JP6313097B2 - Cast iron member and method for producing cast iron member - Google Patents

Cast iron member and method for producing cast iron member Download PDF

Info

Publication number
JP6313097B2
JP6313097B2 JP2014076972A JP2014076972A JP6313097B2 JP 6313097 B2 JP6313097 B2 JP 6313097B2 JP 2014076972 A JP2014076972 A JP 2014076972A JP 2014076972 A JP2014076972 A JP 2014076972A JP 6313097 B2 JP6313097 B2 JP 6313097B2
Authority
JP
Japan
Prior art keywords
cast iron
mass
iron member
less
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076972A
Other languages
Japanese (ja)
Other versions
JP2015196897A (en
Inventor
憲志 山本
憲志 山本
一巳 諸井
一巳 諸井
小川 勝明
勝明 小川
裕二 小山
裕二 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Nippon Piston Ring Co Ltd
Original Assignee
Hino Motors Ltd
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Nippon Piston Ring Co Ltd filed Critical Hino Motors Ltd
Priority to JP2014076972A priority Critical patent/JP6313097B2/en
Publication of JP2015196897A publication Critical patent/JP2015196897A/en
Application granted granted Critical
Publication of JP6313097B2 publication Critical patent/JP6313097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本開示の技術は、鋳鉄部材及び鋳鉄部材の製造方法に関する。   The technology of the present disclosure relates to a cast iron member and a method for manufacturing the cast iron member.

鉄鋼材は、鉄鋼材における炭素含有量に応じて、鉄、炭素鋼、鋳鉄、これら3つの種類に大別される。このうち鋳鉄は、自動車におけるエンジンのシリンダブロックやシリンダライナの材料として用いられている。シリンダブロックやシリンダライナなどの鋳鉄部材は、ピストンリングの摺動にともなって摩耗する。こうした鋳鉄部材には、摩耗が少ないこと、すなわち摺動に対する耐久性である耐摩耗性に優れていることが要求される。しかも近年では、燃費の向上を目的の1つとして出力の高い小型のエンジンが車両に搭載されることもあり、耐摩耗性に優れた鋳鉄部材が切望されている。こうした要望は、シリンダブロックやシリンダライナに限らず、摩耗が生じる部位に用いられる鋳鉄部材に共通するものである。耐摩耗性を高めた鋳鉄部材としては、例えば特許文献1に記載の鋳鉄部材が挙げられる。   Steel materials are roughly classified into three types, iron, carbon steel, cast iron, according to the carbon content in the steel material. Of these, cast iron is used as a material for engine cylinder blocks and cylinder liners in automobiles. Cast iron members such as cylinder blocks and cylinder liners wear as the piston ring slides. Such cast iron members are required to have low wear, that is, excellent wear resistance that is durability against sliding. Moreover, in recent years, a small engine with high output is sometimes mounted on a vehicle for the purpose of improving fuel efficiency, and a cast iron member excellent in wear resistance has been desired. Such a demand is not limited to a cylinder block or a cylinder liner, but is common to cast iron members used in parts where wear occurs. As a cast iron member with improved wear resistance, for example, a cast iron member described in Patent Document 1 can be cited.

特開2012−188719号公報JP 2012-188719 A

特許文献1に記載の鋳鉄部材は、パーライトにおけるフェライトとセメンタイトとの析出間隔であるラメラ間隔を所定の間隔に狭めることにより耐摩耗性が高められており、銅や錫の含有量によってラメラ間隔が調整されている。しかしながら、鋳鉄部材の耐摩耗性を高めることについて改善の余地が残されている。   The cast iron member described in Patent Document 1 has improved wear resistance by narrowing the lamellar interval, which is the precipitation interval between ferrite and cementite in pearlite, to a predetermined interval, and the lamellar interval is increased depending on the content of copper and tin. It has been adjusted. However, there remains room for improvement in increasing the wear resistance of cast iron members.

本開示の技術は、耐摩耗性及び耐食性に優れた鋳鉄部材及び鋳鉄部材の製造方法を提供することを目的とする。   The technique of this indication aims at providing the manufacturing method of the cast iron member excellent in abrasion resistance and corrosion resistance, and a cast iron member.

上記課題を解決する鋳鉄部材は、3.0質量%以上3.7質量%以下の炭素、1.5質量%以上2.5質量%以下の珪素、0.5質量%以上1.0質量%以下のマンガン、0.1質量%以上0.5質量%以下のリン、0.12質量%以下の硫黄、1.0質量%より大きく2.0質量%以下の銅、及び、0.6質量%より大きく1.0質量%以下のクロムを含有し、残部が鉄及び不可避不純物から構成される鋳鉄部材であり、鋳鉄部材の金属組織として、フェライトとセメンタイトとの層状組織であるパーライトを有し、前記パーライトにおける前記セメンタイトの析出間隔がラメラ間隔であり、前記鋳鉄部材における前記パーライトの面積に対して、前記ラメラ間隔が0.7μm以下である部分の占める比率が70%以上である。   The cast iron member that solves the above problems is 3.0 mass% to 3.7 mass% carbon, 1.5 mass% to 2.5 mass% silicon, 0.5 mass% to 1.0 mass%. The following manganese, 0.1 mass% or more and 0.5 mass% or less phosphorus, 0.12 mass% or less sulfur, greater than 1.0 mass% and 2.0 mass% or less copper, and 0.6 mass % Is a cast iron member containing 1.0% by mass or less chromium and the balance is composed of iron and inevitable impurities, and has a pearlite that is a layered structure of ferrite and cementite as a metal structure of the cast iron member The cementite precipitation interval in the pearlite is a lamella interval, and the ratio of the portion where the lamella interval is 0.7 μm or less to the area of the pearlite in the cast iron member is 70% or more.

上記鋳鉄部材は、0.1質量%以上1.0質量%以下のモリブデン、及び、0.02質量%以上0.11質量%以下のホウ素のうちの少なくとも一方をさらに含有してもよい。
上記鋳鉄部材は、前記鋳鉄部材における前記パーライトの面積に対して、前記ラメラ間隔が0.5μm以下である部分の占める比率が70%以上であるとよい。
The cast iron member may further contain at least one of 0.1% by mass to 1.0% by mass of molybdenum and 0.02% by mass to 0.11% by mass of boron.
In the cast iron member, the ratio of the portion where the lamella spacing is 0.5 μm or less to the area of the pearlite in the cast iron member is preferably 70% or more.

上記鋳鉄部材は、円筒形状を有する部材に具現化することが可能である。
上記鋳鉄部材は、シリンダライナに具現化することが可能である。
上記鋳鉄部材は、砂型鋳造法によって鋳造されることが好ましい。
上記鋳鉄部材は、砂型鋳造法において1080℃〜1140℃の間を冷却速度2〜10℃/secで冷却されることが好ましい。
The cast iron member can be embodied as a member having a cylindrical shape.
The cast iron member can be embodied in a cylinder liner.
The cast iron member is preferably cast by a sand casting method.
The cast iron member is preferably cooled at a cooling rate of 2 to 10 ° C./sec between 1080 ° C. and 1140 ° C. in the sand casting method.

上記各構成によれば、鋳鉄部材の耐摩耗性、及び、耐食性が高まる。   According to each said structure, the abrasion resistance of a cast iron member and corrosion resistance increase.

本開示の技術における鋳鉄部材の一実施例に対して鋳鉄部材の金属組織をレーザー顕微鏡で撮影した画像の一例を示す図である。It is a figure which shows an example of the image which image | photographed the metal structure of the cast iron member with the laser microscope with respect to one Example of the cast iron member in the technique of this indication. 比較例の金属組織の撮影画像の一例を示す図である。It is a figure which shows an example of the picked-up image of the metal structure of a comparative example. ラメラ間隔の計測結果の一例を示すグラフであって、計測されたラメラ間隔の範囲を示すグラフである。It is a graph which shows an example of the measurement result of a lamella space | interval, Comprising: It is a graph which shows the range of the measured lamella space | interval. 摩耗試験の概要を模式的に示す図である。It is a figure which shows the outline | summary of an abrasion test typically. 摩耗試験の結果の一例を示すグラフである。It is a graph which shows an example of the result of an abrasion test. 硬さ試験の結果の一例を示す散布図である。It is a scatter diagram which shows an example of the result of a hardness test. 耐食性試験の結果を示すグラフである。It is a graph which shows the result of a corrosion resistance test.

図1〜図7を参照して、本開示における鋳鉄部材及び鋳鉄部材の製造方法の一実施形態について説明する。
鋳鉄部材は、例えば、自動車におけるシリンダブロックやシリンダライナに具体化される。鋳鉄部材は、3.0質量%以上3.7質量%以下の炭素、1.5質量%以上2.5質量%以下の珪素、0.5質量%以上1.0質量%以下のマンガン、0.1質量%以上0.5質量%以下のリン、0.12質量%以下の硫黄、1.0質量%より大きく2.0質量%以下の銅、及び、0.6質量%より大きく1.0質量%以下のクロムを含有し、残部が鉄及び不可避不純物から構成される鋳鉄部材である。
With reference to FIGS. 1-7, one Embodiment of the manufacturing method of the cast iron member and cast iron member in this indication is described.
The cast iron member is embodied in, for example, a cylinder block or a cylinder liner in an automobile. The cast iron member is composed of 3.0% by mass to 3.7% by mass of carbon, 1.5% by mass to 2.5% by mass of silicon, 0.5% by mass to 1.0% by mass of manganese, 0% .1% by mass or more and 0.5% by mass or less of phosphorus, 0.12% by mass or less of sulfur, 1.0% by mass to 2.0% by mass of copper, and 0.6% by mass or more. This is a cast iron member containing 0% by mass or less of chromium and the balance being composed of iron and inevitable impurities.

鋳鉄部材は、0.1質量%以上1.0質量%以下のモリブデン、及び、0.02質量%以上0.11質量%以下のホウ素のうちの少なくとも一方を含有することが好ましい。
鋳鉄部材に含まれる銅は、上記含有量の範囲において、鋳鉄部材における引張強度、耐衝撃性、及び耐摩耗性を高める。鋳鉄部材に含まれるクロムは、上記含有量の範囲において、セメンタイトの安定性を高め、引張強度、耐熱性、耐食性、耐摩耗性を高める。鋳鉄部材に含まれるホウ素は、上記含有量の範囲において、耐食性、耐摩耗性を高める。鋳鉄部材に含まれるモリブデンは、上記含有量の範囲において、基地強化により引張強度を高める。
The cast iron member preferably contains at least one of molybdenum of 0.1% by mass to 1.0% by mass and boron of 0.02% by mass to 0.11% by mass.
Copper contained in the cast iron member enhances the tensile strength, impact resistance, and wear resistance of the cast iron member within the above-mentioned content range. Chromium contained in the cast iron member increases the stability of cementite and increases the tensile strength, heat resistance, corrosion resistance, and wear resistance within the above-mentioned content range. Boron contained in the cast iron member enhances corrosion resistance and wear resistance within the above-mentioned content range. Molybdenum contained in the cast iron member increases the tensile strength by strengthening the base within the above-mentioned content range.

鋳鉄部材の金属組織は、フェライトとセメンタイトとの層状組織であるパーライトを有している。鋳鉄部材のパーライトにおけるセメンタイトの析出間隔であるラメラ間隔が0.7μm以下である部分は狭幅部分である。   The metal structure of the cast iron member has pearlite which is a layered structure of ferrite and cementite. The portion where the lamellar interval, which is the cementite precipitation interval, in the pearlite of the cast iron member is 0.7 μm or less is a narrow portion.

鋳鉄部材におけるパーライトの面積に対して狭幅部分の占める比率は、70%以上である。また、狭幅部分においては、ラメラ間隔が0.5μm以下であることが好ましい。
なお、鋳鉄部材におけるパーライトの面積に対して狭幅部分の占める比率とは、鋳鉄部材の全体の面積に対して狭幅部分の占める比率ではなく、パーライトのうちで狭幅部分が占める比率を意味し、パーライトの全てが狭幅部分であった場合には100%となる。
The ratio of the narrow portion to the pearlite area in the cast iron member is 70% or more. In the narrow portion, the lamella interval is preferably 0.5 μm or less.
The ratio of the narrow part to the pearlite area in the cast iron member means not the ratio of the narrow part to the entire area of the cast iron member but the ratio of the narrow part in the pearlite. However, when all of the pearlite is a narrow width portion, it becomes 100%.

上記比率は、65μm×50μmの範囲を測定視野として鋳鉄部材の任意の10箇所をレーザー顕微鏡を用いて倍率2000倍で撮像し、それら撮像した画像の分析により得られるパーライトの面積の平均値と狭幅部分の面積の平均値とに基づいて算出される値である。   The above ratio is obtained by taking an image of an arbitrary 10 locations of a cast iron member at a magnification of 2000 times using a laser microscope with a range of 65 μm × 50 μm as a measurement visual field, and narrowing the average value of the area of pearlite obtained by analysis of the captured images It is a value calculated based on the average value of the area of the width portion.

上述した鋳鉄部材は、砂型鋳造法によって鋳造されることが好ましい。砂型鋳造法による鋳鉄部材の製造方法の一例について説明する。
まず、鋳物用銑鉄、スチールスクラップ、戻り材を主原料に、目標とする化学組成から算出した合金を計量し、石炭コークスとともにキュポラ溶解炉内に投入する。そして、溶湯を1520℃〜1600℃で溶湯保持炉に出湯したのち取鍋容器に出湯する。その際、接種処理として出湯重量に対して0.3質量%のフェロシリコン合金を投入する。接種処理された溶湯を取鍋で搬送し、1350℃〜1450℃で砂型に流し込み、鋳型内で自然冷却する。冷却する工程では、1080℃〜1140℃の間の冷却速度が2〜10℃/secであることが好ましい。
The cast iron member described above is preferably cast by a sand mold casting method. An example of the manufacturing method of the cast iron member by the sand mold casting method will be described.
First, an alloy calculated from the target chemical composition is weighed using the pig iron for casting, steel scrap, and return material as the main raw materials, and put into a cupola melting furnace together with coal coke. Then, the molten metal is poured into a molten metal holding furnace at 1520 ° C. to 1600 ° C. and then poured into a ladle container. At that time, as an inoculation treatment, 0.3 mass% of ferrosilicon alloy with respect to the tapping weight is added. The inoculated molten metal is transported in a pan, poured into a sand mold at 1350 ° C. to 1450 ° C., and naturally cooled in the mold. In the cooling step, the cooling rate between 1080 ° C and 1140 ° C is preferably 2 to 10 ° C / sec.

3.0質量%以上3.7質量%以下の炭素、1.5質量%以上2.5質量%以下の珪素、0.5質量%以上1.0質量%以下のマンガン、0.1質量%以上0.5質量%以下のリン、0.12質量%以下の硫黄、これらを含有することを基本として、銅及びクロムの含有量を変化させ、上述した製造方法にて化学組成が異なる複数のシリンダライナを実施例の鋳鉄部材として得た。また、上述した製造方法にて実施例とは銅及びクロムの化学組成が異なる複数のシリンダライナを比較例の鋳鉄部材として得た。また、上記に加え、モリブデン及びホウ素の少なくとも一方を含有させたシリンダライナを実施例の鋳鉄部材として得た。また、上記に加え、モリブデン及びホウ素の双方を含有させたシリンダライナを比較例の鋳鉄部材として得た。   3.0 mass% to 3.7 mass% carbon, 1.5 mass% to 2.5 mass% silicon, 0.5 mass% to 1.0 mass% manganese, 0.1 mass% More than 0.5% by mass of phosphorus, 0.12% by mass or less of sulfur, based on containing these, by changing the content of copper and chromium, a plurality of different chemical compositions in the manufacturing method described above A cylinder liner was obtained as the cast iron member of the example. Moreover, the several cylinder liner from which the chemical composition of copper and chromium differs from an Example with the manufacturing method mentioned above was obtained as a cast iron member of a comparative example. In addition to the above, a cylinder liner containing at least one of molybdenum and boron was obtained as the cast iron member of the example. In addition to the above, a cylinder liner containing both molybdenum and boron was obtained as a cast iron member of a comparative example.

次いで、複数の実施例の鋳鉄部材、及び、複数の比較例の鋳鉄部材の各々に対して、鋳鉄部材の化学組成を定量分析した。また、複数の実施例の鋳鉄部材、及び、複数の比較例の鋳鉄部材の各々に対し、レーザー顕微鏡を用いて金属組織を倍率2000倍にて撮像してラメラ間隔を計測した。   Next, the chemical composition of the cast iron member was quantitatively analyzed for each of the cast iron members of the plurality of examples and the cast iron members of the plurality of comparative examples. Further, for each of the cast iron members of the plurality of examples and the cast iron members of the plurality of comparative examples, the metallographic structure was imaged at a magnification of 2000 using a laser microscope, and the lamella interval was measured.

(定量分析結果)
複数の実施例の鋳鉄部材の各々において、鉄及び不可避不純物の他、3.0質量%以上3.7質量%以下の炭素、1.5質量%以上2.5質量%以下の珪素、0.5質量%以上1.0質量%以下のマンガン、0.1質量%以上0.5質量%以下のリン、0.12質量%以下の硫黄、1.0質量%より大きく2.0質量%以下の銅、0.6質量%より大きく1.0質量%以下のクロムを含有することが認められた。これに対して、比較例の鋳鉄部材の各々において、銅の含有率及びクロムの含有率の少なくとも一方が上記実施例の鋳鉄部材における含有率の範囲とは異なることが認められた。
(Quantitative analysis results)
In each of the cast iron members of the plurality of examples, in addition to iron and inevitable impurities, carbon of 3.0% by mass to 3.7% by mass, silicon of 1.5% by mass to 2.5% by mass, 5% by mass or more and 1.0% by mass or less of manganese, 0.1% by mass or more and 0.5% by mass or less of phosphorus, 0.12% by mass or less of sulfur, 1.0% by mass or more and 2.0% by mass or less Of copper, and was found to contain greater than 0.6 wt% and less than 1.0 wt% chromium. On the other hand, in each of the cast iron members of the comparative examples, it was recognized that at least one of the copper content and the chromium content was different from the content range of the cast iron members of the above examples.

実施例と比較例とにおける定量分析の結果を表1に示す。表1は、化学組成を質量%で示している。
Table 1 shows the results of quantitative analysis in Examples and Comparative Examples. Table 1 shows the chemical composition in mass%.

(金属組織の観察結果)
各実施例の鋳鉄部材、及び、各比較例の鋳鉄部材について、65μm×50μmの範囲を測定視野とする任意の10箇所をレーザー顕微鏡を用いて倍率2000倍で撮像した。図1は、実施例の鋳鉄部材の金属組織の撮像画像の一例であり、実施例4の撮像画像の一例である。図2は、比較例の鋳鉄部材の金属組織の撮像画像の一例であり、比較例4の撮像画像の一例である。
(Observation result of metal structure)
About the cast iron member of each Example and the cast iron member of each comparative example, the arbitrary 10 places which set the range of 65 micrometers x 50 micrometers as a measurement visual field were imaged by the magnification 2000 times using the laser microscope. FIG. 1 is an example of a captured image of the metal structure of the cast iron member of the example, and an example of the captured image of the example 4. FIG. 2 is an example of a captured image of the metal structure of the cast iron member of the comparative example, and an example of the captured image of the comparative example 4.

図1及び図2が示すように、黒色の薄い部分と黒色の濃い部分とが繰り返される層状組織がパーライトであり、黒色の薄い部分がフェライト、黒色の濃い部分がセメンタイトである。図1及び図2に基づいて実施例4と比較例4とを比較すると、比較例4よりも実施例4の方がセメンタイトの析出間隔が狭く、パーライトの組織が緻密であることが確認された。また、実施例4以外の他の実施例、及び、比較例4以外の他の比較例の金属組織を観察したところ、各実施例において、いずれの比較例よりもパーライトの組織が緻密であることが確認された。   As shown in FIGS. 1 and 2, the lamellar structure in which the black thin portion and the black dark portion are repeated is pearlite, the black thin portion is ferrite, and the black dark portion is cementite. When Example 4 and Comparative Example 4 were compared based on FIG. 1 and FIG. 2, it was confirmed that Example 4 had a narrower cementite precipitation interval and a pearlite structure was denser than Comparative Example 4. . Moreover, when observing the metal structure of Examples other than Example 4 and Comparative Examples other than Comparative Example 4, in each Example, the structure of pearlite is denser than any Comparative Example. Was confirmed.

(ラメラ間隔の計測結果)
パーライトにおける組織の緻密度合いを示す指標の1つは、パーライトにおけるセメンタイトの析出間隔であるラメラ間隔λである。複数の実施例の鋳鉄部材、及び、複数の比較例の鋳鉄部材の各々において、撮像画像においてラメラ間隔λが平均的であると判断される部分についてのラメラ間隔λを計測した。ラメラ間隔λの計測結果の一部として、実施例4及び比較例4の計測結果を表2に示し、実施例4及び比較例4にて計測されたラメラ間隔λの範囲を図3に示す。
(Measurement result of lamella spacing)
One of the indexes indicating the degree of compactness of the structure in pearlite is a lamellar interval λ which is a cementite precipitation interval in pearlite. In each of the cast iron members of the plurality of examples and the cast iron members of the plurality of comparative examples, the lamella interval λ was measured for a portion where the lamella interval λ was determined to be average in the captured image. As a part of the measurement results of the lamella interval λ, the measurement results of Example 4 and Comparative Example 4 are shown in Table 2, and the range of the lamella interval λ measured in Example 4 and Comparative Example 4 is shown in FIG.

実施例4のラメラ間隔λは、0.7μm以下の範囲で計測値が得られ、平均値が0.5μmであった。一方で、比較例4のラメラ間隔λは、0.78μmよりも大きい範囲で計測値が得られ、平均値が1.0μmであった。ラメラ間隔λについて、実施例の最大値よりも比較例の最小値が大きいこと、比較例の平均値よりも実施例の平均値の方が小さいことが認められた。   The measured value was obtained in the range of 0.7 μm or less for the lamella interval λ of Example 4, and the average value was 0.5 μm. On the other hand, as for the lamella interval λ of Comparative Example 4, a measured value was obtained in a range larger than 0.78 μm, and the average value was 1.0 μm. Regarding the lamella interval λ, it was confirmed that the minimum value of the comparative example was larger than the maximum value of the example, and the average value of the example was smaller than the average value of the comparative example.

また、実施例4以外の他の実施例についても同様の計測方法でラメラ間隔λを計測したところ、実施例4と同様の計測結果が得られることが認められた。また、比較例4以外の他の比較例についても同様の計測方法でラメラ間隔λを計測したところ、比較例4と同様の計測結果が得られることが認められた。   Further, in other examples other than Example 4, when the lamella interval λ was measured by the same measurement method, it was confirmed that the same measurement result as in Example 4 was obtained. Further, when the lamella interval λ was measured by the same measurement method for other comparative examples other than the comparative example 4, it was recognized that the same measurement result as that of the comparative example 4 was obtained.

実施例4の鋳鉄部材、及び、比較例4の鋳鉄部材について撮像した画像を解析した。その結果、実施例4の鋳鉄部材では、鋳鉄部材の表面の面積に対してパーライトの占める比率が80〜90%であり、パーライトにおいてラメラ間隔が0.7μm以下である狭幅部分の占める比率が70%以上であることが認められた。これに対して、比較例4の鋳鉄部材では、パーライトにおいてラメラ間隔が0.7μm以下である狭幅部分の占める比率が10%以下であることが認められた。   Images taken of the cast iron member of Example 4 and the cast iron member of Comparative Example 4 were analyzed. As a result, in the cast iron member of Example 4, the ratio of the pearlite to the surface area of the cast iron member is 80 to 90%, and the ratio of the narrow portion in which the lamella spacing is 0.7 μm or less in the pearlite. It was found to be 70% or more. On the other hand, in the cast iron member of Comparative Example 4, it was recognized that the ratio of the narrow portion having a lamellar spacing of 0.7 μm or less in pearlite was 10% or less.

また、実施例4以外の他の実施例についても、パーライトにおいてラメラ間隔が0.7μm以下である狭幅部分の占める比率が70%以上であることが認められた。同様に、比較例1,2についても、パーライトにおいてラメラ間隔が0.7μm以下である狭幅部分の占める比率が10%以下であることが認められた。また、比較例3については、パーライトにおいてラメラ間隔が0.7μm以下である狭幅部分の占める比率が70%未満であることが認められた。   Moreover, also about other examples other than Example 4, it was recognized that the ratio for which the narrow part whose lamella space | interval is 0.7 micrometer or less in pearlite is 70% or more. Similarly, in Comparative Examples 1 and 2, it was recognized that the ratio of the narrow portion having a lamellar spacing of 0.7 μm or less in pearlite was 10% or less. Moreover, about the comparative example 3, it was recognized that the ratio for which the narrow width part whose lamella space | interval is 0.7 micrometer or less in pearlite is less than 70%.

なお、ラメラ間隔λと銅の添加量との間、及び、ラメラ間隔λとクロムの添加量との間において、添加量が大きいほどラメラ間隔λが小さい関係が、上述の添加量の範囲において認められた。そのため、所望のラメラ間隔λが得られるように、銅の添加量、及び、クロムの添加量を導出することは可能である。   It should be noted that the relationship between the lamellar interval λ and the added amount of copper, and between the lamellar interval λ and the added amount of chromium, the larger the added amount, the smaller the lamellar interval λ is recognized in the above-mentioned range of added amounts. It was. Therefore, it is possible to derive the addition amount of copper and the addition amount of chromium so that a desired lamella interval λ can be obtained.

(摩耗試験)
摩耗試験では、上述した製造方法、及び、炭素、珪素、マンガン、リン、硫黄の化学組成を基本として銅及びクロムの含有量を変化させ、15mm×35mm×160mmの直方体形状を有する複数のブロックを実施例の鋳鉄部材として得た。また、銅とクロムの添加量を実施例から変更し、15mm×35mm×160mmの直方体形状を有するブロックを比較例の鋳鉄部材として得た。
(Abrasion test)
In the wear test, a plurality of blocks having a rectangular parallelepiped shape of 15 mm × 35 mm × 160 mm are produced by changing the contents of copper and chromium based on the above-described manufacturing method and the chemical composition of carbon, silicon, manganese, phosphorus, and sulfur. Obtained as a cast iron member of the example. Moreover, the addition amount of copper and chromium was changed from the Example, and the block which has a rectangular parallelepiped shape of 15 mm x 35 mm x 160 mm was obtained as a cast iron member of a comparative example.

複数の実施例のブロックの化学組成を定量分析した結果、上記実施例のシリンダライナと同じ範囲の化学組成が実施例のブロックに認められた。また、複数の実施例のブロックのラメラ間隔を計測した結果、上記実施例のシリンダライナと同じ範囲のラメラ間隔が認められた。   As a result of quantitative analysis of the chemical composition of the blocks of the plurality of examples, the chemical composition in the same range as the cylinder liner of the above examples was found in the blocks of the examples. Moreover, as a result of measuring the lamella spacing of the blocks of the plurality of examples, the lamella spacing in the same range as the cylinder liner of the above examples was recognized.

同様に、比較例のブロックの化学組成を定量分析した結果、上記比較例4のシリンダライナと同様の化学組成が比較例のブロックに認められた。また、比較例のブロックのラメラ間隔を計測した結果、上記比較例4のシリンダライナと同じ範囲のラメラ間隔が認められた。   Similarly, as a result of quantitative analysis of the chemical composition of the block of the comparative example, the chemical composition similar to that of the cylinder liner of the comparative example 4 was recognized in the block of the comparative example. Moreover, as a result of measuring the lamella spacing of the block of the comparative example, a lamella spacing in the same range as the cylinder liner of the comparative example 4 was recognized.

上述した各実施例のブロック、及び、比較例のブロックを用いて摩擦試験を行った。まず、図4を参照して、摩耗試験の概要について説明する。
図4に示されるように、摩耗試験では、各実施例のブロック、及び、比較例のブロックを試験片11とし、試験片11に対する相手材12を、円柱形状を有するSUS304材にPVD(物理蒸着法)にて膜厚30μmのCr−N系の薄膜を形成したものとした。そして、試験片11に対して相手材12の底面を荷重14kgfで押し付けながら、周波数8.3Hz、ストローク±50mm、送り速度2.6m/sで試験片11を相手材12に対して往復動させた。そして、試験片11の摩耗量である相手材12の下方向への変位量が所定の値に到達するまでに要した往復動の回数を評価値として得た。
A friction test was performed using the blocks of the above-described examples and the block of the comparative example. First, the outline of the wear test will be described with reference to FIG.
As shown in FIG. 4, in the wear test, the block of each example and the block of the comparative example are used as test pieces 11, and the mating material 12 for the test pieces 11 is PVD (physical vapor deposition) on a SUS304 material having a cylindrical shape. Method), a Cr-N-based thin film having a thickness of 30 μm was formed. Then, while pressing the bottom surface of the mating member 12 against the test piece 11 with a load of 14 kgf, the test piece 11 is reciprocated with respect to the mating material 12 at a frequency of 8.3 Hz, a stroke ± 50 mm, and a feed rate of 2.6 m / s. It was. And the frequency | count of the reciprocation required until the downward displacement amount of the other party material 12 which is the abrasion amount of the test piece 11 reaches | attains a predetermined value was obtained as evaluation value.

各試験片11に対して行った摩耗試験の結果の一例として、表1に示される実施例4に相当する化学組成を有する試験片11に対して行った摩耗試験の結果を図5に示す。なお、図5では、比較例のブロックから得られた評価値は20万回であって、この評価値を1.0とした場合における実施例のブロックの評価値を示している。   As an example of the result of the wear test performed on each test piece 11, the result of the wear test performed on the test piece 11 having a chemical composition corresponding to Example 4 shown in Table 1 is shown in FIG. In FIG. 5, the evaluation value obtained from the block of the comparative example is 200,000 times, and the evaluation value of the block of the example when this evaluation value is 1.0 is shown.

図5に示されるように、実施例のブロックは、比較例のブロックよりも耐摩耗性に優れ、その摩耗量は比較例の約1/10であることが確認された。なお、複数の実施例の鋳鉄部材の各々において同様の耐摩耗性が認められた。   As shown in FIG. 5, it was confirmed that the block of the example was superior in wear resistance to the block of the comparative example, and the amount of wear was about 1/10 of that of the comparative example. In addition, the same abrasion resistance was recognized in each of the cast iron member of several Example.

(硬さ試験)
上述した各実施例のブロック、及び、比較例のブロックの各々の表面に対して、JISZ2244に規定されたビッカース硬さ試験に準拠したマイクロビッカース硬さ試験を行った。この硬さ試験では、試験荷重を100gfに設定し、試験機による圧痕を電子顕微鏡で観察した。そして、圧痕に含まれる複数のセメンタイトにおけるラメラ間隔の平均値を求め、その平均値を圧痕が形成された部分のラメラ間隔λとした。表3及び図6に硬さ試験の結果の一例として、表1に示される実施例4に相当する化学組成を有する実施例のブロックに対して行った硬さ試験の結果を示す。なお、表3では、ラメラ間隔λを複数の範囲に分割し、ラメラ間隔λごとのマイクロビッカース硬さMHVを示す。
(Hardness test)
The micro Vickers hardness test based on the Vickers hardness test specified in JISZ2244 was performed on the surface of each of the blocks of the above-described examples and the block of the comparative example. In this hardness test, the test load was set to 100 gf, and the impression by the testing machine was observed with an electron microscope. And the average value of the lamella space | interval in several cementite contained in an indentation was calculated | required, and the average value was made into the lamella space | interval (lambda) of the part in which the indentation was formed. As an example of the results of the hardness test, Table 3 and FIG. 6 show the results of the hardness test performed on the block of the example having the chemical composition corresponding to Example 4 shown in Table 1. In Table 3, the lamella interval λ is divided into a plurality of ranges, and the micro Vickers hardness MHV for each lamella interval λ is shown.

表3及び図6に示されるように、マイクロビッカース硬さMHVは、ラメラ間隔λが小さくなるほど高くなる傾向にあることが確認された。特に、ラメラ間隔λが0.5μm以下である範囲では、ラメラ間隔λが0.5μmよりも大きい範囲と比べて、マイクロビッカース硬さMHVが特に高い。そして、ラメラ間隔λの減少に対するマイクロビッカース硬さMHVの増加の割合は、ラメラ間隔λが0.5μm以下である範囲と、ラメラ間隔λが0.5μmよりも大きい範囲との間で大きく異なる。それゆえに、パーライトの組織が緻密であるほど硬度が高く、鋳鉄部材のラメラ間隔λがばらつきを有するとしても、こうした効果は、ラメラ間隔λが0.5μm以下である範囲において特に大きいことが認められた。   As shown in Table 3 and FIG. 6, it was confirmed that the micro Vickers hardness MHV tends to increase as the lamella interval λ decreases. In particular, in the range where the lamella interval λ is 0.5 μm or less, the micro Vickers hardness MHV is particularly high compared to the range where the lamella interval λ is larger than 0.5 μm. The ratio of the increase in the micro Vickers hardness MHV with respect to the decrease in the lamella interval λ is greatly different between a range where the lamella interval λ is 0.5 μm or less and a range where the lamella interval λ is greater than 0.5 μm. Therefore, even if the pearlite structure is denser, the hardness is higher, and even if the lamella interval λ of the cast iron member varies, it is recognized that such an effect is particularly great in the range where the lamella interval λ is 0.5 μm or less. It was.

なお、マイクロビッカース硬さMHVとラメラ間隔λ(μm)との関係を示す回帰式の一例として下記の式(1)が得られた。
MHV=−127×ln(λ)+271.42 ・・・ (1)
式(1)が示す回帰曲線は、負の係数を有する対数関数である。そのため、ラメラ間隔λが1μmよりも小さい範囲ではラメラ間隔λが小さくなるほど、式(1)の計算結果は指数関数的に増加する。そして、式(1)により、所望のマイクロビッカース硬さMHVが得られるラメラ間隔λをおよそ把握することができ、特に、ラメラ間隔λが0.5μm以下であれば、所望のマイクロビッカース硬さMHVよりも高いマイクロビッカース硬さMHVが得られる。
In addition, the following formula | equation (1) was obtained as an example of the regression equation which shows the relationship between micro Vickers hardness MHV and lamella space | interval (lambda) (micrometer).
MHV = −127 × ln (λ) +271.42 (1)
The regression curve represented by Equation (1) is a logarithmic function having a negative coefficient. Therefore, in the range where the lamella interval λ is smaller than 1 μm, the calculation result of the formula (1) increases exponentially as the lamella interval λ decreases. The lamella interval λ from which the desired micro Vickers hardness MHV can be obtained can be roughly grasped by the equation (1). In particular, if the lamella interval λ is 0.5 μm or less, the desired micro Vickers hardness MHV is obtained. Higher micro Vickers hardness MHV is obtained.

(耐食性試験)
耐食性試験では、表1に示される実施例1〜9のシリンダライナの各々を5mm×5mm×70mmの直方体形状を有するブロックに切り出して、その切り出したブロックを実施例1〜9の鋳鉄部材として得た。また、表1に示される各比較例1〜4のシリンダライナの各々を5mm×5mm×70mmの直方体形状を有するブロックに切り出して、その切り出したブロックを比較例1〜4の鋳鉄部材として得た。
(Corrosion resistance test)
In the corrosion resistance test, each of the cylinder liners of Examples 1 to 9 shown in Table 1 was cut into blocks having a rectangular parallelepiped shape of 5 mm × 5 mm × 70 mm, and the cut blocks were obtained as cast iron members of Examples 1 to 9. It was. Further, each of the cylinder liners of Comparative Examples 1 to 4 shown in Table 1 was cut into blocks having a rectangular parallelepiped shape of 5 mm × 5 mm × 70 mm, and the cut blocks were obtained as cast iron members of Comparative Examples 1 to 4. .

耐食性試験の概要について説明する。耐食性試験では、実施例1〜9のブロックの各々、及び、比較例1〜4のブロックの各々を試験片とし、以下に示す条件の下で腐食液に浸漬した。
・腐食液:2.5質量%の硫酸
・液温:70℃±0.5℃
・液量:2L
・浸漬時間:25分
An outline of the corrosion resistance test will be described. In the corrosion resistance test, each of the blocks of Examples 1 to 9 and each of the blocks of Comparative Examples 1 to 4 were used as test pieces and immersed in a corrosive solution under the following conditions.
・ Corrosive liquid: 2.5 mass% sulfuric acid ・ Liquid temperature: 70 ° C ± 0.5 ° C
・ Liquid volume: 2L
・ Immersion time: 25 minutes

そして、浸漬前の重量と浸漬後の重量との差分を腐食減量として算出した。図7に耐食性試験の結果の一例を示す。なお、図7では、比較例1のブロックにおける腐食減量に対する各実施例1〜9及び各比較例1〜4の腐食減量の比を腐食減量比として示している。   And the difference of the weight before immersion and the weight after immersion was computed as corrosion weight loss. FIG. 7 shows an example of the results of the corrosion resistance test. In addition, in FIG. 7, the ratio of the corrosion weight loss of each Example 1-9 and each Comparative Example 1-4 with respect to the corrosion weight loss in the block of the comparative example 1 is shown as a corrosion weight loss ratio.

図7に示されるように、実施例1〜9のブロックの腐食減量は、比較例1の腐食減量に対して30%以上少ないことが認められた。これに対し、比較例2〜4のブロックの腐食減量は、比較例1の腐食減量よりは少ないものの、その減少分が比較例1の腐食減量に対して30%未満に止まることが認められた。   As shown in FIG. 7, the corrosion weight loss of the blocks of Examples 1 to 9 was found to be 30% or less less than the corrosion weight loss of Comparative Example 1. On the other hand, although the corrosion weight loss of the blocks of Comparative Examples 2 to 4 was smaller than the corrosion weight loss of Comparative Example 1, it was recognized that the reduction amount was less than 30% with respect to the corrosion weight loss of Comparative Example 1. .

また、0.1質量%以上1.0質量%以下のモリブデン、及び、0.02質量%以上0.11質量%以下のホウ素の少なくとも一方を含有する実施例2,3,4,9は、ホウ素及びモリブデンを含まない実施例1,5,6,7,8よりも腐食減量が少ないことが認められた。   In addition, Examples 2, 3, 4, and 9 containing at least one of 0.1% by mass or more and 1.0% by mass or less of molybdenum and 0.02% by mass or more and 0.11% by mass or less of boron, It was found that there was less corrosion weight loss than Examples 1, 5, 6, 7, and 8 which did not contain boron and molybdenum.

以下、上記実施形態の作用効果について列挙する。
(1)パーライトにおける狭幅部分、すなわちラメラ間隔λが0.7μm以下の部分の比率を70%以上とすることにより鋳鉄部材の耐摩耗性、耐食性が高まる。
Hereafter, it enumerates about the effect of the said embodiment.
(1) The wear resistance and corrosion resistance of the cast iron member are increased by setting the ratio of the narrow width portion in the pearlite, that is, the portion where the lamellar interval λ is 0.7 μm or less to 70% or more.

(2)ラメラ間隔λが0.5μm以下の範囲は、マイクロビッカース硬さMHVが他の範囲よりも顕著に高くなる。それゆえに、狭幅部分におけるラメラ間隔λを0.5μm以下とすることにより、鋳鉄部材の耐摩耗性、耐食性が高まる。   (2) In the range where the lamellar interval λ is 0.5 μm or less, the micro Vickers hardness MHV is significantly higher than the other ranges. Therefore, by setting the lamella interval λ in the narrow width portion to 0.5 μm or less, the wear resistance and corrosion resistance of the cast iron member are enhanced.

(3)銅及びクロムの添加量を変更するだけで鋳鉄部材の耐摩耗性が高まる。その結果、鋳鉄部材の耐摩耗性を高めるうえでのコストの増加が抑えられる。
(4)0.1質量%以上1.0質量%以下のモリブデン、及び、0.02質量%以上0.11質量%以下のホウ素の少なくとも一方を化学組成にさらに含めることにより、鋳鉄部材の耐食性が高まる。
(3) The wear resistance of the cast iron member is increased only by changing the addition amount of copper and chromium. As a result, an increase in cost for improving the wear resistance of the cast iron member can be suppressed.
(4) Corrosion resistance of the cast iron member by further including in the chemical composition at least one of 0.1% by mass to 1.0% by mass of molybdenum and 0.02% by mass to 0.11% by mass of boron. Will increase.

(5)狭幅部分におけるラメラ間隔λが0.5μm以下であることにより、鋳鉄部材の耐摩耗性、耐食性がより確実に高まる。
(6)銅やクロム等を含有した高合金鋳鉄部材においては冷却速度が上がりやすいが、鋳鉄部材を砂型鋳造法によって製造することによって、他の鋳造方法、例えば金型遠心鋳造法よりも冷却速度を遅くすることができる。その結果、鋳鉄部材のチル化が抑えられ、耐摩耗性、耐食性に優れた金属組織を有する鋳鉄部材を得ることができる。
(5) When the lamellar interval λ in the narrow width portion is 0.5 μm or less, the wear resistance and corrosion resistance of the cast iron member are more reliably increased.
(6) Although the cooling rate is likely to increase in a high alloy cast iron member containing copper, chromium, or the like, the cooling rate is higher than that of other casting methods, for example, a mold centrifugal casting method, by producing the cast iron member by a sand casting method. Can slow down. As a result, chilling of the cast iron member is suppressed, and a cast iron member having a metal structure excellent in wear resistance and corrosion resistance can be obtained.

(7)1080℃〜1140℃の間の冷却速度を2〜10℃/secとすることによって鋳鉄部材のチル化がより確実に抑えられ、耐摩耗性、耐食性の優れた金属組織を有する鋳鉄部材を得ることができる。   (7) By setting the cooling rate between 1080 ° C. and 1140 ° C. to 2 to 10 ° C./sec, chilling of the cast iron member is more reliably suppressed, and the cast iron member has a metal structure with excellent wear resistance and corrosion resistance. Can be obtained.

(8)耐摩耗性及び耐食性についてより高い水準が求められるシリンダライナが上述した鋳鉄部材によって製造されることにより、シリンダライナの耐久性に関する信頼度が高まる。   (8) Since the cylinder liner that is required to have a higher level of wear resistance and corrosion resistance is manufactured by the cast iron member described above, the reliability related to the durability of the cylinder liner is increased.

(9)所望のマイクロビッカース硬さMHVを得るためのラメラ間隔λを上記式(1)から推定することは可能である。
なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・鋳鉄部材は、シリンダライナやシリンダブロックに限らず、クランクシャフト、エキゾーストマニホールド、ブレーキロータであってもよい。
(9) The lamella interval λ for obtaining the desired micro Vickers hardness MHV can be estimated from the above equation (1).
In addition, the said embodiment can also be suitably changed and implemented as follows.
The cast iron member is not limited to a cylinder liner or cylinder block, but may be a crankshaft, an exhaust manifold, or a brake rotor.

・鋳鉄部材は、砂型鋳造法に限らず、他の鋳造法、例えば金型遠心鋳造法で製造されてもよい。   The cast iron member is not limited to the sand mold casting method, and may be manufactured by other casting methods such as a mold centrifugal casting method.

11…試験片、12…相手材。   11 ... test piece, 12 ... mating material.

Claims (6)

3.0質量%以上3.7質量%以下の炭素、1.5質量%以上2.5質量%以下の珪素、0.5質量%以上1.0質量%以下のマンガン、0.1質量%以上0.5質量%以下のリン、0.12質量%以下の硫黄、1.0質量%より大きく2.0質量%以下の銅、及び、0.6質量%より大きく1.0質量%以下のクロムを含有し、残部が鉄及び不可避不純物から構成される鋳鉄部材であり、
前記鋳鉄部材の金属組織として、フェライトとセメンタイトとの層状組織であるパーライトを有し、前記パーライトにおける前記セメンタイトの析出間隔がラメラ間隔であり、
前記鋳鉄部材における前記パーライトの面積に対して、前記ラメラ間隔が0.7μm以下である部分の占める比率が70%以上である
鋳鉄部材。
3.0 mass% to 3.7 mass% carbon, 1.5 mass% to 2.5 mass% silicon, 0.5 mass% to 1.0 mass% manganese, 0.1 mass% More than 0.5 mass% phosphorus, less than 0.12 mass% sulfur, more than 1.0 mass% and less than 2.0 mass% copper, and more than 0.6 mass% and less than 1.0 mass%. Is a cast iron member that contains chromium and the balance is composed of iron and inevitable impurities,
As the metal structure of the cast iron member, it has pearlite that is a layered structure of ferrite and cementite, and the precipitation interval of the cementite in the pearlite is a lamellar interval,
The ratio of the portion where the lamella interval is 0.7 μm or less to the area of the pearlite in the cast iron member is 70% or more.
前記鋳鉄部材が、0.1質量%以上1.0質量%以下のモリブデン、及び、0.02質量%以上0.11質量%以下のホウ素のうちの少なくとも一方を含有する
請求項1に記載の鋳鉄部材。
The cast iron member contains at least one of molybdenum of 0.1% by mass or more and 1.0% by mass or less and boron of 0.02% by mass or more and 0.11% by mass or less. Cast iron member.
前記鋳鉄部材における前記パーライトの面積に対して、前記ラメラ間隔が0.5μm以下である部分の占める比率が70%以上である
請求項1または2に記載の鋳鉄部材。
The cast iron member according to claim 1 or 2, wherein a ratio of a portion where the lamella interval is 0.5 µm or less to the area of the pearlite in the cast iron member is 70% or more.
前記鋳鉄部材が円筒形状を有する請求項1〜3のいずれか一項に記載の鋳鉄部材。   The cast iron member according to claim 1, wherein the cast iron member has a cylindrical shape. 前記鋳鉄部材がシリンダライナである請求項4に記載の鋳鉄部材。   The cast iron member according to claim 4, wherein the cast iron member is a cylinder liner. 請求項1〜5のいずれか一項に記載の鋳鉄部材を砂型鋳造法により鋳造する鋳鉄部材の製造方法であって、
溶湯を砂型内で冷却する工程における1080℃〜1140℃の間を冷却速度2〜10
℃/secで冷却する鋳鉄部材の製造方法。
A cast iron member manufacturing method for casting the cast iron member according to any one of claims 1 to 5 by a sand casting method ,
A cooling rate of 2 to 10 is between 1080 ° C and 1140 ° C in the step of cooling the molten metal in the sand mold.
A method for producing a cast iron member that is cooled at a temperature of ° C / sec.
JP2014076972A 2014-04-03 2014-04-03 Cast iron member and method for producing cast iron member Active JP6313097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076972A JP6313097B2 (en) 2014-04-03 2014-04-03 Cast iron member and method for producing cast iron member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076972A JP6313097B2 (en) 2014-04-03 2014-04-03 Cast iron member and method for producing cast iron member

Publications (2)

Publication Number Publication Date
JP2015196897A JP2015196897A (en) 2015-11-09
JP6313097B2 true JP6313097B2 (en) 2018-04-18

Family

ID=54546775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076972A Active JP6313097B2 (en) 2014-04-03 2014-04-03 Cast iron member and method for producing cast iron member

Country Status (1)

Country Link
JP (1) JP6313097B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441831B (en) * 2015-11-25 2017-08-04 中原内配集团股份有限公司 A kind of helicla flute cast-in cylinder jacket and preparation method thereof
KR101877511B1 (en) * 2017-09-29 2018-07-11 주식회사동방금속 Alloy cast iron for machine tools and manufacturing method thereof
JP6963576B2 (en) * 2019-02-01 2021-11-10 Tpr株式会社 Cast iron member, method for manufacturing composite member including cast iron member and cast iron member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108313A (en) * 1987-10-21 1989-04-25 Mazda Motor Corp Production of cast iron casting
KR101404754B1 (en) * 2011-11-14 2014-06-13 엘지전자 주식회사 Alloy cast iron and manufacturing method of rolling piston using the same

Also Published As

Publication number Publication date
JP2015196897A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP5483701B2 (en) Zinc based alloy
WO2015017131A2 (en) Iron-based alloys and methods of making and use thereof
JP5469681B2 (en) Steel composition for manufacturing piston rings and cylinder sleeves
JP5497798B2 (en) Steel composition for manufacturing piston rings and cylinder sleeves
JP2010501044A (en) Steel material with high silicon content for the production of piston rings and cylinder liners
JP6313097B2 (en) Cast iron member and method for producing cast iron member
SE535043C2 (en) Gray iron alloy and brake disc including gray iron alloy
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
EP3315624B1 (en) Cylindrical member made from lamellar graphite cast iron
JP5465258B2 (en) Steel composition for manufacturing piston rings and cylinder sleeves
JP2009155720A (en) Thermally sprayed iron-based film, its forming method and sliding member
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
CN1290765A (en) Self lubricating piston ring material and piston ring for IC engine
Devecili et al. The effect of Nb supplement on material characteristics of iron with lamellar graphite
Rajeev et al. A fractional factorial design study of reciprocating wear behavior of Al-Si-SiC p composites at lubricated contacts
JP6963576B2 (en) Cast iron member, method for manufacturing composite member including cast iron member and cast iron member
RU2613234C2 (en) Cast brass
Piątkowski et al. Influence of modifications on fatigue strength of AlSi17Cu5Mg (Fe) alloy used for pistons for internal combustion engines
KR102381852B1 (en) Wear Resistance High Strength Brass Alloy and Method for Manufacturing the Same
WO2023243726A1 (en) Austenitic heat-resistant cast steel and exhaust system component formed of same
JP6587570B2 (en) Piston ring wire for internal combustion engine and piston ring for internal combustion engine
KR101663771B1 (en) Ductile cast iron piston ring
Wieszała et al. Analysis of surface coarseness for friction node of alloy AlSi17Cu5 and cast-iron EN-GJL-350
RU2605048C1 (en) Cast iron for making core of double-layer rolls
Wieszała et al. Influence of manufacturing technology on tribological properties of A390. 0 alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150