JP6308487B2 - Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method - Google Patents

Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method Download PDF

Info

Publication number
JP6308487B2
JP6308487B2 JP2013047085A JP2013047085A JP6308487B2 JP 6308487 B2 JP6308487 B2 JP 6308487B2 JP 2013047085 A JP2013047085 A JP 2013047085A JP 2013047085 A JP2013047085 A JP 2013047085A JP 6308487 B2 JP6308487 B2 JP 6308487B2
Authority
JP
Japan
Prior art keywords
luminescent material
stress
alkaline earth
earth metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013047085A
Other languages
Japanese (ja)
Other versions
JP2014173010A (en
Inventor
侑輝 藤尾
侑輝 藤尾
徐 超男
超男 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013047085A priority Critical patent/JP6308487B2/en
Publication of JP2014173010A publication Critical patent/JP2014173010A/en
Application granted granted Critical
Publication of JP6308487B2 publication Critical patent/JP6308487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、機械的な外力が加えられることにより生じる変形によって発光する応力発光材料の製造方法に関する。   The present invention relates to a method for producing a stress-stimulated luminescent material that emits light due to deformation caused by applying a mechanical external force.

従来、物質が外部からの刺激を与えられることによって、室温付近で可視光を発する現象は、いわゆる蛍光現象としてよく知られている。   Conventionally, a phenomenon in which visible light is emitted near room temperature when a substance is given an external stimulus is well known as a so-called fluorescence phenomenon.

このような蛍光現象を生じる物質、すなわち蛍光体は、蛍光ランプなどの照明灯や、CRT(Cathode Ray Tube)いわゆるブラウン管などのディスプレイなどとして用いられている。   A substance that generates such a fluorescent phenomenon, that is, a phosphor, is used as an illumination lamp such as a fluorescent lamp or a display such as a cathode ray tube (CRT) so-called cathode ray tube.

この蛍光現象を生じさせる外部からの刺激は、通常、紫外線、電子線、X線、放射線、電界、化学反応などによって与えられているが、機械的な外力などの刺激を加えて変形させることによって強く発光する材料については、長らく知られていなかった。   External stimuli that cause this fluorescent phenomenon are usually given by ultraviolet rays, electron beams, X-rays, radiation, electric fields, chemical reactions, etc., but they can be deformed by applying stimuli such as mechanical external forces. A material that emits intense light has not been known for a long time.

そこで、本発明者が所属する研究機関において鋭意研究が行われた結果、機械的な外力により生じる変形によって発光する、これまでに知られていない新規な発光材料が提案された(例えば、特許文献1参照。)。   Therefore, as a result of intensive studies at the research institution to which the present inventor belongs, a novel light-emitting material that has not been known so far that emits light due to deformation caused by a mechanical external force has been proposed (for example, patent literature) 1).

このような発光材料は、その後応力発光材料と称され、現在では、新規な計測技術として、既設土木構造物の維持管理における非破壊検査技術や構造物の部材の応力分布の可視化技術などの応用研究が盛んに行われている。   Such luminescent materials are later referred to as stress luminescent materials, and are now applied as new measurement technologies such as non-destructive inspection technology for maintaining existing civil engineering structures and visualization technology for stress distribution of structural members. There is a lot of research.

特開2001−049251号公報JP 2001-049251 A

ところが、上記従来の応力発光材料は、例えば1000μstを下回る程度の微小なひずみに対しては、必ずしも十分な発光が得られるとは言い難いものであった。   However, it is difficult to say that the conventional stress-stimulated luminescent material can always obtain sufficient luminescence for a minute strain of, for example, less than 1000 μst.

本発明は、斯かる事情に鑑みてなされたものであって、従来の応力発光材料に比して、微小なひずみに対しても良好な発光を示す応力発光材料の製造方法を提供する。   This invention is made | formed in view of such a situation, Comprising: Compared with the conventional stress luminescent material, this invention provides the manufacturing method of the stress luminescent material which shows favorable light emission also with respect to a micro distortion.

上記従来の課題を解決するために、本発明にかかる応力発光材料の製造方法では、(1)発光中心元素を母体材料中に散在させた非化学量論的組成を有するアルミン酸塩よりなり機械的エネルギーによって発光を示す応力発光材料の製造方法であって、
前記母体材料を構成するアルミニウム及びアルカリ土類金属元素の塩と、発光中心元素の塩とを溶媒に溶解し、同溶媒中でアルミニウムとアルカリ土類金属元素と発光中心元素とがイオン化した溶液(但し、有機酸を含むものを除く。)を調製するイオン化溶液調製工程と、同イオン化溶液調製工程で得られた溶液の溶媒を沸騰させることなく攪拌しながら蒸発させ、面上にて乾固させて乾燥粉体を得る蒸発乾固工程と、前記蒸発乾固工程にて得られた乾燥粉体を酸化雰囲気下で700〜900℃に加熱して、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を得る酸化工程と、前記酸化工程にて得られた混合粉体に焼結助剤を添加し、前記酸化工程よりも高い温度の還元雰囲気下で所定時間焼成し、60K/minの昇温速度での熱ルミネッセンス測定で得られるグロー曲線の室温以上の温度帯におけるメインピークの極大値の位置が140℃未満であり、複数の結晶粒が面方向に連結した平均粒径10μm以上の略平板状である得られた粉体を応力発光材料とする焼成工程と、を有することを特徴とする。
In order to solve the above-described conventional problems, in the method for producing a stress-stimulated luminescent material according to the present invention, (1) a machine comprising an aluminate having a non-stoichiometric composition in which a luminescent center element is dispersed in a base material. A method for producing a stress-stimulated luminescent material that emits light by dynamic energy
A solution in which a salt of aluminum and an alkaline earth metal element and a salt of a luminescent center element constituting the matrix material are dissolved in a solvent, and an aluminum, an alkaline earth metal element, and a luminescent center element are ionized in the same solvent ( However, except for those containing organic acids.) And the solvent of the solution obtained in the ionization solution preparation step are evaporated with stirring without boiling, and dried on the surface. Evaporating and drying step to obtain a dry powder, and heating the dried powder obtained in the evaporating and drying step to 700 to 900 ° C. in an oxidizing atmosphere to obtain an oxide of aluminum and an alkaline earth metal element An oxidation step for obtaining a mixed powder of the oxide of the light emitting center element and an oxide of the luminescent center element, a sintering aid is added to the mixed powder obtained in the oxidation step, and the temperature is higher than that in the oxidation step. Firing for a predetermined time in a reducing atmosphere, An average grain in which the position of the maximum value of the main peak in the temperature range above room temperature of the glow curve obtained by thermoluminescence measurement at a heating rate of 60 K / min is less than 140 ° C, and multiple crystal grains are connected in the plane direction. And a firing step in which the obtained powder having a substantially flat shape with a diameter of 10 μm or more is used as a stress luminescent material.

また、本発明にかかる応力発光材料の製造方法は、以下の点にも特徴を有する。
(2)前記母体材料は、アルミニウム酸化物とアルカリ土類金属酸化物とから構成され、かつ、この中のアルカリ土類金属イオンの組成比を欠損させたアルカリ土類金属欠損型であって、式MxAl2O3+x、MxQAl10O16+x、Mx1Qx2Al2O3+x1+x2又はMx1Qx2LAl10O16+x1+x2[式中のM、Q及びLは、それぞれ前記金属元素としてのMg、Ca、Sr又はBaであり、xは0.8≦x≦0.99、x1及びx2は0.8≦(x1+x2)≦0.99を満たす数である]で表わされる化合物を主成分とすること。
(3)前記イオン化溶液調製工程にて溶媒に溶解する塩は硝酸塩であり、前記溶媒は水であること。
(4)前記発光中心元素は、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムから選ばれる少なくともいずれか1つであること。
The method for producing a stress-stimulated luminescent material according to the present invention is also characterized by the following points.
(2) The base material is composed of aluminum oxide and alkaline earth metal oxides, or One, an alkaline earth metal-deficient with deficient composition ratio of alkaline earth metal ions in the M x Al 2 O 3 + x , M x QAl 10 O 16 + x , M x1 Q x2 Al 2 O 3 + x1 + x2 or M x1 Q x2 LAl 10 O 16 + x1 + x2 [M in the formula , Q and L are Mg, Ca, Sr or Ba as the metal elements, respectively, x is a number satisfying 0.8 ≦ x ≦ 0.99, and x1 and x2 are 0.8 ≦ (x1 + x2) ≦ 0.99] The main component is the compound represented.
(3) The salt dissolved in the solvent in the ionization solution preparation step is nitrate, and the solvent is water.
(4) The luminescent center element is at least one selected from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Be.

また、本発明に係る応力発光材料では、発光中心元素を母体材料中に散在させた非化学量論的組成を有するアルミン酸塩よりなり機械的エネルギーによって発光を示す応力発光材料であって、前記母体材料は、アルミニウム酸化物とアルカリ土類金属酸化物とから構成され、かつ、この中のアルカリ土類金属イオンの組成比を欠損させたアルカリ土類金属欠損型であり、式M x Al 2 O 3+x 、M x QAl 10 O 16+x 、M x1 Q x2 Al 2 O 3+x1+x2 又はM x1 Q x2 LAl 10 O 16+x1+x2 [式中のM、Q及びLは、それぞれ前記金属元素としてのMg、Ca、Sr又はBaであり、xは0.8≦x≦0.99、x1及びx2は0.8≦(x1+x2)≦0.99を満たす数である]で表わされる化合物を主成分とし、前記発光中心元素は、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムから選ばれる少なくともいずれか1つであり、有機酸を含まず、熱ルミネッセンス測定で得られるグロー曲線の室温以上の温度帯におけるピーク位置が140℃未満であり、10μm以上の粒径で略平板状の粒子形状としたThe stress- stimulated luminescent material according to the present invention is a stress- stimulated luminescent material made of aluminate having a non-stoichiometric composition in which a luminescent center element is dispersed in a base material, and emits light by mechanical energy, The base material is composed of an aluminum oxide and an alkaline earth metal oxide, and is an alkaline earth metal deficient type in which the composition ratio of alkaline earth metal ions therein is deficient, and has the formula M x Al 2 O 3 + x , M x QAl 10 O 16 + x , M x1 Q x2 Al 2 O 3 + x1 + x2 or M x1 Q x2 LAl 10 O 16 + x1 + x2 [where M, Q and L are Each of which is Mg, Ca, Sr or Ba as the metal element, x is a number satisfying 0.8 ≦ x ≦ 0.99, x1 and x2 are numbers satisfying 0.8 ≦ (x1 + x2) ≦ 0.99] And the luminescent center element is scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, summary A temperature range above room temperature of a glow curve obtained by thermoluminescence measurement, which is at least one selected from sodium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and does not contain an organic acid The peak position at is less than 140 ° C., and has a particle size of 10 μm or more and a substantially tabular grain shape .

本発明に係る応力発光材料の製造方法によれば、従来の応力発光材料に比して、微小なひずみに対しても良好な発光を示す応力発光材料の製造方法を提供することができる。また、本発明によれば、従来の応力発光材料に比して、微小なひずみに対しても良好な発光を示す応力発光材料を提供することができる。   According to the method for producing a stress-stimulated luminescent material according to the present invention, it is possible to provide a method for producing a stress-stimulated luminescent material that exhibits good light emission even with a minute strain as compared with a conventional stress-stimulated luminescent material. Further, according to the present invention, it is possible to provide a stress-stimulated luminescent material that exhibits good light emission even with a minute strain as compared with a conventional stress-stimulated luminescent material.

従来の製造方法にて製造した応力発光材料と、本実施形態に係る応力発光材料の製造方法にて製造した微小応力発光材料の電顕像を示した説明図である。It is explanatory drawing which showed the electron microscopic image of the stress luminescent material manufactured with the conventional manufacturing method, and the microstress luminescent material manufactured with the manufacturing method of the stress luminescent material which concerns on this embodiment. 微小応力発光材料の微小ひずみに対する発光強度を示した図である。It is the figure which showed the emitted light intensity with respect to the micro distortion | strain of a micro stress luminescent material. 微小応力発光材料と比較用応力発光材料とのX線回折パターンを示した図である。It is the figure which showed the X-ray-diffraction pattern of the microstress luminescent material and the stress luminescent material for a comparison. 微小応力発光材料と比較用応力発光材料とのX線回折パターンを示した図である。It is the figure which showed the X-ray-diffraction pattern of the microstress luminescent material and the stress luminescent material for a comparison. 熱ルミネッセンス測定結果を示した図である。It is the figure which showed the thermoluminescence measurement result. ストロンチウム量を変化させた際の微小応力発光材料の微小ひずみに対する発光強度を示した図である。It is the figure which showed the emitted light intensity with respect to the micro distortion | strain of the micro stress luminescent material at the time of changing the amount of strontium.

本発明は、発光中心元素を母体材料中に散在させた非化学量論的組成を有するアルミン酸塩よりなり機械的エネルギーによって発光を示す応力発光材料の製造方法であって、前記母体材料を構成するアルミニウム及びアルカリ土類金属元素の塩と、発光中心元素の塩とを溶媒に溶解し、同溶媒中でアルミニウムとアルカリ土類金属元素と発光中心元素とがイオン化した溶液を調製するイオン化溶液調製工程と、同イオン化溶液調製工程で得られた溶液の溶媒を蒸発させて乾燥粉体を得る蒸発乾固工程と、前記蒸発乾固工程にて得られた乾燥粉体を酸化雰囲気下で加熱して、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を得る酸化工程と、前記酸化工程にて得られた混合粉体に焼結助剤を添加し、前記酸化工程よりも高い温度の還元雰囲気下で所定時間焼成し、得られた粉体を応力発光材料とする焼成工程と、を有することを特徴とする応力発光材料の製造方法を提供するものである。   The present invention is a method for producing a stress-stimulated luminescent material, which is composed of an aluminate having a non-stoichiometric composition in which a luminescent center element is dispersed in a matrix material and emits light by mechanical energy, and constitutes the matrix material Preparation of an ionized solution in which a salt of aluminum and alkaline earth metal element and a salt of luminescent center element are dissolved in a solvent, and a solution in which the aluminum, alkaline earth metal element and luminescent center element are ionized is prepared in the same solvent A step of evaporating the solvent of the solution obtained in the ionization solution preparation step to obtain a dry powder, and heating the dry powder obtained in the step of evaporating and drying in an oxidizing atmosphere. In addition, an oxidation process for obtaining a mixed powder of an oxide of aluminum, an oxide of an alkaline earth metal element, and an oxide of a luminescent center element, and a sintering aid to the mixed powder obtained in the oxidation process. Add agent And a firing step in which the obtained powder is fired for a predetermined time in a reducing atmosphere at a temperature higher than that of the oxidation step, and the obtained powder is used as a stress light-emitting material. Is.

本実施形態に係る応力発光材料の製造方法にて製造される応力発光材料(以下、微小応力発光材料とも言う。)は、光によって励起させると母体材料中の格子欠陥に起因するトラップ準位に電子や正孔(キャリア)が捕捉された状態となり、この母体材料に応力が加わるとこの捕捉されたキャリアが放出されて再結合することとなり発光するものと考えられる。   A stress-stimulated luminescent material (hereinafter also referred to as a micro-stress luminescent material) manufactured by the method for manufacturing a stress-stimulated luminescent material according to the present embodiment has a trap level caused by lattice defects in the base material when excited by light. When electrons and holes (carriers) are captured and stress is applied to the base material, the captured carriers are released and recombined to emit light.

このような格子欠陥をもつ母体材料には、非化学量論的組成を有するアルミン酸塩の少なくとも1種が用いられる。ここで、非化学量論的組成とは、化学量論的化学組成式から逸脱する化学組成式を有する組成のことである。   For the base material having such lattice defects, at least one kind of aluminate having a non-stoichiometric composition is used. Here, the non-stoichiometric composition is a composition having a chemical composition formula that deviates from the stoichiometric chemical composition formula.

このような非化学量論的組成を有するアルミン酸塩としては、アルカリ土類金属酸化物とアルミニウム酸化物とから構成され、かつ、この中のアルカリ土類金属イオンの組成比を欠損させたアルカリ土類金属欠損型であって、式MxAl2O3+x、MxQAl10O16+x、Mx1Qx2Al2O3+x1+x2又はMx1Qx2LAl10O16+x1+x2[式中のM、Q及びLは、それぞれ前記金属元素としてのMg、Ca、Sr又はBaであり、xは0.8≦x≦0.99、x1及びx2は0.8≦(x1+x2)≦0.99を満たす数である]で表わされるものを主成分とするものを挙げることができる。 Such aluminates have a non-stoichiometric composition, it is composed of an alkaline earth metal oxide and aluminum oxide, One or was deficient in the composition ratio of alkaline earth metal ions in the Alkaline earth metal deficient, formula M x Al 2 O 3 + x , M x QAl 10 O 16 + x , M x1 Q x2 Al 2 O 3 + x1 + x2 or M x1 Q x2 LAl 10 O 16 + x1 + x2 [wherein M, Q and L are Mg, Ca, Sr or Ba as the metal elements, respectively, x is 0.8 ≦ x ≦ 0.99, and x1 and x2 are 0.8 ≦ (x1 + x2) And a main component of those represented by ≦ 0.99.

また、応力発光材料の製造に使用する発光中心元素は、例えば、スカンジウム(Sc)、イットリウム(Y)や、ランタノイドに属する元素、すなわち、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)や、遷移金属元素、すなわち、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)等を挙げることができる。   Further, the luminescent center element used for the production of the stress luminescent material is, for example, scandium (Sc), yttrium (Y), or an element belonging to a lanthanoid, that is, lanthanum (La), cerium (Ce), praseodymium (Pr), Neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ytterbium (Yb), lutetium (Lu) and transition metal elements, i.e., titanium (Ti), zirconium (Zr), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co ), Nickel (Ni), copper (Cu), zinc (Zn), niobium (Nb), molybdenum (Mo), tantalum (Ta), tungsten (W), and the like.

発光中心元素は、母体材料の組成比において欠損させたアルカリ土類金属を補充する程度の量を添加することができる。例えば、母体材料がMxAl2O3+xで表される場合、発光中心元素を添加した応力発光材料は、MxAl2O3+x:Ry (ただし、Rは発光中心元素であり、y≦(1-x))と表すことができる。 The luminescent center element can be added in an amount sufficient to replenish the alkaline earth metal deficient in the composition ratio of the base material. For example, when the base material is represented by M x Al 2 O 3 + x , the stress luminescent material to which the luminescent center element is added is M x Al 2 O 3 + x : R y (where R is the luminescent center element). Yes, it can be expressed as y ≦ (1-x)).

これらの発光中心元素は、母体材料の格子構造や、所望する発光色等に合わせて、1種又は2種以上を組み合わせて添加しても良い。   These luminescent center elements may be added singly or in combination of two or more according to the lattice structure of the base material, the desired emission color, and the like.

そして、本実施形態に係る応力発光材料の製造方法に特徴的な点としては、イオン化溶液調製工程と、蒸発乾固工程と、酸化工程と、焼成工程とを行う点を挙げることができる。   And as a characteristic point in the manufacturing method of the stress luminescent material which concerns on this embodiment, the point which performs an ionization solution preparation process, an evaporation drying process, an oxidation process, and a baking process can be mentioned.

イオン化溶液調製工程は、母体材料を構成させるためのアルミニウムの塩やアルカリ土類金属元素の塩、発光中心元素の塩を溶媒に添加して溶解させ、アルミニウムとアルカリ土類金属元素と発光中心元素とがイオン化した溶液(以下、イオン化溶液ともいう。)を調製する工程である。   The ionization solution preparation process is performed by adding an aluminum salt, an alkaline earth metal element salt, and a luminescent center element salt to a solvent to dissolve the aluminum, alkaline earth metal element, and luminescent center element. Is a step of preparing an ionized solution (hereinafter also referred to as an ionized solution).

ここで、イオン化溶液を調製するために使用する溶媒は、アルミニウムの塩やアルカリ土類金属元素の塩、発光中心元素の塩を溶解させることができ、かつ、溶解させた際にこれらの元素をイオン化できる溶媒であれば特に限定されるものではなく、例えば、水(H2O)とすることができる。 Here, the solvent used to prepare the ionization solution can dissolve the salt of aluminum, the salt of alkaline earth metal element, the salt of the luminescent center element, and when these elements are dissolved, The solvent is not particularly limited as long as it can be ionized. For example, water (H 2 O) can be used.

また、溶媒に水を使用した場合には、前記アルミニウムの塩やアルカリ土類金属元素の塩、発光中心元素の塩は、いずれも硝酸塩とするのが好ましい。   Further, when water is used as the solvent, it is preferable that the aluminum salt, the alkaline earth metal element salt, and the luminescent center element salt are all nitrates.

これらの塩を硝酸塩とすることにより、次に説明する蒸発乾固工程にて、アルミニウムの水酸化物、アルカリ土類金属元素の水酸化物、発光中心元素の水酸化物の混合物を得ることができ、硝酸塩の水に対する高い溶解性を利用することにより作業の効率性の向上できるので好ましい。   By converting these salts into nitrates, a mixture of aluminum hydroxide, alkaline earth metal hydroxide, and luminescent center element hydroxide can be obtained in the evaporation and drying process described below. It is possible to improve the work efficiency by utilizing the high solubility of nitrate in water.

また、各塩類の溶媒への溶解を行うにあたっては、超音波処理を併用することもできる。超音波処理を併用することにより、各塩類の溶媒への溶解を十分に行わせることができる。   Moreover, in dissolving each salt in a solvent, ultrasonic treatment can be used in combination. By using ultrasonic treatment in combination, each salt can be sufficiently dissolved in the solvent.

また、溶媒に溶解させる各塩類の量は、所望する母体材料や発光中心元素の構成比に応じて適宜公知の量とすることができる。   Further, the amount of each salt dissolved in the solvent can be appropriately set to a known amount according to the desired base material and the composition ratio of the luminescent center element.

このようにして得られたイオン化溶液は、次に、同溶液の溶媒を蒸発させて乾燥粉体を得る蒸発乾固工程に供する。   The ionized solution thus obtained is then subjected to an evaporation / drying step in which the solvent of the solution is evaporated to obtain a dry powder.

具体的にはイオン化溶液を、例えば蒸発皿などの容器に収容し、加熱や減圧等を行って溶媒を蒸発させ、面上(例えば、容器の底面や壁面などの面の表面上)にて乾固させる。   Specifically, the ionized solution is accommodated in a container such as an evaporating dish, and the solvent is evaporated by heating or decompression, and dried on the surface (for example, on the surface of the surface such as the bottom or wall of the container). Solidify.

次に、蒸発乾固工程にて得られた乾燥粉体を酸化雰囲気下で加熱して、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を得る酸化工程を行う。   Next, the dry powder obtained in the evaporating and drying step is heated in an oxidizing atmosphere, and a mixed powder of an oxide of aluminum, an oxide of an alkaline earth metal element, and an oxide of a luminescent center element An oxidation process is performed to obtain a body.

この酸化工程では、蒸発乾固工程にて得られた乾燥粉体を、例えばるつぼ等の耐熱容器に収容し、空気の存在下にて加熱を行う。   In this oxidation step, the dry powder obtained in the evaporation / drying step is accommodated in a heat-resistant container such as a crucible and heated in the presence of air.

また、酸化工程にて行う加熱は、使用するアルカリ土類金属元素や発光中心元素によって異なるものの、蒸発乾固工程にて得られた乾燥粉体が室温において安定に存在できる状態に化学変化できる温度、例えば酸化物となる温度であれば良く、おおよそ500〜1200℃、好ましくは600〜1000℃、より好ましくは700〜900℃とすることができる。   In addition, although the heating performed in the oxidation step varies depending on the alkaline earth metal element and luminescent center element used, the temperature at which the dry powder obtained in the evaporation-drying step can be chemically changed to a state where it can exist stably at room temperature. For example, the temperature may be an oxide, and may be about 500 to 1200 ° C., preferably 600 to 1000 ° C., more preferably 700 to 900 ° C.

次に、酸化工程を経て得られたアルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を、前述の酸化工程よりも高い温度の還元雰囲気下で所定時間焼成する焼成工程を行う。   Next, a mixed powder of an aluminum oxide, an alkaline earth metal element oxide, and a luminescent center element oxide obtained through the oxidation step is reduced in a reducing atmosphere at a temperature higher than that in the above oxidation step. A firing step of firing for a predetermined time is performed.

本焼成工程では、混合粉体に焼結助剤を添加しても良い。焼結助剤は、アルカリ土類金属元素や発光中心元素の種類に応じて適宜選択することができ、例えば、ホウ酸などを使用することができる。   In the main firing step, a sintering aid may be added to the mixed powder. The sintering aid can be appropriately selected according to the type of the alkaline earth metal element or the luminescent center element. For example, boric acid or the like can be used.

また、本焼成工程を行う際の還元雰囲気としては、例えば、水素を1体積〜10体積%程度含むアルゴンなどの不活性ガス雰囲気中とすることができる。   Moreover, as a reducing atmosphere at the time of performing this baking process, it can be set as inert gas atmosphere, such as argon which contains about 1-10 volume% of hydrogen, for example.

また、本焼成工程の加熱温度は、式MxAl2O3+x、MxQAl10O16+x、Mx1Qx2Al2O3+x1+x2又はMx1Qx2LAl10O16+x1+x2[式中のM、Q及びLは、それぞれ前記金属元素としてのMg、Ca、Sr又はBaであり、xは0.8≦x≦0.99、x1及びx2は0.8≦(x1+x2)≦0.99を満たす数である]で構成される多結晶を形成できる温度であれば良く、仮焼成温度以上、1450℃までの温度帯、好ましくは1200〜1400℃、より好ましくは1250〜1350℃とすることができる。 Also, the heating temperature of the main baking step is the formula M x Al 2 O 3 + x , M x QAl 10 O 16 + x , M x1 Q x2 Al 2 O 3 + x1 + x2 or M x1 Q x2 LAl 10 O 16 + x1 + x2 [wherein M, Q and L are Mg, Ca, Sr or Ba as the metal elements, respectively, x is 0.8 ≦ x ≦ 0.99, and x1 and x2 are 0.8 ≦ (x1 + x2) ≦ 0.99 It is sufficient that the temperature is such that a polycrystal composed of the above can be formed, and is a temperature range from the pre-baking temperature to 1450 ° C., preferably 1200 to 1400 ° C., more preferably 1250 to 1350 ° C. Can do.

そして、このようにして得られた粉体の焼成物は、例えば100〜1000μst程度の微小応力に対して良好な発光応答性を示す応力発光材料、すなわち、微小応力発光材料として使用することができる。   The powder fired product thus obtained can be used as a stress-stimulated luminescent material that exhibits good luminescence response to a microstress of, for example, about 100 to 1000 μst, that is, a microstress luminescent material. .

ところで、本実施形態に係る応力発光材料の製造方法にて製造した微小応力発光材料が、従来の方法によって調製した応力発光材料に比して良好な発光応答性を示す理由についてであるが、現段階では未だ詳細には明確となっていない。   By the way, the reason is that the microstress luminescent material manufactured by the stress luminescent material manufacturing method according to the present embodiment exhibits better luminescence response than the stress luminescent material prepared by the conventional method. Details are not yet clear at the stage.

しかしながら、本発明者は現時点において2つの仮説を立てており、本発明の理解に供すべく以下にその仮説について述べる。ただし、これらの仮説は現時点で分かっているデータや経験等に基づいて想定しているものであり、必ずしも正確なものであるとは言い難い。それゆえ、本発明は、下記の仮説に基づいて限定的に解釈されるべきではない。   However, the present inventor has made two hypotheses at present, and the hypotheses will be described below for understanding of the present invention. However, these hypotheses are assumed based on currently known data and experience, and are not necessarily accurate. Therefore, the present invention should not be limitedly interpreted based on the following hypothesis.

まず第1の仮説は、キャリアをトラップする欠陥準位の違いによって、発光応答性が異なるというものである。   First, the first hypothesis is that the light emission responsiveness varies depending on the difference in defect level for trapping carriers.

このことは、後に図5を用いて説明するが、微小応力発光材料は、従来の方法にて調製した応力発光材料に比して浅い欠陥準位を有するため、微小なひずみによってもトラップされているキャリアの再結合を効率的に促すことができ、高い発光強度を得ることができるというものである。   Although this will be described later with reference to FIG. 5, since the microstress luminescent material has a shallower defect level than the stress luminescent material prepared by the conventional method, it is trapped even by microstrain. The recombination of existing carriers can be promoted efficiently, and a high emission intensity can be obtained.

また、第2の仮説は、各応力発光材料の粒子形状の違いにより、異なる発光応答性が生起されるというものである。   The second hypothesis is that different luminescence responsiveness is caused by the difference in the particle shape of each stress luminescent material.

図1は、微小応力発光材料の走査型電子顕微鏡像を示した説明図である。図1(a)に従来の応力発光材料のSEM像を示し、図1(b)に微小応力発光材料のSEM像を示している。   FIG. 1 is an explanatory view showing a scanning electron microscope image of a microstress luminescent material. FIG. 1 (a) shows an SEM image of a conventional stress luminescent material, and FIG. 1 (b) shows an SEM image of a microstress luminescent material.

図1(a)からも分かるように、従来の製造方法によって得られた応力発光材料の形状は略球状である一方、図1(b)に示すように、微小応力発光材料は、やや平板状で変形しやすい形状を有している。   As can be seen from FIG. 1 (a), the shape of the stress-stimulated luminescent material obtained by the conventional manufacturing method is substantially spherical, whereas as shown in FIG. 1 (b), the micro-stress luminescent material is slightly flat. It has a shape that is easy to deform.

したがって、微小応力発光材料は、略球状である従来の応力発光材料と比較して応力を受けて撓みやすく、高い発光強度を得ることができるとも考えられる。   Therefore, it is considered that the micro-stress luminescent material is easily deflected by receiving stress as compared with the conventional stress luminescent material having a substantially spherical shape, and can obtain high luminescence intensity.

以下、本実施形態にかかる応力発光材料の製造方法について、更に具体的に説明する。以下の説明において、本実施形態に係る応力発光材料の製造方法を「蒸発乾固法」とも称する。また、以下において微小応力発光材料はSrxAl2O3+x:Euyを例に挙げて説明するが、本発明を当該組成に限定して解釈するべきではない。ただし、本発明が特許を受けるにあたり、当該組成に限定することも妨げない。 Hereinafter, the manufacturing method of the stress-stimulated luminescent material according to this embodiment will be described more specifically. In the following description, the method for producing a stress-stimulated luminescent material according to the present embodiment is also referred to as “evaporation drying method”. Further, the micro-stress luminescent material in the following Sr x Al 2 O 3 + x : is the Eu y will be described as an example and should not be construed as limited to the composition of the present invention. However, the invention is not prevented from being limited to the composition when receiving a patent.

〔微小応力発光材料の調製〕
まず、微小応力発光材料の調製を次の通り行った。すなわち、Sr(NO3)2(関東化学製)と、Eu(NO3)2・6H2O(関東化学製)と、Al(NO3)3・9H20(高純度化学研究所製)とを、モル比でそれぞれ0.97:0.03:2となるように秤量し、蒸留水中で十分に溶解させ、超音波発生装置を用いて超音波処理を1時間施してイオン化溶液を得た(イオン化溶液調製工程)。
[Preparation of micro-stress luminescent material]
First, a microstress luminescent material was prepared as follows. That is, Sr (NO 3 ) 2 (manufactured by Kanto Chemical), Eu (NO 3 ) 2 · 6H 2 O (manufactured by Kanto Chemical), and Al (NO 3 ) 3 · 9H 2 0 (manufactured by High Purity Chemical Laboratory) Were weighed so as to be 0.97: 0.03: 2 in molar ratio, dissolved sufficiently in distilled water, and subjected to ultrasonic treatment for 1 hour using an ultrasonic generator to obtain an ionized solution (ionized solution). Preparation step).

次に、得られたイオン化溶液を、所定容量の蒸発皿に注ぎ入れ、沸騰せずに溶媒を蒸発できる温度、例えば溶媒として水を用いた場合、80〜90℃にて2〜3時間、マグネチックスターラーに設置して、撹拌しながら蒸発乾固させた(蒸発乾固工程)。   Next, when the obtained ionized solution is poured into a predetermined volume of an evaporating dish and the solvent can be evaporated without boiling, for example, when water is used as the solvent, the magnetized solution is heated at 80 to 90 ° C. for 2 to 3 hours. It was placed on a tic stirrer and evaporated to dryness with stirring (evaporation to dryness step).

次に、得られた乾燥粉体をるつぼ内に収容し、ヤマト科学社製マッフル炉を用い、空気中で800℃にて1時間加熱を行い、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物としてのストロンチウムの酸化物と、発光中心元素の酸化物としてのユウロピウムの酸化物との混合粉体を得た(酸化工程)。   Next, the obtained dry powder is placed in a crucible and heated in air at 800 ° C. for 1 hour using a muffle furnace manufactured by Yamato Science Co., Ltd. A mixed powder of strontium oxide as the oxide and europium oxide as the emission center element oxide was obtained (oxidation step).

そして、得られた酸化物の混合粉体に対し、モル比で0.1〜1.0%のH3BO3(和光純薬工業製)を焼結助剤として混合してるつぼに収容し、還元雰囲気カーボン電気炉を用い、5%H2/Arの還元雰囲気下1350℃にて4時間焼成を行い、得られた粉末を微小応力発光材料とした。 Then, H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) with a molar ratio of 0.1 to 1.0% is mixed as a sintering aid with respect to the obtained mixed powder of oxide, and the mixture is placed in a crucible, and reduced atmosphere carbon. Using an electric furnace, firing was performed at 1350 ° C. for 4 hours in a reducing atmosphere of 5% H 2 / Ar, and the obtained powder was used as a microstress luminescent material.

〔比較用応力発光材料の調製〕
次に、微小応力発光材料との比較試験を行うべく、本実施形態にかかる応力発光材料の製造方法とは異なる方法にて、比較用応力発光材料の調製を行った。なお、以下に説明する方法は、現在応力発光材料を調製するに際し広く行われている方法であり、「固相反応法」と称する場合がある。
[Preparation of comparative stress luminescent material]
Next, in order to perform a comparative test with a microstress luminescent material, a comparative stress luminescent material was prepared by a method different from the method for manufacturing the stress luminescent material according to the present embodiment. Note that the method described below is a method widely used at the time of preparing a stress-stimulated luminescent material, and may be referred to as a “solid phase reaction method”.

具体的には、SrCO3(関東化学製)と、Eu2O3(高純度化学研究所製)と、α-Al2O3(高純度化学研究所製)とを、モル比でそれぞれ0.97:0.03:2となるように秤量し、モル比で0.1〜1.0%のH3BO3(和光純薬工業製)を添加した状態で、エタノール中でボールミルを用いて十分混合させた。 Specifically, SrCO 3 (manufactured by Kanto Chemical Co., Inc.), Eu 2 O 3 (manufactured by High Purity Chemical Research Laboratories), and α-Al 2 O 3 (manufactured by High Purity Chemical Research Laboratories) are each 0.97 in molar ratio. : 0.03: 2 was weighed so that the molar ratio of 0.1 to 1.0% of H 3 BO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) was added and thoroughly mixed in ethanol using a ball mill.

次に、この混合物からエタノールを十分に蒸発させ、得られた粉末をるつぼに収容し、ヤマト科学社製マッフル炉を用いて、空気中で800℃にて1時間加熱を行った後、還元雰囲気カーボン電気炉を用い、5%H2/Arの還元雰囲気下1350℃にて4時間焼成を行い、得られた粉末を比較用応力発光材料とした。 Next, ethanol was sufficiently evaporated from this mixture, and the obtained powder was placed in a crucible, heated in air at 800 ° C. for 1 hour using a Yamato Scientific muffle furnace, and then reduced in atmosphere. Using a carbon electric furnace, firing was performed at 1350 ° C. for 4 hours in a reducing atmosphere of 5% H 2 / Ar, and the obtained powder was used as a comparative stress luminescent material.

〔発光比較試験〕
次に、前述の微小応力発光材料と、比較用応力発光材料との微小ひずみ条件下における発光強度の違いについて比較を行った。
[Light emission comparison test]
Next, the difference in light emission intensity between the above-described microstress luminescent material and the comparative stress luminescent material under microstrain conditions was compared.

具体的には、SrxAl2O4:Euy厚膜を接着した金属試験片を材料試験機により引張試験した際のSrxAl2O4:Euy厚膜からの発光をCCDカメラにより測定した。SrxAl2O4:Euy厚膜は、前述した試料(微小応力発光材料又は比較用応力発光材料)と市販のエポキシ樹脂とを混合して、スクリーン印刷法により作製した。両材料のSrxAl2O4:Euy厚膜の厚さは、約30μmとなるように調整した。作製したSrxAl2O4:Euy厚膜は、10×10 cmの大きさに切り取り、市販の接着剤を用いて金属試験片(SUS631、縦200×横20×厚さ0.2 cm)の表面中央に接着した。ひずみは金属試験片の裏面に接着した一軸ひずみゲージにより計測した。微小ひずみに対する発光の測定方法は、波長365 nmで1分間励起し、1分間静置した後、約1000 μstのひずみとなるように材料試験機で引張荷重を加えた際のSrxAl2O4:Euy厚膜からの発光をCCDカメラにより計測した。その結果を図2に示す。図2中において、微小応力発光材料は実線で示し、比較用応力発光材料は破線で示す。 Specifically, Sr x Al 2 O 4: Eu y thick film upon tensile test by an adhesive metal specimen material testing machine Sr x Al 2 O 4: the light emission from Eu y thick film by the CCD camera It was measured. Sr x Al 2 O 4: Eu y thick film, a mixture of a commercially available epoxy resin and the above-mentioned sample (small stress luminescent material or comparative stress luminescent material) was prepared by screen printing. The thicknesses of the Sr x Al 2 O 4 : Eu y thick films of both materials were adjusted to be about 30 μm. The produced Sr x Al 2 O 4 : Eu y thick film was cut to a size of 10 x 10 cm and a metal test piece (SUS631, length 200 x width 20 x thickness 0.2 cm) using a commercially available adhesive Bonded to the center of the surface. The strain was measured with a uniaxial strain gauge adhered to the back surface of the metal test piece. The light emission measurement method for minute strains is Sr x Al 2 O when a tensile load is applied with a material tester so that the strain is about 1000 μst after excitation for 1 minute at a wavelength of 365 nm and standing for 1 minute. 4: the light emission from Eu y thick measured by CCD camera. The result is shown in FIG. In FIG. 2, the microstress luminescent material is indicated by a solid line, and the comparative stress luminescent material is indicated by a broken line.

図2からも分かるように、微小応力発光材料は、比較用応力発光材料と比較して、1000μst以下の微小なひずみに対しても、高い発光強度を示すことが分かる。   As can be seen from FIG. 2, it can be seen that the microstress luminescent material exhibits high luminescence intensity even with a micro strain of 1000 μst or less, as compared with the comparative stress luminescent material.

また、特に注目すべき点として、従来の応力発光材料(比較用応力発光材料)は、100〜200μst程度の応力では殆ど発光しないのに対し、微小応力発光材料は、このような小さな応力に対しても発光を示すことができる。   Also, it should be noted that conventional stress luminescent materials (comparative stress luminescent materials) emit little light at a stress of about 100 to 200 μst, whereas microstress luminescent materials are resistant to such small stresses. Even light emission can be shown.

このように、本実施形態に係る応力発光材料の製造方法によれば、従来の応力発光材料の製造方法に比して、微小なひずみに対しても良好な発光を示す応力発光材料を製造することができる。   As described above, according to the method for manufacturing a stress-stimulated luminescent material according to the present embodiment, a stress-stimulated luminescent material that exhibits good light emission even with a minute strain is manufactured as compared with the conventional method for manufacturing a stress-stimulated luminescent material. be able to.

〔結晶構造の比較〕
次に、微小応力発光材料の微小ひずみに対する発光の発現因子を調べるべく、微小応力発光材料と、比較用応力発光材料との結晶構造について比較を行った。
[Crystal structure comparison]
Next, the crystal structures of the microstress luminescent material and the comparative stress luminescent material were compared in order to investigate the light emission expression factor with respect to the microstrain of the microstress luminescent material.

図3は、微小応力発光材料と比較用応力発光材料との結晶構造解析結果を示した図であり、図4は、2θ=26〜34°の範囲を拡大した回折パターンを示した図である。なお、両応力発光材料の回折ピークは、粉末X線回折測定前に混合したCeO2標準試料の回折ピークにより補正を行っている。 FIG. 3 is a diagram showing the results of crystal structure analysis of the microstress luminescent material and the comparative stress luminescent material, and FIG. 4 is a diagram showing a diffraction pattern in which the range of 2θ = 26 to 34 ° is enlarged. . Note that the diffraction peaks of both stress luminescent materials are corrected by the diffraction peaks of the CeO 2 standard sample mixed before the powder X-ray diffraction measurement.

図3から分かるように、微小応力発光材料及び比較用応力発光材料は、いずれもSrAl2O4の単相が形成されていることが分かる。また、図4に示す拡大した回折パターンより、実線で示す微小応力発光材料と破線で示す比較用応力発光材料との回折ピークの位置が一致し、ピークシフトが観察されなかったため、従来の方法にて製造した比較用応力発光材料と、本実施形態に係る応力発光材料の製造方法にて製造した微小応力発光材料は、結晶構造の点において同じであることが示された。すなわち、X線回折パターンの比較からは、構造的な差異は見出されなかった。 As can be seen from FIG. 3, it can be seen that both the microstress luminescent material and the comparative stress luminescent material have a single phase of SrAl 2 O 4 formed thereon. Also, from the enlarged diffraction pattern shown in FIG. 4, the positions of the diffraction peaks of the micro-stress luminescent material indicated by the solid line and the comparative stress luminescent material indicated by the broken line coincided, and no peak shift was observed. It was shown that the comparative stress-stimulated luminescent material manufactured by the above method and the micro-stress luminescent material manufactured by the stress-luminescent material manufacturing method according to the present embodiment are the same in terms of crystal structure. That is, no structural difference was found from the comparison of X-ray diffraction patterns.

〔熱ルミネッセンス測定による欠陥準位の評価〕
応力発光材料のひずみに対する発光機構は、応力発光材料を紫外光等の光によって励起したとき、材料中の欠陥に起因する準位に電子や正孔(キャリア)が補足され、この補足されたキャリアが力学的刺激によって放出し、再結合することで発光するものと考えられる。
[Evaluation of defect levels by thermoluminescence measurement]
The light emission mechanism against the strain of stress-stimulated luminescent material is that when stress-stimulated luminescent material is excited by light such as ultraviolet light, the level caused by defects in the material is supplemented with electrons and holes (carriers). Are emitted by mechanical stimulation, and are considered to emit light upon recombination.

また、欠陥を有する蛍光体は、紫外光等で励起した後に温度が上昇すると、トラップ準位に捉えられていた電子や正孔が開放されて、発光中心で輻射再結合することにより再び発光する(熱ルミネッセンス)。   In addition, when the temperature rises after excitation with ultraviolet light or the like, a phosphor having a defect emits light again by releasing electrons and holes captured in the trap level and radiative recombination at the emission center. (Thermoluminescence).

すなわち、熱ルミネッセンス測定で得られたグロー曲線のピーク位置は、欠陥準位に大きく影響することとなる。   That is, the peak position of the glow curve obtained by thermoluminescence measurement greatly affects the defect level.

そこで、前述の微小応力発光材料と、比較用応力発光材料との両者をそれぞれ熱ルミネッセンス測定に供し、両応力発光材料の欠陥準位の評価を行った。   Therefore, both the above-described microstress luminescent material and comparative stress luminescent material were subjected to thermoluminescence measurement, and the defect levels of both stress luminescent materials were evaluated.

熱ルミネッセンス測定を行うに際し、前処理として、液体窒素を用いて-190℃まで冷却した微小又は比較用応力発光材料に371nmの光を5分間照射して十分に励起させ、暗所で5分間静置した。   When performing the thermoluminescence measurement, as a pretreatment, a minute or comparative stress luminescent material cooled to -190 ° C with liquid nitrogen is irradiated with 371 nm light for 5 minutes to sufficiently excite it, and then left in a dark place for 5 minutes. I put it.

そして測定では、微小又は比較用応力発光材料を60K/minで昇温させたときの514nmの発光を計測した。図5に微小応力発光材料及び比較用応力発光材料の熱ルミネッセンス測定の測定結果を示す。   In the measurement, light emission at 514 nm was measured when the temperature of a minute or comparative stress light-emitting material was raised at 60 K / min. FIG. 5 shows the measurement results of the thermoluminescence measurement of the microstress luminescent material and the comparative stress luminescent material.

図5にて破線で示すように、従来の固相反応法にて調製した比較用応力発光材料の測定結果によれば、室温以上の温度に着目すると、140℃付近にピークが得られている。   As shown by the broken line in FIG. 5, according to the measurement result of the comparative stress luminescent material prepared by the conventional solid-phase reaction method, when attention is paid to the temperature above room temperature, a peak is obtained around 140 ° C. .

一方、本実施形態に係る応力発光材料の製造方法にて調製した微小応力発光材料の測定結果によれば、図5にて実線で示すように、室温以上の温度にて125℃付近にピークが得られたのが分かる。   On the other hand, according to the measurement result of the microstress luminescent material prepared by the method for manufacturing the stress luminescent material according to the present embodiment, as shown by the solid line in FIG. You can see that it was obtained.

このことから、微小応力発光材料は、比較用応力発光材料よりも浅い欠陥準位を有しており、微小ひずみに対して高い発光強度を示したものと考えられた。   From this, it was considered that the microstress luminescent material had a shallower defect level than the comparative stress luminescent material, and exhibited high luminescence intensity against microstrain.

また、この熱ルミネッセンス測定による欠陥準位の評価結果、及び、前述の結晶構造の比較結果より、異なる方法で調製した微小応力発光材料及び比較用応力発光材料は、調製方法に依らずSrAl2O4単相として存在し、Eu2+がSrAl2O4中に付活されていることが確認された。 Moreover, from the evaluation results of the defect level by the thermoluminescence measurement and the comparison results of the above-mentioned crystal structure, the microstress luminescent material and the comparative stress luminescent material prepared by different methods are SrAl 2 O regardless of the preparation method. It was confirmed that Eu 2+ was activated in SrAl 2 O 4 and existed as four single phases.

〔アルカリ土類金属元素の量を変更させた場合の応力発光特性〕
次に、前述の微小応力発光材料の母体材料、すなわち、アルミン酸ストロンチウム中のストロンチウム量を変化させた場合の応力発光特性について検討を行った。
[Stress emission characteristics when the amount of alkaline earth metal element is changed]
Next, the stress luminescence characteristics when the amount of strontium in the base material of the above-described microstress luminescent material, that is, strontium aluminate was changed, were examined.

具体的には、本実施形態に係る応力発光材料の製造方法により、ストロンチウム量の異なる微小応力発光材料、すなわちSrxAl2O4:Eu0.03(x=0.92〜0.97)を調製し、ひずみに対するこれらそれぞれの発光強度の測定を行った。その結果を図6に示す。 Specifically, a microstress luminescent material having a different amount of strontium, that is, Sr x Al 2 O 4 : Eu 0.03 (x = 0.92 to 0.97) is prepared by the method of manufacturing a stress luminescent material according to the present embodiment, Each of the emission intensity was measured. The result is shown in FIG.

図6からも分かるように、ストロンチウム量を0.97から減少させることで、1000μst以上のひずみに対する発光強度が増大し、ストロンチウム量が0.94のときに最大値を示した。   As can be seen from FIG. 6, by decreasing the strontium amount from 0.97, the emission intensity with respect to a strain of 1000 μst or more increased, and the maximum value was shown when the strontium amount was 0.94.

一方、1000μst以下、特に500μst以下の微小ひずみに対する発光強度は、いずれの微小応力発光材料の場合においても殆ど変化が認められなかった。   On the other hand, almost no change was observed in the luminescence intensity for microstrain of 1000 μst or less, particularly 500 μst or less, in any of the microstress luminescent materials.

このことから、微小応力発光材料の微小ひずみに対する発光特性は、アルミン酸ストロンチウム中のストロンチウム含量に影響しないことが示された。   From this, it was shown that the light emission characteristic with respect to the micro strain of the micro stress light emitting material does not affect the strontium content in the strontium aluminate.

上述してきたように、本実施形態に係る応力発光材料の製造方法によれば、発光中心元素を母体材料中に散在させた非化学量論的組成を有するアルミン酸塩よりなり機械的エネルギーによって発光を示す応力発光材料の製造方法であって、前記母体材料を構成するアルミニウム及びアルカリ土類金属元素の塩と、発光中心元素の塩とを溶媒に溶解し、同溶媒中でアルミニウムとアルカリ土類金属元素と発光中心元素とがイオン化した溶液を調製するイオン化溶液調製工程と、同イオン化溶液調製工程で得られた溶液の溶媒を蒸発させて乾燥粉体を得る蒸発乾固工程と、前記蒸発乾固工程にて得られた乾燥粉体を酸化雰囲気下で加熱して、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を得る酸化工程と、前記酸化工程にて得られた混合粉体に焼結助剤を添加し、前記酸化工程よりも高い温度の還元雰囲気下で所定時間焼成し、得られた粉体を応力発光材料とする焼成工程と、を有することとしたため、従来の応力発光材料に比して、微小なひずみに対しても良好な発光を示す応力発光材料の製造方法を提供することができる。   As described above, according to the method for manufacturing a stress-stimulated luminescent material according to the present embodiment, light is emitted by mechanical energy made of an aluminate having a non-stoichiometric composition in which a luminescent center element is dispersed in a base material. A method for producing a stress-stimulated luminescent material, wherein a salt of aluminum and an alkaline earth metal element and a salt of a luminescent center element constituting the matrix material are dissolved in a solvent, and the aluminum and alkaline earth are dissolved in the same solvent. An ionization solution preparation step of preparing a solution in which a metal element and a luminescent center element are ionized; an evaporation and drying step of evaporating a solvent of the solution obtained in the ionization solution preparation step to obtain a dry powder; The dry powder obtained in the solid process is heated in an oxidizing atmosphere to obtain a mixed powder of an aluminum oxide, an alkaline earth metal element oxide, and an emission center element oxide. A sintering aid is added to the mixed powder obtained in the oxidation step and the oxidation step, and the resultant powder is fired for a predetermined time in a reducing atmosphere at a temperature higher than that in the oxidation step. Therefore, it is possible to provide a method for producing a stress-stimulated luminescent material that exhibits good light emission even with a minute strain as compared with a conventional stress-stimulated luminescent material.

最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。   Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.

Claims (4)

発光中心元素を母体材料中に散在させた非化学量論的組成を有するアルミン酸塩よりなり機械的エネルギーによって発光を示す応力発光材料の製造方法であって、
前記母体材料を構成するアルミニウム及びアルカリ土類金属元素の塩と、発光中心元素の塩とを溶媒に溶解し、同溶媒中でアルミニウムとアルカリ土類金属元素と発光中心元素とがイオン化した溶液(但し、有機酸を含むものを除く。)を調製するイオン化溶液調製工程と、
同イオン化溶液調製工程で得られた溶液の溶媒を沸騰させることなく攪拌しながら蒸発させ、面上にて乾固させて乾燥粉体を得る蒸発乾固工程と、
前記蒸発乾固工程にて得られた乾燥粉体を酸化雰囲気下で700〜900℃に加熱して、アルミニウムの酸化物と、アルカリ土類金属元素の酸化物と、発光中心元素の酸化物との混合粉体を得る酸化工程と、
前記酸化工程にて得られた混合粉体に焼結助剤を添加し、前記酸化工程よりも高い温度の還元雰囲気下で所定時間焼成し、60K/minの昇温速度での熱ルミネッセンス測定で得られるグロー曲線の室温以上の温度帯におけるメインピークの極大値の位置が140℃未満であり、複数の結晶粒が面方向に連結した平均粒径10μm以上の略平板状である得られた粉体を応力発光材料とする焼成工程と、を有することを特徴とする応力発光材料の製造方法。
A method for producing a stress-stimulated luminescent material, which is composed of an aluminate having a non-stoichiometric composition in which a luminescent center element is dispersed in a base material and emits light by mechanical energy,
A solution in which a salt of aluminum and an alkaline earth metal element and a salt of a luminescent center element constituting the matrix material are dissolved in a solvent, and an aluminum, an alkaline earth metal element, and a luminescent center element are ionized in the same solvent ( However, an ionized solution preparation step for preparing an organic acid is excluded.)
Evaporating to dryness on the surface by evaporating the solvent of the solution obtained in the ionized solution preparation step while boiling without stirring, and evaporating to dryness on the surface;
The dry powder obtained in the evaporating and drying step is heated to 700 to 900 ° C. in an oxidizing atmosphere, and an oxide of aluminum, an oxide of an alkaline earth metal element, and an oxide of a luminescent center element An oxidation step to obtain a mixed powder of
By adding a sintering aid to the mixed powder obtained in the oxidation step, firing for a predetermined time in a reducing atmosphere at a temperature higher than that in the oxidation step, and measuring thermoluminescence at a heating rate of 60 K / min. The position of the maximum value of the main peak in the temperature range above the room temperature of the glow curve obtained is less than 140 ° C., and the obtained powder is a substantially flat plate having an average grain size of 10 μm or more in which a plurality of crystal grains are connected in the plane direction And a firing step using the body as a stress-stimulated luminescent material.
前記母体材料は、アルミニウム酸化物とアルカリ土類金属酸化物とから構成され、かつ、この中のアルカリ土類金属イオンの組成比を欠損させたアルカリ土類金属欠損型であって、式MxAl2O3+x、MxQAl10O16+x、Mx1Qx2Al2O3+x1+x2又はMx1Qx2LAl10O16+x1+x2[式中のM、Q及びLは、それぞれ前記金属元素としてのMg、Ca、Sr又はBaであり、xは0.8≦x≦0.99、x1及びx2は0.8≦(x1+x2)≦0.99を満たす数である]で表わされる化合物を主成分とすることを特徴とする請求項1に記載の応力発光材料の製造方法。 The base material is composed of an aluminum oxide and an alkaline earth metal oxide, and is an alkaline earth metal deficient type in which the composition ratio of alkaline earth metal ions therein is deficient, and has the formula M x Al 2 O 3 + x , M x QAl 10 O 16 + x , M x1 Q x2 Al 2 O 3 + x1 + x2 or M x1 Q x2 LAl 10 O 16 + x1 + x2 [M, Q and L in the formula Are each Mg, Ca, Sr or Ba as the metal element, x is a number satisfying 0.8 ≦ x ≦ 0.99, x1 and x2 satisfying 0.8 ≦ (x1 + x2) ≦ 0.99] The method for producing a stress-stimulated luminescent material according to claim 1, comprising a main component. 前記イオン化溶液調製工程にて溶媒に溶解する塩は硝酸塩であり、前記溶媒は水であることを特徴とする請求項1又は請求項2に記載の応力発光材料の製造方法。   The method for producing a stress-stimulated luminescent material according to claim 1 or 2, wherein the salt dissolved in the solvent in the ionization solution preparation step is nitrate, and the solvent is water. 前記発光中心元素は、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムから選ばれる少なくともいずれか1つであることを特徴とする請求項1〜3いずれか1項に記載の応力発光材料の製造方法。   The luminescent center element is at least one selected from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The method for producing a stress-stimulated luminescent material according to any one of claims 1 to 3.
JP2013047085A 2013-03-08 2013-03-08 Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method Active JP6308487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047085A JP6308487B2 (en) 2013-03-08 2013-03-08 Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047085A JP6308487B2 (en) 2013-03-08 2013-03-08 Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method

Publications (2)

Publication Number Publication Date
JP2014173010A JP2014173010A (en) 2014-09-22
JP6308487B2 true JP6308487B2 (en) 2018-04-11

Family

ID=51694592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047085A Active JP6308487B2 (en) 2013-03-08 2013-03-08 Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method

Country Status (1)

Country Link
JP (1) JP6308487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350350B (en) * 2022-01-10 2023-02-14 华南理工大学 Pigment with photoluminescence, mechanoluminescence and light-dependent heterochromatic effect as well as preparation method and application thereof
CN114958355B (en) * 2022-05-05 2024-03-19 武汉大学苏州研究院 Novel ultraviolet stress luminescent material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511083B2 (en) * 1999-08-06 2004-03-29 独立行政法人産業技術総合研究所 High intensity stress luminescent material, manufacturing method thereof, and luminescent method using the same
US20050119132A1 (en) * 2001-11-30 2005-06-02 Chao-Nan Xu Method and apparatus for preparing spherical crystalline fine particles
JP3833617B2 (en) * 2003-01-20 2006-10-18 独立行政法人科学技術振興機構 Method for manufacturing illuminant
JP4524357B2 (en) * 2004-07-26 2010-08-18 独立行政法人産業技術総合研究所 Stress-stimulated luminescent composition containing anisotropic stress-stimulated luminescent material and method for producing the same
JP4836117B2 (en) * 2005-11-28 2011-12-14 独立行政法人産業技術総合研究所 Method for producing high-luminance luminescent particles

Also Published As

Publication number Publication date
JP2014173010A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP3511083B2 (en) High intensity stress luminescent material, manufacturing method thereof, and luminescent method using the same
JP4868500B2 (en) High-strength stress-stimulated luminescent material that emits ultraviolet light, its manufacturing method, and use thereof
WO2018207703A1 (en) Light emitting device and phosphor
JP3837488B2 (en) Mechanoluminescence material
Wang et al. A novel and high brightness AlN: Mn 2+ red phosphor for field emission displays
JP4963077B2 (en) Stress-stimulated luminescent material that emits ultraviolet light, method for producing the same, and use thereof
Wei et al. Up-conversion photoluminescence and temperature sensing properties of Er 3+-doped Bi 4 Ti 3 O 12 nanoparticles with good water-resistance performance
JP3918051B2 (en) Mechanoluminescence material and method for producing the same
JPWO2018143198A1 (en) Light emitting device and phosphor
JP5540407B2 (en) Luminescent nanosheet and fluorescent illuminator, solar cell and color display using the same.
JP6308487B2 (en) Stress luminescent material manufactured by stress luminescent material manufacturing method and stress luminescent material manufacturing method
Hu et al. Photoluminescence and cathodoluminescence properties of Na 2 MgGeO 4: Mn 2+ green phosphors
JP3699991B2 (en) Method for producing high-luminance luminescent material
Akiyama et al. Intense visible light emission from stress-activated SrMgAl 6 O 11: Eu
JP6181454B2 (en) Phosphor
Manam et al. Characterization and photoluminescence studies of Eu 2+-doped BaSO 4 phosphor prepared by the recrystallization method
Ramakrishna Cathodoluminescence properties of gadolinium-doped CaMoO4: Eu nanoparticles
JP3833617B2 (en) Method for manufacturing illuminant
CN113214832B (en) Deep trap long afterglow luminescent material and preparation method thereof
JP6819970B2 (en) A method for producing a stress-luminescent material, a paint containing the same stress-luminescent material, a stress-stimulated luminescent material, and a stress-emitting material
KR101496959B1 (en) Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods
Park et al. ZnGa 2 O 4 thin films fabricated by Sol-gel spinning coating process
JP4399624B2 (en) Mechanoluminescence material
JP2006199876A (en) Aluminum nitride-based fluorescent substance
JP2010215717A (en) Illuminant and method for producing the illuminant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6308487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250