JP6311445B2 - All solid lithium ion secondary battery - Google Patents

All solid lithium ion secondary battery Download PDF

Info

Publication number
JP6311445B2
JP6311445B2 JP2014103034A JP2014103034A JP6311445B2 JP 6311445 B2 JP6311445 B2 JP 6311445B2 JP 2014103034 A JP2014103034 A JP 2014103034A JP 2014103034 A JP2014103034 A JP 2014103034A JP 6311445 B2 JP6311445 B2 JP 6311445B2
Authority
JP
Japan
Prior art keywords
layer
lithium ion
ion secondary
secondary battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014103034A
Other languages
Japanese (ja)
Other versions
JP2015220106A (en
Inventor
靖博 ▲高▼木
靖博 ▲高▼木
高畑 広彰
広彰 高畑
小宅 久司
久司 小宅
充 高井
充 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014103034A priority Critical patent/JP6311445B2/en
Publication of JP2015220106A publication Critical patent/JP2015220106A/en
Application granted granted Critical
Publication of JP6311445B2 publication Critical patent/JP6311445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、全固体リチウムイオン二次電池に関するものである。   The present invention relates to an all solid lithium ion secondary battery.

近年、有機電解液を用いたリチウムイオン二次電池の信頼性が問題視されている。この問題に対して、電解質をセラミックスから構成する全固体型リチウムイオン二次電池の研究が盛んに行われている。全固体リチウム二次電池は、正極、負極、および電解質よりなる電池構成群が全て堅い固体であるため、有機電解液を用いたリチウム二次電池と比較して、電気化学抵抗が大きくなり、出力電流が小さなものとなる傾向にある。
全固体リチウム二次電池の出力電流を大きなものとするために、電解質としてはイオン伝導性の高いものが望ましくケイリン酸リチウムや硫化物系の固体電解質が用いられている。
In recent years, the reliability of lithium ion secondary batteries using organic electrolytes has been regarded as a problem. To solve this problem, research on all-solid-state lithium ion secondary batteries in which the electrolyte is made of ceramics has been actively conducted. The all-solid lithium secondary battery is composed of a solid battery consisting of a positive electrode, a negative electrode, and an electrolyte. Therefore, compared to a lithium secondary battery using an organic electrolyte, the electrochemical resistance increases and the output The current tends to be small.
In order to increase the output current of the all-solid lithium secondary battery, it is desirable that the electrolyte has a high ion conductivity, and lithium silicic acid phosphate or a sulfide-based solid electrolyte is used.

しかしながら、上記のケイリン酸リチウムや硫化物系を主体とする固体電解質材料を用いた電池では、大気に含まれる水分の影響を受け易く、水素が発生するなどして劣化しやすい。このような水分との反応による固体電解質材料の劣化を抑制する方法として、例えば、特許文献1では、脱水および/または脱酸素した再生アルゴンガス雰囲気下で、固体電池を組み立てる製造方法を開示している。しかしながら、このような方法で得られた系固体電池であっても、大気中等の水分の存在する環境下で使用した場合、固体電解質材料と大気中等の外気中の水分との反応を抑制することができないという問題があった。   However, a battery using a solid electrolyte material mainly composed of lithium silicate and sulfide is easily affected by moisture contained in the atmosphere and easily deteriorates due to generation of hydrogen. As a method for suppressing the deterioration of the solid electrolyte material due to such a reaction with moisture, for example, Patent Document 1 discloses a manufacturing method for assembling a solid battery in a regenerated argon gas atmosphere dehydrated and / or deoxygenated. Yes. However, even in the case of a system solid battery obtained by such a method, the reaction between the solid electrolyte material and moisture in the outside air such as the atmosphere is suppressed when used in an environment where moisture exists in the atmosphere or the like. There was a problem that could not.

さらにこのような全固体リチウム二次電池は、焼結したセラミックであり、衝撃を受けると破壊し易いという問題がある。上述した課題を解決するために、特許文献2では、正極、固体電解質、および負極を順次積層して設けた電池要素を集電体上に複数配設した全固体二次電池を複数個に切断し衝撃等の影響を分散しているが、完全に衝撃を抑制できないという問題があった。   Further, such an all solid lithium secondary battery is a sintered ceramic and has a problem that it is easily broken when subjected to an impact. In order to solve the above-described problem, Patent Document 2 discloses cutting a plurality of all-solid-state secondary batteries in which a plurality of battery elements each having a positive electrode, a solid electrolyte, and a negative electrode are sequentially stacked on a current collector. However, there is a problem that the impact cannot be completely suppressed although the influence of the impact or the like is dispersed.

特開平8−167425号公報JP-A-8-167425 特開2001−15153号公報JP 2001-15153 A

衝撃に強く耐水性が向上した信頼性の高い、表面実装可能な全固体電池を提供する。   Provided is a highly reliable, all-solid-state battery that can withstand impacts and has improved water resistance.

上記目的を達成するために、正極層及び負極層の間に電解質層を有する電池素体と、電池素体の端部に電極とを有する全固体リチウムイオン二次電池であって、全固体リチウムイオン二次電池は、電池素体は水の接触角が60°以上の防水層で被覆され、さらに防水層は1×10−4Pa以上9×10−4Pa以下の弾性率を有する弾性層で被覆され、電極は防水層と弾性層の端面を覆うように形成されていることを特徴とする。これにより衝撃に強く電池素体と端部の耐水性が向上した信頼性の高い、表面実装可能な全固体電池を提供できる。 To achieve the above object, an all-solid lithium ion secondary battery having a battery body having an electrolyte layer between a positive electrode layer and a negative electrode layer, and an electrode at the end of the battery body, In the ion secondary battery, the battery body is covered with a waterproof layer having a water contact angle of 60 ° or more, and the waterproof layer is an elastic layer having an elastic modulus of 1 × 10 −4 Pa to 9 × 10 −4 Pa. The electrode is formed so as to cover the end faces of the waterproof layer and the elastic layer. Thereby, it is possible to provide a highly reliable, surface-mountable all solid state battery which is strong against impact and has improved water resistance of the battery body and the end.

上記弾性層は樹脂材料で構成されていることが好ましく、これにより電池が発熱しても安定した弾性を示すので広い温度範囲で衝撃を吸収することができる。   The elastic layer is preferably made of a resin material, and exhibits stable elasticity even when the battery generates heat, so that it can absorb impacts over a wide temperature range.

上記防水層は無機化合物を主成分とする材料からなることが好ましく、防水層により水分との反応を抑制できる。   The waterproof layer is preferably made of a material containing an inorganic compound as a main component, and the waterproof layer can suppress reaction with moisture.

衝撃に強く耐水性が向上した信頼性の高い、表面実装可能な全固体電池を提供できる。   It is possible to provide a highly reliable, surface-mountable all solid state battery that is strong against impact and has improved water resistance.

全固体リチウムイオン二次電池の概念的構造を示す断面図である。It is sectional drawing which shows the conceptual structure of an all-solid-state lithium ion secondary battery. 防水層を有するリチウムイオン二次電池の時間に対する吸湿重量変化の結果である。It is a result of the moisture absorption weight change with respect to time of the lithium ion secondary battery which has a waterproof layer.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、正極層と負極層が固体電解質層を介して交互に積層した焼結体からなる全固体型のリチウムイオン二次電池において、正極層、負極層、及び固体電解質層を有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present embodiment is an all solid-state lithium ion secondary battery composed of a sintered body in which positive electrode layers and negative electrode layers are alternately stacked via a solid electrolyte layer. It has a solid electrolyte layer.

(リチウムイオン二次電池の構造)
図1は、本実施形態の一例に係るリチウムイオン二次電池10の概念的構造を示す断面図である。図1に示すリチウムイオン二次電池11は、正極層1と負極層2が固体電解質層3を介して積層されており、正極層1は正極活物質4と集電体層5を有し及、また負極層2は負極活物質6と集電体層5を有し、固体電解質層3を有す。さらに正極層、負極層と接続する電極7、防水層9、弾性層10から構成される。
(Structure of lithium ion secondary battery)
FIG. 1 is a cross-sectional view showing a conceptual structure of a lithium ion secondary battery 10 according to an example of the present embodiment. In the lithium ion secondary battery 11 shown in FIG. 1, a positive electrode layer 1 and a negative electrode layer 2 are laminated via a solid electrolyte layer 3, and the positive electrode layer 1 has a positive electrode active material 4 and a current collector layer 5. The negative electrode layer 2 has a negative electrode active material 6 and a current collector layer 5, and has a solid electrolyte layer 3. Furthermore, it is composed of a positive electrode layer, an electrode 7 connected to the negative electrode layer, a waterproof layer 9 and an elastic layer 10.

(正極活物質及び負極活物質)
本実施形態のリチウムイオン二次電池11の正極層1及び負極層2を構成する正極活物質4及び負極活物質6としては、リチウムイオンを効率よく放出、吸着する材料を用いるのが好ましい。例えば、遷移金属酸化物、遷移金属複合酸化物を用いるのが好ましい。具体的には、リチウムマンガン複合酸化物LiMnx3Ma1−x3(0.8≦x3≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNix4Coy4Mnz4(x4+y4+z4=1、0≦x4≦1、0≦y4≦1、0≦z4≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li(PO又はLiVOPO)、Li過剰系固溶体正極LiMnO−LiMcO(Mc=Mn、Co、Ni)、チタン酸リチウム(LiTi12)、LiNix5Coy5Alz5(0.9<a<1.3、0.9<x5+y5+z5<1.1)で表される複合金属酸化物のいずれかであることが好ましい。
(Positive electrode active material and negative electrode active material)
As the positive electrode active material 4 and the negative electrode active material 6 constituting the positive electrode layer 1 and the negative electrode layer 2 of the lithium ion secondary battery 11 of this embodiment, it is preferable to use a material that efficiently releases and adsorbs lithium ions. For example, it is preferable to use a transition metal oxide or a transition metal composite oxide. Specifically, the lithium manganese composite oxide Li 2 Mn x3 Ma 1-x3 O 3 (0.8 ≦ x3 ≦ 1, Ma = Co, Ni), lithium cobaltate (LiCoO 2), lithium nickelate (LiNiO 2 ), Lithium manganese spinel (LiMn 2 O 4 ), and a general formula: LiNi x4 Co y4 Mn z4 O 2 (x4 + y4 + z4 = 1, 0 ≦ x4 ≦ 1, 0 ≦ y4 ≦ 1, 0 ≦ z4 ≦ 1) Composite metal oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMbPO 4 (where Mb is one or more selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) Element), lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 or LiVOPO 4 ), Li-rich solid solution positive electrode Li 2 MnO 3 -L iMcO 2 (Mc = Mn, Co, Ni), lithium titanate (Li 4 Ti 5 O 12 ), Li a Ni x5 Co y5 Al z5 O 2 (0.9 <a <1.3, 0.9 <x5 + y5 + z5) It is preferably any of the composite metal oxides represented by <1.1).

ここで、正極層1又は負極層2を構成する活物質には明確な区別がなく、2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質4として用い、より卑な電位を示す化合物を負極活物質6として用いることができる。   Here, the active material constituting the positive electrode layer 1 or the negative electrode layer 2 is not clearly distinguished, and the potentials of two kinds of compounds are compared, and a compound showing a more noble potential is used as the positive electrode active material 4. A compound exhibiting a base potential can be used as the negative electrode active material 6.

(リチウムイオン二次電池の製造方法)
本実施形態のリチウムイオン二次電池11は、正極層1、固体電解質層3、及び、負極層2の各材料をペースト化し、塗布乾燥してグリーンシートを作製し、係るグリーンシートを積層し、作製した積層体を同時焼成することにより製造する。
(Method for producing lithium ion secondary battery)
In the lithium ion secondary battery 11 of the present embodiment, each material of the positive electrode layer 1, the solid electrolyte layer 3, and the negative electrode layer 2 is pasted, applied and dried to produce a green sheet, and the green sheet is laminated, Manufactured by co-firing the produced laminate.

ペースト化の方法は、特に限定されないが、例えば、ビヒクルに上記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。係る方法により、正極層1用のペースト、固体電解質層3用のペースト、負極層2用のペーストを作製する。   The method for forming the paste is not particularly limited, and for example, a paste can be obtained by mixing the powder of each of the above materials in a vehicle. Here, the vehicle is a general term for the medium in the liquid phase. The vehicle includes a solvent and a binder. By this method, a paste for the positive electrode layer 1, a paste for the solid electrolyte layer 3, and a paste for the negative electrode layer 2 are prepared.

作製したペーストをPETなどの基材上に所望の順序で塗布し、必要に応じ乾燥させた後、基材を剥離し、グリーンシートを作製する。ペーストの塗布方法は、特に限定されず、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。 The prepared paste is applied in a desired order on a substrate such as PET and dried as necessary, and then the substrate is peeled off to produce a green sheet. The paste application method is not particularly limited, and a known method such as screen printing, application, transfer, doctor blade, or the like can be employed.

作製した正極層1用、固体電解質層3用、負極層2用のそれぞれのグリーンシートを所望の順序、積層数で積み重ね、必要に応じアライメント、切断等を行い、積層体を作製する。並列型又は直並列型の電池を作製する場合は、正極層の端面と負極層の端面が一致しないようにアライメントを行い積み重ねるのが好ましい。   The produced green sheets for the positive electrode layer 1, the solid electrolyte layer 3, and the negative electrode layer 2 are stacked in a desired order and the number of layers, and alignment, cutting, and the like are performed as necessary to produce a laminate. In the case of manufacturing a parallel type or series-parallel type battery, it is preferable to align and stack the end surfaces of the positive electrode layer and the negative electrode layer so that they do not coincide with each other.

作製した積層体を一括して圧着する。圧着は加熱しながら行うが、加熱温度は、例えば、40〜90℃とする。   The produced laminate is pressed together. The pressure bonding is performed while heating, and the heating temperature is, for example, 40 to 90 ° C.

圧着した積層体を、例えば、大気雰囲気下で加熱し焼成を行う。本実施形態のリチウムイオン二次電池10の製造では、焼成温度は、600〜1200℃の範囲とするのが好ましい。600℃未満では、焼成が十分進まず、1200℃を超えると、固体電解質7が融解する、正極活物質4、負極活物質6の構造が変化するなどの問題が発生するためである。更に700〜1100℃の範囲とするのがより好ましい。700〜1100℃の範囲とするほうが、焼成の促進、製造コストの低減により好適である。焼成時間は、例えば、1〜3時間とする。   The pressure-bonded laminated body is heated and fired, for example, in an air atmosphere. In the manufacture of the lithium ion secondary battery 10 of the present embodiment, the firing temperature is preferably in the range of 600 to 1200 ° C. If the temperature is lower than 600 ° C., the firing does not proceed sufficiently, and if it exceeds 1200 ° C., problems such as melting of the solid electrolyte 7 and changes in the structures of the positive electrode active material 4 and the negative electrode active material 6 occur. Furthermore, it is more preferable to set it as the range of 700-1100 degreeC. A range of 700 to 1100 ° C. is more suitable for promoting firing and reducing manufacturing costs. The firing time is, for example, 1 to 3 hours.

(防水層の作製)
本発明に係る防水層9は水の接触角が60°以上である。水の接触角が60°以上だと電解質と水との反応を抑制することができる。水の接触角が60°以上の無機材料としては、例えばシリコン、ハフニウム、アルミニウム、タンタル、ストロンチウム、チタン、ジルコニウムまたはバリウムの酸化膜あるいは窒化膜が好ましく用いられ、必要に応じてこれらの無機材料を2種以上併用して用いてもよい。防水層9の作成方法は、例えばCVD法、塗布法、スパッタリング法、あるいは各種印刷法等を用いて電池素体のみに成膜する。
(Preparation of waterproof layer)
The waterproof layer 9 according to the present invention has a water contact angle of 60 ° or more. When the contact angle of water is 60 ° or more, the reaction between the electrolyte and water can be suppressed. As the inorganic material having a water contact angle of 60 ° or more, for example, an oxide film or a nitride film of silicon, hafnium, aluminum, tantalum, strontium, titanium, zirconium, or barium is preferably used. Two or more kinds may be used in combination. As a method for forming the waterproof layer 9, for example, a CVD method, a coating method, a sputtering method, or various printing methods are used to form a film only on the battery body.

(弾性層の作製)
本発明に係る弾性層10は1×10−4Pa以上9×10−4Pa以下の弾性率である。弾性率が上記の範囲内であると外部からの衝撃を抑制することができる。上記の弾性率である樹脂材料は、例えば、熱可塑性エラトマーやゴム系樹脂を含むことにより、弾性層がゴム弾性を備えることが可能となる。ゴム系樹脂としては、ブチルゴム樹脂、ウレタンゴム、ブタジエンゴム、スチレンブタジエンゴム、ポリスルフィドゴム、ニトリルゴム、フッ素ゴム、シリコーンゴム、エチレンプロピレンゴム、クロロプレンゴム、アクリルゴム、天然ゴム、エピクロロヒドリンゴム等を用いることができる。なお、ゴム弾性を示す樹脂成分の弾性率は、一般に1×10−4Pa以上9×10−4Pa以下である。上記弾性層10は、例えば、以下のようにして作製することができる。
弾性層の構成成分である上記のような樹脂を含む分散液を、電極面を除いた面の全固体リチウムイオン電池上に滴下し、例えばスピンコーターを用いて、所定の厚さになるようにし、それを乾燥する。このようにして、防水層12で被覆された全固体リチウムイオン電池上に、弾性層10を形成することができる。
(Production of elastic layer)
The elastic layer 10 according to the present invention has an elastic modulus of 1 × 10 −4 Pa to 9 × 10 −4 Pa. When the elastic modulus is within the above range, impact from the outside can be suppressed. When the resin material having the above elastic modulus includes, for example, a thermoplastic elastomer or a rubber-based resin, the elastic layer can have rubber elasticity. Examples of rubber resins include butyl rubber resin, urethane rubber, butadiene rubber, styrene butadiene rubber, polysulfide rubber, nitrile rubber, fluorine rubber, silicone rubber, ethylene propylene rubber, chloroprene rubber, acrylic rubber, natural rubber, epichlorohydrin rubber, etc. Can be used. The elastic modulus of the resin component exhibiting rubber elasticity is generally 1 × 10 −4 Pa or more and 9 × 10 −4 Pa or less. The elastic layer 10 can be produced, for example, as follows.
A dispersion containing the above-mentioned resin, which is a constituent component of the elastic layer, is dropped on the all-solid-state lithium ion battery on the surface excluding the electrode surface so as to have a predetermined thickness using, for example, a spin coater. Dry it. In this manner, the elastic layer 10 can be formed on the all solid lithium ion battery covered with the waterproof layer 12.

(電極の作製)
電極7は、全固体リチウムイオン二次電池11からの電気を外部に取り出すためのものであり正極層、負極層と導通しており、白金、金、銀、銅、アルミニウム、亜鉛、ニッケル、チタン、ビスマス、及びそれらの合金等の公知の金属種が好ましい。電極の作製方法は、蒸着法、印刷法、インクジェット法、スピンコート法、CVD法、ペースト等の既存の方法を用いることができる。
(Production of electrodes)
The electrode 7 is for taking out the electricity from the all-solid-state lithium ion secondary battery 11 to the outside, and is electrically connected to the positive electrode layer and the negative electrode layer. Platinum, gold, silver, copper, aluminum, zinc, nickel, titanium Known metal species such as bismuth, and alloys thereof are preferred. As an electrode manufacturing method, an existing method such as an evaporation method, a printing method, an ink jet method, a spin coating method, a CVD method, or a paste can be used.

(実施例1−1)
以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。なお、部表示は、断りのない限り、重量部である。
(Example 1-1)
EXAMPLES The present invention will be described in detail below using examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, a part display is a weight part.

(活物質の作製)
活物質として、以下の方法で作製したLiMnOを用いた。LiCOとMnCOとを出発材料とし、これらをモル比2:1となるように秤量し、水を溶媒としてボールミルで16時間湿式混合を行った後、脱水乾燥した。得られた粉体を800℃で2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を溶媒としてボールミルで16時間湿式粉砕を行った後、脱水乾燥して活物質粉末を得た。この粉体の平均粒径は0.40μmであった。作製した粉体の組成がLiMnOであることは、X線回折装置を使用して確認した。
(Production of active material)
Li 2 MnO 3 produced by the following method was used as the active material. Li 2 CO 3 and MnCO 3 were used as starting materials, these were weighed so as to have a molar ratio of 2: 1, wet-mixed in a ball mill for 16 hours using water as a solvent, and then dehydrated and dried. The obtained powder was calcined in air at 800 ° C. for 2 hours. The calcined product was coarsely pulverized, wet pulverized with a ball mill for 16 hours using water as a solvent, and then dehydrated and dried to obtain an active material powder. The average particle size of this powder was 0.40 μm. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 2 MnO 3 .

(活物質ペーストの作製)
活物質ペーストは、この活物質粉末100部に、HBO粉末0.37mol%〜1.69mol%及びLiCO粉末2.19mol%〜17.79mol%、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して活物質ペーストを作製した。
(Production of active material paste)
The active material paste comprises 100 parts of this active material powder, 0.37 mol% to 1.69 mol% of H 3 BO 3 powder and 2.19 mol% to 17.79 mol% of Li 2 CO 3 powder, 15 parts of ethyl cellulose as a binder, 65 parts of dihydroterpineol was added as a solvent, and kneaded and dispersed with a three roll to prepare an active material paste.

(固体電解質シートの作製)
固体電解質として、以下の方法で作製したLi3.5Si0.50.5を用いた。LiCOとSiOとLiPOを出発材料として、これらをモル比2:1:1となるように秤量し、水を溶媒としてボールミルで16時間湿式混合を行った後、脱水乾燥した。得られた粉体を950℃で2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を溶媒としてボールミルで16時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。この粉体の平均粒径は0.49μmであった。作製した粉体の組成がLi3.5Si0.50.5であることは、X線回折装置を使用して確認した。
(Preparation of solid electrolyte sheet)
As a solid electrolyte, Li 3.5 Si 0.5 P 0.5 O 4 produced by the following method was used. Using Li 2 CO 3 , SiO 2 and Li 3 PO 4 as starting materials, these were weighed to a molar ratio of 2: 1: 1, wet mixed with a ball mill for 16 hours using water as a solvent, and then dehydrated and dried. did. The obtained powder was calcined in air at 950 ° C. for 2 hours. The calcined product was coarsely pulverized, wet-ground with a ball mill for 16 hours using water as a solvent, and then dehydrated and dried to obtain a solid electrolyte powder. The average particle size of this powder was 0.49 μm. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 3.5 Si 0.5 P 0.5 O 4 .

次いで、この粉末100部に、HBO粉末0.37mol%〜1.69mol%及びLiCO粉末2.19mol%〜17.79mol%、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質ペーストを調製した。この固体電解質ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ9μmの固体電解質シートを得た。 Next, 100 parts of this powder was mixed with 0.37 mol% to 1.69 mol% of H 3 BO 3 powder and 2.19 mol% to 17.79 mol% of Li 2 CO 3 powder, 100 parts of ethanol as a solvent, and 200 parts of toluene by a ball mill. In addition, wet mixing was performed. Thereafter, 16 parts of polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were further added and mixed to prepare a solid electrolyte paste. This solid electrolyte paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte sheet having a thickness of 9 μm.

(集電体ペーストの作製)
集電体として重量比70/30のAg/PdとLiMnOとを体積比率で60:40となるように混合した後、LiMnOに対して表1の実施例1−1〜1−20の添加量となるようにHBO粉末0.37mol%〜1.69mol%及びLiCO粉末2.19mol%〜17.79mol%、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練・分散して集電体ペーストを作製した。ここで重量比70/30のAg/Pdは、Ag粉末(平均粒径0.3μm)及びPd粉末(平均粒径1.0μm)を混合したものを使用した。
(Preparation of current collector paste)
After mixing Ag / Pd with a weight ratio of 70/30 and Li 2 MnO 3 as a current collector in a volume ratio of 60:40, Examples 1-1 to 1 in Table 1 with respect to Li 2 MnO 3 were made. amount become as H 3 BO 3 powder 0.37 mol% of 1-20 ~1.69mol% and Li 2 CO 3 powder 2.19mol% ~17.79mol%, and ethyl cellulose 10 parts as binder, dihydro as solvent A collector paste was prepared by adding 50 parts of terpineol and kneading and dispersing with three rolls. Here, Ag / Pd having a weight ratio of 70/30 was a mixture of Ag powder (average particle size 0.3 μm) and Pd powder (average particle size 1.0 μm).

(端子電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを三本ロールで混錬・分散し、熱硬化型の導電ペーストを作製した。
(Preparation of terminal electrode paste)
Silver powder, epoxy resin, and solvent were kneaded and dispersed with three rolls to produce a thermosetting conductive paste.

これらのペーストを用いて、以下のようにしてリチウムイオン二次電池を作製した。 Using these pastes, lithium ion secondary batteries were produced as follows.

(活物質ユニットの作製)
上記の固体電解質シート上に、スクリーン印刷により厚さ7μmで活物質ペーストを印刷した。次に、印刷した活物質ペーストを80〜100℃で5〜10分間乾燥し、その上に、スクリーン印刷により厚さ5μmで集電体ペーストを印刷した。次に、印刷した集電体ペーストを80〜100℃で5〜10分間乾燥し、更にその上に、スクリーン印刷により厚さ7μmで活物質ペーストを再度印刷した。印刷した活物質ペーストを80〜100℃で5〜10分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質シート上に、活物質ペースト、集電体ペースト、活物質ペーストがこの順に印刷・乾燥された活物質ユニットのシートを得た。
(Production of active material unit)
On the solid electrolyte sheet, an active material paste was printed with a thickness of 7 μm by screen printing. Next, the printed active material paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and the current collector paste was printed thereon with a thickness of 5 μm by screen printing. Next, the printed current collector paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and the active material paste was printed thereon again by screen printing to a thickness of 7 μm. The printed active material paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and then the PET film was peeled off. In this way, an active material unit sheet in which the active material paste, the current collector paste, and the active material paste were printed and dried in this order on the solid electrolyte sheet was obtained.

(積層体の作製)
活物質ユニット二枚を、固体電解質を介するようにして積み重ねた。このとき、一枚目の活物質ユニットの集電体ペースト層が一の端面にのみ延出し、二枚目の活物質ユニットの集電体ペースト層が他の面にのみ延出するように、各ユニットをずらして積み重ねた。この積み重ねられたユニットの両面に厚さ500μmとなるように固体電解質シートを重ね、その後、これを温度80℃で圧力1000kgf/cm〔98MPa〕で成形し、次いで切断して積層ブロックを作製した。その後、積層ブロックを同時焼成して積層体を得た。同時焼成は、空気中で昇温速度200℃/時間で800℃まで昇温して、その温度に2時間保持し、焼成後は自然冷却した。同時焼成後の電池外観サイズは、3.7mm×3.2mm×0.35mmであった。
(Production of laminate)
Two active material units were stacked with a solid electrolyte interposed therebetween. At this time, the current collector paste layer of the first active material unit extends only to one end surface, and the current collector paste layer of the second active material unit extends only to the other surface, Each unit was staggered and stacked. A solid electrolyte sheet was stacked on both surfaces of the stacked unit so as to have a thickness of 500 μm, and then this was molded at a temperature of 80 ° C. and a pressure of 1000 kgf / cm 2 [98 MPa], and then cut to prepare a laminated block. . Thereafter, the laminated block was simultaneously fired to obtain a laminated body. In the simultaneous firing, the temperature was raised to 800 ° C. at a rate of temperature rise of 200 ° C./hour in the air, kept at that temperature for 2 hours, and naturally cooled after firing. The external appearance size of the battery after simultaneous firing was 3.7 mm × 3.2 mm × 0.35 mm.

(外部電極形成工程)
積層体、防水層、弾性層の端面に端子電極ペーストを塗布し、150℃、30分の熱硬化を行い、一対の端子電極7を形成してリチウムイオンニ次電池を得た。
(External electrode formation process)
A terminal electrode paste was applied to the end faces of the laminate, waterproof layer, and elastic layer, and thermosetting was performed at 150 ° C. for 30 minutes to form a pair of terminal electrodes 7 to obtain a lithium ion secondary battery.

(防水層の作製)
Siターゲットを使用した反応性スパッタリングによって、酸化窒化ケイ素薄膜を50nmの膜厚で成膜した。酸化窒化ケイ素薄膜の水の接触角は60°であった。
(Preparation of waterproof layer)
A silicon oxynitride thin film having a thickness of 50 nm was formed by reactive sputtering using a Si target. The contact angle of water with the silicon oxynitride thin film was 60 °.

(弾性層の作製)
樹脂成分としては液状の未硬化状態のシリコーンゴム組成物を用い、スピンコーター(100rpm)を用いて、防水層で被膜された全固体電池の上に50μmの厚さに塗布した。その後、60℃で1時間乾燥し、固体電池上に弾性層を形成した。弾性層の耐熱温度は200℃であり、電極ペーストを150℃で熱硬化させても弾性層が変形することはない。シリコーンゴムの弾性率は6.6×10−4Paであった。
(Production of elastic layer)
A liquid uncured silicone rubber composition was used as the resin component, and was applied to a thickness of 50 μm on an all-solid battery coated with a waterproof layer using a spin coater (100 rpm). Then, it dried at 60 degreeC for 1 hour, and formed the elastic layer on the solid battery. The heat resistant temperature of the elastic layer is 200 ° C., and the elastic layer does not deform even if the electrode paste is heat-cured at 150 ° C. The elastic modulus of the silicone rubber was 6.6 × 10 −4 Pa.

(実施例1−2)
樹脂成分として液状の未硬化状態のシリコーンゴムの代わりに、フッ素樹脂をスピンコーター(100rpm)を用いて、防水層で被膜された全固体電池の上に50μmの厚さに塗布した。その後、60℃で1時間乾燥し、固体電池上に弾性層を形成した。弾性層以外、実施例1と同様に作製した。フッ素樹脂の弾性率は6.6×10−4Paであった。
(Example 1-2)
Instead of liquid uncured silicone rubber as a resin component, a fluororesin was applied to a thickness of 50 μm on the all-solid-state battery coated with a waterproof layer using a spin coater (100 rpm). Then, it dried at 60 degreeC for 1 hour, and formed the elastic layer on the solid battery. Except for the elastic layer, it was produced in the same manner as Example 1. The elastic modulus of the fluororesin was 6.6 × 10 −4 Pa.

(比較例1)
実施例1−1と同様に作製し、防水層、弾性層の無い構造を比較例1とした。
(Comparative Example 1)
A structure prepared in the same manner as in Example 1-1 and having no waterproof layer and no elastic layer was used as Comparative Example 1.

(落下試験の実施)
本実施例ではJISC60068−2−31に準拠し、1mの高さから自由落下させた。得られた結果を表1に示す。
(Drop test)
In this example, it was allowed to fall freely from a height of 1 m in accordance with JISC 60068-2-31. The obtained results are shown in Table 1.

Figure 0006311445
Figure 0006311445

表1に示すように弾性層のない比較例1は落下試験で破損したのに対して、弾性層のある実施例1−1、1−2は破損することが無かった。この結果から実施例1−1、1−2は外部衝撃に優れていることが分かる。   As shown in Table 1, Comparative Example 1 without an elastic layer was damaged in a drop test, while Examples 1-1 and 1-2 with an elastic layer were not damaged. From this result, it can be seen that Examples 1-1 and 1-2 are excellent in external impact.

本実施例では温度20℃湿度60%の条件下で重量変化を測定した。得られた結果を図2に示す。   In this example, the weight change was measured under the conditions of a temperature of 20 ° C. and a humidity of 60%. The obtained results are shown in FIG.

図2に示すように防水層のない比較例1は時間の経過とともに重量が増加するのに対し、防水層のある実施例は重量変化が無かった。この結果から実施例1−1が吸湿に対して優れていることが分かる。   As shown in FIG. 2, the weight of Comparative Example 1 without a waterproof layer increased with the passage of time, while the example with a waterproof layer had no change in weight. From this result, it can be seen that Example 1-1 is superior to moisture absorption.

以上のように、本発明に係る全固体リチウムイオン二次電池は、防水性、外部からの衝撃性に効果があり、基板への表面実装が可能である。このように信頼性の高い電池を提供することにより、特に、エレクトロニクスの分野で大きく寄与する。   As described above, the all-solid-state lithium ion secondary battery according to the present invention is effective in waterproofness and impact resistance from the outside, and can be surface-mounted on a substrate. Providing such a highly reliable battery contributes greatly, particularly in the field of electronics.

1 正極層
2 負極層
3 固体電解質層
4 正極活物質
5 集電体層
6 負極活物質
7 電極
9 防水層
10 弾性層
11 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode layer 2 Negative electrode layer 3 Solid electrolyte layer 4 Positive electrode active material 5 Current collector layer 6 Negative electrode active material 7 Electrode 9 Waterproof layer 10 Elastic layer 11 Lithium ion secondary battery

Claims (3)

正極層及び負極層の間に電解質層を有する電池素体と、電池素体の端部に電極とを有する全固体リチウムイオン二次電池であって、
前記全固体リチウムイオン二次電池は、前記電池素体は水の接触角が60°以上の防水層で被覆され、
さらに前記防水層は1×10−4Pa以上9×10−4Pa以下の弾性率を有する弾性層で被覆され、
前記電極は防水層と弾性層の端面を覆うように形成されていることを特徴とする全固体リチウムイオン二次電池。
An all-solid lithium ion secondary battery having a battery element having an electrolyte layer between a positive electrode layer and a negative electrode layer, and an electrode at an end of the battery element,
In the all solid lithium ion secondary battery, the battery body is covered with a waterproof layer having a water contact angle of 60 ° or more,
Furthermore, the waterproof layer is covered with an elastic layer having an elastic modulus of 1 × 10 −4 Pa to 9 × 10 −4 Pa,
The all-solid-state lithium ion secondary battery, wherein the electrode is formed so as to cover end faces of the waterproof layer and the elastic layer.
前記弾性層が樹脂材料で構成されている請求項1に記載の全固体リチウムイオン二次電池。   The all-solid-state lithium ion secondary battery of Claim 1 with which the said elastic layer is comprised with the resin material. 前記防水層が無機化合物を主成分とする材料からなる請求項1に記載の全固体リチウムイオン二次電池。   The all-solid-state lithium ion secondary battery according to claim 1, wherein the waterproof layer is made of a material mainly composed of an inorganic compound.
JP2014103034A 2014-05-19 2014-05-19 All solid lithium ion secondary battery Active JP6311445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103034A JP6311445B2 (en) 2014-05-19 2014-05-19 All solid lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103034A JP6311445B2 (en) 2014-05-19 2014-05-19 All solid lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015220106A JP2015220106A (en) 2015-12-07
JP6311445B2 true JP6311445B2 (en) 2018-04-18

Family

ID=54779322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103034A Active JP6311445B2 (en) 2014-05-19 2014-05-19 All solid lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6311445B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742761B (en) * 2016-02-29 2018-03-23 苏州大学 A kind of full-solid lithium air battery and preparation method and application
FR3056821B1 (en) 2016-09-29 2018-11-23 Paris Sciences Et Lettres - Quartier Latin PERFECTIONAL ELECTROLYTE SUPER CAPACITOR
JP6790950B2 (en) * 2017-03-22 2020-11-25 Tdk株式会社 State detector
CN110521050B (en) * 2017-03-28 2023-07-28 Tdk株式会社 All-solid lithium ion secondary battery and mounting body
CN110495009A (en) * 2017-03-30 2019-11-22 Tdk株式会社 All-solid-state lithium-ion secondary battery
JP6860681B2 (en) 2017-09-13 2021-04-21 富士フイルム株式会社 Manufacturing method of all-solid-state secondary battery, exterior material for all-solid-state secondary battery and all-solid-state secondary battery
WO2020039785A1 (en) * 2018-08-20 2020-02-27 株式会社村田製作所 Power storage device
JP7383389B2 (en) 2019-03-28 2023-11-20 太陽誘電株式会社 all solid state battery
JP7356257B2 (en) 2019-05-10 2023-10-04 共同印刷株式会社 Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same
JP7398297B2 (en) 2020-03-03 2023-12-14 太陽誘電株式会社 All-solid-state battery and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery

Also Published As

Publication number Publication date
JP2015220106A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6311445B2 (en) All solid lithium ion secondary battery
JP2015220099A (en) All-solid lithium ion secondary battery
JP6575136B2 (en) Solid battery and assembled battery using the same
US9236594B2 (en) Lithium ion secondary battery and process for manufacturing the same
JP4728385B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2019181909A1 (en) All-solid-state battery
JP5122154B2 (en) All solid state secondary battery
TWI489683B (en) Lithium ion secondary battery
TWI528618B (en) Lithium ion secondary battery
JP6651708B2 (en) Lithium ion secondary battery
JP6492958B2 (en) Solid battery and assembled battery using the same.
JP6455807B2 (en) Lithium ion secondary battery
JP2015220107A (en) All-solid lithium ion secondary battery
JP6623542B2 (en) Lithium ion secondary battery
WO2007135790A1 (en) Total solid rechargeable battery
WO2019189311A1 (en) All-solid-state battery
JP7009761B2 (en) All-solid-state secondary battery
KR20130083828A (en) Lithium ion secondary battery and method for producing same
JP6295819B2 (en) All solid state secondary battery
JP2017182945A (en) All-solid lithium ion secondary battery
JP6316091B2 (en) Lithium ion secondary battery
JP6364945B2 (en) Lithium ion secondary battery
JP5132614B2 (en) Lithium battery
WO2018181575A1 (en) All-solid-state lithium ion secondary battery
JP5430930B2 (en) All solid state secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6311445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150