JP6311819B2 - Setting adjustment admixture - Google Patents

Setting adjustment admixture Download PDF

Info

Publication number
JP6311819B2
JP6311819B2 JP2017060945A JP2017060945A JP6311819B2 JP 6311819 B2 JP6311819 B2 JP 6311819B2 JP 2017060945 A JP2017060945 A JP 2017060945A JP 2017060945 A JP2017060945 A JP 2017060945A JP 6311819 B2 JP6311819 B2 JP 6311819B2
Authority
JP
Japan
Prior art keywords
setting
admixture
inorganic
carbonate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060945A
Other languages
Japanese (ja)
Other versions
JP2017186236A (en
Inventor
神谷 清志
清志 神谷
徳永 健二
健二 徳永
田原 英男
英男 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2017/013595 priority Critical patent/WO2017171004A1/en
Publication of JP2017186236A publication Critical patent/JP2017186236A/en
Application granted granted Critical
Publication of JP6311819B2 publication Critical patent/JP6311819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、超速硬性セメント組成物に添加して超速硬性セメント組成物の凝結始発時間を調整するための凝結調整混和材に関する。   The present invention relates to an agglomeration adjusting admixture that is added to an ultrafast cement composition to adjust the initial setting time of the ultrafast cement composition.

セメントは、通常、細骨材や粗骨材、さらに用途に応じに様々な混和材を含むセメント組成物として使用されている。セメント組成物の硬化を促進するための混和材として、カルシウムアルミネートと無機硫酸塩(石膏)とを組み合わせた速硬性混和材が知られている。このカルシウムアルミネートと無機硫酸塩とを組み合わせた速硬性混和材は、セメント組成物の硬化を促進する作用が強く、この速硬性混和材とセメントを含むセメント組成物は、超速硬性で、水を加えてから凝結を開始するまでの時間(凝結始発時間)が短い。このため、この超速硬性セメント組成物の可使時間を確保するためには、凝結調整剤の添加により凝結時間を制御することが必要である。超速硬性セメント組成物と凝結調整剤を併用することによって可使時間を確保することが可能となり、緊急性や短い施工時間が要求される舗装工事、グラウト工事、コンクリート構造物の補修や補強工事、およびコンクリート工事等に対応可能となる。凝結調整剤としては、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムが知られている。   Cement is usually used as a cement composition containing fine aggregates and coarse aggregates, and various admixtures depending on applications. As an admixture for accelerating the hardening of the cement composition, a quick-setting admixture combining calcium aluminate and an inorganic sulfate (gypsum) is known. This fast-setting admixture that combines calcium aluminate and inorganic sulfate has a strong effect of accelerating the hardening of the cement composition, and the cement composition containing this quick-setting admixture and cement is super-fast setting and contains water. The time (additional start time) from the addition to the start of condensation is short. For this reason, in order to ensure the pot life of this super-hard setting cement composition, it is necessary to control the setting time by adding a setting regulator. It becomes possible to secure the pot life by using a super-hard setting cement composition and a coagulant adjusting agent, and pavement work, grout work, repair and reinforcement work for concrete structures that require urgency and short construction time, It can also be used for concrete work. As the setting modifier, inorganic carbonates, oxycarboxylic acids, and sodium aluminates are known.

特許文献1には、カルシウムアルミネート対無機硫酸塩の重量比が1対0.5〜3からなる急硬成分を15〜35重量%含有してなる急硬セメントを主成分とし、内割重量で、アルミン酸ナトリウム0.2〜3%、無機炭酸塩0.2〜5%、およびオキシカルボン酸類0.1〜2%を含有してなる超速硬セメント組成物が開示されている。   Patent Document 1 mainly includes a hardened cement containing 15 to 35% by weight of a hardened component having a weight ratio of calcium aluminate to inorganic sulfate of 1 to 0.5 to 3, and includes an internal weight. A super-hard cement composition comprising sodium aluminate 0.2 to 3%, inorganic carbonate 0.2 to 5%, and oxycarboxylic acids 0.1 to 2% is disclosed.

特許文献2には、カルシウムアルミネートと無機硫酸塩と凝結調整剤を含むカルシウムアルミネート系の速硬性混和材と、この速硬性混和材とセメントを含む超速硬セメント組成物が開示されている。この特許文献2には、速硬性混和材の凝結調整剤としてアルミン酸ナトリウム、無機炭酸塩及びカルボン酸類を用い、これら凝結調整剤のうちの少なくとも一種について、粒度構成を、平均粒径45μmを越えかつ90μm以下の第1粒子10〜45質量%と、平均粒径90μmを越えかつ150μm以下の第2粒子30〜70質量%と、平均粒径150μmを越えかつ500μm以下の第3粒子5〜30質量%とを含み、かつ前記第2粒子を前記第1粒子より多く含むとともに前記第3粒子より多く含むようにすることが開示されている。   Patent Document 2 discloses a calcium aluminate-based quick-hardening admixture containing calcium aluminate, an inorganic sulfate, and a coagulation regulator, and a super-hard-hardening cement composition containing the quick-hardening admixture and cement. In this Patent Document 2, sodium aluminate, inorganic carbonate and carboxylic acid are used as a setting modifier for a fast-curing admixture. At least one of these setting modifiers has a particle size configuration exceeding an average particle size of 45 μm. And 10 to 45% by mass of the first particles of 90 μm or less, 30 to 70% by mass of the second particles having an average particle size of more than 90 μm and 150 μm or less, and 3 to 30 of the third particles having an average particle size of more than 150 μm and 500 μm or less. In addition, it is disclosed that the second particles are contained in a larger amount than the first particles and more than the third particles.

特公平3−41420号公報Japanese Patent Publication No. 3-41420 特許第3912425号公報Japanese Patent No. 3912425

特許文献1および特許文献2に記載されているように、カルシウムアルミネートと無機硫酸塩とを組み合わせた速硬性混和材を含む超速硬性セメント組成物の凝結始発時間を調整する方法として、凝結調整剤を添加する方法は広く行われている。しかしながら、この速硬性混和材と凝結調整剤とを含む超速硬性セメント組成物は、長期間にわたって保存すると、製造直後の超速硬性セメント組成物と比較して、凝結始発時間が遅くなることがあるという問題があった。また、凝結調整剤単味では、その凝結遅延作用が敏感すぎるため、少量の添加によって凝結始発時間の変動量が大きく、凝結始発時間を容易に、かつ精度良く調整することが困難であった。   As described in Patent Document 1 and Patent Document 2, as a method for adjusting the initial setting time of a super-hard setting cement composition containing a quick-setting admixture in which calcium aluminate and inorganic sulfate are combined, a setting controller The method of adding is widely performed. However, the ultra-fast setting cement composition containing the quick-setting admixture and the setting modifier may delay the initial setting time when stored for a long period of time, compared to the ultra-fast setting cement composition immediately after manufacture. There was a problem. In addition, since the setting retarding agent alone is too sensitive, the amount of fluctuation of the setting start time is large by adding a small amount, and it is difficult to adjust the setting start time easily and accurately.

この発明は、前述した事情に鑑みてなされたものであって、超速硬性セメント組成物に添加することによってその超速硬性セメント組成物の凝結始発時間を容易に、かつ精度よく調整することができ、さらに、その超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる凝結始発時間調整用の混和材を提供することにある。   This invention has been made in view of the circumstances described above, and by adding to the ultrafast cement composition, the initial setting time of the ultrafast cement composition can be easily and accurately adjusted, It is another object of the present invention to provide an admixture for adjusting the initial setting time that can maintain the initial setting time stably even when the ultrafast cement composition is stored for a long period of time.

上記の課題を解決するために、本発明の発明者等は鋭意検討した結果、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムなどの凝結調整剤と、無機粉末とを質量比で1:0.5〜1:3の範囲(無機炭酸塩とオキシカルボン酸とアルミン酸ナトリウムと硫酸ナトリウムの合計量:無機粉末の量)にて含む混合物として、超速硬性セメント組成物に加えると、超速硬性セメント組成物の凝結始発時間を容易に、かつ精度良く調整できるとともに、その超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することが可能となるとの知見を得た。   In order to solve the above-mentioned problems, the inventors of the present invention have intensively studied. As a result, the mass adjusting agent has a mass ratio of a coagulation regulator such as inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate, and inorganic powder. When added to the ultrafast cement composition as a mixture containing 0.5 to 1: 3 (total amount of inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate: amount of inorganic powder) The finding that the initial setting time of a hard cement composition can be adjusted easily and accurately, and the initial setting time can be stably maintained even if the super fast hard cement composition is stored for a long period of time. Obtained.

本発明は、上述の知見に基づいてなされたものであって、本発明の凝結調整混和材は、無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムを含有する凝結調整剤と、ポルトランドセメント、石灰石粉末、珪石粉末および高炉スラグ粉末からなる群より選ばれる1つ以上の無機粉末とを質量比で1:0.5〜1:3の範囲にて含む混合物であることを特徴としている。 The present invention has been made on the basis of the above-described knowledge, and the setting control admixture of the present invention includes a setting control agent containing inorganic carbonate, oxycarboxylic acid and sodium aluminate, Portland cement, and limestone powder. And a mixture containing one or more inorganic powders selected from the group consisting of quartzite powder and blast furnace slag powder in a mass ratio of 1: 0.5 to 1: 3.

本発明の凝結調整混和材は凝結調整剤と無機粉末との混合物とされているので、本発明の凝結調整混和材を超速硬性セメント組成物に添加することは、凝結調整剤を実質2段階で超速硬性セメント組成物と混合することとなる。このため、本発明の凝結調整混和材を用いることによって、超速硬性セメント組成物に凝結調整剤を均一に分散させることができる。そして、本発明の凝結調整混和材が添加された超速硬性セメント組成物は、無機粉末により希釈された凝結調整剤が均一に分散されているので、その凝結調整剤によるセメントの凝結調整作用が全体的に均一に進行し、超速硬性セメント組成物の凝結始発時間を確実かつ精度よく調整することができ、かつ、超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。すなわち、本発明の凝結調整混和材を用いることによって、所要の凝結始発時間を得るための凝結調整剤の添加量の調整が容易になるとともに、凝結始発時間を精度よく調整することが可能となる。   Since the setting modifier admixture of the present invention is a mixture of a setting modifier and an inorganic powder, the addition of the setting modifier admixture of the present invention to a super-hard setting cement composition has substantially two steps of setting agent. It will be mixed with the super-hard setting cement composition. For this reason, by using the setting control admixture of the present invention, the setting control agent can be uniformly dispersed in the super-hard setting cement composition. And, since the setting modifier diluted with the inorganic powder is uniformly dispersed in the super-hard setting cement composition to which the setting control admixture of the present invention is added, the setting control action of the cement by the setting control agent as a whole. The initial setting time of the super-hard setting cement composition can be adjusted reliably and accurately, and even if the super-fast setting cement composition is stored for a long period of time, the setting start time is stable. can do. That is, by using the setting adjusting admixture of the present invention, it becomes easy to adjust the addition amount of the setting adjusting agent for obtaining the required setting starting time, and it is possible to adjust the setting starting time with high accuracy. .

ここで、本発明の凝結調整混和材においては、前記無機粉末は、ポルトランドセメント、石灰石粉末、珪石粉末、高炉スラグ粉末のうちの1つ以上である。
上記の無機粉末は、速硬性混和材の速硬性に係わる性能に悪影響を及ぼさず、また凝結調整剤との反応性が低いので、これらの無機粉末を用いた凝結調整混和材を、超速硬性セメント組成物に添加することによって、超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。
Here, in the coagulation adjusting admixture of the present invention, the inorganic powder is Portland cement, limestone powder, silica powder, Ru one or more der of the ground granulated blast furnace slag powder.
The above-mentioned inorganic powder does not adversely affect the performance of the fast-curing admixture, and the reactivity with the setting modifier is low. Therefore, the setting-adjusting admixture using these inorganic powders can be used as a super-fast-setting cement. By adding the composition to the composition, the initial setting time can be stably maintained even when the ultrafast cement composition is stored for a long period of time.

また、本発明の凝結調整混和材においては、前記無機粉末の平均粒子径が、10μm以上200μm以下の範囲にあることが好ましい。
この場合、無機粉末を平均粒子径が上記の範囲にある微細な無機粉末として用いるので、凝結調整剤を無機粉末中に均一に分散させることができ、凝結調整混和材の組成がより均一となるとともに、超速硬性セメント組成物への分散性が向上する。従って、この凝結調整混和材を超速硬性セメント組成物に添加することによって、超速硬性セメント組成物の凝結始発時間をさらに確実に精度よく調整することができ、またその超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。
Moreover, in the setting control admixture of this invention, it is preferable that the average particle diameter of the said inorganic powder exists in the range of 10 micrometers or more and 200 micrometers or less.
In this case, since the inorganic powder is used as a fine inorganic powder having an average particle diameter in the above range, the setting modifier can be uniformly dispersed in the inorganic powder, and the composition of the setting modifier admixture becomes more uniform. At the same time, dispersibility in the ultrafast cement composition is improved. Therefore, by adding this setting adjusting admixture to the ultrafast cement composition, the initial setting time of the ultrafast cement composition can be adjusted more reliably and accurately, and the ultrafast cement composition can be used for a long time. Even when stored for a long time, the initial setting time can be stably maintained.

さらに、本発明の凝結調整混和材において、前記無機炭酸塩は、炭酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウムのうちの1つ以上であることが好ましい。すなわち、これらの無機炭酸塩は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。
この場合、凝結調整剤として上記の無機炭酸塩を用いるので、凝結調整剤による凝結調整作用を確実に発揮させることができる。従って、この凝結調整混和材を、超速硬性セメント組成物に添加することによって、超速硬性セメント組成物の凝結始発時間をさらに確実にかつ精度よく調整することができる。
Moreover, Te condensation adjusted admixture odor of the present invention, the inorganic carbonate, potassium carbonate, lithium carbonate, sodium carbonate, sodium hydrogen carbonate, is preferably one or more of ammonium carbonate. That is, one of these inorganic carbonates may be used alone, or two or more thereof may be used in combination.
In this case, since the inorganic carbonate is used as the setting adjuster, the setting adjusting action by the set adjusting agent can be surely exhibited. Therefore, by adding this setting adjusting admixture to the ultrafast cement composition, the initial setting time of the ultrafast cement composition can be adjusted more reliably and accurately.

またさらに、本発明の凝結調整混和材において、前記オキシカルボン酸は、酒石酸、クエン酸、リンゴ酸、グルコン酸のうちの1つ以上であることが好ましい。すなわち、これらのオキシカルボン酸は1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。
この場合、凝結調整剤として上記のオキシカルボン酸を用いるので、凝結調整剤による凝結調整作用を確実に発揮させることができる。従って、この凝結調整混和材を、超速硬性セメント組成物に添加することによって、その超速硬性セメント組成物の凝結始発時間をさらに確実に精度よく調整することができる。
Furthermore, Te condensation adjusted admixture odor of the present invention, the oxycarboxylic acid, tartaric acid, citric acid, malic acid, not less than one of the gluconic acid. That is, these oxycarboxylic acids may be used alone or in combination of two or more.
In this case, since the above oxycarboxylic acid is used as the setting modifier, the setting adjustment effect by the setting modifier can be reliably exhibited. Therefore, by adding this setting adjusting admixture to the ultrafast cement composition, the initial setting time of the ultrafast cement composition can be adjusted more reliably and accurately.

さらにまた、本発明の凝結調整混和材においては、前記凝結調整剤の平均粒子径が、1μm以上500μm以下の範囲にあることが好ましい。
この場合、平均粒子径が上記の範囲にある凝結調整剤は、水への溶解性が高く、また大気中の水分などによる変質が起こりにくいので、凝結調整作用を長期間にわたって維持することができる。さらに、この凝結調整混和材を、超速硬性セメント組成物に添加することによって、その超速硬性セメント組成物の凝結始発時間をさらに確実に精度よく調整することができ、またその超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。
Furthermore, in the setting adjusting admixture of the present invention, it is preferable that the average particle diameter of the setting adjusting agent is in the range of 1 μm to 500 μm.
In this case, the setting modifier having an average particle diameter in the above range has high solubility in water and hardly changes in quality due to moisture in the atmosphere, so that the setting adjustment action can be maintained over a long period of time. . Furthermore, by adding this setting adjusting admixture to the ultrafast cement composition, the initial setting time of the ultrafast cement composition can be adjusted more reliably and accurately. Even when stored for a long period of time, the initial setting time can be stably maintained.

本発明によれば、超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる凝結時間調整用の混和材を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if it preserve | saves a super-fast-hardening cement composition over a long period of time, it becomes possible to provide the admixture for setting time adjustment which can maintain a setting start time stably.

以下に、本発明の実施形態である凝結調整混和材について説明する。
本実施形態の凝結調整混和材は、無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムを含有する凝結調整剤と無機粉末とを含む混合物である。なお、本実施形態において、混合物は、凝結調整剤と無機粉末とを単に混合した混合物および凝結調整剤と無機粉末とを混合粉砕した混合粉砕物を含む。本実施形態の凝結調整混和材においては、凝結調整剤はさらに硫酸ナトリウムを含む。凝結調整剤と無機粉末との配合比は、質量比で1:0.5〜1:3の範囲とされている。
以下、本実施形態の凝結調整混和材で用いる凝結調整剤および無機粉末、そしてこれらの配合量について説明する。
Below, the setting adjustment admixture which is embodiment of this invention is demonstrated.
The setting control admixture of this embodiment is a mixture containing a setting control agent containing inorganic carbonate, oxycarboxylic acid and sodium aluminate and inorganic powder. In the present embodiment, the mixture includes a mixture obtained by simply mixing a setting modifier and an inorganic powder, and a mixed pulverized product obtained by mixing and pulverizing a setting modifier and an inorganic powder. In the setting control admixture of this embodiment, the setting control agent further contains sodium sulfate. The compounding ratio of the setting modifier and the inorganic powder is in the range of 1: 0.5 to 1: 3 by mass ratio.
Hereinafter, the setting modifier and inorganic powder used in the setting modifier admixture of the present embodiment, and the blending amounts thereof will be described.

(凝結調整剤)
凝結調整剤は、超速硬性セメント組成物の使用時において、超速硬性セメント組成物に水を加えてからセメントの凝結が開始するまでの時間を調整する作用、すなわちセメントの硬化時間を遅延させる作用を有する。凝結調整剤によって、セメントの硬化時間が遅延されることによって、超速硬性セメント組成物に水を加えてからセメントの硬化反応が進行するまでの間の超速硬性セメント組成物の流動性が向上する。
凝結調整剤によるセメントの硬化時間の遅延作用は、凝結調整剤が水に溶解し、速硬性混和材(カルシウムアルミネート)から溶出したカルシウムイオンやアルミニウムイオンとキレート反応して、速硬性混和材の表面に皮膜を形成することによって、速硬性混和材からのカルシウムイオンやアルミニウムイオンの溶出が一時的に抑制されることにより発現すると考えられる。ただし、速硬性混和材の表面に形成される皮膜は、極めて薄いため、比較的短時間で溶解して消失する。そして、この被膜が消失した後は、速硬性混和材からのカルシウムイオン、アルミニウムイオンの再溶出が始まって、セメントの硬化反応が進行する。
(Setting agent)
The setting modifier has the effect of adjusting the time from the addition of water to the ultrafast setting cement composition until the start of setting of the cement, that is, the action of delaying the setting time of the cement when using the ultrafast setting cement composition. Have. By delaying the setting time of the cement by the setting modifier, the fluidity of the ultrafast cement composition from when water is added to the ultrafast cement composition until the cement setting reaction proceeds is improved.
The delay of cement setting time due to the setting modifier is due to the fact that the setting modifier dissolves in water and chelate reacts with calcium ions and aluminum ions eluted from the quick setting admixture (calcium aluminate). By forming a film on the surface, it is considered that elution of calcium ions and aluminum ions from the quick-setting admixture is temporarily suppressed. However, since the film formed on the surface of the fast-curing admixture is extremely thin, it dissolves and disappears in a relatively short time. And after this film | membrane disappears, re-elution of the calcium ion and aluminum ion from a quick-hardening admixture begins, and the hardening reaction of cement advances.

本実施形態において用いる凝結調整剤は、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムのうちの無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムを含む。無機炭酸塩は、アルカリ金属の炭酸塩あるいは炭酸水素塩であることが好ましい。無機炭酸塩の例としては、炭酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウムが挙げられる。これらの無機炭酸塩は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。オキシカルボン酸の例としては酒石酸、クエン酸、リンゴ酸、グルコン酸が挙げられる。これらのオキシカルボン酸は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい。
凝結調整剤は、無機炭酸塩、オキシカルボン酸、アルミン酸ナトリウムおよび硫酸ナトリウムの4つの組合せがより好ましい。
The setting regulator used in the present embodiment includes inorganic carbonate, oxycarboxylic acid, sodium aluminate and sodium sulfate , oxycarboxylic acid and sodium aluminate . The inorganic carbonate is preferably an alkali metal carbonate or bicarbonate. Examples of the inorganic carbonate include potassium carbonate, lithium carbonate, sodium carbonate, sodium bicarbonate, and ammonium carbonate. One of these inorganic carbonates may be used alone, or two or more thereof may be used in combination. Examples of oxycarboxylic acids include tartaric acid, citric acid, malic acid, and gluconic acid . One of these oxycarboxylic acids may be used alone, or two or more thereof may be used in combination.
Condensation modifier, no machine carbonates, oxycarboxylic acids, four combinations of sodium aluminate and sodium sulfate are more preferred.

上記の凝結調整剤の中で、硫酸ナトリウムは、水に対する溶解速度が特に速い。このため、硫酸ナトリウムは、水を加えた後の超速硬性セメント組成物の流動性を向上させる効果が高い。また、硫酸ナトリウムは、広い温度範囲で水に溶解し易いので、水を加えた後の超速硬性セメント組成物の凝結始発時間に対する温度依存性を小さくする効果もある。   Among the above-mentioned setting modifiers, sodium sulfate has a particularly fast dissolution rate in water. For this reason, sodium sulfate has a high effect of improving the fluidity of the ultrafast hardened cement composition after adding water. Moreover, since sodium sulfate is easy to melt | dissolve in water in a wide temperature range, it also has the effect of making the temperature dependence with respect to the initial setting time of the super-hard-hardening cement composition after adding water small.

凝結調整剤は、平均粒子径が1μm以上500μm以下の範囲にあることが好ましい。凝結調整剤の平均粒子径がこの範囲にあると、水への溶解性が高く、また大気中の水分などによる変質が起こりにくいので、凝結調整作用を長期間にわたって維持することができる。凝結調整剤の平均粒子径が1μm未満であると、凝結調整剤単味での保存中に大気中の水分を吸湿して潮解し凝結調整剤としての作用を維持できなくなる、さらに、圧密による固結を生じるためハンドリングが悪くなるおそれがある。一方、凝結調整剤の平均粒子径が500μmを超えると水に対する溶解速度が遅くなり、凝結調整剤として十分な作用を発揮できなくなるおそれがある。   The setting modifier preferably has an average particle size in the range of 1 μm to 500 μm. When the average particle size of the setting modifier is within this range, the solubility in water is high, and alteration due to moisture in the atmosphere hardly occurs, so that the setting adjusting action can be maintained for a long period of time. If the average particle size of the setting modifier is less than 1 μm, it will not be possible to maintain the action as a setting modifier by absorbing moisture in the atmosphere during storage with the setting agent alone, and maintaining the action as a setting modifier. As a result, the handling may be deteriorated. On the other hand, when the average particle diameter of the setting modifier exceeds 500 μm, the dissolution rate in water is slow, and there is a possibility that sufficient action as a setting regulator may not be exhibited.

(無機粉末)
無機粉末は、凝結調整剤を希釈して、超速硬性セメント組成物中に凝結調整剤を均一に分散させるための分散媒体として作用する。
無機粉末の例としては、ポルトランドセメント、石灰石粉末、珪石粉末、高炉スラグ粉末が挙げられる。これらの無機粉末は、1つを単独で使用してもよいし、2つ以上を組合せて使用してもよい
上記の無機粉末は速硬性混和材の速硬性に係わる性能に悪影響を及ぼさない。また、これらの無機粉末は、凝結調整剤との反応性が低い。このため、上記の無機粉末を用いた凝結調整混和材は長期間にわたって安定し、この凝結調整混和材を超速硬性セメント組成物に添加することによって、超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。
(Inorganic powder)
The inorganic powder acts as a dispersion medium for diluting the setting modifier to uniformly disperse the setting modifier in the super-hard setting cement composition.
Examples of the inorganic powder, Portland cement, limestone powder, silica powder, and blast furnace slag Powder is. One of these inorganic powders may be used alone, or two or more thereof may be used in combination .
The above-mentioned inorganic powder does not adversely affect the performance related to the quick setting of the quick setting admixture. Moreover, these inorganic powders have low reactivity with the setting modifier. For this reason, the above-mentioned setting control admixture using the inorganic powder is stable over a long period of time, and by adding this setting adjustment admixture to the ultra-fast setting cement composition, the setting of the ultra-fast setting cement composition can be performed for a long period of time. In addition, the initial setting time can be stably maintained.

無機粉末は、平均粒子径が10μm以上200μm以下の範囲にあることが好ましい。無機粉末を平均粒子径が上記の範囲にある微細な無機粉末として用いることによって、凝結調整混和材中の凝結調整剤を、無機粉末を分散媒体としてより均一な状態で分散させることができ、凝結調整剤の組成がより均一になる。また、平均粒子径が上記の範囲にある微細な無機粉末は、超速硬性セメント組成物への分散性が向上する。このため、この微細な無機粉末を含む凝結調整混和材を超速硬性セメント組成物に添加することによって、超速硬性セメント組成物中に凝結調整剤をより均一に分散させることが可能となり、これによって、超速硬性セメント組成物の凝結始発時間をさらに確実に精度よく調整することができ、水を加えた後の超速硬性セメント組成物の流動性が向上する。またその超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。   The inorganic powder preferably has an average particle size in the range of 10 μm to 200 μm. By using the inorganic powder as a fine inorganic powder having an average particle diameter in the above range, the setting modifier in the setting adjustment admixture can be dispersed in a more uniform state using the inorganic powder as a dispersion medium. The composition of the regulator becomes more uniform. Moreover, the fine inorganic powder whose average particle diameter is in the above range improves the dispersibility in the ultrafast cement composition. For this reason, by adding a setting control admixture containing this fine inorganic powder to the ultrafast hardening cement composition, it becomes possible to more uniformly disperse the setting control agent in the ultrafast setting cement composition. The initial setting time of the ultrafast cement composition can be adjusted more accurately and accurately, and the fluidity of the ultrafast cement composition after adding water is improved. Moreover, even if the super-hard setting cement composition is stored for a long period of time, the initial setting time can be stably maintained.

(凝結調整剤と無機粉末の配合比)
本実施形態の凝結調整混和材において、凝結調整剤の含有量が多くなりすぎると、凝結調整剤の希釈効果が少なくなり、本発明の目的の一つである凝結始発時間を確実に、かつ精度良く調整することが困難になるとともに、凝結調整剤の分散効果が低減し長期間にわたる保存性も悪くなる。また、無機粉末の配合量が多くなりすぎると、超速硬性セメント組成物に添加する凝結調整混和材の量が多くなり、結果として超速硬性セメント組成物中の速硬性混和材量の比率が減少し、早期強度発現性が低下する。
以上の理由から、本実施形態の凝結調整混和材においては、凝結調整剤と無機粉末との配合比は、質量比で1:0.5〜1:3の範囲とされている。
(Combination ratio of setting modifier and inorganic powder)
In the setting modifier admixture of the present embodiment, if the content of the setting modifier is too large, the effect of diluting the setting modifier is reduced, and the initial setting time, which is one of the objects of the present invention, is ensured and accurate. It becomes difficult to adjust well, and the dispersion effect of the coagulation adjusting agent is reduced, and the storage stability over a long period of time is also deteriorated. In addition, if the amount of inorganic powder is too large, the amount of setting control admixture added to the super-hard setting cement composition increases, resulting in a decrease in the ratio of the fast-setting admixture in the super-hard setting cement composition. , Early strength development is reduced.
For the above reasons, in the setting adjusting admixture of this embodiment, the mixing ratio of the setting adjusting agent and the inorganic powder is in the range of 1: 0.5 to 1: 3 by mass ratio.

本実施形態の凝結調整混和材は、凝結調整剤と無機粉末とを上記の配合比で混合することによって製造することができる。混合は乾式混合もしくは乾式の混合粉砕により行う。原料として用いる無機粉末は、ブレーン比表面積が、2500cm2/g以上5000cm2/g以下の範囲にあることが好ましい。ブレーン比表面積が上記の範囲にある無機粉末と凝結調整剤とを、無機粉末の平均粒子径が10μm以上200μm以下の範囲となるように、混合もしくは混合粉砕することによって、凝結調整剤が均一に分散された凝結調整混和材を得ることができる。なお、ブレーン比表面積は、JIS R 5201「セメントの物理試験方法」に記載のブレーン空気透過装置を用いた比表面積試験で測定するものとする。 The setting adjusting admixture of the present embodiment can be produced by mixing the setting adjusting agent and the inorganic powder at the above mixing ratio. Mixing is performed by dry mixing or dry mixing and grinding. The inorganic powder used as the raw material preferably has a Blaine specific surface area in the range of 2500 cm 2 / g to 5000 cm 2 / g. By mixing or mixing and pulverizing the inorganic powder and the coagulation modifier having a Blaine specific surface area in the above range so that the average particle size of the inorganic powder is in the range of 10 μm or more and 200 μm or less, the coagulation modifier is uniformly obtained. A dispersed setting control admixture can be obtained. The specific surface area of the brane is measured by a specific surface area test using a brane air permeation apparatus described in JIS R 5201 “Cement physical test method”.

乾式混合装置としては、V型混合機、リボンミキサー、プロ−シェアミキサー等の混合機を用いることができるが、これに限定されるものではなく、セメント材料の混合装置として通常用いられている各種の混合装置を用いることができる。混合時間は、混合装置の容量や各材料の配合量に合せて適宜調整することができる。混合時間は、混合装置の容量や各材料の配合量に合せて適宜調整することができる。
乾式混合粉砕装置としては、ボールミル、チューブミル、竪型ミル、Eミル等の粉砕装置を用いることができるが、これに限定されるものではなく、物質の粉砕装置として通常用いられている各種の粉砕装置を用いることができる。粉砕装置で混合すると、無機粉末と凝結調整剤とが粉砕されながら同時に混合される(粉砕混合)。なお、凝結調整剤の成分は、無機粉末に比べて軟らかく粉砕されやすいので、混合粉砕時間は5分〜15分程度の短時間でよい。
As the dry mixing device, a V-type mixer, a ribbon mixer, a pro-shear mixer, or the like can be used. However, the dry mixing device is not limited to this, and various types of commonly used cement material mixing devices are used. Can be used. The mixing time can be appropriately adjusted according to the capacity of the mixing apparatus and the blending amount of each material. The mixing time can be appropriately adjusted according to the capacity of the mixing apparatus and the blending amount of each material.
As the dry mixing and pulverizing apparatus, a pulverizing apparatus such as a ball mill, a tube mill, a vertical mill, and an E mill can be used, but the present invention is not limited thereto, and various kinds of pulverizing apparatuses that are usually used as substances are used. A grinding device can be used. When mixed with a pulverizer, the inorganic powder and the setting modifier are mixed simultaneously while being pulverized (pulverization and mixing). In addition, since the component of a setting regulator is softer and easier to pulverize than inorganic powder, the mixing and pulverizing time may be as short as about 5 to 15 minutes.

本実施形態の凝結調整混和材は、超速硬性セメント組成物の凝結始発時間を調整するための混和材として好適に使用できる。超速硬性セメント組成物は、カルシウムアルミネートと無機硫酸塩とを組み合わせた速硬性混和材を含む組成物であることが好ましい。超速硬性セメント組成物は、細骨材、粗骨材などの骨材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、防水剤、起泡剤、消泡剤、発泡剤、鉄筋コンクリート用防錆剤、水中不分離性混和剤、保水剤、乾燥収縮低減剤、分離低減剤(増粘剤)、防凍・耐寒剤、再乳化粉末ポリマーやシリカフュームなどの各種混和材を含んでいてもよい。本実施形態の凝結調整混和材の超速硬性セメント組成物への添加量は、凝結調整混和材と超速硬性セメント組成物との全体量に対して、凝結調整剤の含有量が0.01質量%以上5質量%以下の範囲となる量であることが好ましい。凝結調整剤の含有量が多くなりすぎると、凝結始発時間が遅くなり、初期強度発現性が低下するおそれがある。また、凝結調整剤の含有量が少なくなりすぎると凝結始発時間が短くなり、可使時間を十分に確保するのが困難となるおそれがある。   The setting adjusting admixture of the present embodiment can be suitably used as an admixture for adjusting the setting start time of the super-hard setting cement composition. The super-hard setting cement composition is preferably a composition containing a quick-setting admixture in which calcium aluminate and inorganic sulfate are combined. Super hard cement composition is fine aggregate, coarse aggregate, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, fluidizing agent, waterproofing agent, foaming agent, antifoaming Agents, foaming agents, rust preventives for reinforced concrete, underwater non-separable admixtures, water retention agents, drying shrinkage reducing agents, separation reducing agents (thickening agents), antifreeze / cold resistant agents, re-emulsified powder polymers, silica fume, etc. It may contain material. The content of the setting modifier is 0.01% by mass with respect to the total amount of the setting-adjusting admixture and the ultrafast-hardening cement composition. The amount is preferably in the range of 5% by mass or less. If the content of the setting modifier is too large, the initial setting time may be delayed, and the initial strength development may be reduced. Further, if the content of the setting modifier is too small, the setting start time is shortened, and it may be difficult to secure a sufficient pot life.

以上のような構成とされた本実施形態の凝結調整混和材は、凝結調整剤と無機粉末との混合物とされているので、この凝結調整混和材を用いることによって、超速硬性セメント組成物中に凝結調整剤を均一に分散させることができる。そして、本実施形態の凝結調整混和材が添加された超速硬性セメント組成物は、無機粉末により希釈された凝結調整成分が均一に分散されているので、凝結調整剤によるセメントの凝結調整作用が全体的に均一に進行し、超速硬性セメント組成物の凝結始発時間を確実かつ精度よく調整することができ、水を加えた後の超速硬性セメント組成物の流動性が向上する。さらに、超速硬性セメント組成物を長期間にわたって保存しても、凝結始発時間を安定に維持することができる。   The setting control admixture of the present embodiment configured as described above is a mixture of a setting control agent and an inorganic powder. By using this setting control admixture, the setting agent can be used in a super-hard setting cement composition. The setting adjuster can be uniformly dispersed. And, in the ultrafast hardening cement composition to which the setting adjusting admixture of the present embodiment is added, the setting adjusting component diluted with the inorganic powder is uniformly dispersed. The initial setting time of the ultrafast cement composition can be adjusted reliably and accurately, and the fluidity of the ultrafast cement composition after adding water is improved. Furthermore, even when the ultrafast hard cement composition is stored for a long period of time, the initial setting time can be stably maintained.

以上、本発明の実施形態である凝結調整混和材について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本発明の凝結調整混和材は、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、防水剤、起泡剤、消泡剤、発泡剤、鉄筋コンクリート用防錆剤、水中不分離性混和剤、保水剤、乾燥収縮低減剤、分離低減剤(増粘剤)、防凍・耐寒剤、再乳化粉末ポリマーやシリカフュームなどの各種混和材を含んでいてもよい。
As mentioned above, although the setting adjustment admixture which is embodiment of this invention was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, the coagulation adjusting admixture of the present invention includes a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a fluidizing agent, a waterproofing agent, a foaming agent, a defoaming agent, a foaming agent, and a reinforced concrete prevention agent. Various admixtures such as a rusting agent, an inseparable admixture in water, a water retention agent, a drying shrinkage reducing agent, a separation reducing agent (thickening agent), a defrosting / cold resistant agent, a re-emulsified powder polymer, and silica fume may be included.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

[使用材料]
本実施例および比較例にて使用した使用材料の種類、組成及び略号を、下記の表1に示す。
[Materials used]
Table 1 below shows the types, compositions and abbreviations of the materials used in the examples and comparative examples.

Figure 0006311819
Figure 0006311819

[実施例1]
凝結調整剤として、炭酸ナトリウム(Na−1)、炭酸ナトリウム(Na−2)、炭酸ナトリウム(Na−3)、アルミン酸ナトリウム(Al−1)、アルミン酸ナトリウム(Al−2)、アルミン酸ナトリウム(Al−3)、酒石酸(Ta−1)、酒石酸(Ta−2)、酒石酸(Ta−3)、そして無機粉末として石灰石微粉末(LP)を、質量比で3:6:3:1:2:1:1:2:1:20(=Na−1:Na−2:Na−3:Al−1:Al−2:Al−3:Ta−1:Ta−2:Ta−3:LP)の割合にて混合機に投入して、15分間乾式混合して、凝結調整剤と無機粉末とを質量比で1:1の割合で含む混合物(凝結調整混和材1)を得た。混合前の凝結調整剤と無機粉末(石灰石微粉末)、及び凝結調整混和材1を、それぞれSEM(走査型電子顕微鏡)にて観察した。その結果、凝結調整混和材1中の凝結調整剤および石灰石微粉末は、いずれについても粒子サイズが混合前と比較してほぼ同じであった。なお、凝結調整混和材1中の石灰石微粉末の平均粒子径は85μmであり、炭酸ナトリウムの平均粒子径は61μmであった。
石灰石微粉末(無機粉末)の平均粒子径は、SEMを用いて100個の粒子を観察して、その粒子の最長径を測定し、測定した最長径の平均とした。また、炭酸ナトリウム(凝結調整剤)の平均粒子径もまた、SEMを用いて100個の粒子を観察して、その粒子の最長径を測定し、測定した最長径の平均とした。なお、石灰石微粉末と炭酸ナトリウムの同定は、EPMA(電子プローブマイクロアナライザー)による元素分析により行った。
[Example 1]
As setting regulators, sodium carbonate (Na-1), sodium carbonate (Na-2), sodium carbonate (Na-3), sodium aluminate (Al-1), sodium aluminate (Al-2), sodium aluminate (Al-3), tartaric acid (Ta-1), tartaric acid (Ta-2), tartaric acid (Ta-3), and limestone fine powder (LP) as an inorganic powder in a mass ratio of 3: 6: 3: 1: 2: 1: 1: 2: 1: 20 (= Na-1: Na-2: Na-3: Al-1: Al-2: Al-3: Ta-1: Ta-2: Ta-3: LP ) And then dry-mixed for 15 minutes to obtain a mixture (condensation adjusting admixture 1) containing the coagulation modifier and the inorganic powder in a mass ratio of 1: 1. The setting modifier before mixing, the inorganic powder (fine limestone powder), and the setting adjustment admixture 1 were each observed with an SEM (scanning electron microscope). As a result, the particle size of the setting modifier and limestone fine powder in the setting modifier admixture 1 was almost the same as before mixing. The average particle size of the fine limestone powder in the setting control admixture 1 was 85 μm, and the average particle size of sodium carbonate was 61 μm.
The average particle diameter of the fine limestone powder (inorganic powder) was measured by observing 100 particles using SEM, measuring the longest diameter of the particles, and taking the average of the measured longest diameter. Moreover, the average particle diameter of sodium carbonate (condensation adjusting agent) was also determined by observing 100 particles using SEM, measuring the longest diameter of the particles, and determining the average of the longest diameters measured. The limestone fine powder and sodium carbonate were identified by elemental analysis using EPMA (Electron Probe Microanalyzer).

[実施例2]
炭酸ナトリウム(Na−1)、炭酸ナトリウム(Na−2)、炭酸ナトリウム(Na−3)、アルミン酸ナトリウム(Al−1)、アルミン酸ナトリウム(Al−2)、アルミン酸ナトリウム(Al−3)、酒石酸(Ta−1)、酒石酸(Ta−2)、酒石酸(Ta−3)、そして無機粉末として普通ポルトランドセメント(N)を、質量比で3:6:3:1:2:1:1:2:1:20(=Na−1:Na−2:Na−3:Al−1:Al−2:Al−3:Ta−1:Ta−2:Ta−3:N)の割合にて混合機に投入して、15分間乾式混合して、凝結調整剤と無機粉末とを質量比で1:1の割合で含む混合物(凝結調整混和材2)を得た。混合前の凝結調整剤と無機粉末(普通ポルトランドセメント)、及び凝結調整混和材2を、それぞれSEMにて観察した。その結果、凝結調整混和材2中の凝結調整剤および普通ポルトランドセメントは、いずれについても粒子サイズが混合前と比較してほぼ同じであった。なお、SEM観察とEPMAによる元素分析により測定された凝結調整混和材2中の普通ポルトランドセメントの平均粒子径は14μmであり、炭酸ナトリウムの平均粒子径は58μmであった。
[Example 2]
Sodium carbonate (Na-1), sodium carbonate (Na-2), sodium carbonate (Na-3), sodium aluminate (Al-1), sodium aluminate (Al-2), sodium aluminate (Al-3) , Tartaric acid (Ta-1), tartaric acid (Ta-2), tartaric acid (Ta-3), and ordinary Portland cement (N) as an inorganic powder in a mass ratio of 3: 6: 3: 1: 2: 1: 1 : 2: 1: 20 (= Na-1: Na-2: Na-3: Al-1: Al-2: Al-3: Ta-1: Ta-2: Ta-3: N) The mixture was put into a mixer and dry-mixed for 15 minutes to obtain a mixture (coagulation adjusting admixture 2) containing a setting modifier and an inorganic powder in a mass ratio of 1: 1. The setting modifier before mixing, inorganic powder (ordinary Portland cement), and setting modifier admixture 2 were each observed by SEM. As a result, the particle size of the setting modifier and ordinary Portland cement in the setting modifier admixture 2 were almost the same as before mixing. The average particle size of ordinary Portland cement in the setting control admixture 2 measured by SEM observation and elemental analysis by EPMA was 14 μm, and the average particle size of sodium carbonate was 58 μm.

[実施例3]
炭酸ナトリウム(Na−1)、炭酸ナトリウム(Na−2)、炭酸ナトリウム(Na−3)、アルミン酸ナトリウム(Al−1)、アルミン酸ナトリウム(Al−2)、アルミン酸ナトリウム(Al−3)、酒石酸(Ta−1)、酒石酸(Ta−2)、酒石酸(Ta−3)、そして無機粉末として普通ポルトランドセメント(N)を、質量比で3:6:3:1:2:1:1:2:1:20(=Na−1:Na−2:Na−3:Al−1:Al−2:Al−3:Ta−1:Ta−2:Ta−3:N)の割合にて粉砕機に投入して、15分間粉砕混合して、凝結調整剤と無機粉末とを質量比で1:1の割合で含む混合粉砕物(凝結調整混和材3)を得た。混合粉砕前の凝結調整剤と無機粉末(普通ポルトランドセメント)、及び凝結調整混和材3を、それぞれSEMにて観察した。その結果、凝結調整混和材3中の凝結調整剤および普通ポルトランドセメントは、いずれについても粒子サイズが粉砕混合前と比較して微細となった。なお、SEM観察とEPMAによる元素分析により測定された凝結調整混和材3中の普通ポルトランドセメントの平均粒子径は12μmであり、炭酸ナトリウムの平均粒子径は2.1μmであった。
[Example 3]
Sodium carbonate (Na-1), sodium carbonate (Na-2), sodium carbonate (Na-3), sodium aluminate (Al-1), sodium aluminate (Al-2), sodium aluminate (Al-3) , Tartaric acid (Ta-1), tartaric acid (Ta-2), tartaric acid (Ta-3), and ordinary Portland cement (N) as an inorganic powder in a mass ratio of 3: 6: 3: 1: 2: 1: 1 : 2: 1: 20 (= Na-1: Na-2: Na-3: Al-1: Al-2: Al-3: Ta-1: Ta-2: Ta-3: N) The mixture was put into a pulverizer and pulverized and mixed for 15 minutes to obtain a mixed pulverized product (condensation adjusting admixture 3) containing a setting modifier and an inorganic powder in a mass ratio of 1: 1. The setting modifier, the inorganic powder (ordinary Portland cement), and the setting modifier admixture 3 before mixing and pulverization were each observed with an SEM. As a result, the particle size of the setting modifier and ordinary Portland cement in the setting modifier admixture 3 became finer than before pulverization and mixing. The average particle size of ordinary Portland cement in the setting control admixture 3 measured by SEM observation and elemental analysis by EPMA was 12 μm, and the average particle size of sodium carbonate was 2.1 μm.

[実施例4]
凝結調整剤として、炭酸ナトリウム(Na−1)、炭酸ナトリウム(Na−2)、炭酸ナトリウム(Na−3)、アルミン酸ナトリウム(Al−1)、アルミン酸ナトリウム(Al−2)、アルミン酸ナトリウム(Al−3)、酒石酸(Ta−1)、酒石酸(Ta−2)、酒石酸(Ta−3)、硫酸ナトリウム(NS−3)そして無機粉末として石灰石微粉末(LP)を、質量比で3:6:3:1:2:1:1:2:1:12:32(=Na−1:Na−2:Na−3:Al−1:Al−2:Al−3:Ta−1:Ta−2:Ta−3:NS−3:LP)の割合にて混合機に投入して、15分間乾式混合して、凝結調整剤と無機粉末とを質量比で1:1の割合で含む混合物(凝結調整混和材4)を得た。混合前の凝結調整剤と無機粉末(石灰石微粉末)、及び凝結調整混和材4を、それぞれSEM(走査型電子顕微鏡)にて観察した。その結果、凝結調整混和材4中の凝結調整剤および石灰石微粉末は、いずれについても粒子サイズが混合前と比較してほぼ同じであった。なお、SEM観察とEPMAによる元素分析により測定された凝結調整混和材4中の石灰石微粉末の平均粒子径は85μmであり、炭酸ナトリウムの平均粒子径は61μmであった。
[Example 4]
As setting regulators, sodium carbonate (Na-1), sodium carbonate (Na-2), sodium carbonate (Na-3), sodium aluminate (Al-1), sodium aluminate (Al-2), sodium aluminate (Al-3), tartaric acid (Ta-1), tartaric acid (Ta-2), tartaric acid (Ta-3), sodium sulfate (NS-3) and limestone fine powder (LP) as an inorganic powder in a mass ratio of 3 : 6: 3: 1: 2: 1: 1: 2: 1: 12: 32 (= Na-1: Na-2: Na-3: Al-1: Al-2: Al-3: Ta-1: (Ta-2: Ta-3: NS-3: LP) is charged into the mixer and dry-mixed for 15 minutes to contain the coagulation modifier and the inorganic powder in a mass ratio of 1: 1. A mixture (condensation adjusting admixture 4) was obtained. The pre-mixing setting modifier, inorganic powder (limestone fine powder), and setting control admixture 4 were each observed with an SEM (scanning electron microscope). As a result, the particle size of the setting modifier and the limestone fine powder in the setting modifier admixture 4 was almost the same as before mixing. In addition, the average particle diameter of the limestone fine powder in the coagulation adjusting admixture 4 measured by SEM observation and elemental analysis by EPMA was 85 μm, and the average particle diameter of sodium carbonate was 61 μm.

[比較例1]
炭酸ナトリウム(Na−1)、炭酸ナトリウム(Na−2)、炭酸ナトリウム(Na−3)、アルミン酸ナトリウム(Al−1)、アルミン酸ナトリウム(Al−2)、アルミン酸ナトリウム(Al−3)、酒石酸(Ta−1)、酒石酸(Ta−2)、そして酒石酸(Ta−3)を、質量比で3:6:3:1:2:1:1:2:1(=Na−1:Na−2:Na−3:Al−1:Al−2:Al−3:Ta−1:Ta−2:Ta−3)の割合にて混合機に投入したこと以外は実施例1と同様にして、凝結調整剤の混合物(凝結調整剤)を得た。なお、SEM観察とEPMAによる元素分析により測定された混合物中の炭酸ナトリウムの平均粒子径は75μmであった。
[Comparative Example 1]
Sodium carbonate (Na-1), sodium carbonate (Na-2), sodium carbonate (Na-3), sodium aluminate (Al-1), sodium aluminate (Al-2), sodium aluminate (Al-3) , Tartaric acid (Ta-1), tartaric acid (Ta-2), and tartaric acid (Ta-3) in a mass ratio of 3: 6: 3: 1: 2: 1: 1: 2: 1 (= Na-1: Na-2: Na-3: Al-1: Al-2: Al-3: Ta-1: Ta-2: Ta-3) In the same manner as in Example 1 except that the mixture was charged into the mixer. Thus, a mixture of setting modifiers (setting agent) was obtained. In addition, the average particle diameter of sodium carbonate in the mixture measured by SEM observation and elemental analysis by EPMA was 75 μm.

実施例1〜4および比較例1にて使用した各材料の配合量と、材料の混合に使用した混合装置を、下記の表2に示す。   Table 2 below shows the blending amounts of the materials used in Examples 1 to 4 and Comparative Example 1 and the mixing devices used for mixing the materials.

Figure 0006311819
Figure 0006311819

[実施例A−1〜A−3、実施例B−1〜B−3、実施例C−1〜C−3、実施例D−1〜D−3、比較例E−1〜E−3]
(1)速硬性混和材(SA−1)の調製
カルシウムアルミネートクリンカー粉末(CA−S)100質量部に対して、無機硫酸塩として無水石膏(CS)を120質量部の割合にて混合機に投入して、混合した。得られた混合物を速硬性混和材(SA−1)とした。
(2)超速硬性セメント組成物の製造
実施例1〜4および比較例1にて作製した混合物と、速硬性混和材(SA−1)と、普通ポルトランドセメント(N)と、細骨砂(S)とを下記の表3に示す割合(質量部)にて混合機に投入して超速硬性セメント組成物を製造した。表3に超速硬性セメント組成物の全体量に対する凝結調整剤(炭酸ナトリウム、アルミン酸ナトリウム、酒石酸、硫酸ナトリウム)の合計の含有量を示す。
[Examples A-1 to A-3, Examples B-1 to B-3, Examples C-1 to C-3, Examples D-1 to D-3, Comparative Examples E-1 to E-3 ]
(1) Preparation of fast-curing admixture (SA-1) A mixer containing 120 parts by mass of anhydrous gypsum (CS) as an inorganic sulfate with respect to 100 parts by mass of calcium aluminate clinker powder (CA-S). And mixed. The obtained mixture was used as a fast-curing admixture (SA-1).
(2) Manufacture of super fast-hardening cement composition The mixture prepared in Examples 1-4 and Comparative Example 1, the quick-hardening admixture (SA-1), ordinary Portland cement (N), and fine bone sand (S ) Was added to the mixer at the ratio (parts by mass) shown in Table 3 below to produce a super-hard setting cement composition. Table 3 shows the total content of setting modifiers (sodium carbonate, sodium aluminate, tartaric acid, sodium sulfate) with respect to the total amount of the ultrafast cement composition.

Figure 0006311819
Figure 0006311819

製造直後の超速硬性セメント組成物100質量部に対して、水16質量となる水量比にて水を加えて混練して、セメントモルタルを調製した。試験温度は20℃とした。得られたセメントモルタルの15打フロー、凝結時間(始発、終結)、材齢2時間と材齢3時間の圧縮強度を測定した。その結果を、超速硬性セメント組成物に添加した凝結調整混和材量および凝結調整剤の合計含有量と共に表4に示す。
15打フロー、凝結時間および圧縮強度は、JIS R 5201「セメントの物理試験方法」に記載されている方法に従って測定した。
Cement mortar was prepared by adding water and kneading at a water amount ratio of 16 mass water with respect to 100 mass parts of the ultrafast cement composition immediately after production. The test temperature was 20 ° C. The resulting cement mortar was measured for 15 shots, setting time (starting and finishing), compressive strength at a material age of 2 hours and a material age of 3 hours. The results are shown in Table 4 together with the amount of setting adjusting admixture added to the super-hard setting cement composition and the total content of setting adjusters.
The 15 shot flow, setting time and compressive strength were measured according to the method described in JIS R 5201 “Physical Test Method for Cement”.

また、超速硬性セメント組成物をビニール袋(容量:12L)に梱包し、ビニール袋の角部の4カ所にそれぞれピンホール(孔径:0.5mm)を開け、温度30℃、湿度80%RHの室内に、3ヶ月、6ヶ月それぞれ保存した。そして、保存後の超速硬性セメント組成物について、上記と同様にしてセメントモルタルを調製し、凝結時間を測定した。その結果を表4に示す。   In addition, the ultra-fast hardened cement composition is packed in a plastic bag (capacity: 12L), pinholes (hole diameter: 0.5mm) are opened at four corners of the plastic bag, and the temperature is 30 ° C and the humidity is 80% RH. Each room was stored for 3 months and 6 months. Then, a cement mortar was prepared in the same manner as described above for the ultrafast cement composition after storage, and the setting time was measured. The results are shown in Table 4.

Figure 0006311819
Figure 0006311819

表4に示すように、製造直後の実施例A−1〜A−3、実施例B−1〜B−3、実施例C−1〜C−3、実施例D−1〜D−3および比較例E−1〜E−3は、いずれも凝結調整混和材添加量の増加と共に、凝結始発時間は遅く、圧縮強度は低くなった。実施例A−1〜A−3、実施例B−1〜B−3、実施例D−1〜D−3では凝結調整混和材添加量が0.08質量部増加すると、凝結始発時間が6〜8分の遅延が生じ、材齢3時間の圧縮強度は2〜4%低下した。また、実施例C−1〜C−3では凝結調整混和材添加量が0.08質量部増加すると、凝結始発時間が5〜6分の遅延が生じ、材齢3時間の圧縮強度は2〜3%低下した。これに対して、比較例E−1〜E−3では凝結調整剤添加量が0.08質量部増加すると、凝結始発時間が22〜24分の遅延が生じており、凝結調整剤の含有量に対する凝結始発時間の変動が大きくなった。また、材齢3時間の圧縮強度は、凝結調整剤の含有量が0.116質量%のときの値は、0.100質量%のときの値から20%も低下した。よって、表4の結果から、凝結調整剤と無機粉末を混合または粉砕混合して作製した凝結調整混和材を用いた方が、超速硬性セメント組成物の凝結始発時間を容易に、かつ精度良く調整できることが確認された。また、実施例D−1〜D−3に示すように、硫酸ナトリウムを含む凝結調整混和材(実施例4)は、各添加量において15打フローが大きくなり、水を加えた後の超速硬性セメント組成物の流動性を向上させる効果が特に高いこと確認された。 As shown in Table 4, Examples A-1 to A-3, Examples B-1 to B-3, Examples C-1 to C-3, Examples D-1 to D-3 and In each of Comparative Examples E- 1 to E- 3, with the increase in the addition amount of the coagulation adjusting admixture, the initial setting time was slow and the compressive strength was low. In Examples A-1 to A-3, Examples B-1 to B-3, and Examples D-1 to D-3, when the amount of setting adjustment admixture increased by 0.08 parts by mass, the setting start time was 6 A delay of ˜8 minutes occurred and the compressive strength at 3 hours of age decreased by 2-4%. Further, in Examples C-1 to C-3, when the setting amount of the setting adjustment admixture is increased by 0.08 parts by mass, the setting start time is delayed by 5 to 6 minutes, and the compression strength at the age of 3 hours is 2 to 2. It decreased by 3%. On the other hand, in Comparative Examples E-1 to E-3, when the addition amount of the setting modifier is increased by 0.08 parts by mass, the setting start time is delayed by 22 to 24 minutes. The fluctuation of the initial setting time for The compressive strength at the age of 3 hours was 20% lower than the value when the content of the setting modifier was 0.116% by mass from the value when 0.100% by mass. Therefore, from the results shown in Table 4, it is easier and more accurate to adjust the initial setting time of the super-hard setting cement composition by using a setting control admixture prepared by mixing or grinding and mixing a setting control agent and inorganic powder. It was confirmed that it was possible. In addition, as shown in Examples D-1 to D-3, the setting control admixture containing sodium sulfate (Example 4) has a flow of 15 strokes at each addition amount, and is super-hard after adding water. It was confirmed that the effect of improving the fluidity of the cement composition was particularly high.

保存後の実施例A−1〜A−3、実施例B−1〜B−3、実施例C−1〜C−3、および比較例E−1〜E−3は、いずれも保存期間が長くなると、凝結始発時間が遅くなった。無機粉末として石灰石粉末を用いた実施例A−1〜A−3の凝結始発時間は、保存3ヶ月で1.2倍、保存6ヶ月で1.3〜1.5倍の長さとなった。無機粉末として普通ポルトランドセメントを使用した実施例B−1〜B−3の凝結始発時間は、保存3ヶ月で1.1倍、保存6ヶ月で1.2倍の長さとなり、保存期間による凝結の遅延が緩やかで、保存安定性が良好であった。また、凝結調整混和材を粉砕混合により作製した実施例C−1〜C−3は、保存3ヶ月で1.0倍、保存6ヶ月で1.1倍とほぼ変化せず、保存安定性もさらに優れていた。比較例E−1〜E−3の凝結始発時間は、保存3ヶ月で1.4倍以上、保存6ヶ月で1.8倍以上の長さとなった。特に、凝結調整剤の含有量が0.116質量%の比較例E−3は、保存3ヶ月後で凝結始発時間が120分以上となった。
これに対して、実施例D−1〜D−3では、保存6ケ月まで凝結始発時間の変化はほとんど見られなかった。
Examples A-1 to A-3, Examples B-1 to B-3, Examples C-1 to C-3, and Comparative Examples E-1 to E-3 after storage all have storage periods. The longer the setting, the slower the initial setting time. The initial setting time of Examples A-1 to A-3 using limestone powder as the inorganic powder was 1.2 times longer in 3 months of storage and 1.3 to 1.5 times longer in 6 months of storage. The initial setting time of Examples B-1 to B-3 using ordinary Portland cement as the inorganic powder was 1.1 times longer after 3 months of storage and 1.2 times longer after 6 months of storage. The storage delay was slow and the storage stability was good. In addition, Examples C-1 to C-3 prepared by pulverizing and mixing the coagulation-adjusting admixture were substantially unchanged at 1.0 times in 3 months of storage and 1.1 times in 6 months of storage, and the storage stability was also improved. It was even better. The initial setting time of Comparative Examples E-1 to E-3 was 1.4 times or more after 3 months of storage and 1.8 times or more after 6 months of storage. In particular, Comparative Example E-3 having a setting modifier content of 0.116% by mass had an initial setting time of 120 minutes or more after 3 months of storage.
On the other hand, in Examples D-1 to D-3, almost no change in the initial setting time was observed until 6 months of storage.

製造直後の超速硬性セメント組成物(実施例A−2、実施例B−2、実施例C−2、実施例D−2、比較例E−2)100質量部に対して、水95質量部となる水量比にて水を加えて混練して、セメントモルタルを調製した。試験温度は5℃、20、35℃とした。得られたセメントモルタルの凝結時間(始発、終結)、材齢2時間と材齢3時間の圧縮強度を測定した。その結果を、超速硬性セメント組成物に添加した凝結調整混和材量および凝結調整剤の合計含有量と共に表5に示す。
凝結時間および圧縮強度は、JIS R 5201「セメントの物理試験方法」に記載されている方法に従って測定した。
95 parts by mass of water with respect to 100 parts by mass of the ultrafast cement composition (Example A-2, Example B-2, Example C-2, Example D-2, Comparative Example E-2) immediately after production Cement mortar was prepared by adding water and kneading at a water amount ratio of The test temperature was 5 ° C, 20, 35 ° C. The cement mortar thus obtained was measured for setting time (initial and final), compressive strength at a material age of 2 hours and a material age of 3 hours. The results are shown in Table 5 together with the amount of setting adjusting admixture and the total content of setting adjusting agent added to the ultra-hard setting cement composition.
The setting time and compressive strength were measured according to the method described in JIS R 5201 “Cement physical test method”.

Figure 0006311819
Figure 0006311819

表5に示すように、実施例A−2、実施例B−2、実施例C−2、実施例D−2および比較例E−2は、いずれも試験温度が高くなると、凝結始発時間が早くなった。無機粉末として石灰石粉末を用いた実施例A−2の凝結始発時間は、温度が15℃高くなると6〜9分早くなった。無機粉末として普通ポルトランドセメントを使用した実施例B−2の凝結始発時間は、温度が15℃高くなると6分早くなった。また、凝結調整混和材を粉砕混合により作製した実施例C−2、実施例D−2の凝結始発時間は、温度が15℃高くなると3分早くなる程度で、実施例A−2、実施例B−2に比べて温度依存性が小さくなった。これに対して、比較例E−2の凝結始発時間は、温度が15℃高くなると12〜15分早くなり、実施例A−2、実施例B−2、実施例C−2、実施例D−2に比べて温度依存性が大きくなった。   As shown in Table 5, in Example A-2, Example B-2, Example C-2, Example D-2, and Comparative Example E-2, when the test temperature increases, the initial setting time It became early. The initial setting time of Example A-2 using limestone powder as the inorganic powder was 6 to 9 minutes earlier when the temperature increased by 15 ° C. The initial setting time of Example B-2 using ordinary Portland cement as the inorganic powder was 6 minutes earlier when the temperature increased by 15 ° C. In addition, the setting start time of Example C-2 and Example D-2 prepared by pulverizing and mixing the coagulation adjusting admixture was about 3 minutes earlier when the temperature increased by 15 ° C., and Example A-2 and Example The temperature dependency was smaller than that of B-2. On the other hand, the setting start time of Comparative Example E-2 is 12 to 15 minutes earlier when the temperature is increased by 15 ° C., and Example A-2, Example B-2, Example C-2, and Example D The temperature dependency was larger than that of -2.

以上の結果から、凝結調整剤と無機粉末とを所定の割合で含む混合物、すなわち本発明の凝結調整混和材は、凝結調整剤単体と比較して凝結始発時間の遅延促進作用が緩やかで、また保存安定性に優れることが確認された。また、凝結調整混和材を粉砕混合により作製することで、凝結始発時間に対する温度依存性がより小さくなることが確認された。また、硫酸ナトリウムを凝結調整混和材に含ませることにより、流動性が向上するとともに、凝結始発時間に対する温度依存性が小さくなることが確認された。   From the above results, the mixture containing the setting modifier and the inorganic powder in a predetermined ratio, that is, the setting adjustment admixture of the present invention has a slow accelerating action on the initial setting time compared with the setting agent alone, and It was confirmed that the storage stability was excellent. Moreover, it was confirmed that the temperature dependency on the initial setting time of the setting was reduced by preparing the setting adjusting admixture by pulverization and mixing. It was also confirmed that sodium sulfate was included in the setting adjustment admixture, and the fluidity was improved and the temperature dependence on the setting start time was reduced.

Claims (7)

無機炭酸塩、オキシカルボン酸およびアルミン酸ナトリウムを含有する凝結調整剤と、ポルトランドセメント、石灰石粉末、珪石粉末および高炉スラグ粉末からなる群より選ばれる1つ以上の無機粉末とを質量比で1:0.5〜1:3の範囲にて含む混合物であることを特徴とする凝結調整混和材。 A mass ratio of a setting modifier containing an inorganic carbonate, oxycarboxylic acid and sodium aluminate, and one or more inorganic powders selected from the group consisting of Portland cement, limestone powder, silica stone powder and blast furnace slag powder is 1: A coagulation adjusting admixture characterized by being a mixture containing in the range of 0.5 to 1: 3. 前記無機粉末が、ポルトランドセメント、石灰石粉末のうちの1つ以上であることを特徴とする請求項1に記載の凝結調整混和材。   The setting adjusting admixture according to claim 1, wherein the inorganic powder is at least one of Portland cement and limestone powder. 前記無機粉末の平均粒子径が、10μm以上200μm以下の範囲にあることを特徴とする請求項1又は2に記載の凝結調整混和材。   The average particle diameter of the said inorganic powder exists in the range of 10 micrometers or more and 200 micrometers or less, The setting adjustment admixture of Claim 1 or 2 characterized by the above-mentioned. 記無機炭酸塩が、炭酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウムのうちの1つ以上であることを特徴とする請求項1乃至3のいずれか1項に記載の凝結調整混和材。 Before SL inorganic carbonate, potassium carbonate, lithium carbonate, sodium carbonate, sodium hydrogen carbonate, condensation adjusted according to any one of claims 1 to 3, characterized in that one or more of ammonium carbonate Admixture. 記オキシカルボン酸が、酒石酸、クエン酸、リンゴ酸、グルコン酸のうちの1つ以上であることを特徴とする請求項1乃至4のいずれか1項に記載の凝結調整混和材。 Before SL oxycarboxylic acid, tartaric acid, citric acid, malic acid, condensation adjustment admixture according to any one of claims 1 to 4, characterized in that one or more of gluconic acid. 前記凝結調整剤の平均粒子径が、1μm以上500μm以下の範囲にあることを特徴とする請求項1乃至5のいずれか1項に記載の凝結調整混和材。   6. The coagulation adjusting admixture according to claim 1, wherein an average particle diameter of the coagulation adjusting agent is in a range of 1 μm or more and 500 μm or less. 前記凝結調整剤が、さらに、硫酸ナトリウムを含有することを特徴とする請求項1乃至6のいずれか1項に記載の凝結調整混和材。The coagulation adjusting admixture according to any one of claims 1 to 6, wherein the coagulation adjusting agent further contains sodium sulfate.
JP2017060945A 2016-03-31 2017-03-27 Setting adjustment admixture Active JP6311819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013595 WO2017171004A1 (en) 2016-03-31 2017-03-31 Setting regulation admixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073204 2016-03-31
JP2016073204 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186236A JP2017186236A (en) 2017-10-12
JP6311819B2 true JP6311819B2 (en) 2018-04-18

Family

ID=60045305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060945A Active JP6311819B2 (en) 2016-03-31 2017-03-27 Setting adjustment admixture

Country Status (1)

Country Link
JP (1) JP6311819B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605050A (en) * 1983-06-22 1985-01-11 脇村 嘉郎 Hydraulic cement quick enhancement and quick enhancing agent
JPS6021838A (en) * 1983-07-15 1985-02-04 阿部 政博 Water-dispersible admixing agent for cement and manufacture
JPS61186255A (en) * 1985-02-14 1986-08-19 電気化学工業株式会社 Superhigh early strength cement hardened body and manufacture
JPS63123848A (en) * 1986-11-10 1988-05-27 麻生セメント株式会社 Admixing agent for preparing suspension for cement milk process
JP2747297B2 (en) * 1988-08-11 1998-05-06 電気化学工業株式会社 Cement admixture
JP2975423B2 (en) * 1990-11-02 1999-11-10 電気化学工業株式会社 Cement admixture and cement composition
JP3547150B2 (en) * 1992-07-13 2004-07-28 電気化学工業株式会社 Cement admixture and cement composition
JP3844416B2 (en) * 1999-12-17 2006-11-15 電気化学工業株式会社 Construction method of quick setting cement concrete
JP6289093B2 (en) * 2013-12-27 2018-03-07 太平洋マテリアル株式会社 Shotcrete and manufacturing method thereof
JP6386902B2 (en) * 2014-12-19 2018-09-05 太平洋マテリアル株式会社 Shotcrete and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017186236A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
KR102294203B1 (en) Quick-hardening mortar composition
US10800701B2 (en) Rapid-hardening cement composition
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP2004345898A (en) Grout composition
JP2008120625A (en) Cement-based material
JP6206614B1 (en) Fast-curing admixture and method for producing the same
WO2013077216A1 (en) Ultra rapid hardening clinker, cement composition using same, and method for producing same
JP4585905B2 (en) Mortar or concrete
JP4478531B2 (en) Cement composition
JP6311819B2 (en) Setting adjustment admixture
WO2017171004A1 (en) Setting regulation admixture
JP5534932B2 (en) Premix mortar composition and premix non-shrink mortar composition
JP2010155739A (en) Ultra-light mortar
JP2020011891A (en) High strength concrete for spraying
JP5987378B2 (en) mortar
JP6300368B2 (en) Quick setting material for spraying material
WO2017171006A1 (en) Rapid-hardening admixture and production method for same
JP5709046B2 (en) Cement composition
JP6887272B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP7355690B2 (en) Mortar or concrete compositions containing urea
JP2014185040A (en) Cement composition
JP2018123025A (en) Self-leveling mortar
JP2022147028A (en) polymer cement concrete
WO2022196633A1 (en) Cement admixture, cement composition, and method for producing concrete product
JP2006111485A (en) Setting accelerator for cement and cement composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6311819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250