JP6308424B2 - Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material - Google Patents
Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material Download PDFInfo
- Publication number
- JP6308424B2 JP6308424B2 JP2014039601A JP2014039601A JP6308424B2 JP 6308424 B2 JP6308424 B2 JP 6308424B2 JP 2014039601 A JP2014039601 A JP 2014039601A JP 2014039601 A JP2014039601 A JP 2014039601A JP 6308424 B2 JP6308424 B2 JP 6308424B2
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- damping alloy
- alloy
- producing
- damping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims description 121
- 229910045601 alloy Inorganic materials 0.000 title claims description 117
- 238000013016 damping Methods 0.000 title claims description 90
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 30
- 229910000734 martensite Inorganic materials 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 24
- 238000003303 reheating Methods 0.000 claims description 18
- 238000010583 slow cooling Methods 0.000 claims description 17
- 230000032683 aging Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 12
- 238000001556 precipitation Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 44
- 239000012071 phase Substances 0.000 description 40
- 239000000463 material Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018507 Al—Ni Inorganic materials 0.000 description 2
- 229910017535 Cu-Al-Ni Inorganic materials 0.000 description 2
- 229910004337 Ti-Ni Inorganic materials 0.000 description 2
- 229910011209 Ti—Ni Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
この発明は、制振特性を有するFe基制振合金およびその製造方法ならびにFe基制振合金材に関するものである。 The present invention relates to an Fe-based damping alloy having damping characteristics, a manufacturing method thereof, and an Fe-based damping alloy material.
機械の振動・騒音の低減対策の一つとして、制振合金の適用がある。制振合金は外部からの振動エネルギーを内部摩擦によって熱に変換することにより振動を吸収する合金であり、その制振性の発現機構により複合型、強磁性型、転位型及び双晶型の4種類に大別される(例えば非特許文献1参照)。 One of the measures to reduce machine vibration and noise is the application of damping alloys. A damping alloy is an alloy that absorbs vibration by converting vibration energy from outside into heat by internal friction, and has four types of composite type, ferromagnetic type, dislocation type, and twin crystal type depending on the mechanism of its damping property. It is roughly classified into types (see, for example, Non-Patent Document 1).
複合型制振合金は母相と第2相が存在する合金であり、母相と第2相の界面で生じる塑性変形、滑り、粘性的流動等の相互作用によるエネルギー消散を利用するものである。例として鋳鉄やAl−Zn合金があるが、これらの制振特性及び強度はともに低い。 A composite damping alloy is an alloy in which a parent phase and a second phase exist, and uses energy dissipation due to interactions such as plastic deformation, sliding, and viscous flow that occur at the interface between the parent phase and the second phase. . Examples include cast iron and Al—Zn alloy, but both of these vibration damping characteristics and strength are low.
転位型制振合金は、転位が固着点から離脱することに伴う静履歴型エネルギー損失により、制振特性を得るものである。その一例であるMg合金は、制振特性及び重量面では他の合金と比較して優れているものの、一方で強度は低く、加工性にも劣る。 The dislocation type damping alloy obtains damping characteristics due to the static hysteresis type energy loss accompanying the dislocation from the fixing point. An example of the Mg alloy is superior to other alloys in terms of damping characteristics and weight, but on the other hand, the strength is low and the workability is also poor.
強磁性型制振合金は、磁壁の非可逆的な移動に伴う磁気・機械的静履歴エネルギー損失を利用するものである(例えば特許文献1参照)。これらの合金にはFe−Cr−Al系合金や12Cr鋼など、Fe系合金が多い。これらの制振特性は、歪み振幅の増大と共に向上するが、飽和磁歪量より大きな歪み振幅では、磁壁の移動により吸収される振動エネルギーが飽和するため、制振特性はむしろ低下する(例えば非特許文献2参照)。また、外部磁場の変化が制振特性に影響するという問題も有している。 A ferromagnetic vibration-damping alloy utilizes magnetic / mechanical static hysteresis energy loss accompanying irreversible movement of a domain wall (see, for example, Patent Document 1). Many of these alloys are Fe-based alloys such as Fe-Cr-Al-based alloys and 12Cr steel. These damping characteristics improve as the distortion amplitude increases. However, at a distortion amplitude larger than the saturation magnetostriction amount, the vibration energy absorbed by the movement of the domain wall is saturated, so that the damping characteristic is rather lowered (for example, non-patent) Reference 2). In addition, there is a problem that a change in the external magnetic field affects the damping characteristics.
双晶型制振合金は、変態双晶界面または母相とマルテンサイト相との界面の移動によるエネルギー消散を利用したものであり、主な合金系にはMn−Cu系、Ti−Ni系、Cu−Al−Ni系がある(例えば特許文献2参照)。双晶型制振合金は高い制振特性を有しており、加えて制振合金としては優れた強度特性を兼ね備えていることが特長である。これらの双晶型制振合金の典型例として、ソノストン合金(Mn−37Cu−4Al−3Fe−2Ni)やインクラミュート合金(Cu−45Mn−2Al)があり、この他に制振特性及び加工性に優れるMn−20Cu−5Ni−2Fe合金が開示されている。 The twin-type damping alloy uses energy dissipation due to the movement of the transformation twin interface or the interface between the parent phase and the martensite phase. The main alloy systems include Mn-Cu system, Ti-Ni system, There is a Cu-Al-Ni system (see, for example, Patent Document 2). Twin-type damping alloys have high damping characteristics, and in addition, they are characterized by having excellent strength characteristics as damping alloys. Typical examples of these twin-type damping alloys include sonostone alloy (Mn-37Cu-4Al-3Fe-2Ni) and inclamute alloy (Cu-45Mn-2Al). An excellent Mn-20Cu-5Ni-2Fe alloy is disclosed.
近年、特許文献3にて開示されたFe−Mn−Al−Ni系形状記憶合金は、多数の変態双晶を含む熱弾性型マルテンサイト組織を形成することから、Fe基の双晶型制振合金としての応用が期待される。しかしながら、このような超弾性合金を制振用途に用いる場合は、応力誘起マルテンサイトの生成・消滅に伴う静履歴型エネルギー損失により振動を抑制するため、変態誘起臨界応力より低い応力範囲では制振効果が得られない。また、特許文献3で示されている単純な溶体化処理のみでは、十分な粗粒化の効果が得られているとはいえず、より顕著な結晶粒成長を実現することにより、制振特性の向上を図る必要がある。 In recent years, the Fe-Mn-Al-Ni-based shape memory alloy disclosed in Patent Document 3 forms a thermoelastic martensitic structure including a large number of transformation twins. Application as an alloy is expected. However, when such a superelastic alloy is used for vibration control, vibration is suppressed by static hysteresis type energy loss accompanying the generation and disappearance of stress-induced martensite. The effect is not obtained. Further, it cannot be said that the effect of sufficient coarsening is obtained only by the simple solution treatment shown in Patent Document 3, and the damping characteristics are realized by realizing more remarkable crystal grain growth. It is necessary to improve.
前述のように、双晶型制振合金においてはMn−Cu系合金、Ti−Ni系合金、Cu−Al−Ni系合金が主な合金系として挙げられる。Feを主要な元素とする低原料コストの制振合金が開発されれば、より実用的な制振合金として様々な分野への応用が期待できるが、現在までにこのような合金系で実用化に至った双晶型制振合金の例はない。Fe系制振合金の候補材としてFe−Mn−Al−Ni合金が有望ではあるものの、制振合金としての応用を実現するには、変態誘起臨界応力より低い応力範囲で制振効果を得る必要があるため、マルテンサイト内の双晶界面移動により、振動のエネルギーを吸収する必要があった。また、単純な溶体化処理のみでは、十分な粗粒化の効果が得られているとはいえず、より顕著な結晶粒成長を可能とする熱処理を行うことにより、制振特性の向上を図る必要がある。 As described above, in the twin type damping alloy, Mn—Cu based alloy, Ti—Ni based alloy, and Cu—Al—Ni based alloy are listed as main alloy systems. If a damping alloy with a low raw material cost with Fe as the main element is developed, it can be expected to be applied to various fields as a more practical damping alloy. There are no examples of twin-type vibration-damping alloys. Although Fe-Mn-Al-Ni alloy is promising as a candidate material for Fe-based damping alloys, it is necessary to obtain a damping effect in a stress range lower than the transformation-induced critical stress in order to realize application as a damping alloy Therefore, it is necessary to absorb the vibration energy by the twin interface movement in the martensite. In addition, it cannot be said that a sufficient effect of coarsening is obtained only by a simple solution treatment, and the damping characteristics are improved by performing a heat treatment that enables more remarkable grain growth. There is a need.
制振合金の利用にあたっては、使用時の重要特性である制振特性も重要であるが、同時に製造時の重要特性である成形加工性とのバランスも考慮する必要がある。しかしながら、前述のソノストン及びインクラミュート合金のように、成形加工性に問題のある合金系も多数存在しており、成形加工性に関しても特性の向上が求められていた。 When using the damping alloy, the damping characteristic, which is an important characteristic at the time of use, is also important, but at the same time, it is necessary to consider the balance with the formability, which is an important characteristic at the time of manufacture. However, there are many alloy systems that have a problem in molding processability, such as the above-mentioned sonostone and inclamute alloy, and improvement of the characteristics regarding the molding processability has been demanded.
本発明は上記の課題を解決するためになされたもので、Fe基の合金組成を有し、制振特性及び加工性に優れた双晶型制振合金及びその製造方法ならびにFe基制振合金材を提供することを目的とする。 The present invention has been made to solve the above problems, and has a Fe-based alloy composition, a twin-type vibration-damping alloy excellent in vibration-damping characteristics and workability, a method for producing the same, and a Fe-based vibration-damping alloy. The purpose is to provide materials.
すなわち本発明のFe基制振合金のうち、第1の本発明は、25〜42原子%のMnと、12〜18原子%のAlと、5〜12原子%のNiとを含有し、残部がFe及び不可避的不純物からなる組成を有し、金属組織が変態双晶を含む熱弾性型マルテンサイト組織であって、その結晶粒度番号が−5.5以下であることを特徴とする。 That is, among the Fe-based damping alloys of the present invention, the first present invention contains 25 to 42 atomic% of Mn, 12 to 18 atomic% of Al, and 5 to 12 atomic% of Ni, and the balance. there have a composition consisting of Fe and unavoidable impurities, a thermoelastic martensitic structure containing metal structure transformation twinned, its grain size number is equal to or is -5.5 or less.
第2の本発明のFe基制振合金は、25〜42原子%のMnと、12〜18原子%のAlと、5〜12原子%のNiとを含有し、さらに0.1〜5原子%のSi、0.1〜5原子%のTi、0.1〜5原子%のV、0.1〜5原子%のCr、0.1〜5原子%のCo、0.1〜5原子%のCu、0.1〜5原子%のMo、0.1〜5原子%のW、0.001〜1原子%のB及び0.001〜1原子%のCからなる群から選ばれた少なくとも1種を合計で15原子%以下含有し、残部がFe及び不可避的不純物からなる組成を有し、金属組織が変態双晶を含む熱弾性型マルテンサイト組織であって、その結晶粒度番号が−5.5以下であることを特徴とする。 The Fe-based damping alloy of the second invention contains 25 to 42 atomic% of Mn, 12 to 18 atomic% of Al, and 5 to 12 atomic% of Ni, and further 0.1 to 5 atoms. % Si, 0.1-5 atomic% Ti, 0.1-5 atomic% V, 0.1-5 atomic% Cr, 0.1-5 atomic% Co, 0.1-5 atomic % Cu, 0.1-5 atomic% Mo, 0.1-5 atomic% W, 0.001-1 atomic% B, and 0.001-1 atomic% C. containing 15 atomic% or less of at least one total, it possesses the balance consisting of Fe and unavoidable impurities, a thermoelastic martensitic structure containing metal structure transformation twins, its grain size number -5.5 or less .
第3の本発明のFe基制振合金は、前記第1または第2の本発明において、室温から、熱的に誘起されたマルテンサイト組織を呈する温度範囲までを使用温度域とすることを特徴とする。 The Fe-based vibration damping alloy of the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the operating temperature range is from room temperature to a temperature range exhibiting a thermally induced martensite structure. And
第4の本発明のFe基制振合金は、前記第1〜第3の本発明において、析出により生じたFCC構造の相を有することを特徴とする。 The Fe-based damping alloy of the fourth aspect of the present invention is characterized in that in the first to third aspects of the present invention, the Fe-based vibration-damping alloy has an FCC structure phase formed by precipitation.
第5の本発明のFe基制振合金の製造方法は、請求項1〜3のいずれか1項に記載のFe基制振合金の製造方法であって、前記第1または第2の本発明の組成を有する合金に対し、1100〜1300℃で溶体化処理する工程を有することを特徴とする。 A method for producing an Fe-based vibration damping alloy according to a fifth aspect of the present invention is the method for producing an Fe-based vibration damping alloy according to any one of claims 1 to 3, wherein the first or second aspect of the present invention is applied. It has the process of solution-treating at 1100-1300 degreeC with respect to the alloy which has this composition, It is characterized by the above-mentioned.
第6の本発明のFe基制振合金の製造方法は、前記第5の本発明において、前記組成に調整する工程を有することを特徴とする。 According to a sixth aspect of the present invention, there is provided a method for producing an Fe-based vibration damping alloy, comprising the step of adjusting the composition in the fifth aspect of the present invention.
第7の本発明のFe基制振合金の製造方法は、前記第5または第6の本発明において、前記第1または第2の本発明の組成を有する合金に対し、1100〜1300℃で10分以上加熱保持する初期加熱工程と、前記初期加熱工程で加熱された合金を300〜1000℃の温度範囲まで500℃/時間以下の冷却速度で徐冷する徐冷工程と、前記徐冷工程で徐冷された合金を500℃/時間以下の昇温速度で昇温し、1100〜1300℃で10分以上加熱保持する再加熱工程とを具備することを特徴とする。 According to a seventh aspect of the present invention, there is provided a method for producing an Fe-based vibration damping alloy according to the fifth or sixth aspect of the present invention, wherein the alloy having the composition of the first or second aspect of the present invention is 10 to 1100-1300 ° C. An initial heating step of heating and holding for at least minutes, an annealing step of gradually cooling the alloy heated in the initial heating step to a temperature range of 300 to 1000 ° C. at a cooling rate of 500 ° C./hour or less, and the annealing step And a reheating step in which the gradually cooled alloy is heated at a heating rate of 500 ° C./hour or less and heated and held at 1100 to 1300 ° C. for 10 minutes or more.
第8の本発明のFe基制振合金の製造方法は、前記第7の本発明において、前記初期加熱工程後に、前記徐冷工程と前記再加熱工程とを交互に複数回繰り返すようにすることを特徴とする。 According to an eighth aspect of the present invention, in the seventh aspect of the present invention, the slow cooling step and the reheating step are alternately repeated a plurality of times after the initial heating step. It is characterized by.
第9の本発明のFe基制振合金の製造方法は、前記第5〜第8の本発明のいずれかにおいて、前記溶体化処理の後に、100〜350℃で時効処理する工程を有することを特徴とする。 The manufacturing method of the Fe-based vibration damping alloy of the ninth aspect of the present invention includes the step of aging treatment at 100 to 350 ° C. after the solution treatment in any of the fifth to eighth aspects of the present invention. Features.
第10の本発明のFe基制振合金の製造方法は、前記第7〜第9の本発明のいずれかにおいて、前記再加熱工程の後に、100〜350℃で時効処理する工程を有することを特徴とする。 The method for producing an Fe-based vibration damping alloy according to the tenth aspect of the present invention includes the step of aging treatment at 100 to 350 ° C. after the reheating step in any of the seventh to ninth aspects of the present invention. Features.
第11の本発明のFe基制振合金材は、前記第1〜第4の本発明のいずれかに記載のFe基制振合金からなる棒状形状または板材形状を有することを特徴とする。 The Fe-based vibration damping alloy material of the eleventh aspect of the present invention is characterized by having a rod-like shape or a plate shape made of the Fe-based vibration damping alloy according to any one of the first to fourth aspects of the present invention.
次に、本発明で成分範囲を限定した理由を以下に説明する。 Next, the reason for limiting the component range in the present invention will be described below.
Mn:25〜42原子%
Mnはマルテンサイト相の生成を促進する元素である。Mnの含有量を調節することにより、マルテンサイト変態の開始温度(Ms)及び終了温度(Mf)、逆マルテンサイト変態の開始温度(As)及び終了温度(Af)、並びにキュリー温度(Tc)を変化させることができる。Mnの含有量が25原子%未満である場合、母相のBCC構造が安定過ぎるために、使用温度においてマルテンサイト組織が形成されない場合がある。一方、42原子%超である場合、母相がBCC構造とならなくなる。Mnの含有量は、その下限を30原子%とするのが望ましく、上限を40原子%とするのが望ましく、さらに下限を34原子%とするのが一層望ましく、上限を38原子%とするのが一層望ましい。
Mn: 25 to 42 atomic%
Mn is an element that promotes the formation of the martensite phase. By adjusting the content of Mn, the start temperature (Ms) and end temperature (Mf) of the martensite transformation, the start temperature (As) and end temperature (Af) of the reverse martensite transformation, and the Curie temperature (Tc) Can be changed. When the content of Mn is less than 25 atomic%, the BCC structure of the matrix phase is too stable, so that a martensite structure may not be formed at the use temperature. On the other hand, when it exceeds 42 atomic%, the parent phase does not have a BCC structure. The lower limit of the Mn content is preferably 30 atomic%, the upper limit is preferably 40 atomic%, the lower limit is more preferably 34 atomic%, and the upper limit is 38 atomic%. Is more desirable.
Al:12〜18原子%
AlはBCC構造を有する母相の生成を促進する元素である。Alの含有量が12原子%未満である場合、母相がFCC構造になる。一方、18原子%超である場合、BCC構造が安定過ぎてマルテンサイト変態を生じない。Alの含有量は、その下限を13とするのが望ましく、上限を17原子%とするのが望ましく、さらに下限を14原子%とするのが一層望ましく、上限を16原子%とするのが一層望ましい。
Al: 12-18 atomic%
Al is an element that promotes the generation of a parent phase having a BCC structure. When the Al content is less than 12 atomic%, the parent phase has an FCC structure. On the other hand, if it exceeds 18 atomic%, the BCC structure is too stable and no martensitic transformation occurs. The lower limit of the Al content is preferably 13, the upper limit is preferably 17 atomic%, the lower limit is more preferably 14 atomic%, and the upper limit is further 16 atomic%. desirable.
Ni:5〜12原子%
Niは母相に規則相を析出させ、熱弾性型マルテンサイトの生成を促進する元素である。Niの含有量が5原子%未満である場合、熱弾性型マルテンサイトが得られない。一方、12原子%超である場合、延性が低下してしまう。Niの含有量は、その上限10原子%とするのが望ましく、さらに下限を6原子%とするのが一層望ましく、上限を8原子%とするのが一層望ましい。
Ni: 5-12 atomic%
Ni is an element that precipitates a regular phase in the matrix and promotes the formation of thermoelastic martensite. When the Ni content is less than 5 atomic%, thermoelastic martensite cannot be obtained. On the other hand, if it exceeds 12 atomic%, the ductility is lowered. The upper limit of the Ni content is preferably 10 atomic%, more preferably 6 atomic%, and even more preferably 8 atomic%.
Si、Ti、V、Cr、Co、Cu、Mo、W、B及びCからなる群から選ばれた少なくとも1種の元素を、合計で15原子%以下含有することで、延性及び耐食性を向上させるとともに、それらの含有量を調節することによりMs及びTcを変化させることができる。またCoは磁気特性を向上させる作用を有する。これらの元素の合計含有量が15原子%を超えると合金が脆化するおそれがある。これらの元素の含有量は合計で10原子%以下であるのが望ましく、6原子%以下であるのが一層望ましい。 Ductility and corrosion resistance are improved by containing a total of 15 atomic% or less of at least one element selected from the group consisting of Si, Ti, V, Cr, Co, Cu, Mo, W, B and C. At the same time, Ms and Tc can be changed by adjusting their contents. Co has an effect of improving magnetic characteristics. If the total content of these elements exceeds 15 atomic%, the alloy may become brittle. The total content of these elements is desirably 10 atomic percent or less, and more desirably 6 atomic percent or less.
以上のように、本発明では、Fe基合金において多数の変態双晶を含む熱弾性型マルテンサイト組織を生成させ、熱処理によって結晶粒を粗大化させることにより、Fe基双晶型制振合金の提供が可能となった。また、本発明のFe基制振合金において、析出により生じたFCC相は加工性に優れることから、冷却中にFCC相を析出させることにより、良好な成形加工性を得ることが可能となった。 As described above, in the present invention, a thermoelastic martensitic structure including a large number of transformation twins is generated in an Fe-based alloy, and the crystal grains are coarsened by heat treatment. Offering became possible. Further, in the Fe-based vibration damping alloy of the present invention, the FCC phase generated by precipitation is excellent in workability, and therefore it becomes possible to obtain good forming workability by precipitating the FCC phase during cooling. .
[製造方法]
本発明の一実施形態に係るFe基双晶型制振合金は、溶解鋳造、鍛造、熱間加工(熱間圧延等)、冷間加工(冷間圧延、伸線加工等)、プレス加工等により所望の形状に成形した後、溶体化処理を施すことにより製造することができる。合金の溶製、加工に関しては本発明としては特に限定されるものではなく、常法を採用することができる。
[Production method]
The Fe-based twin-type vibration damping alloy according to an embodiment of the present invention includes melt casting, forging, hot working (hot rolling, etc.), cold working (cold rolling, wire drawing, etc.), press working, etc. After forming into a desired shape by the above, it can be produced by applying a solution treatment. With respect to melting and processing of the alloy, the present invention is not particularly limited, and conventional methods can be employed.
製造工程には、溶体化処理する工程を必須に含む。溶体化処理は、溶解鋳造し、熱間及び冷間加工等により成形したFe基制振合金を固溶化温度まで加熱し、組織を母相(BCC相)にした後、急冷することにより行う。溶体化処理は1100〜1300℃で行うのが望ましく、下限を1200℃、上限を1250℃とするのが一層望ましい。溶体化処理温度が1100℃未満であると、第2相であるFCC相のピン止め効果により、結晶粒成長が進まず、1300℃を超えると、液相が生じるため、十分な制振特性が得られない。
また、溶体化処理は、10分間以上加熱保持するのが望ましい。10分間未満の加熱保持では、十分に溶体化できず、また、結晶粒成長も進まない。
溶体化処理後の冷却における冷却速度は200℃/秒以上が好ましく、500℃/秒以上がより好ましい。冷却は水等の冷媒に入れるか、又は空冷により行うことができる。
The manufacturing process essentially includes a solution treatment process. The solution treatment is carried out by heating the Fe-based vibration-damping alloy that has been melt-cast and formed by hot and cold working or the like to the solution temperature to make the structure a matrix phase (BCC phase) and then rapidly cooling it. The solution treatment is desirably performed at 1100 to 1300 ° C., more preferably the lower limit is 1200 ° C. and the upper limit is 1250 ° C. If the solution treatment temperature is less than 1100 ° C., the crystal growth does not proceed due to the pinning effect of the FCC phase, which is the second phase. If the solution treatment temperature exceeds 1300 ° C., a liquid phase is generated. I can't get it.
In addition, it is desirable that the solution treatment is held by heating for 10 minutes or more. If the heating is maintained for less than 10 minutes, the solution cannot be sufficiently formed, and the crystal grain growth does not proceed.
The cooling rate in cooling after the solution treatment is preferably 200 ° C./second or more, and more preferably 500 ° C./second or more. Cooling can be performed by putting it in a refrigerant such as water or by air cooling.
また、結晶粒を粗大化させる場合には、上記溶体化処理温度で10分間以上加熱する初期加熱工程と、加熱されたFe基合金を300〜1000℃の温度範囲まで徐冷する徐冷工程と、徐冷されたFe基合金を再加熱保持する再加熱工程からなる溶体化処理により、製造することもできる。該熱処理時のヒートパターンを図1に示す。
初期加熱工程及び再加熱工程は1100〜1300℃で行うのが望ましく、下限を1200℃、上限を1250℃とするのが一層望ましい。
初期加熱工程後の徐冷では、冷却速度を500℃/時間以下とするのが望ましく、10〜50℃/時間とするのが一層望ましい。
徐冷に伴って析出するFCC相はピン止め効果を示すが、再加熱工程ではピン止め効果が減少することによって急激な結晶粒成長が起こる。冷却速度が500℃/時間を超えるとFCC相析出量の低下により粗粒化の効果が得られない。
徐冷では、300〜1000℃のいずれかの温度まで徐冷すればよく、それ以降の冷却速度は特に限定されない。また、徐冷した後、直ちに再加熱工程に移行するものであってもよい。
Further, when the crystal grains are coarsened, an initial heating step of heating at the solution treatment temperature for 10 minutes or more, and a slow cooling step of gradually cooling the heated Fe-based alloy to a temperature range of 300 to 1000 ° C. It can also be produced by a solution treatment comprising a reheating step of reheating and holding the slowly cooled Fe-based alloy. The heat pattern during the heat treatment is shown in FIG.
The initial heating step and the reheating step are preferably performed at 1100 to 1300 ° C, more preferably the lower limit is 1200 ° C and the upper limit is 1250 ° C.
In the gradual cooling after the initial heating step, the cooling rate is desirably 500 ° C./hour or less, and more desirably 10 to 50 ° C./hour.
The FCC phase that precipitates with slow cooling exhibits a pinning effect, but in the reheating step, the pinning effect is reduced, resulting in rapid crystal grain growth. When the cooling rate exceeds 500 ° C./hour, the effect of coarsening cannot be obtained due to a decrease in the FCC phase precipitation amount.
In slow cooling, it may be slow cooled to any temperature of 300 to 1000 ° C., and the cooling rate thereafter is not particularly limited. Moreover, after slow cooling, you may transfer to a reheating process immediately.
再加熱後の冷却速度は200℃/秒以上が望ましく、500℃/秒以上が一層望ましい。また、冷却方法も上記同様に、水冷又は空冷により行うことができる。 The cooling rate after reheating is desirably 200 ° C./second or more, and more desirably 500 ° C./second or more. Moreover, the cooling method can also be performed by water cooling or air cooling similarly to the above.
熱処理の繰り返しについて
結晶粒成長を促進することを目的として、徐冷工程及び再加熱工程を繰り返すこともできるが、その場合の徐冷、再加熱及び再加熱後の冷却時には、上記と同じ条件とすることが望ましい。
Repetition of heat treatment For the purpose of promoting crystal grain growth, the slow cooling step and the reheating step can be repeated. It is desirable to do.
NiAlなどの析出によるB2相析出による析出強化作用を得る観点から、溶体化処理後は更に100〜350℃で時効処理を行うのが望ましく、時効処理温度の下限を150℃、上限を250℃とするのが一層望ましい。時効処理時間は組成及び温度により異なるが、5分間以上であるのが望ましい。時効処理時間が5分間未満では効果が不十分であり、一方、長過ぎると(例えば数百時間であると)延性が低下する。同様の理由で、時効処理時間の下限を30分間、上限を24時間とするのが一層望ましい。 From the viewpoint of obtaining a precipitation strengthening effect by precipitation of B2 phase due to precipitation of NiAl or the like, it is desirable to further perform aging treatment at 100 to 350 ° C. after the solution treatment, and the lower limit of the aging treatment temperature is 150 ° C. and the upper limit is 250 ° C. It is more desirable to do so. The aging treatment time varies depending on the composition and temperature, but is preferably 5 minutes or more. If the aging treatment time is less than 5 minutes, the effect is insufficient. On the other hand, if it is too long (for example, several hundred hours), the ductility is lowered. For the same reason, it is more desirable that the lower limit of the aging treatment time is 30 minutes and the upper limit is 24 hours.
[組織]
本発明のFe基制振合金は、BCC構造の母相(α相)からマルテンサイト変態する。Msより高い温度域ではBCC構造の母相組織を有し、Mfより低い温度域ではマルテンサイト組織を有する。本合金では、マルテンサイト組織における双晶境界の移動により振動を抑制することから、多くのマルテンサイト組織が得られる温度域で使用することが好ましい。また、本合金では、冷却中の析出により生じたFCC構造のγ相が少量存在しても良い。γ相は溶体化後又は再加熱工程後の冷却中に粒界を中心に析出したり、溶体化温度又は再加熱温度において析出したりして延性向上に寄与するが、多量に出現すると制振特性を損なう。延性向上のためにγ相を析出させる場合は、体積分率で10%以下が好ましく、5%以下がより好ましい。マルテンサイト相の結晶構造は2M又は8M、10M、14M等の長周期構造である。
[Organization]
The Fe-based vibration damping alloy of the present invention undergoes martensitic transformation from the parent phase (α phase) of the BCC structure. In the temperature range higher than Ms, it has a matrix structure of the BCC structure, and in the temperature range lower than Mf, it has a martensite structure. In this alloy, since vibration is suppressed by movement of twin boundaries in the martensite structure, the alloy is preferably used in a temperature range where many martensite structures can be obtained. In the present alloy, a small amount of FCC structure γ phase generated by precipitation during cooling may be present. The γ phase precipitates mainly at the grain boundaries during cooling after the solution treatment or after the reheating step, or contributes to the improvement of ductility by precipitation at the solution treatment temperature or the reheating temperature. The characteristics are damaged. When the γ phase is precipitated to improve ductility, the volume fraction is preferably 10% or less, and more preferably 5% or less. The crystal structure of the martensite phase is a long-period structure such as 2M, 8M, 10M, or 14M.
使用温度との関係
本発明のFe基制振合金は、室温においてマルテンサイト組織を示す。本発明の使用温度域としては、室温からマルテンサイト組織を示す温度範囲において、制振合金として使用することができる。
Relationship with service temperature The Fe-based vibration damping alloy of the present invention exhibits a martensitic structure at room temperature. As a use temperature range of this invention, it can be used as a damping alloy in the temperature range which shows a martensitic structure from room temperature.
B2相の説明
本発明のFe基制振合金では、溶体化処理後の時効処理時に規則相の一つであるB2相が析出する。B2相は高い析出強化作用を示すことから、マルテンサイト相又はBCC相中に、微細なB2相が分散した組織を呈することが望ましい。
Description of B2 Phase In the Fe-based vibration damping alloy of the present invention, the B2 phase, which is one of the ordered phases, precipitates during the aging treatment after the solution treatment. Since the B2 phase exhibits a high precipitation strengthening action, it is desirable to exhibit a structure in which fine B2 phases are dispersed in the martensite phase or the BCC phase.
[Fe基制振合金からなる部材]
Fe基制振合金は熱間加工性及び冷間加工性に富むことから、棒や板等の形状に容易に成形加工することができる。
[Member made of Fe-based damping alloy]
Since the Fe-based damping alloy is rich in hot workability and cold workability, it can be easily formed into shapes such as bars and plates.
Fe基制振合金からなる棒材は、平均結晶粒径davが板材の半径R以上であるのが好ましく、dav≧2Rであるのがより好ましい。dav≧2Rの条件を満たす棒材は、粒界が竹の節のように位置する構造となり、結晶粒間の拘束力が低減されるので、優れた制振特性を発揮する。
dav≧R又はdav≧2Rの条件を満たしても、結晶粒には粒径分布があるので、半径R未満の粒径dを有する結晶粒も存在する。より良好な制振特性を有するFe基制振合金とするために、結晶粒径dが半径R以上の領域が棒材の全長の30%以上であるのが好ましく、60%以上であるのがより好ましい。
The rod material made of the Fe-based damping alloy preferably has an average crystal grain size dav equal to or larger than the radius R of the plate material, and more preferably dav ≧ 2R. A bar material satisfying the condition of dav ≧ 2R has a structure in which the grain boundary is located like a bamboo node, and the restraining force between crystal grains is reduced, so that excellent damping characteristics are exhibited.
Even if the condition of dav ≧ R or dav ≧ 2R is satisfied, since the crystal grains have a particle size distribution, there are crystal grains having a particle size d less than the radius R. In order to obtain an Fe-based damping alloy having better damping characteristics, the region where the crystal grain size d is the radius R or more is preferably 30% or more of the total length of the bar, and 60% or more. More preferred.
Fe基制振合金からなる板材は、平均結晶粒径davが板材の厚さT以上であるのが好ましく、dav≧2Tであるのがより好ましい。このような結晶粒を有する板材は、個々の結晶粒が板材の表面において粒界から解放された状態になっている。dav≧Tを満たす板材は、結晶粒間の拘束力が低減されるので、優れた制振特性を発揮する。
dav≧T又はdav≧2Tの条件を満たしても、結晶粒には粒径分布があるので、厚さT未満の粒径dを有する結晶粒も存在する。より良好な制振特性を有するFe基制振合金とするために、結晶粒径dが厚さT以上の領域が板材の全面積の30%以上であるのが好ましく、60%以上であるのがより好ましい。
Fe基制振合金からなる棒材及び板材は、その制振特性を利用して旋盤、フライス盤等の工作機械や、各種ポンプ、モーター、コンプレッサー等の産業用機器等に適用することができる。
The plate material made of the Fe-based damping alloy preferably has an average crystal grain size dav equal to or greater than the thickness T of the plate material, and more preferably dav ≧ 2T. The plate material having such crystal grains is in a state where individual crystal grains are released from the grain boundaries on the surface of the plate material. A plate material satisfying dv ≧ T exhibits excellent vibration damping characteristics because the restraining force between crystal grains is reduced.
Even if the condition of dav ≧ T or dav ≧ 2T is satisfied, since the crystal grains have a particle size distribution, there are also crystal grains having a particle size d less than the thickness T. In order to obtain an Fe-based damping alloy having better damping characteristics, the region where the crystal grain size d is equal to or greater than the thickness T is preferably 30% or more of the total area of the plate material, and more than 60%. Is more preferable.
Bars and plates made of Fe-based damping alloys can be applied to machine tools such as lathes and milling machines, and industrial equipment such as various pumps, motors, and compressors by utilizing the damping characteristics.
(実施例1)
表1に、供試材として用意した本発明の成分範囲になる発明鋼と、本発明の成分範囲を外れた比較鋼の化学組成(残部Fe及びその他の不可避不純物)を示す。
供試材は、VIM(vacuum induction melting)で溶製し、熱処理に供した。
熱処理は、図1に示すパターンで行い、初期加熱及び再加熱条件ともに1200℃で1時間の等温保持とした。徐冷時の冷却速度及びその後の昇温速度はそれぞれ、25℃/時間及び50℃/時間とし、冷却から加熱に転じる温度を900℃とした。再加熱後は水冷による冷却を行った。また、これらの熱処理の後、200℃にて6時間の時効処理を行った。
発明合金においては、いずれも徐冷時にFCC相が母相のBCC相中に析出し、これらはその後の昇温過程において再固溶した。このため、これらの合金においては、いずれも著しい結晶粒成長が生じており、G.S.No.−7.5〜−7.0の粗大な結晶粒が観察された。
Example 1
Table 1 shows the chemical compositions (remainder Fe and other inevitable impurities) of the inventive steel prepared as the test material and within the component range of the present invention, and the comparative steel outside the component range of the present invention.
The specimen was melted by VIM (vacuum induction melting) and subjected to heat treatment.
The heat treatment was performed in the pattern shown in FIG. 1, and the initial heating and the reheating conditions were maintained at 1200 ° C. for 1 hour. The cooling rate at the time of slow cooling and the subsequent heating rate were 25 ° C./hour and 50 ° C./hour, respectively, and the temperature at which the cooling was changed to heating was 900 ° C. After reheating, cooling by water cooling was performed. Further, after these heat treatments, an aging treatment was performed at 200 ° C. for 6 hours.
In each of the alloys according to the invention, the FCC phase was precipitated in the BCC phase as the parent phase during slow cooling, and these were re-dissolved in the subsequent heating process. For this reason, in these alloys, remarkable crystal grain growth has occurred. S. No. Coarse crystal grains of -7.5 to -7.0 were observed.
各供試材の損失係数をJIS G 0602「制振鋼板の振動減衰特性試験方法」の片端固定打撃試験法で、室温にて測定し、その結果を表1に示した。
発明合金は総じて比較合金よりも高い損失係数を示した。
The loss factor of each test material was measured at room temperature by the one-end fixed impact test method of JIS G 0602 “Testing method of vibration damping characteristics of damping steel plate”. The results are shown in Table 1.
The inventive alloys generally showed higher loss factors than the comparative alloys.
組織評価
図2に、図1の条件にて熱処理した発明合金2の光学顕微鏡像を示す。試料全面においてマルテンサイト組織が観察され、主な使用温度域である室温で熱弾性型マルテンサイト組織を示すことが確認された。また、粒界において析出したFCC相が観察され、その面分率は約3%であった。同合金の損失係数に相当するtanδを、粘弾性測定装置(DMS)を用いた粘弾性測定により評価した。引張モードで歪振幅1.0×10−4、2.0×10−4及び4.0×10−4、周波数1Hzの条件で行い、室温から−150℃まで冷却した後、200℃まで加熱して測定した。測定結果を図3に示す。tanδは−150〜200℃の範囲で高い値を示していることから、この温度範囲において本発明の合金を制振合金として使用し得る。
Structure Evaluation FIG. 2 shows an optical microscope image of Invention Alloy 2 heat-treated under the conditions of FIG. A martensitic structure was observed on the entire surface of the sample, and it was confirmed that a thermoelastic martensitic structure was exhibited at room temperature, which is the main operating temperature range. Further, FCC phases precipitated at the grain boundaries were observed, and the area fraction was about 3%. Tan δ corresponding to the loss factor of the alloy was evaluated by viscoelasticity measurement using a viscoelasticity measuring device (DMS). Performed in tension mode under conditions of strain amplitude 1.0 × 10 −4 , 2.0 × 10 −4 and 4.0 × 10 −4 , frequency 1 Hz, cooled from room temperature to −150 ° C. and then heated to 200 ° C. And measured. The measurement results are shown in FIG. Since tan δ shows a high value in the range of −150 to 200 ° C., the alloy of the present invention can be used as a damping alloy in this temperature range.
(実施例2)
実施例1にて作製した発明合金2の組成から、Feの一部を表2に示す元素に(第5成分)に置換した組成に変更した以外は実施例1と同様の方法で各Fe基合金を作製した。これらの合金の結晶粒度番号および損失係数を実施例1と同様にして測定し、表2に示した。Si、Ti、V、Cr、Co、Cu、Mo、W、B、C等の元素が加えられて耐食性、強度、延性等が改善されたFe基合金は、いずれも発明合金1〜4同様に著しい結晶粒成長を示し、高い損失係数を示した。
(Example 2)
Each Fe group was prepared in the same manner as in Example 1 except that the composition of Invention Alloy 2 produced in Example 1 was changed to a composition in which a part of Fe was replaced with the elements shown in Table 2 (fifth component). An alloy was made. The grain size numbers and loss factors of these alloys were measured in the same manner as in Example 1 and are shown in Table 2. Fe-based alloys whose elements such as Si, Ti, V, Cr, Co, Cu, Mo, W, B, and C have been added to improve corrosion resistance, strength, ductility, and the like are all the same as in invention alloys 1 to 4. Remarkable grain growth and high loss factor.
(実施例3)
図4は、発明合金2に対して図1の熱処理を行った場合の、徐冷工程の最終温度と結晶粒径の関係を示した図である。図1の熱処理を行うことにより、著しい粗粒化が可能となった。
(Example 3)
FIG. 4 is a graph showing the relationship between the final temperature of the slow cooling step and the crystal grain size when the heat treatment of FIG. By performing the heat treatment of FIG. 1, remarkable coarsening is possible.
図5は、発明合金2に対して図1の熱処理を行い、徐冷工程の最終温度を900℃とした試料の振動減衰特性試験結果である。図中には比較のため、固溶化温度及び固溶化時間を変化させて、結晶粒度番号2程度に調整した場合の損失係数も同様に示す。図1の条件で粗粒化することによって、制振特性が向上し、制振合金としての応用が可能となっていることが明らかである。特に100Hz以下の周波数域でより優れた結果を示した。 FIG. 5 shows the vibration damping characteristic test result of a sample obtained by subjecting the invention alloy 2 to the heat treatment of FIG. 1 and setting the final temperature of the slow cooling step to 900 ° C. In the figure, for comparison, the loss coefficient when the solution temperature and the solution time are changed to be adjusted to about crystal grain size number 2 is also shown. It is clear that the coarsening under the conditions shown in FIG. 1 improves the damping characteristics and enables application as a damping alloy. In particular, more excellent results were shown in a frequency range of 100 Hz or less.
(実施例4)
実施例1にて作製した発明合金1〜4に対して、室温にて引張試験を行った。試験結果を表3に示す。いずれも約650〜750MPaの引張強さを示し、制振合金としては優れた強度特性を有することが確認された。本合金では時効によってB2相が析出しており、その析出強化作用によって優れた強度が得られた。
Example 4
A tensile test was performed on the inventive alloys 1 to 4 produced in Example 1 at room temperature. The test results are shown in Table 3. All showed tensile strength of about 650-750 MPa, and it was confirmed that it has the outstanding strength characteristic as a damping alloy. In this alloy, the B2 phase was precipitated by aging, and excellent strength was obtained by the precipitation strengthening action.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014039601A JP6308424B2 (en) | 2014-02-28 | 2014-02-28 | Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014039601A JP6308424B2 (en) | 2014-02-28 | 2014-02-28 | Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015163725A JP2015163725A (en) | 2015-09-10 |
JP6308424B2 true JP6308424B2 (en) | 2018-04-11 |
Family
ID=54186749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014039601A Active JP6308424B2 (en) | 2014-02-28 | 2014-02-28 | Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6308424B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047787A1 (en) | 2016-09-06 | 2018-03-15 | 国立大学法人東北大学 | Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME |
CN108179471B (en) * | 2018-01-10 | 2019-10-18 | 厦门大学 | A kind of ferrimanganic aluminium base single crystal alloy |
WO2020064127A1 (en) * | 2018-09-28 | 2020-04-02 | Thyssenkrupp Steel Europe Ag | Shape-memory alloy, flat steel product made therefrom with pseudo-elastic properties, and method for producing such a flat steel product |
CN110724882A (en) * | 2019-10-21 | 2020-01-24 | 上海材料研究所 | Fe-Mn-Si-Ni-Cu series elastic-plastic damping steel and manufacturing method and application thereof |
CN110747403B (en) * | 2019-10-29 | 2021-01-01 | 北京汽车集团有限公司 | Fatigue-resistant rivet and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2867641B2 (en) * | 1990-07-02 | 1999-03-08 | 三井造船株式会社 | Damping alloy |
JP2867640B2 (en) * | 1990-07-02 | 1999-03-08 | 三井造船株式会社 | Damping alloy |
EP0574582B1 (en) * | 1991-12-26 | 1998-03-25 | Mitsui Engineering and Shipbuilding Co, Ltd. | Damping alloy |
JPH06264161A (en) * | 1992-10-07 | 1994-09-20 | Yasubumi Furuya | Metallic composite material having improved strength and vibration-damping property |
EP2489752B1 (en) * | 2009-10-14 | 2016-12-14 | Japan Science And Technology Agency | Ferrous shape memory alloy and production method therefor |
WO2015099221A1 (en) * | 2013-12-26 | 2015-07-02 | 주식회사 포스코 | Steel sheet having high strength and low density and method of manufacturing same |
-
2014
- 2014-02-28 JP JP2014039601A patent/JP6308424B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015163725A (en) | 2015-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5065904B2 (en) | Iron-based alloy having shape memory and superelasticity and method for producing the same | |
US11118255B2 (en) | Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same | |
JP5215855B2 (en) | Fe-based alloy and manufacturing method thereof | |
JP6308424B2 (en) | Fe-based damping alloy, method for producing the same, and Fe-based damping alloy material | |
CN104136645B (en) | The excellent high-strength stainless steel wire of resistance to heat distorsion, high-strength spring and manufacture method thereof | |
JP5005834B2 (en) | Fe-based shape memory alloy and method for producing the same | |
CN102216480B (en) | High-hardness constant-modulus alloy insensitive to magnetism, process for producing same, balance spring, mechanical driving device, and watch | |
JPH06511287A (en) | Precipitation hardening martensitic stainless steel | |
US20150147225A1 (en) | Beta-type titanium alloy having low elastic modulus and high strength | |
US11959161B2 (en) | Copper-based alloy material, production method therefor, and members or parts made of copper-based alloy material | |
KR102054735B1 (en) | Transformation Induced Plasticity High Entropy Alloy and Manufacturing Method for the Same | |
WO2018047787A1 (en) | Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME | |
JP6480446B2 (en) | Non-oriented electrical steel slab or electrical steel sheet, parts manufactured therefrom, and method for producing non-directional electrical steel slab or electrical steel sheet | |
Liang et al. | Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5 wt% Si alloy sheet | |
JP2005298952A (en) | Damping material and its production method | |
WO2014157146A1 (en) | Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same | |
JP3907177B2 (en) | Fe-based shape memory alloy and manufacturing method thereof | |
JP2000017395A (en) | Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION | |
JP6812460B2 (en) | High-strength low thermal expansion alloy | |
JP2015120949A5 (en) | ||
JPH036354A (en) | Damping alloy having high hardness and high damping capacity and its manufacture | |
JP5671674B2 (en) | Manufacturing method of titanium damping alloy | |
JP2002105561A (en) | Low thermal expansion alloy | |
JPH05295498A (en) | Manufacture of ni-ti superelastic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6308424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |