JP6311683B2 - Iron-air battery electrolyte and iron-air battery - Google Patents
Iron-air battery electrolyte and iron-air battery Download PDFInfo
- Publication number
- JP6311683B2 JP6311683B2 JP2015178882A JP2015178882A JP6311683B2 JP 6311683 B2 JP6311683 B2 JP 6311683B2 JP 2015178882 A JP2015178882 A JP 2015178882A JP 2015178882 A JP2015178882 A JP 2015178882A JP 6311683 B2 JP6311683 B2 JP 6311683B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- air battery
- air
- negative electrode
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
- H01M12/065—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0014—Alkaline electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/248—Iron electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/521—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of iron for aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hybrid Cells (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Description
本発明は、鉄空気電池用電解液、及び、鉄空気電池に関する。 The present invention relates to an electrolytic solution for an iron-air battery and an iron-air battery.
活物質として酸素を利用する空気電池は、エネルギー密度が高い等の多くの利点を有している。空気電池としては、例えば、鉄空気電池やアルミニウム空気電池等の金属空気電池が知られている。
このような空気電池に関する技術として、例えば特許文献1には、正極(空気極)、電解液、鉄金属を含む負極を備える鉄空気電池が開示されている。
An air battery using oxygen as an active material has many advantages such as high energy density. As an air battery, metal air batteries, such as an iron air battery and an aluminum air battery, are known, for example.
As a technique related to such an air battery, for example, Patent Document 1 discloses an iron-air battery including a positive electrode (air electrode), an electrolyte, and a negative electrode containing iron metal.
しかしながら、鉄空気電池に用いられる鉄負極の表面は、通常は酸化被膜(不動態膜)で覆われているため、電池電極として不活性であるという問題がある。上記不動態膜を除去するため、通常、放電前に還元処理を行う。これにより、鉄負極の表面を活性化させる。
しかし、電解液中の溶存酸素や水酸化物等の影響で、還元処理直後に鉄負極表面が再不動態化してしまい、放電容量を得ることが難しいという問題がある。
鉄負極表面の再不動態化を防ぐために、特許文献1には、電解液に硫化カリウム(K2S)を添加することによって、電極の活性低下を抑えて放電反応を促進することができる旨が開示されている。
しかし、K2Sを含有する電解液を用いると、鉄空気電池の放電容量を向上させることはできるが、K2Sの濃度が変化すると、放電容量が大きく変化するため、所望の放電容量を得るためには、精度の高い濃度制御が必要であるという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、濃度制御を行わなくても鉄空気電池の放電容量を向上させることができる鉄空気電池用電解液、及び、当該電解液を用いた鉄空気電池を提供することである。
However, since the surface of the iron negative electrode used for an iron-air battery is usually covered with an oxide film (passive film), there is a problem that it is inactive as a battery electrode. In order to remove the passive film, a reduction treatment is usually performed before discharge. Thereby, the surface of an iron negative electrode is activated.
However, there is a problem in that it is difficult to obtain a discharge capacity because the surface of the iron negative electrode is repassivated immediately after the reduction treatment due to the influence of dissolved oxygen, hydroxide, etc. in the electrolytic solution.
In order to prevent repassivation of the iron negative electrode surface, Patent Document 1 states that by adding potassium sulfide (K 2 S) to the electrolytic solution, it is possible to suppress the decrease in the activity of the electrode and promote the discharge reaction. It is disclosed.
However, when an electrolyte containing K 2 S is used, the discharge capacity of the iron-air battery can be improved. However, if the concentration of K 2 S changes, the discharge capacity changes greatly. In order to obtain this, there is a problem that high-precision density control is necessary.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an iron-air battery electrolyte that can improve the discharge capacity of an iron-air battery without performing concentration control, and An iron-air battery using an electrolytic solution is provided.
本発明の鉄空気電池用電解液は、SCN−アニオン、S2O3 2−アニオン、及び、(CH3)2NCSS−アニオンからなる群より選ばれる少なくとも一種のアニオンを含む放電反応促進剤を含有する水溶液からなり、
前記放電反応促進剤の含有量は、0.005mol/L以上、0.1mol/L以下である、鉄元素を含む負極を有する鉄空気電池に用いられる。
The electrolytic solution for an iron-air battery of the present invention comprises a discharge reaction accelerator containing at least one anion selected from the group consisting of SCN - anions, S 2 O 3 2- anions, and (CH 3 ) 2 NCSS - anions. Consisting of an aqueous solution containing
The content of the discharge reaction accelerator is 0.005 mol / L or more and 0.1 mol / L or less, and is used for an iron-air battery having a negative electrode containing an iron element.
本発明の鉄空気電池用電解液において、前記放電反応促進剤は、Li+カチオン、K+カチオン、Na+カチオン、Rb+カチオン、Cs+カチオン、及び、Fr+カチオンからなる群より選ばれる少なくとも一種のカチオンを含むことが好ましい。
本発明の鉄空気電池用電解液において、前記放電反応促進剤は、Na2S2O3であることが好ましい。
本発明の鉄空気電池用電解液において、前記水溶液は、塩基性であることが好ましい。
本発明の鉄空気電池用電解液において、前記水溶液は、電解質化合物としてKOHを含有することが好ましい。
In the electrolytic solution for an iron-air battery of the present invention, the discharge reaction accelerator is at least selected from the group consisting of Li + cation, K + cation, Na + cation, Rb + cation, Cs + cation, and Fr + cation. It preferably contains one kind of cation.
In the electrolytic solution for an iron-air battery of the present invention, the discharge reaction accelerator is preferably Na 2 S 2 O 3 .
In the electrolytic solution for an iron-air battery of the present invention, the aqueous solution is preferably basic.
In the electrolytic solution for an iron-air battery of the present invention, the aqueous solution preferably contains KOH as an electrolyte compound.
本発明の鉄空気電池は、酸素が供給される空気極と、
鉄元素を含む負極と、
前記空気極と前記負極に接触する電解液と、を備え、
前記電解液は、前記鉄空気電池用電解液であることを特徴とする。
The iron-air battery of the present invention includes an air electrode to which oxygen is supplied,
A negative electrode containing iron element;
An electrolyte solution in contact with the air electrode and the negative electrode,
The electrolytic solution is the iron-air battery electrolytic solution.
本発明によれば、濃度制御を行わなくても鉄空気電池の放電容量を向上させることができる鉄空気電池用電解液、及び、当該電解液を用いた鉄空気電池を提供することができる。 According to the present invention, it is possible to provide an iron-air battery electrolyte capable of improving the discharge capacity of the iron-air battery without performing concentration control, and an iron-air battery using the electrolyte.
1.鉄空気電池用電解液
本発明の鉄空気電池用電解液は、SCN−アニオン、S2O3 2−アニオン、及び、(CH3)2NCSS−アニオンからなる群より選ばれる少なくとも一種のアニオンを含む放電反応促進剤を含有する水溶液からなり、鉄元素を含む負極を有する鉄空気電池に用いられる。
1. Iron air battery electrolyte solution of iron air battery electrolyte present invention, SCN - anion, S 2 O 3 2- anions, and, (CH 3) 2 NCSS - at least one anion selected from the group consisting of anionic It consists of the aqueous solution containing the discharge reaction accelerator containing, and is used for the iron air battery which has a negative electrode containing an iron element.
K2Sを電解液に添加した場合、電解液中のK2Sの濃度が0.01mol/Lを超えると、放電反応性が大きく低下するという問題がある。
そのため、電池の充放電等により電解液の液量が減少すると、電解液中のK2Sの濃度が増大し、電解液中のK2Sの濃度が0.01mol/Lを超えると、放電反応性(放電容量)が著しく低下してしまう。放電容量の低下を防ぐためには、充放電時に精度の高い濃度制御を行う必要があるという問題がある。
また、電解液調製時の放電反応促進剤の濃度ばらつきの影響により、安定した品質の電池の提供が困難であるという問題がある。
硫化物イオンは鉄負極表面に吸着することで鉄の再不動態化を抑制することや、充電時の水素発生を抑制することに寄与していると考えられる。そのため、K2Sの濃度が増加したことで、硫化物イオンの鉄負極表面への吸着量が多くなり、且つ、硫化物イオンの吸着力が強いと推定される。結果として、鉄の放電反応(鉄の溶出反応)が阻害され、放電反応性が低下したと推定される。
本発明者らは、上記問題を解決するために鋭意検討した結果、SCN−アニオン、S2O3 2−アニオン、及び、(CH3)2NCSS−アニオンからなる群より選ばれる少なくとも一種のアニオンを含む放電反応促進剤を電解液中に添加することによって、精度の高い濃度制御を行わなくても鉄空気電池の放電容量を安定的に向上させることができることを見出した。具体的には、電解液中の放電反応促進剤の濃度が0.01mol/Lを超える濃度であっても放電反応性が安定する(放電容量が低下しない)。そのため、電解液調製時の放電反応促進剤の濃度ばらつきの影響を抑えることができる。さらに充放電時における電解液量の減少に起因する放電反応促進剤の濃度増加に伴う放電容量の低下を抑制することができる。中でも、Na2S2O3は、放電容量の安定化効果を有することに加え、K2Sよりも放電容量の向上効果が高いことが確認できた。
SCN−アニオン、S2O3 2−アニオン、及び、(CH3)2NCSS−アニオン等が含まれる場合、当該アニオンは、電解液中の溶存酸素等よりも鉄の表面に優先的に吸着し、当該アニオンがキレート剤として鉄の溶解を促す。結果として、負極表面での鉄イオン飽和濃度超過による析出(鉄の再不動態化)を抑制し、活性な表面状態を保てていると推定する。
When K 2 S is added to the electrolytic solution, there is a problem in that the discharge reactivity is greatly reduced when the concentration of K 2 S in the electrolytic solution exceeds 0.01 mol / L.
Therefore, when the liquid content in the electrolyte solution by the charging and discharging of the battery is reduced, the concentration of K 2 S in the electrolyte increases, the concentration of K 2 S in the electrolyte exceeds 0.01 mol / L, the discharge Reactivity (discharge capacity) is significantly reduced. In order to prevent a reduction in discharge capacity, there is a problem that it is necessary to perform highly accurate concentration control during charging and discharging.
In addition, there is a problem that it is difficult to provide a battery with stable quality due to the influence of variation in the concentration of the discharge reaction accelerator during the preparation of the electrolytic solution.
It is considered that sulfide ions are adsorbed on the surface of the iron negative electrode, thereby suppressing iron repassivation and suppressing hydrogen generation during charging. Therefore, it is presumed that the amount of sulfide ions adsorbed on the iron negative electrode surface increases and the sulfide ion adsorption force is strong because the concentration of K 2 S increases. As a result, it is presumed that the discharge reaction of iron (iron elution reaction) was inhibited and the discharge reactivity was lowered.
The present inventors have made intensive studies in order to solve the above problems, SCN - anion, S 2 O 3 2- anions, and, (CH 3) 2 NCSS - at least one anion selected from the group consisting of anionic It has been found that the discharge capacity of the iron-air battery can be stably improved by adding a discharge reaction accelerator containing selenium to the electrolyte without performing highly accurate concentration control. Specifically, even if the concentration of the discharge reaction accelerator in the electrolytic solution exceeds 0.01 mol / L, the discharge reactivity is stabilized (the discharge capacity does not decrease). Therefore, the influence of variation in the concentration of the discharge reaction accelerator during the preparation of the electrolytic solution can be suppressed. Furthermore, it is possible to suppress a decrease in discharge capacity accompanying an increase in the concentration of the discharge reaction accelerator due to a decrease in the amount of electrolyte during charging and discharging. Among these, Na 2 S 2 O 3 was confirmed to have a higher discharge capacity improvement effect than K 2 S in addition to having a discharge capacity stabilization effect.
When SCN - anion, S 2 O 3 2- anion, and (CH 3 ) 2 NCSS - anion are included, the anion preferentially adsorbs on the surface of iron rather than dissolved oxygen in the electrolyte. The anion promotes dissolution of iron as a chelating agent. As a result, it is estimated that precipitation (repassivation of iron) due to excess iron ion saturation concentration on the negative electrode surface is suppressed and an active surface state is maintained.
水溶液は、少なくとも放電反応促進剤と、電解質化合物を含む。
放電反応促進剤としては、SCN−アニオン、S2O3 2−アニオン、及び、(CH3)2NCSS−アニオンからなる群より選ばれる少なくとも一種のアニオンを含むものであれば特に限定されず、S2O3 2−アニオンが含まれていることが好ましい。
放電反応促進剤に含まれるカチオンの具体例としては、Li+、K+、Na+、Rb+、Cs+、及び、Fr+等が挙げられ、K+、Na+が好ましい。放電反応促進剤に含まれる、上記カチオンは、鉄よりも電気化学的に卑な金属のカチオンである。そのため、上記カチオンは、電解液中で負極金属である鉄とは反応し難い。したがって、上記カチオンであれば、放電反応促進のための、負極金属中に含まれる鉄への上記アニオンの優先的な吸着を阻害し難いと考えられる。
放電反応促進剤の具体例としては、Na2S2O3、NaSCN、及び、(CH3)2NCSSNa等が挙げられ、Na2S2O3が好ましい。
電解液に含まれる放電反応促進剤の含有量は、特に限定されないが、0.005mol/L以上、0.1mol/L以下であることが好ましい。
The aqueous solution contains at least a discharge reaction accelerator and an electrolyte compound.
The discharge reaction accelerator, SCN - anion, S 2 O 3 2- anions, and, (CH 3) 2 NCSS - not particularly limited as long as it contains at least one anion selected from the group consisting of anionic, it preferably contains S 2 O 3 2- anions.
Specific examples of the cation contained in the discharge reaction accelerator include Li + , K + , Na + , Rb + , Cs + , and Fr + , and K + and Na + are preferable. The cation contained in the discharge reaction accelerator is a cation of a metal that is electrochemically less basic than iron. Therefore, the cation hardly reacts with iron, which is a negative electrode metal, in the electrolytic solution. Therefore, if it is the said cation, it will be hard to inhibit the preferential adsorption | suction of the said anion to iron contained in a negative electrode metal for discharge reaction promotion.
Specific examples of the discharge reaction accelerator include Na 2 S 2 O 3 , NaSCN, and (CH 3 ) 2 NCSSNa, and Na 2 S 2 O 3 is preferable.
The content of the discharge reaction accelerator contained in the electrolytic solution is not particularly limited, but is preferably 0.005 mol / L or more and 0.1 mol / L or less.
電解質化合物は、水に対して溶解性を有し、所望のイオン伝導性を発現するものであれば特に限定されないが、水溶液が、中性又は塩基性になるものであることが好ましく、電極の反応性向上の観点から、塩基性になるものが特に好ましい。
電解質化合物としては、Li、K、Na、Rb、Cs、Fr、Mg、Ca、Sr、Ba、及び、Raからなる群より選ばれる少なくとも一種の金属を含むものであることが好ましい。電解質化合物の具体例としては、LiCl、NaCl、KCl、MgCl2、CaCl2、LiOH、KOH、NaOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、及び、Sr(OH)2等が挙げられ、NaOH、KOHが好ましく、特にKOHが好ましい。
電解質化合物の濃度は、特に限定されないが、下限としては、好ましくは0.01mol/L以上、特に0.1mol/L以上、さらに1mol/L以上であり、上限としては、好ましくは20mol/L以下、特に10mol/L以下、さらに8mol/L以下である。
電解質化合物の濃度が0.01mol/L未満の場合は、負極金属の溶解性が低下するおそれがある。一方、電解質化合物の濃度が、20mol/Lを超える場合は、鉄空気電池の自己放電が加速され、電池特性が低下するおそれがある。
電解液のpHは7以上であることが好ましく、10以上であることがより好ましく、14以上であることが特に好ましい。
The electrolyte compound is not particularly limited as long as it has solubility in water and expresses desired ionic conductivity, but the aqueous solution is preferably neutral or basic. From the viewpoint of improving reactivity, those that are basic are particularly preferred.
The electrolyte compound preferably contains at least one metal selected from the group consisting of Li, K, Na, Rb, Cs, Fr, Mg, Ca, Sr, Ba, and Ra. Specific examples of the electrolyte compound include LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , LiOH, KOH, NaOH, RbOH, CsOH, Mg (OH) 2 , Ca (OH) 2 , and Sr (OH) 2. NaOH and KOH are preferable, and KOH is particularly preferable.
The concentration of the electrolyte compound is not particularly limited, but the lower limit is preferably 0.01 mol / L or more, particularly 0.1 mol / L or more, more preferably 1 mol / L or more, and the upper limit is preferably 20 mol / L or less. In particular, it is 10 mol / L or less, and further 8 mol / L or less.
When the concentration of the electrolyte compound is less than 0.01 mol / L, the solubility of the negative electrode metal may be reduced. On the other hand, when the concentration of the electrolyte compound exceeds 20 mol / L, the self-discharge of the iron-air battery is accelerated, and the battery characteristics may be deteriorated.
The pH of the electrolytic solution is preferably 7 or more, more preferably 10 or more, and particularly preferably 14 or more.
2.鉄空気電池
本発明の鉄空気電池は、酸素が供給される空気極と、
鉄元素を含む負極と、
前記空気極と前記負極に接触する電解液と、を備え、
前記電解液は、前記鉄空気電池用電解液であることを特徴とする。
2. Iron-air battery The iron-air battery of the present invention includes an air electrode to which oxygen is supplied,
A negative electrode containing iron element;
An electrolyte solution in contact with the air electrode and the negative electrode,
The electrolytic solution is the iron-air battery electrolytic solution.
本発明において、鉄空気電池とは、空気極において、活物質である酸素の還元反応が行われ、負極において、鉄の酸化反応が行われ、空気極と負極との間に配置される電解液によってイオンが伝導される電池を指す。本発明の鉄空気電池は、一次電池であっても二次電池であってもよい。 In the present invention, an iron-air battery is an electrolytic solution in which a reduction reaction of oxygen, which is an active material, is performed in an air electrode, and an iron oxidation reaction is performed in a negative electrode, and is disposed between the air electrode and the negative electrode. Refers to a battery through which ions are conducted. The iron-air battery of the present invention may be a primary battery or a secondary battery.
図1は、本発明の鉄空気電池の概略的な構成を示す断面図である。
図1に示すように、鉄空気電池10は、負極11と、負極11と離隔されて設けられている空気極12と、負極11と空気極12との間に配置される電解液13を保持するセパレータ14と、負極11に接続された負極集電体15と、空気極12に接続された空気極集電体16と、これらを収容する外装体17とを備え、外装体17の一部が撥水膜18で構成されている。鉄空気電池10は、撥水膜18等を用いて、電解液13が外装体17から漏洩しないように構成されている。
FIG. 1 is a cross-sectional view showing a schematic configuration of an iron-air battery of the present invention.
As shown in FIG. 1, the iron-air battery 10 holds a negative electrode 11, an air electrode 12 provided separately from the negative electrode 11, and an electrolyte solution 13 disposed between the negative electrode 11 and the air electrode 12. Part of the outer package 17, a separator 14 that is connected to the negative electrode 11, an air electrode current collector 16 that is connected to the air electrode 12, and an outer package 17 that accommodates these. Is formed of a water repellent film 18. The iron-air battery 10 is configured so that the electrolytic solution 13 does not leak from the exterior body 17 using a water repellent film 18 or the like.
本発明の鉄空気電池に使用できる電解液は、上記「1.鉄空気電池用電解液」と同様のため、ここでの説明は省略する。 Since the electrolytic solution that can be used in the iron-air battery of the present invention is the same as the above-mentioned “1.
本発明の鉄空気電池は、必要に応じ、空気極と負極との絶縁性を確保するためのセパレータを有する。セパレータは、電解液を保持する観点から、多孔質構造を有することが好ましい。セパレータの多孔質構造は、電解液を保持することができれば特に限定されず、例えば、構成繊維が規則正しく配列されたメッシュ構造、構成繊維がランダムに配列された不織布構造、独立孔や連結孔を有する三次元網目構造等が挙げられる。セパレータは、従来公知のものを用いることができる。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロース等の多孔膜や、樹脂不織布、ガラス繊維不織布等の不織布等が挙げられる。
セパレータの厚さは、特に限定されるものではなく、例えば、0.1〜100μmの範囲が好ましい。
セパレータの多孔度としては、30〜90%であることが好ましく、45〜70%であることがより好ましい。多孔度が低すぎるとイオン拡散を阻害する傾向があり、高すぎると強度が低下する傾向がある。
The iron-air battery of the present invention has a separator for ensuring the insulation between the air electrode and the negative electrode as necessary. It is preferable that a separator has a porous structure from a viewpoint of hold | maintaining electrolyte solution. The porous structure of the separator is not particularly limited as long as the electrolyte solution can be retained. For example, the separator has a mesh structure in which constituent fibers are regularly arranged, a nonwoven fabric structure in which constituent fibers are randomly arranged, independent holes, and connecting holes. Examples include a three-dimensional network structure. A conventionally well-known thing can be used for a separator. Specific examples include porous films such as polyethylene, polypropylene, polyethylene terephthalate, and cellulose, and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric.
The thickness of a separator is not specifically limited, For example, the range of 0.1-100 micrometers is preferable.
The porosity of the separator is preferably 30 to 90%, and more preferably 45 to 70%. If the porosity is too low, ion diffusion tends to be inhibited, and if it is too high, the strength tends to decrease.
空気極は、少なくとも導電性材料を含む。
導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料、ペロブスカイト型導電性材料、多孔質導電性ポリマー及び金属体等を挙げることができる。
炭素材料は、多孔質構造を有するものであってもよく、多孔質構造を有しないものであってもよいが、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンブラック、カーボンナノチューブ、及び、カーボンファイバー等を挙げることができる。
金属体は、電解液に対して安定な公知の金属によって構成することができる。金属体は、具体的には、例えばNi、Cr、及び、Alからなる群より選ばれる少なくとも一種の金属を含有する金属層(被覆膜)が表面に形成されているものであっても、その全体がNi、Cr、及び、Alからなる群より選ばれる少なくとも一種の金属からなる金属材料によって、構成されているものであってもよい。金属体の形態は、例えば、金属メッシュ、穴開け加工された金属箔、又は、発泡金属体等の公知の形態にすることができる。
空気極における導電性材料の含有量としては、例えば、空気極全体の質量を100質量%としたとき、10〜99質量%、中でも50〜95質量%であることが好ましい。
The air electrode includes at least a conductive material.
The conductive material is not particularly limited as long as it has conductivity, and examples thereof include a carbon material, a perovskite-type conductive material, a porous conductive polymer, and a metal body.
The carbon material may have a porous structure or may not have a porous structure, but preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon black, carbon nanotube, and carbon fiber.
A metal body can be comprised with the well-known metal stable with respect to electrolyte solution. Specifically, for example, the metal body has a metal layer (coating film) containing at least one metal selected from the group consisting of Ni, Cr, and Al formed on the surface, The whole may be composed of a metal material made of at least one metal selected from the group consisting of Ni, Cr, and Al. The form of the metal body can be a known form such as a metal mesh, a metal foil that has been punched, or a metal foam body.
As content of the electroconductive material in an air electrode, when the mass of the whole air electrode is 100 mass%, for example, it is preferable that it is 10-99 mass%, especially 50-95 mass%.
空気極は、電極反応を促進する触媒を含有していてもよく、触媒は上記導電性材料に担持されていてもよい。
触媒は、鉄空気電池に使用可能な、酸素還元能を有する公知の触媒を適宜用いることができる。触媒としては、例えば、ルテニウム、ロジウム、パラジウム、及び、白金からなる群より選ばれる少なくとも一種の金属;Co、Mn、又は、Fe等の遷移金属を含むペロブスカイト型酸化物;ポルフィリン骨格又はフタロシアニン骨格を有する金属配位有機化合物;二酸化マンガン(MnO2)及び酸化セリウム(CeO2)等の無機セラミックス;これらの材料を混合した複合材料等を挙げることができる。
空気極における触媒の含有量は、例えば、空気極全体の質量を100質量%としたとき、0〜90質量%、中でも1〜90質量%であることが好ましい。
The air electrode may contain a catalyst that promotes an electrode reaction, and the catalyst may be supported on the conductive material.
As the catalyst, a known catalyst having an oxygen reducing ability that can be used in an iron-air battery can be appropriately used. Examples of the catalyst include at least one metal selected from the group consisting of ruthenium, rhodium, palladium, and platinum; a perovskite oxide containing a transition metal such as Co, Mn, or Fe; a porphyrin skeleton or a phthalocyanine skeleton. Examples thereof include metal coordination organic compounds having inorganic ceramics such as manganese dioxide (MnO 2 ) and cerium oxide (CeO 2 ); and composite materials obtained by mixing these materials.
For example, the content of the catalyst in the air electrode is preferably 0 to 90% by mass, and more preferably 1 to 90% by mass, when the mass of the entire air electrode is 100% by mass.
空気極は、必要に応じ、導電性材料を固定化する結着剤を含有する。
結着剤としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)等が挙げられる。
空気極における結着剤の含有量は、特に限定されるものではないが、例えば、空気極全体の質量を100質量%としたとき、1〜40質量%であることが好ましく、10〜30質量%であることが特に好ましい。
The air electrode contains a binder for immobilizing the conductive material as necessary.
Examples of the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene / butadiene rubber (SBR), and the like.
Although content of the binder in an air electrode is not specifically limited, For example, when the mass of the whole air electrode is 100 mass%, it is preferable that it is 1-40 mass%, and 10-30 mass. % Is particularly preferred.
空気極の作製方法としては、例えば、導電性材料等の上記空気極用材料を混合して圧延する方法や、上記空気極用材料と溶媒とを含むスラリーを塗布する方法が挙げられる。スラリーの調製に用いられる溶媒としては、例えば、アセトン、エタノール、N−メチル−2−ピロリドン(NMP)等が挙げられる。スラリーの塗布方法としては、スプレー法、スクリーン印刷法、グラビア印刷法、ダイコート法、ドクターブレード法、インクジェット法等が挙げられる。具体的には、スラリーを後述する空気極集電体又はキャリアフィルムに塗布した後、乾燥させ、必要に応じて、圧延、切断することで、空気極を成形することができる。
空気極の厚さは、鉄空気電池の用途等により異なるものであるが、例えば2〜500μmの範囲内、特に30〜300μmの範囲内であることが好ましい。
Examples of the method for producing the air electrode include a method in which the air electrode material such as a conductive material is mixed and rolled, and a method in which a slurry containing the air electrode material and a solvent is applied. Examples of the solvent used for preparing the slurry include acetone, ethanol, N-methyl-2-pyrrolidone (NMP), and the like. Examples of the slurry application method include a spray method, a screen printing method, a gravure printing method, a die coating method, a doctor blade method, and an ink jet method. Specifically, the slurry can be applied to an air electrode current collector or carrier film, which will be described later, and then dried, and the air electrode can be formed by rolling and cutting as necessary.
Although the thickness of an air electrode changes with uses of an iron air battery etc., it is preferable to exist in the range of 2-500 micrometers, for example in the range of 30-300 micrometers especially.
本発明の鉄空気電池は、必要に応じ、空気極の集電を行う空気極集電体を有する。空気極集電体としては、所望の電子伝導性を有していれば、多孔質構造を有するものであっても、或いは緻密構造を有するものであってもよいが、空気(酸素)の拡散性の観点から、メッシュ状等の多孔質構造を有するものが好ましい。空気極集電体の形状としては、例えば箔状、板状、メッシュ(グリッド)状等を挙げることができる。多孔質構造を有する集電体の気孔率は特に限定されないが、例えば、20〜99%の範囲であることが好ましい。
空気極集電体の材料としては、例えば、ステンレス、ニッケル、アルミニウム、鉄、チタン、銅、金、銀、パラジウム等の金属材料、カーボンファイバー、カーボンペーパー等のカーボン材料、窒化チタン等の高電子伝導性セラミックス材料等が挙げられる。
空気極集電体の厚さは、特に限定されないが、例えば、10〜1000μm、特に20〜400μmであることが好ましい。また、後述する外装体が空気極集電体としての機能を兼ね備えていてもよい。
空気極集電体は、外部との接続部となる端子を有していてもよい。
The iron-air battery of the present invention has an air electrode current collector that collects the air electrode as necessary. The air electrode current collector may have a porous structure or a dense structure as long as it has a desired electronic conductivity, but it may diffuse air (oxygen). From the viewpoint of property, those having a porous structure such as a mesh shape are preferable. Examples of the shape of the air electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape. The porosity of the current collector having a porous structure is not particularly limited, but is preferably in the range of 20 to 99%, for example.
Examples of the material for the air electrode current collector include metal materials such as stainless steel, nickel, aluminum, iron, titanium, copper, gold, silver and palladium, carbon materials such as carbon fiber and carbon paper, and high electrons such as titanium nitride. Examples thereof include conductive ceramic materials.
Although the thickness of an air electrode electrical power collector is not specifically limited, For example, it is preferable that it is 10-1000 micrometers, especially 20-400 micrometers. Moreover, the exterior body mentioned later may have the function as an air electrode electrical power collector.
The air electrode current collector may have a terminal serving as a connection portion with the outside.
負極は、少なくとも負極活物質を含有する。
負極活物質としては、鉄金属、鉄合金、及び、鉄化合物等が挙げられ、鉄金属が好ましい。
鉄合金としては、バナジウム、ケイ素、アルミニウム、マグネシウム、亜鉛、及び、リチウムからなる群より選ばれる金属材料との合金等が挙げられ、鉄合金を構成する鉄以外の金属は1種でも2種以上でもよい。
鉄化合物としては、例えば、FeO、Fe3O4、Fe2O3、FeOOH、Fe(OH)2、Fe(OH)3、硝酸鉄(III)、鉄(III)クロリドオキシド、シュウ酸鉄(III)、臭化鉄(III)、及びヨウ化鉄(III)等を挙げることができる。
負極が鉄金属の場合の鉄の純度は、特に限定されない。鉄金属中に含まれる鉄の元素比は、下限としては、50%以上、特に80%以上、さらに95%以上、中でも99.5%以上であることが好ましい。また、鉄金属中に含まれる鉄の元素比は、上限としては、100%以下であってもよく、99.999%以下であってもよく、99.99%以下であってもよく、99.9%以下であってもよい。
鉄合金は、合金全体の質量を100質量%としたときの鉄の含有割合が50質量%以上であることが好ましい。
負極の形状は、特に限定されず、板、棒、粒子、メッシュ状等が挙げられる。なお、形状が粒子状の場合の粒子の粒径は、下限としては、1nm以上、特に10nm以上、さらに100nm以上であることが好ましく、上限としては、100mm以下、特に10mm以下、さらに1mm以下であることが好ましい。
本発明における粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、適切な倍率(例えば、5万〜100万倍)の透過型電子顕微鏡(Transmission Electron Microscope;以下、TEMと称する。)画像又は走査型電子顕微鏡(Scanning Electron Microscope;以下、SEMと称する。)画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察又はSEM観察による粒径の算出を、同じ種類の200〜300個の粒子について行い、これらの粒子の平均を平均粒径とする。
The negative electrode contains at least a negative electrode active material.
Examples of the negative electrode active material include iron metal, iron alloy, and iron compound, and iron metal is preferable.
Examples of the iron alloy include an alloy with a metal material selected from the group consisting of vanadium, silicon, aluminum, magnesium, zinc, and lithium. The metal other than iron constituting the iron alloy is one kind or two or more kinds. But you can.
Examples of the iron compound include FeO, Fe 3 O 4 , Fe 2 O 3 , FeOOH, Fe (OH) 2 , Fe (OH) 3 , iron (III) nitrate, iron (III) chloride oxide, iron oxalate ( III), iron (III) bromide, iron (III) iodide and the like.
The purity of iron when the negative electrode is iron metal is not particularly limited. The lower limit of the elemental ratio of iron contained in the iron metal is preferably 50% or more, particularly 80% or more, more preferably 95% or more, and especially 99.5% or more. Further, the upper limit of the element ratio of iron contained in the iron metal may be 100% or less, 99.999% or less, 99.99% or less, 99 It may be 9% or less.
The iron alloy preferably has an iron content of 50% by mass or more when the mass of the entire alloy is 100% by mass.
The shape of the negative electrode is not particularly limited, and examples thereof include plates, bars, particles, and mesh shapes. In addition, the particle diameter of the particles when the shape is particulate is preferably 1 nm or more, particularly 10 nm or more, more preferably 100 nm or more as the lower limit, and the upper limit is 100 mm or less, particularly 10 mm or less, and further 1 mm or less. Preferably there is.
The average particle diameter of the particles in the present invention is calculated by a conventional method. An example of a method for calculating the average particle size of the particles is as follows. First, a transmission electron microscope (hereinafter referred to as TEM) with an appropriate magnification (for example, 50,000 to 1,000,000 times), an image or a scanning electron microscope (hereinafter referred to as SEM). In the image, for a certain particle, the particle diameter when the particle is regarded as spherical is calculated. Calculation of the particle size by such TEM observation or SEM observation is performed for 200 to 300 particles of the same type, and the average of these particles is taken as the average particle size.
負極は、必要に応じて、導電性材料及び負極活物質を固定化する結着剤の少なくとも一方を含有する。例えば、負極活物質が板状である場合は、負極活物質のみを含有する負極とすることができる。一方、負極活物質が粉末(球)状である場合は、導電性材料及び結着剤の少なくとも一方と負極活物質とを含有する負極とすることができる。なお、導電性材料の種類及び使用量、結着剤の種類及び使用量等については、上述した空気極に記載した内容と同様とすることができる。 The negative electrode contains at least one of a binder that immobilizes the conductive material and the negative electrode active material, as necessary. For example, when the negative electrode active material is plate-shaped, a negative electrode containing only the negative electrode active material can be obtained. On the other hand, when the negative electrode active material is in a powder (sphere) shape, a negative electrode containing at least one of a conductive material and a binder and the negative electrode active material can be obtained. In addition, about the kind and usage-amount of an electroconductive material, the kind and usage-amount of a binder, it can be made to be the same as the content described in the air electrode mentioned above.
本発明の鉄空気電池は、必要に応じ、負極の集電を行う負極集電体を有する。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば、ステンレス、ニッケル、銅、カーボン等を挙げることができる。負極集電体の形状としては、例えば箔状、板状、メッシュ状等を挙げることができる。負極集電体の厚さは、特に限定されないが、例えば、10〜1000μm、特に20〜400μmであることが好ましい。また、後述する外装体が負極集電体としての機能を兼ね備えていてもよい。
負極集電体は、外部との接続部となる端子を有していてもよい。
The iron-air battery of the present invention includes a negative electrode current collector that collects current from the negative electrode as necessary. The material for the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, copper, and carbon. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape. Although the thickness of a negative electrode collector is not specifically limited, For example, it is preferable that it is 10-1000 micrometers, especially 20-400 micrometers. Moreover, the exterior body mentioned later may have the function as a negative electrode collector.
The negative electrode current collector may have a terminal serving as a connection portion with the outside.
本発明の鉄空気電池は、通常、空気極、負極及び電解液等を収納する外装体を有する。
外装体の形状としては、例えば、コイン型、平板型、円筒型、ラミネート型等を挙げることができる。
外装体の材質は、電解液に安定なものであれば特に限定されないが、Ni、Cr、及び、Alからなる群より選ばれる少なくとも一種を含む金属体、並びに、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂が挙げられる。外装体が金属体の場合は、外装体の表面のみが金属体で構成されるものであっても、外装体全体が金属体で構成されるものであってもよい。
外装体は、大気開放型であっても、密閉型であってもよい。大気開放型の外装体は、外部から酸素を取り込むための孔を有し、少なくとも空気極が十分に大気と接触可能な構造を有する。酸素取り込み孔には、酸素透過膜、撥水膜等を設けてもよい。密閉型の電池ケースは、酸素(空気)の導入管及び排気管を有していてもよい。
撥水膜としては電解液が漏液せず、空気を空気極へ到達させることが可能な材質であれば特に限定されない。撥水膜としては、例えば、多孔性のフッ素樹脂シート(PTFE等)、撥水処理を施した多孔性セルロース等が挙げられる。
空気極に供給される酸素含有ガスとしては、空気、乾燥空気、純酸素等が挙げられ、乾燥空気、純酸素であることが好ましく、純酸素であることが特に好ましい。
The iron-air battery of the present invention usually has an exterior body that houses an air electrode, a negative electrode, an electrolytic solution, and the like.
Examples of the shape of the exterior body include a coin type, a flat plate type, a cylindrical type, and a laminate type.
The material of the exterior body is not particularly limited as long as it is stable to the electrolytic solution, but a metal body including at least one selected from the group consisting of Ni, Cr, and Al, and polypropylene, polyethylene, and acrylic resin And the like. When the exterior body is a metal body, only the surface of the exterior body may be composed of a metal body, or the entire exterior body may be composed of a metal body.
The exterior body may be an air release type or a sealed type. The atmosphere-opening exterior body has a hole for taking in oxygen from the outside, and has a structure in which at least the air electrode can sufficiently come into contact with the atmosphere. The oxygen uptake hole may be provided with an oxygen permeable film, a water repellent film or the like. The sealed battery case may have an oxygen (air) introduction pipe and an exhaust pipe.
The water repellent film is not particularly limited as long as the electrolyte does not leak and the air can reach the air electrode. Examples of the water repellent film include porous fluororesin sheets (PTFE and the like), porous cellulose subjected to water repellent treatment, and the like.
Examples of the oxygen-containing gas supplied to the air electrode include air, dry air, pure oxygen, and the like. Dry air and pure oxygen are preferable, and pure oxygen is particularly preferable.
(実施例1)
まず、8mol/LのKOH(和光純薬工業株式会社製)水溶液を準備した。そして、恒温槽:LU−113(エスペック株式会社製)中で、上記水溶液を25℃、8時間保持した。その後、放電反応促進剤として、Na2S2O3(Aldrich社製)を0.01mol/Lになるように上記水溶液に添加した。次に、上記水溶液を超音波洗浄機で15分攪拌した。そして、恒温槽中で、上記水溶液を25℃、3時間保持し、鉄空気電池用電解液を得た。
Example 1
First, an 8 mol / L aqueous solution of KOH (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared. And the said aqueous solution was hold | maintained for 8 hours at 25 degreeC in thermostat: LU-113 (made by ESPEC Corporation). Then, as a discharge reaction accelerator was added Na 2 S 2 O 3 a (Aldrich Co.) in the aqueous solution so that 0.01 mol / L. Next, the aqueous solution was stirred with an ultrasonic cleaner for 15 minutes. And the said aqueous solution was hold | maintained at 25 degreeC for 3 hours in the thermostat, and the electrolyte solution for iron-air batteries was obtained.
(実施例2)
放電反応促進剤として、Na2S2O3を0.05mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 2)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that Na 2 S 2 O 3 was added to the aqueous solution as a discharge reaction accelerator at 0.05 mol / L.
(実施例3)
放電反応促進剤として、Na2S2O3を0.1mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 3)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that Na 2 S 2 O 3 was added to the aqueous solution as a discharge reaction accelerator so as to be 0.1 mol / L.
(実施例4)
放電反応促進剤として、NaSCN(Aldrich社製)を0.005mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
Example 4
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that NaSCN (manufactured by Aldrich) was added to the above aqueous solution as a discharge reaction accelerator at 0.005 mol / L.
(実施例5)
放電反応促進剤として、NaSCNを0.01mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 5)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that NaSCN was added to the aqueous solution as a discharge reaction accelerator so as to be 0.01 mol / L.
(実施例6)
放電反応促進剤として、NaSCNを0.05mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 6)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that NaSCN was added to the aqueous solution as a discharge reaction accelerator at 0.05 mol / L.
(実施例7)
放電反応促進剤として、(CH3)2NCSSNa(Aldrich社製)を0.005mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 7)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that (CH 3 ) 2 NCSSNa (manufactured by Aldrich) was added to the above aqueous solution as a discharge reaction accelerator to 0.005 mol / L. did.
(実施例8)
放電反応促進剤として、(CH3)2NCSSNaを0.01mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Example 8)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that (CH 3 ) 2 NCSSNa was added to the aqueous solution as a discharge reaction accelerator so as to be 0.01 mol / L.
(実施例9)
放電反応促進剤として、(CH3)2NCSSNaを0.05mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
Example 9
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that (CH 3 ) 2 NCSSNa was added to the above aqueous solution as a discharge reaction accelerator at 0.05 mol / L.
(比較例1)
放電反応促進剤を添加しなかったこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Comparative Example 1)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that the discharge reaction accelerator was not added.
(比較例2)
放電反応促進剤として、K2S(Aldrich社製)を0.01mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Comparative Example 2)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that K 2 S (manufactured by Aldrich) was added to the aqueous solution so as to be 0.01 mol / L as a discharge reaction accelerator.
(比較例3)
放電反応促進剤として、K2Sを0.05mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Comparative Example 3)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that K 2 S was added to the aqueous solution so as to be 0.05 mol / L as a discharge reaction accelerator.
(比較例4)
放電反応促進剤として、K2Sを0.1mol/Lになるように上記水溶液に添加したこと以外は、実施例1と同様に鉄空気電池用電解液を製造した。
(Comparative Example 4)
An electrolytic solution for an iron-air battery was produced in the same manner as in Example 1 except that K 2 S was added to the aqueous solution as a discharge reaction accelerator at 0.1 mol / L.
[放電反応評価]
(電極の準備)
作用極として、スチールウール(日本スチールウール株式会社製 ボンスター#0000 充填率約0.8%)0.8gを準備した。そして、上記スチールウールをアセトンに浸漬し、超音波洗浄を10分行った。
対極として、ニッケルメッシュ(100mesh 株式会社ニラコ製)を30mm×30mm×1mmのサイズに切り出したものを準備した。そして、上記ニッケルメッシュにニッケルリボン(株式会社ニラコ製)を溶接し、当該ニッケルリボンを集電配線とした。
参照極として、Hg/HgO電極(インターケミ株式会社製)を準備した。
(評価セルの作製)
電解液として実施例1〜9、及び、比較例1〜4の電解液を25mL準備した。
セル容器(容積30mL)を用意し、上記作用極、対極、参照極を当該セル容器内に配置した。上記セル容器は実施例1〜9、及び、比較例1〜4の電解液の数(13個)を用意した。そして、上記各電解液25mLをそれぞれ別のセル容器内に投入した。さらに、上記各セル容器に揮発抑制用の蓋を取り付け、評価セルを作製した。評価セルの作製は10分以内に行った。
[Discharge reaction evaluation]
(Preparation of electrodes)
As a working electrode, 0.8 g of steel wool (Bonstar # 0000, a filling rate of approximately 0.8%, manufactured by Nippon Steel Wool Co., Ltd.) was prepared. And the said steel wool was immersed in acetone and ultrasonic cleaning was performed for 10 minutes.
As a counter electrode, a nickel mesh (100 mesh manufactured by Niraco Co., Ltd.) cut into a size of 30 mm × 30 mm × 1 mm was prepared. And the nickel ribbon (made by Nilaco Co., Ltd.) was welded to the said nickel mesh, and the said nickel ribbon was used as current collection wiring.
As a reference electrode, an Hg / HgO electrode (manufactured by Interchem Corporation) was prepared.
(Production of evaluation cell)
As an electrolytic solution, 25 mL of the electrolytic solutions of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.
A cell container (volume 30 mL) was prepared, and the working electrode, the counter electrode, and the reference electrode were arranged in the cell container. The said cell container prepared the number (13 pieces) of Examples 1-9 and the electrolyte solution of Comparative Examples 1-4. And 25 mL of each said electrolyte solution was thrown in in each separate cell container. Furthermore, a lid for suppressing volatilization was attached to each of the above cell containers to produce an evaluation cell. The evaluation cell was produced within 10 minutes.
(放電容量の測定)
上記実施例1〜9、及び、比較例1〜4の電解液を用いた各評価セルを用いて、放電容量を測定した。
まず、評価用セルの作用極及び対極をポテンシオスタット/ガルバノスタット(Biologic社製、VMP3)に接続した。そして、放電前に、作用極の電位を10分間、−1.2V(vs.Hg/HgO)に保持し、作用極の鉄表面の酸化被膜を還元して除去した。その後、減圧処理を行い、電極間から発生した水素を除去した。そして、放電電流23mAで放電を行った。放電は、作用極の電位が0V(vs.Hg/HgO)になるまで行った。
放電容量は、作用極の電位が、放電反応開始時の−0.9V(vs.Hg/HgO)から、一段目のプラトーが終了して、急激な電位上昇を示した後の約−0.7V(vs.Hg/HgO)の値から読み取った。負極活物質の単位質量当たりの放電容量(比容量)の測定結果を表1に示す。
(Measurement of discharge capacity)
The discharge capacity was measured using each evaluation cell using the electrolyte solutions of Examples 1 to 9 and Comparative Examples 1 to 4.
First, the working electrode and counter electrode of the evaluation cell were connected to a potentiostat / galvanostat (Biologic, VMP3). And before discharge, the potential of the working electrode was kept at −1.2 V (vs. Hg / HgO) for 10 minutes, and the oxide film on the iron surface of the working electrode was reduced and removed. Thereafter, a vacuum treatment was performed to remove hydrogen generated between the electrodes. And it discharged with discharge current 23mA. The discharge was performed until the potential of the working electrode became 0 V (vs. Hg / HgO).
The discharge capacity is about −0. 0 after the plateau at the first stage is completed and the potential rises suddenly from −0.9 V (vs. Hg / HgO) at the start of the discharge reaction. It read from the value of 7V (vs.Hg / HgO). Table 1 shows the measurement results of the discharge capacity (specific capacity) per unit mass of the negative electrode active material.
表1に示すように、実施例1〜9及び比較例1〜4の電解液を用いた評価セルの比容量は、実施例1が120mAh/g、実施例2が132mAh/g、実施例3が121mAh/g、実施例4が39mAh/g、実施例5が54mAh/g、実施例6が46mAh/g、実施例7が80mAh/g、実施例8が65mAh/g、実施例9が73mAh/g、比較例1が9mAh/g、比較例2が101mAh/g、比較例3が13mAh/g、比較例4が1mAh/gであった。 As shown in Table 1, the specific capacities of the evaluation cells using the electrolytic solutions of Examples 1 to 9 and Comparative Examples 1 to 4 are 120 mAh / g in Example 1, 132 mAh / g in Example 2, and Example 3 121 mAh / g, Example 4 39 mAh / g, Example 5 54 mAh / g, Example 6 46 mAh / g, Example 7 80 mAh / g, Example 8 65 mAh / g, Example 9 73 mAh / G, Comparative Example 1 was 9 mAh / g, Comparative Example 2 was 101 mAh / g, Comparative Example 3 was 13 mAh / g, and Comparative Example 4 was 1 mAh / g.
表1の比較例2〜4に示すように、放電反応促進剤としてK2Sを用いた場合、電解液中のK2Sの濃度が0.01mol/Lを超えると、比容量が大きく低下することがわかる。
一方、実施例1〜9に含まれる放電反応促進剤であれば、電解液中に含まれる放電反応促進剤の濃度が0.01mol/Lを超える場合でも比容量を安定的に確保することができることがわかる。
表1に示すように、実施例1〜9の比容量は、比較例1の比容量と比較して、4.3〜14.7倍高いことがわかる。また、Na2S2O3を用いた実施例1〜3の比容量は、K2Sを用いた比較例2の比容量と比較して、1.19〜1.31倍高いことがわかる。
そのため、Na2S2O3では、K2Sと比較して濃度に対する放電容量の安定性が得られるだけでなく、より高い放電容量が得られることがわかる。
なお、アニオン種ごとに放電容量が異なるのは、アニオンの鉄金属表面への吸着力の強さや吸着膜の欠陥の形成状態が異なるためであると考えられる。
As shown in Comparative Examples 2 to 4 in Table 1, when K 2 S is used as the discharge reaction accelerator, the specific capacity greatly decreases when the concentration of K 2 S in the electrolyte exceeds 0.01 mol / L. I understand that
On the other hand, the discharge reaction accelerator included in Examples 1 to 9 can stably ensure the specific capacity even when the concentration of the discharge reaction accelerator included in the electrolyte exceeds 0.01 mol / L. I understand that I can do it.
As shown in Table 1, it can be seen that the specific capacities of Examples 1 to 9 are 4.3 to 14.7 times higher than that of Comparative Example 1. In addition, it can be seen that the specific capacities of Examples 1 to 3 using Na 2 S 2 O 3 are 1.19 to 1.31 times higher than the specific capacity of Comparative Example 2 using K 2 S. .
Therefore, it can be seen that Na 2 S 2 O 3 not only provides stability of the discharge capacity with respect to the concentration but also higher discharge capacity as compared with K 2 S.
In addition, it is thought that the discharge capacity differs for each anion species because the strength of the adsorption force of the anion to the iron metal surface and the formation state of defects in the adsorption film are different.
10 鉄空気電池
11 負極
12 空気極
13 電解液
14 セパレータ
15 負極集電体
16 空気極集電体
17 外装体
18 撥水膜
DESCRIPTION OF SYMBOLS 10 Iron-air battery 11 Negative electrode 12 Air electrode 13 Electrolytic solution 14 Separator 15 Negative electrode collector 16 Air electrode collector 17 Exterior body 18 Water repellent film
Claims (6)
前記放電反応促進剤の含有量は、0.005mol/L以上、0.1mol/L以下である、鉄元素を含む負極を有する鉄空気電池に用いられる鉄空気電池用電解液。 SCN - anion, S 2 O 3 2- anions, and, (CH 3) 2 NCSS - made from an aqueous solution containing a discharge reaction accelerator containing at least one anion selected from the group consisting of anionic,
The content of the discharge reaction accelerator is 0.005 mol / L or more and 0.1 mol / L or less, and an electrolytic solution for an iron-air battery having an anode containing an iron element.
鉄元素を含む負極と、
前記空気極と前記負極に接触する電解液と、を備え、
前記電解液は、前記請求項1乃至5のいずれか一項に記載の電解液であることを特徴とする鉄空気電池。 An air electrode supplied with oxygen;
A negative electrode containing iron element;
An electrolyte solution in contact with the air electrode and the negative electrode,
The iron-air battery, wherein the electrolytic solution is the electrolytic solution according to any one of claims 1 to 5 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015178882A JP6311683B2 (en) | 2015-09-10 | 2015-09-10 | Iron-air battery electrolyte and iron-air battery |
US15/258,487 US10044082B2 (en) | 2015-09-10 | 2016-09-07 | Electrolyte for iron-air batteries and iron-air battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015178882A JP6311683B2 (en) | 2015-09-10 | 2015-09-10 | Iron-air battery electrolyte and iron-air battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017054744A JP2017054744A (en) | 2017-03-16 |
JP6311683B2 true JP6311683B2 (en) | 2018-04-18 |
Family
ID=58260070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015178882A Active JP6311683B2 (en) | 2015-09-10 | 2015-09-10 | Iron-air battery electrolyte and iron-air battery |
Country Status (2)
Country | Link |
---|---|
US (1) | US10044082B2 (en) |
JP (1) | JP6311683B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019521497A (en) | 2016-07-22 | 2019-07-25 | ナントエナジー,インク. | Water and carbon dioxide management system in the electrochemical cell |
WO2018187561A1 (en) | 2017-04-06 | 2018-10-11 | Jaramillo Mateo Cristian | Refuelable battery for the electric grid and method of using thereof |
US11611115B2 (en) | 2017-12-29 | 2023-03-21 | Form Energy, Inc. | Long life sealed alkaline secondary batteries |
WO2020023912A1 (en) | 2018-07-27 | 2020-01-30 | Form Energy Inc. | Negative electrodes for electrochemical cells |
WO2020006436A1 (en) | 2018-06-29 | 2020-01-02 | Form Energy Inc. | Aqueous polysulfide-based electrochemical cell |
US11949129B2 (en) | 2019-10-04 | 2024-04-02 | Form Energy, Inc. | Refuelable battery for the electric grid and method of using thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4095015A (en) | 1974-07-15 | 1978-06-13 | Ab S. T. Powercell | Galvanic processes and anodes for carrying the processes into effect |
SE384950B (en) * | 1974-07-15 | 1976-05-24 | Powercell Ab S T | WAY TO AGAINST THE FORMATION OF PASSIVATIVE ANOD COATING WHEN URL LOADING OF A GALVANIC PRIMER CELL, WHICH ANOD'S ACTIVE MATERIAL IS MADE OF IRON AND ANOD FOR PERFORMING THE KIT |
US20090104463A1 (en) * | 2006-06-02 | 2009-04-23 | Rohm And Haas Electronic Materials Llc | Gold alloy electrolytes |
CN103081217A (en) * | 2010-08-23 | 2013-05-01 | 丰田自动车株式会社 | Air electrode, metal-air battery, and method for producing air electrode for metal-air battery |
US20120082922A1 (en) | 2010-10-01 | 2012-04-05 | Kyushu University, National University Corporation | Composite electrode material and method of producing the same, negative electrode for metal-air battery, and metal-air battery |
CN104603998A (en) * | 2012-09-28 | 2015-05-06 | 丰田自动车株式会社 | Negative electrode for batteries, battery, vehicle and battery-equipped device |
JP6536140B2 (en) * | 2014-05-28 | 2019-07-03 | 株式会社Gsユアサ | Storage element |
KR102377944B1 (en) * | 2015-02-13 | 2022-03-23 | 에스케이이노베이션 주식회사 | electrolyte for sodium secondary battery and sodium secondary battery using thereof |
JP2017022038A (en) * | 2015-07-13 | 2017-01-26 | トヨタ自動車株式会社 | Metal-air battery electrolyte and metal-air battery |
-
2015
- 2015-09-10 JP JP2015178882A patent/JP6311683B2/en active Active
-
2016
- 2016-09-07 US US15/258,487 patent/US10044082B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20170077571A1 (en) | 2017-03-16 |
JP2017054744A (en) | 2017-03-16 |
US10044082B2 (en) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6311683B2 (en) | Iron-air battery electrolyte and iron-air battery | |
Davari et al. | Bifunctional electrocatalysts for Zn–air batteries | |
JP5056942B2 (en) | Air electrode and non-aqueous air battery | |
JP2009518795A (en) | Bifunctional air electrode | |
JP6281532B2 (en) | Electrolyte for metal-air battery and metal-air battery | |
WO2015115592A1 (en) | Catalyst for air electrode for metal/air secondary battery, and air electrode | |
JP2018006057A (en) | Iron-air battery system | |
Zhang et al. | Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method | |
KR101738255B1 (en) | Air cell | |
US20170018828A1 (en) | Electrolyte for metal-air batteries, and metal-air battery | |
Amici et al. | Sustainable, economic, and simple preparation of an efficient catalyst for Li–O2 batteries | |
JP6281544B2 (en) | Electrolyte for metal-air battery and metal-air battery | |
JP6616565B2 (en) | Anion conductive material | |
JP2018078082A (en) | Metal air battery system | |
JP2018014259A (en) | Electrolyte solution for metal air battery | |
JP2017054738A (en) | Electrolytic solution for metal air battery, and metal air battery | |
US10629970B2 (en) | Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion | |
JP6601367B2 (en) | Metal air battery system | |
JP2017054740A (en) | Electrolytic solution for metal air battery, and metal air battery | |
Zhu | Exploring the Effects of Catalysts in Li-O2 Batteries | |
US20190067765A1 (en) | Lithium air battery that includes nonaqueous lithium ion conductor | |
JP2014032914A (en) | Air electrode for metal air battery and metal air battery | |
JP5383849B2 (en) | Secondary battery | |
JP2014002913A (en) | Carbon material for metal air battery air electrode, metal air battery air electrode, and metal air battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180305 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6311683 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |