensor and preparation method
Bai et al. Simultaneous determination of Cd (II) and Pb (II) using electrode modified by FeAl 2 O 4-AlOOH-reduced graphene oxide hybrids
Joseph et al. Electrocatalytic activity enhancement using graphene-metal oxide nanocomposites for the ultra low level detection of biomolecules
Wang et al. Effect of Ce3+ and Pd2+ doping on coral-like nanostructured SnO2 as acetone gas sensor
JP4958088B2 (en) Gas sensor element using cerium oxide thick film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180323

R150 Certificate of patent or registration of utility model

Ref document number: 6315686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250