JP6314043B2 - Storage battery inspection method and storage battery inspection device - Google Patents

Storage battery inspection method and storage battery inspection device Download PDF

Info

Publication number
JP6314043B2
JP6314043B2 JP2014131559A JP2014131559A JP6314043B2 JP 6314043 B2 JP6314043 B2 JP 6314043B2 JP 2014131559 A JP2014131559 A JP 2014131559A JP 2014131559 A JP2014131559 A JP 2014131559A JP 6314043 B2 JP6314043 B2 JP 6314043B2
Authority
JP
Japan
Prior art keywords
storage battery
positive electrode
potential
deterioration
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014131559A
Other languages
Japanese (ja)
Other versions
JP2016009659A (en
Inventor
弘貴 西
弘貴 西
大輔 木庭
大輔 木庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2014131559A priority Critical patent/JP6314043B2/en
Publication of JP2016009659A publication Critical patent/JP2016009659A/en
Application granted granted Critical
Publication of JP6314043B2 publication Critical patent/JP6314043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、蓄電池の検査方法及び蓄電池の検査装置に関する。   The present invention relates to a storage battery inspection method and a storage battery inspection apparatus.

ニッケル水素蓄電池等の蓄電池は、例えば充放電を繰り返すことにより、容量の低下や、内部抵抗の増大等の電池特性の劣化が徐々に進行することが知られている。充放電が繰り返された蓄電池の劣化状態を検査するために、種々の検査方法及び検査装置が提案されている。   It is known that a storage battery such as a nickel metal hydride storage battery gradually deteriorates in battery characteristics such as a decrease in capacity and an increase in internal resistance due to repeated charging and discharging, for example. In order to inspect the deterioration state of a storage battery that has been repeatedly charged and discharged, various inspection methods and inspection apparatuses have been proposed.

放電容量の低下を検出するための方法として、検査対象とする蓄電池を、放電終止電圧よりも高い電圧まで放電させ、放電中に得られた電圧、温度、及び放電に要した時間から放電容量を推定する方法が提案されている(例えば、特許文献1参照)。   As a method for detecting the decrease in the discharge capacity, the storage battery to be inspected is discharged to a voltage higher than the discharge end voltage, and the discharge capacity is calculated from the voltage, temperature, and time required for the discharge. An estimation method has been proposed (see, for example, Patent Document 1).

特開2000−251948号公報JP 2000-251948 A

しかし、上述した方法では、蓄電池の劣化状態についておおよその判断を下すことができるが、その劣化要因までは判定することができない。
本発明は、上記実情を鑑みてなされたものであり、その目的は、劣化要因を特定した劣化状態の判定を行うことができる蓄電池の検査方法及び蓄電池の検査装置を提供することにある。
However, with the method described above, an approximate determination can be made regarding the deterioration state of the storage battery, but the deterioration factor cannot be determined.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a storage battery inspection method and a storage battery inspection apparatus capable of determining a deterioration state in which a deterioration factor is specified.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する蓄電池の検査方法は、主活物質と添加剤としての金属化合物とを含む蓄電池の検査方法であって、前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、前記蓄電池を、正極電位が前記金属化合物平衡電位以下の範囲において放電し、正極電位の変化率dV/dtに対する放電電気量の変化率dQ/dtの割合であるdQ/dVを演算し、前記dQ/dVの前記正極電位に対する変化量から前記蓄電池の劣化を判定する。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
A storage battery inspection method that solves the above problem is a storage battery inspection method that includes a main active material and a metal compound as an additive, and the metal compound has an equilibrium potential for a reduction reaction that proceeds irreversibly. And having a metal compound equilibrium potential less than the equilibrium potential of the main active material, discharging the storage battery in a range where the positive electrode potential is less than or equal to the metal compound equilibrium potential, and the amount of discharge electricity with respect to the rate of change dV / dt of the positive electrode potential. DQ / dV, which is a ratio of the change rate dQ / dt, is determined, and deterioration of the storage battery is determined from the amount of change of dQ / dV with respect to the positive electrode potential.

上記課題を解決する蓄電池の検査装置は、ニッケル酸化物と導電性を有する金属化合物とを含む正極を有するニッケル水素蓄電池の検査装置であって、前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、前記検査装置は、前記蓄電池を放電する電池放電部と、前記蓄電池の正極電位を測定する電位測定部と、前記蓄電池の放電容量を測定する容量測定部と、前記蓄電池の正極電位が前記金属化合物平衡電位以下の範囲で放電された際の正極電位の変化率dV/dtに対する蓄電量の変化率dQ/dtの割合であるdQ/dVを算出する演算部と、前記dQ/dVの前記正極電位に対する変化量から前記蓄電池の劣化を判定する判定部とを備える。   An inspection apparatus for a storage battery that solves the above problem is an inspection apparatus for a nickel-metal hydride storage battery having a positive electrode containing nickel oxide and a conductive metal compound, wherein the metal compound is a reduction reaction that proceeds irreversibly. And the inspection apparatus includes a battery discharge unit for discharging the storage battery and a potential measurement unit for measuring the positive electrode potential of the storage battery. A capacity measuring unit for measuring the discharge capacity of the storage battery; and a rate of change dQ of the storage amount relative to a rate of change dV / dt of the positive electrode potential when the positive electrode potential of the storage battery is discharged within the range of the metal compound equilibrium potential or less. A calculation unit that calculates dQ / dV, which is a ratio of / dt, and a determination unit that determines deterioration of the storage battery from the amount of change of dQ / dV with respect to the positive electrode potential.

添加剤としての金属化合物の平衡電位を上回る正極電位で電池が作動している場合、劣化のない蓄電池においては、金属化合物はほぼ還元前の状態で存在している。しかし、電池の使用状況等によって金属化合物が還元された場合、金属化合物の還元反応は非可逆であるために還元前の金属化合物量は減少し、還元前の金属化合物によって発揮される機能が低下する。上記方法又は構成によれば、蓄電池の放電を行うことによって、金属化合物平衡電位以下の範囲においてその金属化合物の還元反応に基づくdQ/dVが演算される。このdQ/dVの変化量は、金属化合物が還元された量と相関性があるため、dQ/dVの変化量から、検査直前における還元前の金属化合物の量を推定することができる。このため、還元前の金属化合物の減少に劣化要因を特定するとともに、dQ/dVの変化量から推定される還元前の金属酸化物の量に応じて劣化の程度を判定することができる。   When the battery is operating at a positive electrode potential that exceeds the equilibrium potential of the metal compound as an additive, the metal compound is present in a substantially unreduced state in the storage battery without deterioration. However, when the metal compound is reduced depending on the battery usage, etc., the reduction reaction of the metal compound is irreversible, so the amount of the metal compound before reduction is reduced and the function exhibited by the metal compound before reduction is reduced. To do. According to the above method or configuration, by discharging the storage battery, dQ / dV based on the reduction reaction of the metal compound is calculated in the range of the metal compound equilibrium potential or less. Since the amount of change in dQ / dV is correlated with the amount of reduction of the metal compound, the amount of metal compound before reduction immediately before the inspection can be estimated from the amount of change in dQ / dV. Therefore, it is possible to specify the deterioration factor in the reduction of the metal compound before reduction, and to determine the degree of deterioration according to the amount of the metal oxide before reduction estimated from the change amount of dQ / dV.

この蓄電池の検査方法について、前記dQ/dVの変化量の最大値と前記蓄電池の劣化の程度とを関連付けた相関データに基づき、演算した前記dQ/dVの変化量の最大値に対応する劣化の程度を判定することが好ましい。   About this storage battery inspection method, based on the correlation data that correlates the maximum value of the change amount of the dQ / dV and the degree of deterioration of the storage battery, the deterioration corresponding to the calculated maximum value of the change amount of the dQ / dV. It is preferable to determine the degree.

上記方法によれば、dQ/dVの変化量の最大値を用いて、蓄電池の劣化の程度が判定される。このため、例えば予め設定された範囲におけるdQ/dVの積算値を用いる場合に比べ、特にdQ/dVの変化量が小さい場合にはバックグラウンド値等の影響を低減することができる。従って、蓄電池の劣化の程度についての誤判定を抑制することができる。   According to the above method, the degree of deterioration of the storage battery is determined using the maximum value of the change amount of dQ / dV. For this reason, compared with the case where the integrated value of dQ / dV in a preset range is used, for example, the influence of the background value can be reduced particularly when the change amount of dQ / dV is small. Therefore, erroneous determination about the degree of deterioration of the storage battery can be suppressed.

この蓄電池の検査方法について、前記主活物質がニッケル酸化物であることが好ましい。
上記方法によれば、主活物質がニッケル酸化物の劣化の程度を判定することができる。また、主活物質がニッケル酸化物であるニッケル水素蓄電池の場合、性能を向上させるための添加物として、価数が変化する金属化合物(例えばコバルト)が使用されることが多い。そのため、他の電池に比較して、本発明を好適に利用可能である。
In this storage battery inspection method, the main active material is preferably nickel oxide.
According to the above method, the main active material can determine the degree of deterioration of nickel oxide. In the case of a nickel metal hydride storage battery whose main active material is nickel oxide, a metal compound (for example, cobalt) whose valence changes is often used as an additive for improving performance. Therefore, the present invention can be suitably used as compared with other batteries.

この蓄電池の検査方法について、前記金属化合物は3価のコバルトを含むコバルト化合物であって、前記dQ/dVを演算する際は、3価のコバルト及び2価のコバルトの反応の平衡電位以下の範囲におけるdQ/dVを演算することが好ましい。   In this storage battery inspection method, the metal compound is a cobalt compound containing trivalent cobalt, and when the dQ / dV is calculated, the range is equal to or lower than the equilibrium potential of the reaction of trivalent cobalt and divalent cobalt. It is preferable to calculate dQ / dV at.

上記方法によれば、3価のコバルトの2価のコバルトへの還元反応に基づくdQ/dVが算出されるので、ニッケル水素蓄電池の3価のコバルトの減少に劣化要因を特定した劣化の程度を判定することができる。なお、ニッケル水素蓄電池の場合、導電剤であるコバルトの還元が、電池の出力に大きく影響するので、上記方法のようにコバルトの還元量を確認することは、ニッケル水素蓄電池の劣化の程度についての判定に好適である。   According to the above method, dQ / dV based on the reduction reaction of trivalent cobalt to divalent cobalt is calculated. Can be determined. In the case of a nickel metal hydride storage battery, the reduction of cobalt, which is a conductive agent, greatly affects the output of the battery. It is suitable for determination.

この蓄電池の検査方法について、前記蓄電池に挿入された参照極と当該蓄電池の正極との間の電位差を計測することにより前記蓄電池の正極電位が取得されることが好ましい。
上記方法によれば、正極電位に基づきdQ/dVが演算されるので、単電池毎に劣化の程度を判定することができる。
About this inspection method of a storage battery, it is preferable that the positive electrode potential of the storage battery is acquired by measuring a potential difference between a reference electrode inserted into the storage battery and a positive electrode of the storage battery.
According to the above method, since dQ / dV is calculated based on the positive electrode potential, the degree of deterioration can be determined for each cell.

この蓄電池の検査方法について、前記蓄電池の正極端子及び負極端子の間の電位差に基づき前記dQ/dVが算出されることが好ましい。
上記方法では、蓄電池の正極端子及び負極端子の間の電位差に基づき正極電位が算出されるので、電池内に参照極を挿入する場合に比べ、容易に検査を行うことができる。
About this storage battery inspection method, it is preferable that the dQ / dV is calculated based on a potential difference between a positive terminal and a negative terminal of the storage battery.
In the above method, since the positive electrode potential is calculated based on the potential difference between the positive electrode terminal and the negative electrode terminal of the storage battery, the inspection can be easily performed as compared with the case where the reference electrode is inserted into the battery.

この蓄電池の検査方法について、前記蓄電池を、正極電位が、電解液に含まれる水の分解が始まる下限電位よりも大きく、且つ前記金属化合物平衡電位以下の範囲において放電することが好ましい。   With respect to this storage battery inspection method, it is preferable that the storage battery is discharged in a range in which the positive electrode potential is larger than the lower limit potential at which decomposition of water contained in the electrolyte starts and is equal to or lower than the metal compound equilibrium potential.

上記方法では、蓄電池は、正極電位が電解液に含まれる水の分解が始まる下限電位よりも大きい範囲で放電されるので、電解液の分解による水素ガスの発生や、電解液の減少を抑制することができる。   In the above method, the storage battery is discharged in a range in which the positive electrode potential is larger than the lower limit potential at which water contained in the electrolytic solution starts to be decomposed, thereby suppressing the generation of hydrogen gas due to the decomposition of the electrolytic solution and the decrease in the electrolytic solution. be able to.

上記課題を解決する蓄電池の検査方法は、前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、前記蓄電池を、正極電位が前記金属化合物平衡電位以下の範囲において放電し、前記正極電位に対する正極の容量変化量から前記蓄電池の劣化を判定する。   In the storage battery inspection method for solving the above problem, the metal compound has an equilibrium potential of a reduction reaction that proceeds irreversibly and is lower than the equilibrium potential of the main active material, and the storage battery Is discharged in a range where the positive electrode potential is equal to or lower than the metal compound equilibrium potential, and the deterioration of the storage battery is determined from the amount of change in the positive electrode capacity with respect to the positive electrode potential.

上記方法によれば、金属化合物平衡電位以下の範囲で、その金属化合物の還元反応に基づく容量変化量が演算される。即ち、容量の変化量は、金属化合物が還元された量との間で相関性があるため、容量変化量から、還元前の金属化合物の量を推定することができる。このため、還元前の金属化合物の減少に劣化要因を特定して、還元前の金属酸化物の量に応じて劣化の度合いを判定することができる。   According to the above method, the amount of change in capacity based on the reduction reaction of the metal compound is calculated within the range equal to or lower than the metal compound equilibrium potential. That is, since the amount of change in capacity is correlated with the amount of reduction of the metal compound, the amount of metal compound before reduction can be estimated from the amount of change in capacity. For this reason, a deterioration factor can be specified for the reduction | decrease of the metal compound before reduction | restoration, and the degree of deterioration can be determined according to the quantity of the metal oxide before reduction | restoration.

本発明の蓄電池の検査方法及び検査装置によれば、蓄電池の劣化要因を特定した劣化状態の判定を行うことができる。   According to the storage battery inspection method and inspection apparatus of the present invention, it is possible to determine a deterioration state specifying a deterioration factor of a storage battery.

検査対象である電池モジュールの概略構成を示す斜視図。The perspective view which shows schematic structure of the battery module which is a test object. (a)はニッケル水素蓄電池の正極容量及び負極容量のバランスを示す図、(b)は複数の電池の間の容量バランスのずれを示す図。(A) is a figure which shows the balance of the positive electrode capacity | capacitance of a nickel hydride storage battery, and a negative electrode capacity | capacitance, (b) is a figure which shows the shift | offset | difference of the capacity balance between several batteries. 第1実施形態における検査装置の概略構成を示す模式図。The schematic diagram which shows schematic structure of the test | inspection apparatus in 1st Embodiment. 同実施形態における検査方法の手順を示すフローチャート。The flowchart which shows the procedure of the inspection method in the embodiment. 同実施形態の検査装置によって取得される過放電曲線を示すグラフ。The graph which shows the overdischarge curve acquired by the inspection apparatus of the embodiment. 初期品及び劣化品の正極電位に対するdQ/dV値を示すグラフ。The graph which shows the dQ / dV value with respect to the positive electrode potential of an initial stage product and a deteriorated product. 検査装置に格納されている劣化判定データを模式的に示す図。The figure which shows typically the deterioration determination data stored in the test | inspection apparatus. パルス放電を繰り返した後の初期品及び劣化品の充電状態を示すグラフ。The graph which shows the charge condition of the initial stage product and degraded product after repeating pulse discharge. 第2実施形態における検査装置の概略構成を示す模式図。The schematic diagram which shows schematic structure of the inspection apparatus in 2nd Embodiment. 同実施形態の検査装置によって取得される過放電曲線を示すグラフ。The graph which shows the overdischarge curve acquired by the inspection apparatus of the embodiment. 変形例の検査装置の概略構成を示す模式図。The schematic diagram which shows schematic structure of the inspection apparatus of a modification. 変形例の検査装置によって取得される過放電曲線を示すグラフ。The graph which shows the overdischarge curve acquired by the inspection apparatus of a modification.

(第1実施形態)
以下、蓄電池の検査方法及び検査装置について、第1実施形態を説明する。本実施形態では、検査対象の蓄電池を、ニッケル水素蓄電池に例示して説明する。また、本実施形態では、ニッケル水素蓄電池を、複数の単電池を有する電池モジュールに例示して説明する。
(First embodiment)
Hereinafter, a first embodiment of a storage battery inspection method and inspection apparatus will be described. In this embodiment, the storage battery to be inspected will be described as an example of a nickel-metal hydride storage battery. Moreover, in this embodiment, a nickel metal hydride storage battery is illustrated and demonstrated to the battery module which has several cell.

図1を参照して、電池モジュール11の概略構成について説明する。電池モジュール11は、上部開口を有する一体電槽16と、一体電槽16の上部開口を封止する蓋部17とを備えている。一体電槽16には、その内側の空間を隔壁18によって仕切ることにより、複数の電槽15が設けられている。   A schematic configuration of the battery module 11 will be described with reference to FIG. The battery module 11 includes an integrated battery case 16 having an upper opening and a lid portion 17 that seals the upper opening of the integrated battery case 16. The integrated battery case 16 is provided with a plurality of battery cases 15 by partitioning the inner space with partition walls 18.

電槽15内には、電解液とともに極板群20が収容されている。極板群20は、複数の正極板21と、複数の負極板22と、セパレータ23とを有している。正極板21及び負極板22はセパレータ23を介して交互に積層されている。また電槽15内には、正極板21の端部が接合される正極側の集電板24と、負極板22の端部が接合される負極側の集電板25とが収容されている。   In the battery case 15, an electrode plate group 20 is accommodated together with the electrolytic solution. The electrode plate group 20 includes a plurality of positive electrode plates 21, a plurality of negative electrode plates 22, and a separator 23. The positive electrode plates 21 and the negative electrode plates 22 are alternately stacked with separators 23 interposed therebetween. The battery case 15 houses a positive current collector plate 24 to which the end of the positive electrode plate 21 is joined and a negative current collector 25 to which the end of the negative plate 22 is joined. .

本実施形態では、この極板群20により単電池30が構成されるとともに、複数の正極板21により正極が構成され、複数の負極板22により負極が構成される。また、本実施形態では、6個の単電池30が一体電槽16内に設けられている。   In this embodiment, the electrode plate group 20 constitutes a single battery 30, a plurality of positive plates 21 constitute a positive electrode, and a plurality of negative plates 22 constitute a negative electrode. In the present embodiment, six unit cells 30 are provided in the integrated battery case 16.

図1中、左側上方に示すように、隔壁18の上部には単電池30の接続に用いられる接続孔26が形成されている。この接続孔26を介して、集電板24,25の上部に突設されている接続突部27,28同士がスポット溶接により接続されることによって、隣接する単電池30が電気的に直列に接続される。   As shown on the upper left side in FIG. 1, a connection hole 26 used for connecting the unit cells 30 is formed in the upper part of the partition wall 18. The connecting protrusions 27 and 28 protruding from the upper portions of the current collector plates 24 and 25 are connected to each other by spot welding through the connection holes 26, so that the adjacent unit cells 30 are electrically connected in series. Connected.

図1中、中央に示すように、一体電槽16の長手方向の両側には、一方の端の電槽15に接続された正極端子29と、他方の端の電槽15に接続された負極端子32(図3参照)がそれぞれ設けられている。正極端子29及び負極端子32には、それぞれバスバーモジュール(図示略)が接続され、各バスバーモジュールを介して、直列接続された6個の単電池30の総出力が取り出される。   As shown in the center of FIG. 1, on both sides in the longitudinal direction of the integrated battery case 16, a positive terminal 29 connected to the battery case 15 at one end and a negative electrode connected to the battery case 15 at the other end. Terminals 32 (see FIG. 3) are provided. A bus bar module (not shown) is connected to each of the positive electrode terminal 29 and the negative electrode terminal 32, and the total output of the six unit cells 30 connected in series is taken out through each bus bar module.

次に、正極及び負極について説明する。正極板21は、基材と、基材に支持された正極材を有している。正極材は、水酸化ニッケル、オキシ水酸化ニッケル等のニッケル酸化物を主成分とする正極活物質、添加剤(導電剤)としての金属化合物であるコバルトを含有する導電剤等を有する。正極活物質の放電反応は、下記の半反応式(1)で表される。充電時には、半反応式(1)の逆方向に反応が進む。   Next, the positive electrode and the negative electrode will be described. The positive electrode plate 21 has a base material and a positive electrode material supported by the base material. The positive electrode material includes a positive electrode active material mainly composed of nickel oxide such as nickel hydroxide and nickel oxyhydroxide, a conductive agent containing cobalt as a metal compound as an additive (conductive agent), and the like. The discharge reaction of the positive electrode active material is represented by the following half reaction formula (1). At the time of charging, the reaction proceeds in the reverse direction of the half reaction formula (1).

(正極)NiOOH+HO+e → Ni(OH)+OH …(1)
なお、3価のニッケル(Ni3+)から2価のニッケル(Ni2+)への還元反応、その逆の酸化反応の平衡電位(以下、Ni3+/Ni2+の平衡電位、標準電位ともいう)は、酸化水銀参照極(Hg/HgO)に対して「0.4V」である。なお、この平衡電位は、電解液のpH等に依存するため、電池の種類により異なる。従って、以下の実施形態内で用いるNi3+/Ni2+の「平衡電位」は、「0.4V」の平衡電位とする。
(Positive electrode) NiOOH + H 2 O + e → Ni (OH) 2 + OH (1)
Note that the equilibrium potential of the reduction reaction from trivalent nickel (Ni 3+ ) to divalent nickel (Ni 2+ ) and the reverse oxidation reaction (hereinafter also referred to as Ni 3+ / Ni 2+ equilibrium potential or standard potential) is , “0.4 V” with respect to the mercury oxide reference electrode (Hg / HgO). Note that this equilibrium potential depends on the pH of the electrolytic solution and so on, and thus varies depending on the type of battery. Therefore, the “equilibrium potential” of Ni 3+ / Ni 2+ used in the following embodiments is set to an equilibrium potential of “0.4 V”.

導電剤は、オキシ水酸化コバルト(CoOOH)等のコバルト化合物であり、ニッケル酸化物の表面を被覆している。出荷時の電池モジュール11においては、ニッケル酸化物の表面を被覆するコバルト化合物は、3価のコバルト(Co3+)を含む状態で存在している。導電性の高いオキシ水酸化コバルトは、正極内において導電性ネットワークを形成し、正極の利用率(「放電容量/理論容量」の百分率)を高めている。 The conductive agent is a cobalt compound such as cobalt oxyhydroxide (CoOOH) and covers the surface of the nickel oxide. In the battery module 11 at the time of shipment, the cobalt compound that coats the surface of the nickel oxide exists in a state containing trivalent cobalt (Co 3+ ). Highly conductive cobalt oxyhydroxide forms a conductive network in the positive electrode and increases the utilization factor of the positive electrode (percentage of “discharge capacity / theoretical capacity”).

予め設定された単電池30毎の作動電圧範囲内では、オキシ水酸化コバルトは安定である。これは、3価のコバルトが2価のコバルトに還元される反応及び2価のコバルトが3価のコバルトに酸化される反応の平衡電位(以下、Co3+/Co2+の平衡電位、標準電位ともいう)が、酸化水銀参照極(Hg/HgO)に対して「0.1V」であり、Ni3+/Ni2+の平衡電位よりも小さく、単電池30毎の作動電圧範囲外であるためである。なお、本実施形態では、Co3+/Co2+の平衡電位は「0.1V」である。従って、単電池30が作動電圧範囲内で作動している限り、導電剤の大半が水酸化コバルト等に還元されることはない。なお、Ni3+/Ni2+の「平衡電位」と同様に、Co3+/Co2+の平衡電位もまた、電解液のpH等に依存するため、電池の種類により異なる。従って、以下の実施形態内で用いるCo3+/Co2+の「平衡電位」は、「0.1V」の平衡電位とする。 Cobalt oxyhydroxide is stable within a preset operating voltage range for each cell 30. This is because the equilibrium potential of the reaction in which trivalent cobalt is reduced to divalent cobalt and the reaction in which divalent cobalt is oxidized to trivalent cobalt (hereinafter, both the equilibrium potential of Co 3+ / Co 2+ and the standard potential). This is because it is “0.1 V” with respect to the mercury oxide reference electrode (Hg / HgO), is smaller than the equilibrium potential of Ni 3+ / Ni 2+ , and is outside the operating voltage range for each unit cell 30. . In the present embodiment, the equilibrium potential of Co 3+ / Co 2+ is “0.1 V”. Therefore, as long as the unit cell 30 operates within the operating voltage range, most of the conductive agent is not reduced to cobalt hydroxide or the like. Similar to the “equilibrium potential” of Ni 3+ / Ni 2+, the equilibrium potential of Co 3+ / Co 2+ also depends on the pH of the electrolyte, and therefore varies depending on the type of battery. Therefore, the “equilibrium potential” of Co 3+ / Co 2+ used in the following embodiments is set to an equilibrium potential of “0.1 V”.

負極板22は、基材と、基材に支持された負極材を有している。負極材は、水素吸蔵合金(MH)を含む負極活物質を有する。負極の放電反応は、下記の半反応式(2)で表される。充電時には、半反応式(2)の逆方向に反応が進む。   The negative electrode plate 22 has a base material and a negative electrode material supported by the base material. The negative electrode material has a negative electrode active material containing a hydrogen storage alloy (MH). The discharge reaction of the negative electrode is represented by the following half reaction formula (2). At the time of charging, the reaction proceeds in the reverse direction of the half reaction formula (2).

(負極)MH+OH → M+HO+e …(2)
ニッケル水素蓄電池全体の放電時における反応は、下記の半反応式(3)で表される。充電時には半反応式(3)の逆方向に反応が進む。
(Negative electrode) MH + OH → M + H 2 O + e (2)
Reaction at the time of discharge of the entire nickel-metal hydride storage battery is represented by the following half reaction formula (3). At the time of charging, the reaction proceeds in the reverse direction of the half reaction formula (3).

(全体)NiOOH+MH→Ni(OH)+M …(3)
図2(a)に示すように、ニッケル水素蓄電池の出荷時の状態である初期状態では、負極容量が正極容量よりも大きい正極規制とされている。このため、負極容量には、正極容量に対して余分に設けられた充電リザーブR1及び放電リザーブR2が設けられている。従って、正極のSOCが100%に到達した状態が、単電池30においてもSOCが100%の状態(満充電状態)である。また、正極のSOCが0%に到達した状態、即ち正極の活物質の充電部分がなくなった状態が、単電池30のSOCが0%の状態である。
(Overall) NiOOH + MH → Ni (OH) 2 + M (3)
As shown in FIG. 2A, in the initial state, which is the state when the nickel-metal hydride storage battery is shipped, the negative electrode capacity is set to be positive electrode regulation larger than the positive electrode capacity. Therefore, the negative electrode capacity is provided with a charge reserve R1 and a discharge reserve R2 that are provided in excess of the positive electrode capacity. Therefore, the state in which the SOC of the positive electrode reaches 100% is the state in which the SOC is 100% in the single battery 30 (full charge state). The state in which the SOC of the positive electrode has reached 0%, that is, the state in which the charged part of the active material of the positive electrode has disappeared is the state in which the SOC of the unit cell 30 is 0%.

一方、電池モジュール11の充放電が繰り返されると、電池モジュール11内の温度差等の要因により、初期状態の正極容量及び負極容量のバランスが変化することがある。
その結果、図2(b)の「単電池A」及び「単電池B」の容量バランスとして例示するように、複数の単電池30の間において、正極容量と負極容量とのバランスに差異が生じることがある。このように正極容量と負極容量とのバランスに差異が生じると、放電時には、例えば「単電池B」の正極のSOCが、他の単電池30に対して最も早いタイミングで「0」となる。
On the other hand, when charging / discharging of the battery module 11 is repeated, the balance between the positive electrode capacity and the negative electrode capacity in the initial state may change due to factors such as a temperature difference in the battery module 11.
As a result, there is a difference in the balance between the positive electrode capacity and the negative electrode capacity among the plurality of single cells 30 as exemplified by the capacity balance of “single cell A” and “single cell B” in FIG. Sometimes. Thus, when a difference occurs in the balance between the positive electrode capacity and the negative electrode capacity, the SOC of the positive electrode of “single cell B” becomes “0” at the earliest timing with respect to the other single cells 30 at the time of discharging.

ところで、電池モジュール11に対して設定された作動電圧範囲で作動させていても、充電及び放電が繰り返される過程で、導電剤のオキシ水酸化コバルトが、2価のコバルトを有する水酸化コバルト等に還元されることがある。例えば、複数の単電池30の間で正極容量及び負極容量のバランスが相違した場合、一つの単電池30における正極のSOCが0%のときの正極電位を下回っても放電を継続すると、その単電池30の電池電圧は、Co3+/Co2+の平衡電位である「0.1V」を下回ることがある。なお、本実施形態では、正極のSOCが0%のときの正極電位は「0.1V」である。また意図しない要因により、電池モジュール11に対して設定された作動電圧範囲外で作動することも考えられる。 By the way, even if the battery module 11 is operated within the set operating voltage range, in the process of repeated charging and discharging, the conductive agent cobalt oxyhydroxide is changed to cobalt hydroxide having divalent cobalt. May be reduced. For example, when the balance between the positive electrode capacity and the negative electrode capacity is different among the plurality of unit cells 30, if the discharge is continued even when the SOC of the positive electrode in one unit cell 30 is lower than 0%, The battery voltage of the battery 30 may be lower than “0.1 V” which is the equilibrium potential of Co 3+ / Co 2+ . In the present embodiment, the positive electrode potential when the SOC of the positive electrode is 0% is “0.1 V”. It is also conceivable that the battery module 11 operates outside the operating voltage range set by an unintended factor.

オキシ水酸化コバルトから水酸化コバルトへの還元量が増加すると、導電性ネットワークを形成する3価のコバルトの減少により正極の導電性が低下することによって、放電容量の低下、直流内部抵抗等の内部抵抗の増大が生じる。放電容量の低下は、特に大電流放電時に顕著である。なお、放電容量の低下や内部抵抗の上昇等といった電池特性の低下は、複数の単電池間における正極容量及び負極容量のバランスの相違、電解液の減少等の他の要因でも生じうるため、単に放電容量や内部抵抗を検査するのみでは、電池特性の低下の要因までは把握できない。また、ニッケル水素蓄電池の内部抵抗の低下、放電容量の増大等といった電池特性を向上するためには、劣化要因を把握する必要がある。   When the amount of reduction from cobalt oxyhydroxide to cobalt hydroxide increases, the conductivity of the positive electrode decreases due to the decrease in trivalent cobalt that forms the conductive network, resulting in decreased discharge capacity, internal DC resistance, etc. An increase in resistance occurs. The decrease in discharge capacity is particularly noticeable during large current discharge. Note that a decrease in battery characteristics such as a decrease in discharge capacity and an increase in internal resistance can also occur due to other factors such as a difference in the balance between the positive electrode capacity and the negative electrode capacity among a plurality of single cells, a decrease in electrolyte, etc. Only by examining the discharge capacity and internal resistance, it is impossible to grasp the cause of the deterioration of the battery characteristics. Further, in order to improve battery characteristics such as a decrease in internal resistance and an increase in discharge capacity of the nickel metal hydride storage battery, it is necessary to grasp the deterioration factor.

次に、ニッケル水素蓄電池の劣化の程度を検査する検査方法、及びその検査方法に用いられる装置について、作用とともに説明する。この検査方法では、検査の対象とする劣化要因を、導電剤であるオキシ水酸化コバルトの水酸化コバルト等への還元量に特定して、その還元量を劣化の程度である劣化度として判定する。   Next, an inspection method for inspecting the degree of deterioration of the nickel-metal hydride storage battery and an apparatus used for the inspection method will be described together with actions. In this inspection method, the deterioration factor to be inspected is specified as a reduction amount of cobalt oxyhydroxide, which is a conductive agent, to cobalt hydroxide and the like, and the reduction amount is determined as a degree of deterioration that is a degree of deterioration. .

還元量を劣化度として判定できる金属化合物の条件は、電池モジュール11が作動する間は金属化合物の還元反応が非可逆的であること、平衡電位が、主活物質の平衡電位未満であること、平衡電位が電解液中の水が分解される下限電位を上回ることである。なお、ここでいう非可逆とは、通常の電池の使用状態において、3価のコバルトが2価のコバルトに酸化される還元反応が非可逆であることをいい、2価のコバルトを3価のコバルトに酸化するための特別な処理を施した場合等を除く。   The conditions of the metal compound that can determine the reduction amount as the degree of deterioration are that the reduction reaction of the metal compound is irreversible while the battery module 11 operates, the equilibrium potential is less than the equilibrium potential of the main active material, The equilibrium potential is above the lower limit potential at which water in the electrolyte is decomposed. The term “irreversible” as used herein means that the reduction reaction in which trivalent cobalt is oxidized to divalent cobalt is irreversible under normal battery use conditions. Except when special treatment for oxidizing cobalt is performed.

図3を参照して、正極電位を取得する検査装置50の構成について説明する。
検査装置50は、複数の単電池30の正極電位をそれぞれ測定する参照極51を備える。本実施形態では、検査装置50は、単電池30の数と同数の6つの参照極51を有している。参照極51は、通常、電解液に適したものが使用される。本実施形態では、アルカリ電解液に適した酸化水銀参照極(Hg/HgO)を用いている。
With reference to FIG. 3, the structure of the test | inspection apparatus 50 which acquires a positive electrode electric potential is demonstrated.
The inspection device 50 includes a reference electrode 51 that measures the positive electrode potentials of the plurality of single cells 30. In the present embodiment, the inspection device 50 has the same number of six reference electrodes 51 as the number of unit cells 30. As the reference electrode 51, one suitable for an electrolytic solution is usually used. In this embodiment, a mercury oxide reference electrode (Hg / HgO) suitable for an alkaline electrolyte is used.

参照極51には、電圧計52がそれぞれ接続されている。本実施形態では、検査装置50には6つの電圧計52が設けられている。電圧計52は、参照極51と、単電池30の正極側の集電板24とに接続され、参照極51に対する正極電位を計測する。なお、参照極51及び電圧計52は、電位測定部に相当する。   A voltmeter 52 is connected to each reference electrode 51. In the present embodiment, the inspection apparatus 50 is provided with six voltmeters 52. The voltmeter 52 is connected to the reference electrode 51 and the current collector plate 24 on the positive electrode side of the unit cell 30, and measures the positive electrode potential with respect to the reference electrode 51. The reference electrode 51 and the voltmeter 52 correspond to a potential measuring unit.

電池モジュール11の正極端子29及び負極端子32には、放電回路53と電流計54とが接続されている。なお、電流計54は、容量測定部に相当する。また、電圧計52、放電回路53及び電流計54は、劣化判定装置55に接続されている。各電圧計52は、計測した正極電位に応じた信号を劣化判定装置55に出力する。即ち、劣化判定装置55は、各単電池30の正極電位を取得することができる。   A discharge circuit 53 and an ammeter 54 are connected to the positive terminal 29 and the negative terminal 32 of the battery module 11. The ammeter 54 corresponds to a capacity measurement unit. In addition, the voltmeter 52, the discharge circuit 53, and the ammeter 54 are connected to a deterioration determination device 55. Each voltmeter 52 outputs a signal corresponding to the measured positive electrode potential to the deterioration determination device 55. That is, the deterioration determination device 55 can acquire the positive electrode potential of each unit cell 30.

放電回路53は、劣化判定装置55の制御によって、当該放電回路53に接続された電池モジュール11の放電を開始及び終了する。なお、放電回路53は、電池放電部に相当する。   The discharge circuit 53 starts and ends the discharge of the battery module 11 connected to the discharge circuit 53 under the control of the deterioration determination device 55. The discharge circuit 53 corresponds to a battery discharge unit.

電流計54は、電池モジュール11に流れる電流値を計測し、計測した電流値に応じた信号を劣化判定装置55に出力する。
劣化判定装置55は、劣化判定のための演算を単電池30毎に行う演算部56を有している。演算部56は、電流計54から入力した信号及び複数の電圧計52から入力した信号に基づき、単電池30毎に、正極の放電容量と、正極電位とを取得する。また、演算部56は、正極電位の変化率dV/dtに対する放電容量(放電電気量)の変化率dQ/dtの割合であるdQ/dVを算出する。dQ/dVは、単位電圧あたりの放電容量の変化を示し、単電池30毎の劣化判定に用いられる。
The ammeter 54 measures a current value flowing through the battery module 11 and outputs a signal corresponding to the measured current value to the deterioration determination device 55.
The deterioration determination device 55 includes a calculation unit 56 that performs calculation for deterioration determination for each unit cell 30. The calculation unit 56 acquires the positive electrode discharge capacity and the positive electrode potential for each cell 30 based on the signal input from the ammeter 54 and the signals input from the plurality of voltmeters 52. In addition, the calculation unit 56 calculates dQ / dV, which is a ratio of the change rate dQ / dt of the discharge capacity (discharge electric quantity) to the change rate dV / dt of the positive electrode potential. dQ / dV indicates a change in discharge capacity per unit voltage, and is used for deterioration determination for each unit cell 30.

また、劣化判定装置55は、相関データ60が格納された相関データ記憶部57を備えている。相関データ60は、正極のdQ/dVの変化量と単電池30の劣化の程度とを関連付けたデータであって、初期状態の単電池30(初期品)及び複数の劣化した単電池30(劣化品)を用いて取得した計測値に基づいて予め作成されている。   In addition, the deterioration determination device 55 includes a correlation data storage unit 57 in which correlation data 60 is stored. The correlation data 60 is data that associates the amount of change in dQ / dV of the positive electrode with the degree of deterioration of the cell 30, and is the initial state of the cell 30 (initial product) and a plurality of deteriorated cells 30 (deterioration) It is created in advance based on the measurement value acquired using the product.

さらに、劣化判定装置55は、判定部59を備えている。判定部59は、相関データ60と、演算部56が演算したdQ/dVとに基づき、単電池30の劣化度を判定する。また、劣化判定装置55には、例えば、ディスプレイ又はプリンタ等からなり、判定部59による単電池30の劣化度を出力する出力装置61が接続されている。   Further, the deterioration determination device 55 includes a determination unit 59. The determination unit 59 determines the degree of deterioration of the unit cell 30 based on the correlation data 60 and the dQ / dV calculated by the calculation unit 56. In addition, the deterioration determination device 55 includes, for example, a display or a printer, and is connected to an output device 61 that outputs the deterioration degree of the unit cell 30 by the determination unit 59.

次に図4を参照して、検査方法の手順を、検査装置50の動作とともに説明する。
まず、電池モジュール11を、正極のSOCが0%となる放電終止電圧まで放電する(ステップS1)。1つの単電池30の放電終止電圧は「1V」であり、電池モジュール11の放電終止電圧は、6つの単電池30の放電終止電圧の総和である「6V」である。この際、検査装置50とは別の装置を用いて放電を行ってもよいし、検査装置50に電池モジュール11を接続して放電してもよい。即ち、電池モジュール11の端子間電圧を図示しない電圧計で測定しつつ放電する場合には、その電圧計による計測値が電池モジュール11の放電終止電圧である「6V」に到達するまで放電を行う。また検査装置50の電圧計52を用いる場合には、例えば、複数の電圧計52の測定値が「1V」に到達するまで放電を行う。
Next, referring to FIG. 4, the procedure of the inspection method will be described together with the operation of the inspection apparatus 50.
First, the battery module 11 is discharged to a discharge end voltage at which the positive electrode SOC becomes 0% (step S1). The discharge end voltage of one unit cell 30 is “1V”, and the discharge end voltage of the battery module 11 is “6V” which is the sum of the discharge end voltages of the six unit cells 30. At this time, discharging may be performed using an apparatus different from the inspection apparatus 50, or the battery module 11 may be connected to the inspection apparatus 50 for discharging. That is, when discharging while measuring the voltage between the terminals of the battery module 11 with a voltmeter (not shown), discharging is performed until the measured value by the voltmeter reaches “6 V” which is the discharge end voltage of the battery module 11. . Further, when the voltmeter 52 of the inspection device 50 is used, for example, discharging is performed until the measured values of the plurality of voltmeters 52 reach “1V”.

次に、電池モジュール11の蓋部17を取り外し、一体電槽16の上部開口から、複数の単電池30の内部に参照極51をそれぞれ設置する。そして、放電回路53を駆動させながら、劣化判定装置55により、複数の単電池30の正極電位をそれぞれ取得する(ステップS2、図4参照)。   Next, the lid 17 of the battery module 11 is removed, and the reference electrodes 51 are respectively installed in the plurality of single cells 30 from the upper opening of the integrated battery case 16. And while driving the discharge circuit 53, the degradation determination apparatus 55 acquires the positive electrode potential of each of the plurality of single cells 30 (step S2, see FIG. 4).

電池モジュール11を放電終止電圧まで放電し終わった段階において、複数の単電池30の間に正極容量及び負極容量のバランスの相違が生じている場合には、正極のSOCが0%の単電池30のほか、正極のSOCが0%を上回る単電池30が存在することがある。この場合でも、放電回路53の駆動を継続することにより、全ての単電池30が、正極のSOCが0%であるときの正極電位「0.1V」以下で放電が行われる過放電状態となる。なお、この放電は、電解液に含まれる水の分解が始まる下限電位(−1.1V)以下とならない範囲で行うものとする。正極電位が下限電位を上回る範囲で放電を行うことで、水の分解に伴う水素等の発生や、電解液の濃度の上昇等を抑制することができる。   In the stage where the battery module 11 has been discharged to the end-of-discharge voltage, if there is a difference in the balance between the positive electrode capacity and the negative electrode capacity between the plurality of single cells 30, the single cell 30 having a positive electrode SOC of 0%. In addition, there may be a unit cell 30 in which the SOC of the positive electrode exceeds 0%. Even in this case, by continuing the driving of the discharge circuit 53, all the single cells 30 are in an overdischarge state in which discharge is performed at a positive electrode potential “0.1 V” or less when the positive electrode SOC is 0%. . In addition, this discharge shall be performed in the range which does not become below the minimum electric potential (-1.1V) from which decomposition | disassembly of the water contained in electrolyte solution begins. By discharging in a range where the positive electrode potential exceeds the lower limit potential, generation of hydrogen and the like accompanying water decomposition, increase in the concentration of the electrolyte, and the like can be suppressed.

そして単電池30の過放電が継続される間、劣化判定装置55により、電流計54及び複数の電圧計52から信号を入力する。そして、劣化判定装置55の演算部56により、単電池30毎に、正極の放電容量に対する正極電位の変化を示す過放電曲線を取得する(ステップS3、図4参照)。   Then, while the overdischarge of the unit cell 30 is continued, the deterioration determination device 55 inputs signals from the ammeter 54 and the plurality of voltmeters 52. And the overdischarge curve which shows the change of the positive electrode electric potential with respect to the discharge capacity of a positive electrode is acquired for every single cell 30 by the calculating part 56 of the deterioration determination apparatus 55 (refer step S3, FIG. 4).

図5に示す放電曲線は、複数の単電池30のうちの一つの放電曲線である。破線は、正極のSOCが0%に至るまでの正極電位変化を示す放電曲線を示し、実線は、正極のSOCが0%の正極電位V1から下限電位V2までの電位変化を示す過放電曲線である。過放電曲線では、正極のSOCが0%のときの電位V1「0.1V」付近から、急激に正極電位が低下している。これはオキシ水酸化コバルトが、水酸化コバルト等の2価のコバルトを含む化合物に還元されているためである。   The discharge curve shown in FIG. 5 is one of the plurality of single cells 30. A broken line indicates a discharge curve indicating a change in positive electrode potential until the SOC of the positive electrode reaches 0%, and a solid line indicates an overdischarge curve indicating a change in potential from the positive electrode potential V1 to a lower limit potential V2 where the SOC of the positive electrode is 0%. is there. In the overdischarge curve, the positive electrode potential suddenly decreases from around the potential V1 “0.1 V” when the SOC of the positive electrode is 0%. This is because cobalt oxyhydroxide is reduced to a compound containing divalent cobalt such as cobalt hydroxide.

上述したようにニッケル水素蓄電池は正極規制であり、正極のSOCが0%のときの電位V1よりも低い電位の過放電状態においても、負極の放電リザーブによって負極活物質の酸化反応が進行する。また、正極のSOCが0%のときの電位V1「0.1V」以下では、Co3+/Co2+の平衡電位以下となるために、正極では、導電剤に含まれる3価のコバルトが2価のコバルトに還元される還元反応が優位となる。なお、Co3+/Co2+の平衡電位よりも小さい正極電位において、この還元反応の反応量が最も大きくなる。 As described above, the nickel-metal hydride storage battery is regulated by the positive electrode, and the oxidation reaction of the negative electrode active material proceeds by the discharge reserve of the negative electrode even in the overdischarge state at a potential lower than the potential V1 when the SOC of the positive electrode is 0%. In addition, when the positive electrode SOC is 0% or less when the potential V1 is “0.1 V” or less, the equilibrium potential of Co 3+ / Co 2+ is less than or equal to the trivalent cobalt contained in the conductive agent. The reduction reaction reduced to cobalt is superior. Note that the reaction amount of the reduction reaction is the largest at a positive electrode potential smaller than the equilibrium potential of Co 3+ / Co 2+ .

単電池30毎の過放電曲線を取得すると、劣化判定装置55の演算部56は、過放電曲線に基づくdQ/dVを単電池30毎に算出する(ステップS4、図4参照)。なお、過放電曲線のうちdQ/dVを演算する正極電位の範囲、又は容量範囲は、実験を通じて予め決められており、dQ/dVの変化は、正極電位に対する変化を示す曲線として取得される。   When the overdischarge curve for each unit cell 30 is acquired, the calculation unit 56 of the deterioration determination device 55 calculates dQ / dV based on the overdischarge curve for each unit cell 30 (see step S4, FIG. 4). Note that the positive electrode potential range or capacity range for calculating dQ / dV in the overdischarge curve is determined in advance through experiments, and the change in dQ / dV is acquired as a curve indicating the change with respect to the positive electrode potential.

図6中、曲線L1に示すように、劣化のない単電池30である初期品では、3価のコバルトが2価のコバルトに還元される際に電子が消費されることで、dQ/dVが負の方向に増大するピークがみられる。このピークは、dQ/dVの変化量が急速に増大していることを示し、ピークが出現する正極電位範囲は、Co3+/Co2+の平衡電位「0.1V」よりも小さい電位範囲である。本実施形態では、dQ/dVの最小値、即ちdQ/dVの変化量の最大値は、正極電位が「0.03V」付近にみられる。dQ/dVの最小値が出現する正極電位は、還元反応の反応量が最も大きくなる電位である。ピークが出現する電位範囲及びピークの最小値の正極電位は、放電時の電流が大きいほど、小さくなり、場合によっては水が分解する電位まで到達することがある。このため、放電レートは、好ましくは1C以下、より好ましくは1/3C以下で行うことが好ましい。 As shown by a curve L1 in FIG. 6, in an initial product that is a unit cell 30 without deterioration, electrons are consumed when trivalent cobalt is reduced to divalent cobalt, so that dQ / dV is There is a peak increasing in the negative direction. This peak indicates that the amount of change in dQ / dV is rapidly increasing, and the positive electrode potential range in which the peak appears is a potential range smaller than the equilibrium potential “0.1 V” of Co 3+ / Co 2+. . In the present embodiment, the minimum value of dQ / dV, that is, the maximum value of the change amount of dQ / dV is found near the positive electrode potential of “0.03 V”. The positive electrode potential at which the minimum value of dQ / dV appears is a potential at which the reaction amount of the reduction reaction is maximized. The potential range where the peak appears and the positive electrode potential of the minimum value of the peak become smaller as the current during discharge becomes larger, and in some cases, the potential reaches the potential at which water decomposes. For this reason, the discharge rate is preferably 1C or lower, more preferably 1 / 3C or lower.

一方、曲線L2,L3に示すように、3価のコバルトが減少することによって導電性ネットワークが疎となった劣化品A,Bでは、dQ/dVのピークが極めて小さいか、ピーク自体が検出されない。これは、既に検査前の段階で、導電剤を構成するオキシ水酸化コバルトが水酸化コバルト等に還元されており、検査における過放電において3価のコバルトが2価のコバルトへ還元される還元量が少ないためである。   On the other hand, as shown by the curves L2 and L3, in the deteriorated products A and B in which the conductive network becomes sparse due to the decrease in trivalent cobalt, the peak of dQ / dV is very small or the peak itself is not detected. . This is because the cobalt oxyhydroxide constituting the conductive agent has already been reduced to cobalt hydroxide or the like in the stage before the inspection, and the reduction amount in which trivalent cobalt is reduced to divalent cobalt in the overdischarge in the inspection. This is because there are few.

次に、劣化判定装置55の判定部59は、単電池30のdQ/dVの変化量の最大値であるピーク値を取得する(ステップS4、図4参照)。なお、ここでいう「変化量」は、放電開始時点等の基準点からの変化量である。   Next, the determination part 59 of the deterioration determination apparatus 55 acquires the peak value which is the maximum value of the change amount of dQ / dV of the cell 30 (see step S4, FIG. 4). The “change amount” here is a change amount from a reference point such as a discharge start time.

ピーク値は、dQ/dVの変化曲線のうち、予め決められた正極電位範囲内におけるdQ/dVの最小値の大きさ(絶対値)である。換言すると、ピーク値は、予め決められた正極電位範囲内におけるピークの最大高さを示す。ピークが殆ど見られない場合には、予め決められた正極電位範囲のうち、dQ/dVの最小値をピークの頂点とみなし、その最小値であるdQ/dVの絶対値をピーク値とする。なお、上述したdQ/dVの演算対象となる正極電位範囲は、初期品のピークが出現する範囲の平均等を含み、その平均の近傍の範囲(例えば「平均値」−0.01Vから「平均値」+0.01Vの範囲)に設定されている。劣化電池の場合、ピークが明確に出現しない場合があるが、その場合、コバルトの還元反応以外の反応やバックグラウンド等の影響で、実際のピークと異なる箇所をピークと認定してしまうことがある。しかし、初期品のピークを基準として正極電位範囲を設定することで、そのような懸念が軽減される。   The peak value is the magnitude (absolute value) of the minimum value of dQ / dV within the predetermined positive electrode potential range in the change curve of dQ / dV. In other words, the peak value indicates the maximum height of the peak within a predetermined positive electrode potential range. When almost no peak is observed, the minimum value of dQ / dV in the predetermined positive electrode potential range is regarded as the peak apex, and the absolute value of dQ / dV, which is the minimum value, is set as the peak value. Note that the positive electrode potential range that is the object of calculation of dQ / dV described above includes the average of the range in which the peak of the initial product appears, and the vicinity of the average (for example, from “average value” −0.01 V to “average” Value "+ 0.01V range). In the case of a deteriorated battery, the peak may not appear clearly, but in that case, a part different from the actual peak may be recognized as a peak due to a reaction other than the reduction reaction of cobalt or the background. . However, such a concern is reduced by setting the positive electrode potential range with reference to the peak of the initial product.

なお、正極電位範囲の幅は、電池の種類等に依存する「ピークの正極電位のずれ」を考慮して決定すればよい。
また、正極電位範囲は、Co3+/Co2+の平衡電位から下限電位V2の間で設定される。
Note that the width of the positive electrode potential range may be determined in consideration of the “shift in the positive electrode potential of the peak” that depends on the type of the battery.
The positive electrode potential range is set between the equilibrium potential of Co 3+ / Co 2+ and the lower limit potential V2.

また、dQ/dVのピーク値を演算する代わりに所定の正極電位範囲のdQ/dVの積算値を演算してもよいが、その場合、コバルトの還元反応以外の反応や、バックグラウンド等の影響が大きくなる。劣化品同士を比較した場合、dQ/dVのピークの大きさや幅等の差が小さくなるので、バックグラウンド等の影響が大きくなると、正確な判定ができなくなる。しかし、ピーク値で劣化度を判定することで、バックグラウンド等の影響を小さくでき、正確な判定が可能となる。   In addition, instead of calculating the peak value of dQ / dV, an integrated value of dQ / dV in a predetermined positive electrode potential range may be calculated. In this case, the reaction other than the cobalt reduction reaction, the influence of the background, etc. Becomes larger. When the deteriorated products are compared with each other, the difference in dQ / dV peak size, width, and the like becomes small. Therefore, when the influence of the background becomes large, accurate determination cannot be made. However, determining the degree of deterioration based on the peak value can reduce the influence of the background and the like, and enables accurate determination.

次に、ステップS5で取得したピーク値と相関データ60とを比較して、劣化度を判定する(ステップS6、図4参照)。
図7に示すように、相関データ60は、dQ/dVのピーク値に劣化度(%)を関連付けた演算式やマップ等である。相関データ60では、dQ/dVのピーク値が小さくなるに伴い、劣化度は大きくなる。
Next, the degree of deterioration is determined by comparing the peak value acquired in step S5 with the correlation data 60 (step S6, see FIG. 4).
As shown in FIG. 7, the correlation data 60 is an arithmetic expression, a map, or the like in which the degree of deterioration (%) is associated with the peak value of dQ / dV. In the correlation data 60, the degree of degradation increases as the peak value of dQ / dV decreases.

相関データ60を作成するにあたっては、単電池30である初期品、及び予め劣化していることが判明している単電池である複数の劣化品に対して、大電流(例えば25C)のパルス放電を繰り返し、大電流放電後のSOCから、放電可能なSOCを算出する。   In creating the correlation data 60, a pulse discharge of a large current (for example, 25 C) is applied to an initial product that is the unit cell 30 and a plurality of deteriorated units that are known to be deteriorated in advance. The dischargeable SOC is calculated from the SOC after the large current discharge.

図8の例では、初期品及び劣化品C,Dに対して同じ条件でパルス放電したときのSOCに対する正極電位変化を示しており、便宜上、正極電位変化を示す曲線を正極電位を示す縦軸方向にずらして表示している。   In the example of FIG. 8, the positive electrode potential change with respect to the SOC when the initial product and the deteriorated products C and D are pulse-discharged under the same conditions is shown. For convenience, a curve indicating the positive electrode potential change is a vertical axis indicating the positive electrode potential. The display is shifted in the direction.

初期品は、大電流放電後のSOCが5%であることから、「95%」が大電流放電時に放電可能なSOCである。この初期品を「劣化度0%」とする。劣化品Cは、大電流放電後のSOCが13%であることから大電流放電時に放電可能なSOCは「87%」である。劣化品Dは、大電流放電後のSOCが19%であるため、大電流放電時に放電可能なSOCは「81%」である。なお、相関データに用いられる劣化品は、実際には数十個等の2個よりも多い複数である。劣化品C,Dについては、初期品に対して最終的に放電可能なSOCが低いことが判る。   The initial product has 5% SOC after large current discharge, so "95%" is SOC that can be discharged during large current discharge. This initial product is defined as “0% degradation”. In the deteriorated product C, the SOC that can be discharged during the large current discharge is “87%” because the SOC after the large current discharge is 13%. Since the deteriorated product D has an SOC of 19% after a large current discharge, the SOC that can be discharged at the time of the large current discharge is “81%”. Note that the number of deteriorated products used for the correlation data is actually more than two, such as several tens. It can be seen that the deteriorated products C and D have lower SOCs that can be finally discharged than the initial products.

さらに、劣化品の大電流放電時に放電可能なSOCから、下記の数式に基づいて劣化度を算出する。なお、「SOC2」は、検査対象の大電流放電時に放電可能なSOCであり、「SOC1」は、初期品の大電流放電時に放電可能なSOCである。   Furthermore, the degree of deterioration is calculated based on the following formula from the SOC that can be discharged at the time of large current discharge of the deteriorated product. “SOC2” is an SOC that can be discharged during a large current discharge to be inspected, and “SOC1” is an SOC that can be discharged during a large current discharge of the initial product.


劣化度(%)={1−(SOC2/SOC1)}・100

そして、初期品及び複数の劣化品について、dQ/dVのピーク値と、上記の数式に基づいて算出された劣化度とをプロットすることによって、図7の劣化判定データを作成する。

Deterioration degree (%) = {1- (SOC2 / SOC1)} · 100

Then, the deterioration determination data of FIG. 7 is created by plotting the peak value of dQ / dV and the degree of deterioration calculated based on the above formula for the initial product and the plurality of deteriorated products.

このように作成された相関データ60を用いて、劣化判定装置55の判定部59は、検査対象のdQ/dVのピーク値に対応する劣化度を取得する。そして、その劣化度を、検査対象の単電池30の劣化度として出力装置61に出力する。このように、本実施形態では、単電池30毎に劣化度を判定するので、電池モジュール11内における劣化品を特定することができる。   Using the correlation data 60 created in this manner, the determination unit 59 of the deterioration determination device 55 acquires the degree of deterioration corresponding to the dQ / dV peak value to be inspected. Then, the deterioration degree is output to the output device 61 as the deterioration degree of the unit cell 30 to be inspected. As described above, in the present embodiment, the degree of deterioration is determined for each unit cell 30, so that a deteriorated product in the battery module 11 can be specified.

以上説明したように、第1実施形態によれば、以下に列挙する効果が得られるようになる。
(1)Co3+/Co2+の平衡電位は、正極活物質であるNi3+/Ni2+の平衡電位未満であるため、劣化のないニッケル水素蓄電池においては、正極活物質を被覆する導電剤は3価のコバルト(本実施形態ではオキシ水酸化コバルト)の状態で安定している。しかし、使用状況等により、オキシ水酸化コバルトが還元された場合、その反応は非可逆であるためにオキシ水酸化コバルト量は減少し、正極の導電性が低下する。本実施形態によればCo3+/Co2+の平衡電位以下の範囲で、その3価のコバルトの還元反応に基づくdQ/dVが演算される。このdQ/dVのピーク値は、3価のコバルトが還元された量との間で相関性があるため、dQ/dVのピーク値から、還元前のオキシ水酸化コバルトの量を劣化の無い初期品に対して相対的に推定することができる。このため、還元前のオキシ水酸化コバルトの減少に劣化要因を特定して、還元前のオキシ水酸化コバルトの量に応じて劣化度を判定することができる。なお、ニッケル水素蓄電池の場合、導電剤であるコバルトの還元が、電池の出力に大きく影響するので、上記方法のようにコバルトの還元量を確認することは、ニッケル水素蓄電池の劣化の程度についての判定に好適である。
As described above, according to the first embodiment, the effects listed below can be obtained.
(1) Since the equilibrium potential of Co 3+ / Co 2+ is less than the equilibrium potential of Ni 3+ / Ni 2+ , which is a positive electrode active material, in a nickel-metal hydride battery without deterioration, the conductive agent that covers the positive electrode active material is 3 It is stable in the state of valence cobalt (in this embodiment, cobalt oxyhydroxide). However, when cobalt oxyhydroxide is reduced depending on the usage conditions, the reaction is irreversible, so the amount of cobalt oxyhydroxide decreases, and the conductivity of the positive electrode decreases. According to the present embodiment, dQ / dV based on the reduction reaction of trivalent cobalt is calculated within a range equal to or less than the equilibrium potential of Co 3+ / Co 2+ . Since the peak value of dQ / dV has a correlation with the amount of trivalent cobalt reduced, the amount of cobalt oxyhydroxide before reduction is reduced from the peak value of dQ / dV without initial deterioration. It can be estimated relative to the product. For this reason, a deterioration factor can be specified for the reduction | decrease of the cobalt oxyhydroxide before reduction | restoration, and a deterioration degree can be determined according to the quantity of the cobalt oxyhydroxide before reduction | restoration. In the case of a nickel metal hydride storage battery, the reduction of cobalt, which is a conductive agent, greatly affects the output of the battery, so confirming the amount of cobalt reduction as in the above method is about the degree of deterioration of the nickel metal hydride storage battery. It is suitable for determination.

(2)単電池30のdQ/dVの変化量の最大値であるピーク値を用いて、単電池30の劣化度が判定される。このため、dQ/dVの積算値を演算する場合に比べ、コバルトの還元反応以外の反応や、バックグラウンド等の影響を小さくすることができる。このため、ニッケル水素蓄電池の劣化の程度について正確な判定が可能となる。   (2) The degree of deterioration of the single battery 30 is determined using the peak value that is the maximum value of the change amount of dQ / dV of the single battery 30. For this reason, compared with the case where the integrated value of dQ / dV is calculated, it is possible to reduce the influence of reactions other than the reduction reaction of cobalt, the background, and the like. For this reason, it is possible to accurately determine the degree of deterioration of the nickel-metal hydride storage battery.

(3)上記実施形態では、dQ/dVのピーク値を用いた検査方法を、主活物質がニッケル酸化物であるニッケル水素蓄電池に対して適用した。ニッケル水素特電池では、性能を向上させるための添加物として、価数が変化する金属化合物(例えばコバルト)が使用されることが多い。そのため、他の電池に比較して、本発明を好適に利用可能である。   (3) In the said embodiment, the inspection method using the peak value of dQ / dV was applied with respect to the nickel hydride storage battery whose main active material is a nickel oxide. In a nickel metal hydride battery, a metal compound (for example, cobalt) whose valence changes is often used as an additive for improving performance. Therefore, the present invention can be suitably used as compared with other batteries.

(4)導電剤であるコバルトの還元は、ニッケル水素蓄電池の出力に大きく影響する。このため、3価のコバルト及び2価のコバルトの反応の平衡電位以下におけるdQ/dVの演算は、ニッケル水素蓄電池の劣化の程度についての判定に好適である。   (4) Reduction of cobalt as the conductive agent greatly affects the output of the nickel-metal hydride storage battery. For this reason, the calculation of dQ / dV below the equilibrium potential of the reaction of trivalent cobalt and divalent cobalt is suitable for determining the degree of deterioration of the nickel-metal hydride storage battery.

(5)単電池30に挿入された参照極51と単電池30の正極との間の電圧(電位差)を計測することにより正極電位が取得される。即ち、単電池30毎にdQ/dVが演算されるので、単電池30毎に劣化の程度を判定することができる。   (5) The positive electrode potential is acquired by measuring the voltage (potential difference) between the reference electrode 51 inserted in the single cell 30 and the positive electrode of the single cell 30. That is, since dQ / dV is calculated for each unit cell 30, the degree of deterioration can be determined for each unit cell 30.

(6)単電池30は、正極のSOCが0%である正極電位から電解液の水が分解される下限電位までの間で放電されるので、電解液の分解に基づく水素の発生や、電解液の濃度変化を抑制することができる。   (6) Since the unit cell 30 is discharged from the positive electrode potential where the SOC of the positive electrode is 0% to the lower limit potential at which the water of the electrolytic solution is decomposed, the generation of hydrogen based on the decomposition of the electrolytic solution and the electrolysis A change in the concentration of the liquid can be suppressed.

(第2実施形態)
次に、本発明を具体化した第2実施形態を説明する。尚、第2実施形態は、第1実施形態の検査装置の一部を変更した構成であるため、同様の部分については同一符号を付してその詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment embodying the present invention will be described. In addition, since 2nd Embodiment is the structure which changed a part of test | inspection apparatus of 1st Embodiment, it attaches | subjects the same code | symbol about the same part, and abbreviate | omits the detailed description.

図9に示すように、本実施形態の検査装置50は、電池モジュール11の正極端子29及び負極端子32の間の電圧を計測する電圧計52を備えている。また、検査装置50は、電池モジュール11を流れる電流を計測する電流計54を備えている。電圧計は、電位測定部に相当し、電流計は容量測定部に相当する。   As shown in FIG. 9, the inspection device 50 of the present embodiment includes a voltmeter 52 that measures the voltage between the positive terminal 29 and the negative terminal 32 of the battery module 11. Further, the inspection device 50 includes an ammeter 54 that measures a current flowing through the battery module 11. The voltmeter corresponds to the potential measurement unit, and the ammeter corresponds to the capacitance measurement unit.

また、検査装置50は、第1実施形態と同様に放電回路53及び劣化判定装置55を備えている。即ち、本実施形態では、単電池30毎に正極電位を計測するのではなく、電池モジュール11の電圧を計測する点で第1実施形態と異なっており、検査方法の手順は基本的に第1実施形態と同様である。   Further, the inspection device 50 includes a discharge circuit 53 and a deterioration determination device 55 as in the first embodiment. That is, this embodiment is different from the first embodiment in that the positive electrode potential is not measured for each unit cell 30 but the voltage of the battery module 11 is measured, and the procedure of the inspection method is basically the first. This is the same as the embodiment.

図10に示すように、劣化判定装置55は、放電回路53を駆動させて、電池モジュール11を放電しながら、電圧計52及び電流計54から信号を入力し、放電曲線を取得する。上述したように複数の単電池30の間で、正極容量及び負極容量のバランスが相違している場合には(図2(b)参照)、正極のSOCが0%となるタイミングがそれぞれ異なる。このため、本実施形態では電池モジュール11の放電終止電圧「6V」を基準とし、その放電終止電圧付近の「8.0V」(いずれの単電池30の正極SOCも0%に達しない電圧)まで高い放電レートで放電し、その後、放電レートを低くして放電している。複数の単電池30のうち1つの単電池30の正極のSOCが0%となったときには、急激な電圧降下が生じ、放電容量に対する電池モジュール11の電圧降下量が大きくなる。   As shown in FIG. 10, the deterioration determination device 55 drives the discharge circuit 53 to discharge the battery module 11 and inputs signals from the voltmeter 52 and the ammeter 54 to obtain a discharge curve. As described above, when the balance between the positive electrode capacity and the negative electrode capacity is different among the plurality of single cells 30 (see FIG. 2B), the timing at which the SOC of the positive electrode becomes 0% is different. For this reason, in this embodiment, the discharge end voltage “6V” of the battery module 11 is used as a reference, and “8.0 V” (the voltage at which the positive SOC of any single battery 30 does not reach 0%) near the discharge end voltage. Discharge is performed at a high discharge rate, and then discharged at a low discharge rate. When the SOC of the positive electrode of one unit cell 30 among the plurality of unit cells 30 becomes 0%, a rapid voltage drop occurs, and the voltage drop amount of the battery module 11 with respect to the discharge capacity increases.

このため、劣化判定装置55の演算部56は、取得した過放電曲線のうち、放電容量に対する電池モジュール11の電圧降下量が予め設定された電圧降下率以上である領域Z1〜Z6を検出する。そして演算部56は、これらの領域Z1〜Z6を、単電池30の正極のSOCがそれぞれ0%となった電池電圧とする。この際、1つの単電池30の電圧降下量はほぼ一定であるため、電圧降下量が大きい領域が単電池30の個数未満であって、その電圧降下量が大きい場合には、その領域の電圧降下量を、単電池の電圧降下量の平均で除算して、正極のSOCが0%となった単電池30の個数を判断する。例えば単電池30の個数が2個であると判断した場合には、その電圧降下量の大きい領域を2分割する。   For this reason, the calculating part 56 of the degradation determination apparatus 55 detects the area | regions Z1-Z6 where the voltage drop amount of the battery module 11 with respect to discharge capacity is more than the preset voltage drop rate among the acquired overdischarge curves. And the calculating part 56 makes these area | regions Z1-Z6 the battery voltage in which SOC of the positive electrode of the cell 30 became 0%, respectively. At this time, since the voltage drop amount of one unit cell 30 is substantially constant, the region where the voltage drop amount is large is less than the number of the unit cells 30 and the voltage drop amount is large, the voltage in that region is large. The number of single cells 30 in which the SOC of the positive electrode becomes 0% is determined by dividing the amount of drop by the average of the amount of voltage drop of the single cells. For example, when it is determined that the number of single cells 30 is two, the region where the voltage drop amount is large is divided into two.

演算部56は、領域Z1〜Z6内の容量に対する電圧変化が、Co3+/Co2+の平衡電位以下の正極電位の電位変化に相当するものとして、その電圧変化に基づきdQ/dVを演算する。そして、演算部56は、これを複数の単電池30のdQ/dV値とする。さらに、演算部56は、領域Z1〜Z6内のdQ/dV値のピーク値を算出し、相関データ60を参照して、単電池30の劣化度を判定する。 The calculation unit 56 calculates dQ / dV based on the voltage change on the assumption that the voltage change with respect to the capacitance in the regions Z1 to Z6 corresponds to the potential change of the positive electrode potential below the equilibrium potential of Co 3+ / Co 2+ . And the calculating part 56 makes this the dQ / dV value of the some cell 30. FIG. Further, the calculation unit 56 calculates the peak value of the dQ / dV value in the regions Z1 to Z6, refers to the correlation data 60, and determines the degree of deterioration of the unit cell 30.

この方法では、単電池30の劣化度を判定しても、その劣化度に対応する単電池30がどれであるかを特定することはできないが、電池モジュール11に属する単電池30に3価のコバルトの減少による劣化が生じているか否か、劣化が生じている場合にはその劣化度を把握することができる。また、電池モジュール11の蓋部17を取り外さずに検査ができるので、蓋部17を取り外す場合に比べ、容易に検査を行うことができる。   In this method, even if the degree of deterioration of the unit cell 30 is determined, it cannot be specified which unit cell 30 corresponds to the degree of deterioration. However, the unit cell 30 belonging to the battery module 11 is trivalent. Whether or not deterioration due to a decrease in cobalt has occurred, and when deterioration has occurred, the degree of deterioration can be grasped. Moreover, since it can test | inspect without removing the cover part 17 of the battery module 11, compared with the case where the cover part 17 is removed, it can test | inspect easily.

以上説明したように、第2実施形態によれば、第1実施形態に記載した(1)〜(4),(6)の効果に加えて、以下に列挙する効果が得られるようになる。
(7)本実施形態では、電池モジュールの正極端子29及び負極端子32の間の電圧に基づきdQ/dVが算出される。この場合には、電池モジュール11の蓋部17を取り外さなくてもよいため、単電池30内に参照極51を挿入する場合に比べ、容易に検査を行うことができる。
As described above, according to the second embodiment, in addition to the effects (1) to (4) and (6) described in the first embodiment, the effects listed below can be obtained.
(7) In this embodiment, dQ / dV is calculated based on the voltage between the positive terminal 29 and the negative terminal 32 of the battery module. In this case, since it is not necessary to remove the lid portion 17 of the battery module 11, the inspection can be easily performed as compared with the case where the reference electrode 51 is inserted into the single battery 30.

なお、上記各実施形態は、以下のように適宜変更して実施することもできる。
・上記各実施形態では、電池モジュール11を構成する単電池30を検査対象としたが、それ以外の単電池を検査対象としてもよい。単電池であっても、作動電圧範囲外で作動される等、意図しない要因により、単電池30の正極に含まれる添加剤としての金属化合物(例えばコバルト)が減少することがある。単電池を検査対象とする場合、図11に示すように、例えば、単電池30に、参照極51を挿入し、正極端子71及び負極端子72に、放電回路53及び電流計54を接続し、単電池30の正極端子71及び参照極51に放電回路53及び電流計54を接続してもよい。また、参照電極を用いず、正極端子71と負極端子72間の端子間電圧を測定し、その値から正極電位を推定してもよい。端子間電圧は、正極電位と負極電位の差であるが、負極電位が分かっていれば、端子間電圧から正極電位を推測することは可能である。なお、ニッケル水素蓄電池の場合、負極の電位はほぼ一定であるため、端子間電圧から正極電位を比較的容易に推定できる。
In addition, each said embodiment can also be suitably changed and implemented as follows.
In each of the above embodiments, the unit cell 30 constituting the battery module 11 is the inspection target, but other unit cells may be the inspection target. Even in a unit cell, the metal compound (for example, cobalt) as an additive contained in the positive electrode of the unit cell 30 may decrease due to unintended factors such as operation outside the operating voltage range. When a single cell is to be inspected, for example, as shown in FIG. 11, a reference electrode 51 is inserted into the single cell 30, and a discharge circuit 53 and an ammeter 54 are connected to the positive electrode terminal 71 and the negative electrode terminal 72, A discharge circuit 53 and an ammeter 54 may be connected to the positive terminal 71 and the reference electrode 51 of the unit cell 30. Alternatively, the terminal voltage between the positive electrode terminal 71 and the negative electrode terminal 72 may be measured without using the reference electrode, and the positive electrode potential may be estimated from the value. The inter-terminal voltage is the difference between the positive electrode potential and the negative electrode potential. If the negative electrode potential is known, the positive electrode potential can be estimated from the inter-terminal voltage. In the case of a nickel metal hydride storage battery, since the potential of the negative electrode is substantially constant, the positive electrode potential can be estimated relatively easily from the voltage between the terminals.

・上記各実施形態では、dQ/dVの変化量を用いて単電池30の劣化度を判定したが、図12に示すように、正極のSOCが0%のときの電位から電圧降下が生じている間の放電容量の変化量ΔCに基づき、単電池30の劣化度を判定してもよい。この放電容量の変化量は、電圧降下が生じている間のdQ/dVのピークの面積に相当する。この方法によれば、劣化判定装置55の演算量を軽減することができる。   In each of the above embodiments, the degree of deterioration of the cell 30 is determined using the amount of change in dQ / dV, but as shown in FIG. 12, a voltage drop occurs from the potential when the SOC of the positive electrode is 0%. The degree of deterioration of the unit cell 30 may be determined based on the change amount ΔC of the discharge capacity during the period. This amount of change in the discharge capacity corresponds to the peak area of dQ / dV during the voltage drop. According to this method, the amount of calculation of the deterioration determination device 55 can be reduced.

・上記各実施形態では、dQ/dVのピーク値を用いて単電池30の劣化度を判定したが、ピーク値以外のdQ/dVに関する値を用いて劣化度を判定してもよい。例えば、特に劣化度の大きい電池について、バックグラウンド等の影響が低減できる場合には、dQ/dVのピークの面積を用いて劣化度を判定してもよい。又は予め決められた正極電位のdQ/dVの絶対値を用いて単電池30の劣化度を判定してもよい。   In each of the above embodiments, the degree of deterioration of the single battery 30 is determined using the peak value of dQ / dV, but the degree of deterioration may be determined using a value related to dQ / dV other than the peak value. For example, in the case of a battery having a particularly high degree of deterioration, when the influence of background or the like can be reduced, the degree of deterioration may be determined using the peak area of dQ / dV. Alternatively, the degree of deterioration of the unit cell 30 may be determined using an absolute value of dQ / dV of a positive electrode potential determined in advance.

・上記各実施形態では、放電回路53は、劣化判定装置55により制御されるとしたが、劣化判定装置55とは別に駆動を開始及び終了するものであってもよい。
・劣化判定装置55は、放電回路53、電流計54、及び電圧計52の少なくとも一つを内蔵するものであってもよい。
In each of the above embodiments, the discharge circuit 53 is controlled by the deterioration determination device 55. However, the drive may be started and ended separately from the deterioration determination device 55.
The deterioration determination device 55 may include at least one of the discharge circuit 53, the ammeter 54, and the voltmeter 52.

・上記各実施形態では、劣化要因を3価のコバルトの減少に特定したが、所定の条件を満たせば、他の金属化合物の減少に特定してもよい。所定の条件は、「正極のSOCが0%から100%の間で蓄電池が作動する間は金属化合物の還元反応が非可逆的であること」、「平衡電位が、正極活物質の平衡電位未満であること」、「水が分解される下限電位を上回ること」を満たす元素又はその元素を含む化合物である。また、金属化合物は、導電剤に限らず、副活物質、バインダー等の添加剤に含まれるものであってもよい。なお、「非可逆」は、通常の電池の使用状態において非可逆反応であることを指し、特別な酸化処理等を施しても還元前の状態に戻らないことを指すものではない。例えば、劣化の程度を検査することができる金属化合物として、以下の金属元素を含む化合物が挙げられる。なお、以下の括弧のうち左側の金属元素は通常時の状態、右側の金属元素は過放電時の状態を示す。モリブデン(Mo4+→Mo:平衡電位−0.9V〜−1.0V)、チタン(Ti5+→Ti3+:平衡電位−0.9V〜−1.0V)、ニオブ(Nb5+→Nb4+:平衡電位−1.0V〜−1.1V)、カドミウム(Cd2+→Cd:平衡電位−0.8V〜−0.9V)、鉄(Fe3+→Fe:平衡電位−0.7V〜−0.9V)、マンガン(Mn6+→Mn2+:平衡電位−0.4V〜−0.2V)、バナジウム(V3+→V2+:平衡電位−0.7V〜−0.6V)、タンタル(Ta5+→Ta:平衡電位−0.9V〜−1.7V)、タングステン(W8+→W6+:平衡電位+0.3V〜+0.4V)。なお、各物質の平衡電位は、標準水素電極を基準としている。 In each of the above embodiments, the deterioration factor is specified as a decrease in trivalent cobalt, but may be specified as a decrease in other metal compounds as long as a predetermined condition is satisfied. Predetermined conditions are that “the reduction reaction of the metal compound is irreversible while the storage battery operates when the SOC of the positive electrode is between 0% and 100%”, “the equilibrium potential is less than the equilibrium potential of the positive electrode active material It is an element satisfying “being higher than the lower limit potential at which water is decomposed” or a compound containing the element. Further, the metal compound is not limited to the conductive agent, and may be included in additives such as a secondary active material and a binder. In addition, “irreversible” indicates that the reaction is irreversible in a normal battery use state, and does not indicate that the state does not return to the state before reduction even if a special oxidation treatment or the like is performed. For example, examples of the metal compound capable of inspecting the degree of deterioration include compounds containing the following metal elements. In the following parentheses, the metal element on the left indicates the normal state, and the metal element on the right indicates the overdischarge state. Molybdenum (Mo 4+ → Mo: equilibrium potential −0.9 V to −1.0 V), titanium (Ti 5+ → Ti 3+ : equilibrium potential −0.9 V to −1.0 V), niobium (Nb 5+ → Nb 4+ : equilibrium Potential -1.0V to -1.1V), cadmium (Cd2 + → Cd: equilibrium potential -0.8V to -0.9V), iron (Fe3 + → Fe: equilibrium potential -0.7V to -0.9V) ), Manganese (Mn 6+ → Mn 2+ : equilibrium potential −0.4 V to −0.2 V), vanadium (V 3+ → V 2+ : equilibrium potential −0.7 V to −0.6 V), tantalum (Ta 5+ → Ta : Equilibrium potential −0.9 V to −1.7 V), tungsten (W 8+ → W 6+ : Equilibrium potential +0.3 V to +0.4 V). The equilibrium potential of each substance is based on a standard hydrogen electrode.

・検査対象の蓄電池は、ニッケル水素蓄電池以外でもよい。例えば、ニッケル酸化物を正極活物質とするニッケル・カドミウム蓄電池、リチウム酸コバルトを正極活物質とするリチウムイオン蓄電池であってもよい。   -The storage battery to be inspected may be other than the nickel metal hydride storage battery. For example, a nickel-cadmium storage battery using nickel oxide as a positive electrode active material or a lithium ion storage battery using cobalt lithium oxide as a positive electrode active material may be used.

11…蓄電池としての電池モジュール、21…正極を構成する正極板、22…負極を構成する負極板、23…電解液が含まれるセパレータ、29…正極端子、30…蓄電池としての単電池、32…負極端子、50…検査装置、51…電位測定部としての参照極、52…電位測定部としての電圧計、53…電池放電部としての放電回路、54…容量測定部としての電流計、56…演算部、59…判定部、60…相関データ。   DESCRIPTION OF SYMBOLS 11 ... Battery module as a storage battery, 21 ... Positive electrode plate which comprises a positive electrode, 22 ... Negative electrode plate which comprises a negative electrode, 23 ... Separator containing electrolyte solution, 29 ... Positive electrode terminal, 30 ... Single cell as a storage battery, 32 ... Negative terminal, 50 ... inspection device, 51 ... reference electrode as potential measurement unit, 52 ... voltmeter as potential measurement unit, 53 ... discharge circuit as battery discharge unit, 54 ... ammeter as capacity measurement unit, 56 ... Calculation unit, 59 ... determination unit, 60 ... correlation data.

Claims (9)

主活物質と添加剤としての金属化合物とを含む蓄電池の検査方法において、
前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、
前記蓄電池を、正極電位が前記金属化合物平衡電位以下の範囲において放電し、正極電位の変化率dV/dtに対する放電電気量の変化率dQ/dtの割合であるdQ/dVを演算し、前記dQ/dVの前記正極電位に対する変化量から前記蓄電池の劣化を判定する
ことを特徴とする蓄電池の検査方法。
In a storage battery inspection method including a main active material and a metal compound as an additive,
The metal compound has an equilibrium potential of a reduction reaction that proceeds irreversibly and is less than the equilibrium potential of the main active material,
The storage battery is discharged in a range where the positive electrode potential is equal to or lower than the metal compound equilibrium potential, and dQ / dV which is a ratio of the rate of change dQ / dt of the discharge electricity amount to the rate of change dV / dt of the positive electrode potential is calculated, and the dQ A storage battery inspection method, wherein deterioration of the storage battery is determined from a change amount of / dV with respect to the positive electrode potential.
前記dQ/dVの変化量の最大値と前記蓄電池の劣化の程度とを関連付けた相関データに基づき、演算した前記dQ/dVの変化量の最大値に対応する劣化の程度を判定する
請求項1に記載の蓄電池の検査方法。
The degree of deterioration corresponding to the calculated maximum value of the change amount of the dQ / dV is determined based on correlation data in which the maximum value of the change amount of the dQ / dV is associated with the degree of deterioration of the storage battery. The inspection method of the storage battery as described in 2.
前記主活物質がニッケル酸化物である
請求項1又は2に記載の蓄電池の検査方法。
The storage battery inspection method according to claim 1, wherein the main active material is nickel oxide.
前記金属化合物は3価のコバルトを含むコバルト化合物であって、
前記dQ/dVを演算する際は、3価のコバルト及び2価のコバルトの反応の平衡電位以下の範囲におけるdQ/dVを演算する
請求項3に記載の蓄電池の検査方法。
The metal compound is a cobalt compound containing trivalent cobalt,
The method for inspecting a storage battery according to claim 3, wherein when calculating dQ / dV, dQ / dV in a range equal to or lower than an equilibrium potential of a reaction between trivalent cobalt and divalent cobalt is calculated.
前記蓄電池に挿入された参照極と当該蓄電池の正極との間の電位差を計測することにより前記蓄電池の正極電位が取得される
請求項1〜4のいずれか1項に記載の蓄電池の検査方法。
The method for inspecting a storage battery according to claim 1, wherein a positive electrode potential of the storage battery is acquired by measuring a potential difference between a reference electrode inserted into the storage battery and a positive electrode of the storage battery.
前記蓄電池の正極端子及び負極端子の間の電位差に基づき前記dQ/dVが算出される
請求項1〜4のいずれか1項に記載の蓄電池の検査方法。
The storage battery inspection method according to claim 1, wherein the dQ / dV is calculated based on a potential difference between a positive electrode terminal and a negative electrode terminal of the storage battery.
前記蓄電池を、正極電位が、電解液に含まれる水の分解が始まる下限電位よりも大きく、且つ前記金属化合物平衡電位以下の範囲において放電する
請求項3、又は、請求項3を直接的又は間接的に引用する請求項〜6のいずれか1項に記載の蓄電池の検査方法。
The storage battery is discharged in a range in which the positive electrode potential is greater than the lower limit potential at which decomposition of water contained in the electrolyte starts and is equal to or lower than the metal compound equilibrium potential.
The method for inspecting a storage battery according to any one of claims 4 to 6, which directly or indirectly cites claim 3 or claim 3.
主活物質と添加剤としての金属化合物とを含む蓄電池の検査方法において、
前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、
前記蓄電池を、正極電位が前記金属化合物平衡電位以下の範囲において放電し、前記正極電位に対する正極の容量変化量から前記蓄電池の劣化を判定する
ことを特徴とする蓄電池の検査方法。
In a storage battery inspection method including a main active material and a metal compound as an additive,
The metal compound has an equilibrium potential of a reduction reaction that proceeds irreversibly and is less than the equilibrium potential of the main active material,
The storage battery is discharged in a range where the positive electrode potential is equal to or lower than the metal compound equilibrium potential, and the deterioration of the storage battery is determined from the amount of change in the positive electrode capacity with respect to the positive electrode potential.
主活物質と添加剤としての金属化合物とを含む蓄電池の検査装置において、
前記金属化合物は、非可逆的に進行する還元反応の平衡電位であって前記主活物質の平衡電位未満である金属化合物平衡電位を有し、
前記検査装置は、
前記蓄電池を放電する電池放電部と、
前記蓄電池の正極電位を測定する電位測定部と、
前記蓄電池の放電容量を測定する容量測定部と、
前記蓄電池の正極電位が前記金属化合物平衡電位以下の範囲で放電された際の正極電位の変化率dV/dtに対する放電電気量の変化率dQ/dtの割合であるdQ/dVを算出する演算部と、
前記dQ/dVの前記正極電位に対する変化量から前記蓄電池の劣化を判定する判定部と
を備えることを特徴とする蓄電池の検査装置。
In an inspection device for a storage battery containing a main active material and a metal compound as an additive,
The metal compound has an equilibrium potential of a reduction reaction that proceeds irreversibly and is less than the equilibrium potential of the main active material,
The inspection device includes:
A battery discharger for discharging the storage battery;
A potential measuring unit for measuring the positive electrode potential of the storage battery;
A capacity measuring unit for measuring the discharge capacity of the storage battery;
An arithmetic unit for calculating dQ / dV, which is a ratio of the rate of change dQ / dt of the amount of discharge electricity to the rate of change dV / dt of the positive electrode potential when the positive electrode potential of the storage battery is discharged within the range of the metal compound equilibrium potential or less. When,
A determination unit that determines deterioration of the storage battery from a change amount of the dQ / dV with respect to the positive electrode potential.
JP2014131559A 2014-06-26 2014-06-26 Storage battery inspection method and storage battery inspection device Active JP6314043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131559A JP6314043B2 (en) 2014-06-26 2014-06-26 Storage battery inspection method and storage battery inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131559A JP6314043B2 (en) 2014-06-26 2014-06-26 Storage battery inspection method and storage battery inspection device

Publications (2)

Publication Number Publication Date
JP2016009659A JP2016009659A (en) 2016-01-18
JP6314043B2 true JP6314043B2 (en) 2018-04-18

Family

ID=55227068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131559A Active JP6314043B2 (en) 2014-06-26 2014-06-26 Storage battery inspection method and storage battery inspection device

Country Status (1)

Country Link
JP (1) JP6314043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152275A (en) * 2019-06-28 2020-12-29 Oppo广东移动通信有限公司 Battery charging method and device, electronic equipment and computer readable storage medium
US11874330B2 (en) 2019-09-11 2024-01-16 Lg Energy Solution, Ltd. Battery management apparatus and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380417B2 (en) * 2016-01-21 2018-08-29 横河電機株式会社 Secondary battery capacity measuring system and secondary battery capacity measuring method
JP6760233B2 (en) * 2017-09-11 2020-09-23 株式会社デンソー Power system
JP7020720B2 (en) 2018-04-10 2022-02-16 エルジー・ケム・リミテッド Battery diagnostic device and method
CN109164146B (en) * 2018-11-12 2023-06-09 桑顿新能源科技(长沙)有限公司 Method for judging water content through formation curve
EP4006564A4 (en) * 2019-08-23 2022-09-21 Lg Energy Solution, Ltd. Method for predicting soh of battery and battery pack employing same
WO2021181674A1 (en) * 2020-03-13 2021-09-16 Tdk株式会社 Control device for secondary battery, battery pack, and control method for secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747233B2 (en) * 1998-04-07 2011-08-17 株式会社Gsユアサ Alkaline storage battery
JP2007066697A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Manufacturing method of alkaline storage battery
JP5287872B2 (en) * 2009-09-25 2013-09-11 トヨタ自動車株式会社 Secondary battery system
JP2013247003A (en) * 2012-05-28 2013-12-09 Sony Corp Charge control device for secondary battery, charge control method for secondary battery, charged state estimation device for secondary battery, charged state estimation method for secondary battery, deterioration degree estimation device for secondary battery, deterioration degree estimation method for secondary battery, and secondary battery device
JP5354416B1 (en) * 2012-11-05 2013-11-27 東洋システム株式会社 Secondary battery evaluation method and evaluation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152275A (en) * 2019-06-28 2020-12-29 Oppo广东移动通信有限公司 Battery charging method and device, electronic equipment and computer readable storage medium
CN112152275B (en) * 2019-06-28 2021-08-31 Oppo广东移动通信有限公司 Battery charging method and device, electronic equipment and computer readable storage medium
US11874330B2 (en) 2019-09-11 2024-01-16 Lg Energy Solution, Ltd. Battery management apparatus and method

Also Published As

Publication number Publication date
JP2016009659A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6314043B2 (en) Storage battery inspection method and storage battery inspection device
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
JP6252487B2 (en) Performance degradation detection device for electrical storage element, performance degradation detection method, and electrical storage system
CN104103851B (en) Lithium rechargable battery with the reference electrode for state of health monitoring
CN103809123B (en) Condition estimating device, condition estimation method
JP6477957B2 (en) Estimation device, power storage device, estimation method, and computer program
JP6638227B2 (en) Power storage element deterioration state estimation device, storage element deterioration state estimation method, and power storage system
EP3051305A1 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
US11391780B2 (en) Battery diagnostic device and method
EP3145021A1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
JP7322529B2 (en) Estimation device, power storage device, estimation method, and computer program
JPWO2013121466A1 (en) Battery system and deterioration determination method
EP3605122A1 (en) Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program
JP2009281916A (en) Method for testing battery and electrode
JP6301048B1 (en) Battery management device and battery pack system
JP5853692B2 (en) Non-aqueous electrolyte secondary battery negative charge reserve amount estimation device, negative charge reserve amount estimation method, power storage system, and assembled battery
JPWO2017169088A1 (en) Lithium ion secondary battery life estimation device
JP5888193B2 (en) Impedance detection system, monitoring system, and lithium secondary battery with monitoring function including the monitoring system
JP6565675B2 (en) Deterioration state detection device for storage element, deterioration state detection method, and storage system
JPWO2019230464A1 (en) Non-aqueous electrolyte secondary battery charging method and non-aqueous electrolyte secondary battery charging system
CN111295593A (en) Power storage system, capacity estimation device for secondary battery, and capacity estimation method for lead-acid battery
KR102211032B1 (en) Method of diagnosing lithium-ion battery and diagnostic apparatus for lithium-ion battery
EP3657189A1 (en) Estimation device, power storage device, estimation method, and computer program
WO2021150551A1 (en) System and method for estimating battery state of health
JP2015025751A (en) Deterioration state detector and deterioration state detection method for electricity storage element, electricity storage system and electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6314043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250