JP6308010B2 - Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element - Google Patents

Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element Download PDF

Info

Publication number
JP6308010B2
JP6308010B2 JP2014101994A JP2014101994A JP6308010B2 JP 6308010 B2 JP6308010 B2 JP 6308010B2 JP 2014101994 A JP2014101994 A JP 2014101994A JP 2014101994 A JP2014101994 A JP 2014101994A JP 6308010 B2 JP6308010 B2 JP 6308010B2
Authority
JP
Japan
Prior art keywords
electrode
crystal substrate
ferroelectric crystal
divided
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014101994A
Other languages
Japanese (ja)
Other versions
JP2015219335A (en
Inventor
和哉 井上
和哉 井上
徳田 勝彦
勝彦 徳田
守 久光
守 久光
一智 門倉
一智 門倉
亮祐 西
亮祐 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014101994A priority Critical patent/JP6308010B2/en
Publication of JP2015219335A publication Critical patent/JP2015219335A/en
Application granted granted Critical
Publication of JP6308010B2 publication Critical patent/JP6308010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、強誘電体結晶基板を用いた周期分極反転用電極、周期分極反転構造の形成方法及び周期分極反転素子に関する。   The present invention relates to a periodic polarization reversal electrode using a ferroelectric crystal substrate, a method of forming a periodic polarization reversal structure, and a periodic polarization reversal element.

所望の波長のレーザ光を得るための波長変換や空間光変調などの用途に、強誘電体結晶基板の内部に分極方向が周期的に反転する周期分極反転構造を形成した周期分極反転素子が用いられている。例えば、入射するレーザ光と擬似位相整合することによって、周期分極反転素子は2次高調波である波長のレーザ光を出力することができる。このため、周期分極反転素子は、例えば擬似位相整合(QPM)型の波長変換素子などとして使用される。   For applications such as wavelength conversion and spatial light modulation to obtain laser light of the desired wavelength, a periodically poled device with a periodically poled structure in which the polarization direction is periodically reversed is used inside the ferroelectric crystal substrate. It has been. For example, the periodic polarization reversal element can output laser light having a wavelength that is a second harmonic by quasi-phase matching with incident laser light. For this reason, the periodic polarization reversal element is used, for example, as a quasi phase matching (QPM) type wavelength conversion element.

周期分極反転構造の形成には、強誘電体結晶基板の表面に一定の間隔で配置した周期分極反転用電極に電圧を印加する電圧印加方法などが用いられる。例えば、強誘電体結晶基板の分極方向に垂直な+Z面に周期的に配置したストライプ状電極と、強誘電体結晶基板の−Z面に一様に配置した平面電極との間に所定の電圧を印加する。これにより、ストライプ状電極の直下に分極反転が生じ、強誘電体結晶基板の内部に周期分極反転構造が形成される(例えば特許文献1参照。)。   In order to form the periodic polarization reversal structure, a voltage application method for applying a voltage to the periodic polarization reversal electrodes arranged at regular intervals on the surface of the ferroelectric crystal substrate is used. For example, a predetermined voltage is applied between a striped electrode periodically arranged on the + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate and a planar electrode uniformly arranged on the −Z plane of the ferroelectric crystal substrate. Apply. As a result, polarization inversion occurs immediately below the stripe electrode, and a periodic polarization inversion structure is formed inside the ferroelectric crystal substrate (see, for example, Patent Document 1).

特開2000−147584号公報JP 2000-147484 A

しかしながら、強誘電体結晶基板が大型化して平面電極の面積が増大した場合には、平面電極への電圧印加時に強誘電体結晶基板内に生じる電界の面内分布にバラツキが発生する。その結果、周期分極反転構造が面内で不均一になるという問題があった。   However, when the ferroelectric crystal substrate is increased in size and the area of the planar electrode is increased, variation occurs in the in-plane distribution of the electric field generated in the ferroelectric crystal substrate when a voltage is applied to the planar electrode. As a result, there has been a problem that the periodically poled structure becomes non-uniform in the plane.

上記問題点に鑑み、本発明は、強誘電体結晶基板の内部に均一な周期の分極反転構造を形成できる周期分極反転用電極、周期分極反転構造の形成方法及び周期分極反転素子を提供することを目的とする。   In view of the above problems, the present invention provides a periodic polarization reversal electrode capable of forming a polarization reversal structure with a uniform period inside a ferroelectric crystal substrate, a method for forming a periodic polarization reversal structure, and a periodic polarization reversal element. With the goal.

本発明の一態様によれば、強誘電体結晶基板の内部に分極方向が周期的に反転する周期分極反転構造を形成するための周期分極反転用電極であって、(ア)強誘電体結晶基板の分極方向と垂直な+Z面上に配置され、電気的に相互に接続され且つ周期的に互いに平行に延伸するストライプ状の複数の反転用電極を有する表面電極と、(イ)+Z面と対向する強誘電体結晶基板の−Z面上に配置され、+Z面から見て反転用電極の延伸する延伸方向に対して斜めに延伸する分割領域によって複数の領域に分割された裏面電極とを備え、分割領域によって分割された領域間の延伸方向に沿った距離が、周期分極反転構造を形成する電圧を表面電極と裏面電極との間に印加した時に裏面電極が配置されていない領域において強誘電体結晶基板の内部で抗電界以上の電界が生じる距離よりも短く設定され、表面電極との間で裏面電極の分割された複数の領域それぞれに独立して電圧が印加されて、周期分極反転構造が形成される周期分極反転用電極が提供される。 According to one aspect of the present invention, there is provided a periodic polarization reversal electrode for forming a periodic polarization reversal structure in which a polarization direction is periodically reversed inside a ferroelectric crystal substrate, comprising: (a) a ferroelectric crystal A surface electrode having a plurality of stripe-like inversion electrodes arranged on the + Z plane perpendicular to the polarization direction of the substrate, electrically connected to each other, and periodically extending in parallel with each other; A back electrode that is disposed on the -Z plane of the opposing ferroelectric crystal substrate and is divided into a plurality of regions by a divided region that extends obliquely with respect to the extending direction in which the inversion electrode extends as viewed from the + Z surface; The distance along the extending direction between the regions divided by the divided regions is strong in a region where the back electrode is not arranged when a voltage for forming a periodically poled structure is applied between the front electrode and the back electrode. Inside of dielectric crystal substrate Is set to be shorter than the distance coercive field higher than the electric occurs periodically independently voltage is applied to each of the plurality of regions divided in the back electrode with the surface electrodes, periodically poled structure is formed polarized An inversion electrode is provided.

本発明の他の態様によれば、強誘電体結晶基板の内部に分極方向が周期的に反転する周期分極反転構造を形成する方法であって、(ア)電気的に相互に接続され且つ周期的に互いに平行に延伸するストライプ状の複数の反転用電極を有する表面電極を、強誘電体結晶基板の分極方向と垂直な+Z面上に配置するステップと、(イ)+Z面から見て反転用電極の延伸する延伸方向に対して斜めに延伸する分割領域によって複数の領域に分割された
裏面電極を、+Z面と対向する強誘電体結晶基板の−Z面上に配置するステップと、(ウ)表面電極との間で裏面電極の分割された複数の領域それぞれに独立して電圧を印加して、複数の反転用電極の下方の強誘電体結晶基板の内部に分極反転構造を形成するステップとを含み、分割領域によって分割された領域間の延伸方向に沿った距離が、電圧を印加した時に裏面電極が配置されていない領域において強誘電体結晶基板の内部で抗電界以上の電界が生じる距離よりも短く設定されている周期分極反転構造の形成方法が提供される。
According to another aspect of the present invention, there is provided a method of forming a periodic polarization reversal structure in which a polarization direction is periodically reversed inside a ferroelectric crystal substrate, wherein (a) the electrodes are electrically connected to each other and have a periodicity. A step of disposing a surface electrode having a plurality of stripe-shaped inversion electrodes extending parallel to each other on the + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate, and (b) inversion as viewed from the + Z plane. Disposing a back electrode divided into a plurality of regions by a divided region extending obliquely with respect to the extending direction of the electrode for extending on the −Z plane of the ferroelectric crystal substrate facing the + Z plane; C) A voltage is independently applied to each of the plurality of divided regions of the back electrode between the surface electrode and a polarization inversion structure is formed inside the ferroelectric crystal substrate below the plurality of inversion electrodes. and a step seen including, minute by the divided region Distance along the extending direction between the regions is set shorter than the internal distance of the coercive field or electric field occurs in the ferroelectric crystal substrate in a region where the back electrode not arranged when a voltage is applied A method for forming a periodically poled structure is provided.

本発明の更に他の態様によれば、強誘電体結晶基板を備え、強誘電体結晶基板の内部に、強誘電体結晶基板の分極方向と垂直な+Z面から見て周期的に互いに平行に延伸するストライプ状の複数の分極反転領域が形成され、+Z面の近傍において複数の分極反転領域のそれぞれが延伸方向に連続して形成され、+Z面と対向する強誘電体結晶基板の−Z面の近傍において複数の分極反転領域のうちの少なくともいくつかが、+Z面の近傍において延伸方向に連続して形成された領域と対向する領域において、分極反転されていない領域によって分割されている周期分極反転素子が提供される。 According to yet another aspect of the present invention, a ferroelectric crystal substrate is provided, and the ferroelectric crystal substrate is periodically parallel to each other as viewed from the + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate. A plurality of striped domain-inverted regions are formed to extend, each of the plurality of domain-inverted regions is formed continuously in the extending direction in the vicinity of the + Z plane, and the −Z plane of the ferroelectric crystal substrate facing the + Z plane , A period in which at least some of the plurality of domain-inverted regions are divided by regions that are not domain-inverted in a region facing the region formed continuously in the stretching direction in the vicinity of the + Z plane . A polarization reversal element is provided.

本発明によれば、強誘電体結晶基板の内部に均一な周期の分極反転構造を形成できる周期分極反転用電極、周期分極反転構造の形成方法及び周期分極反転素子を提供できる。   According to the present invention, it is possible to provide a periodic polarization reversal electrode, a method of forming a periodic polarization reversal structure, and a periodic polarization reversal element that can form a polarization reversal structure having a uniform period inside a ferroelectric crystal substrate.

本発明の実施形態に係る周期分極反転用電極の構成を示す模式的な斜視図であり、図1(a)は全体を示し、図1(b)は裏面電極を示す。It is a typical perspective view which shows the structure of the electrode for periodic polarization inversion which concerns on embodiment of this invention, Fig.1 (a) shows the whole and FIG.1 (b) shows a back surface electrode. 本発明の実施形態に係る周期分極反転用電極の構成を示す模式図であり、図2(a)は平面図、図2(b)は図2(a)のII−II方向に沿った断面図である。It is a schematic diagram which shows the structure of the electrode for periodic polarization inversion concerning embodiment of this invention, Fig.2 (a) is a top view, FIG.2 (b) is the cross section along the II-II direction of Fig.2 (a). FIG. 分極反転構造が形成される領域を示す模式図であり、図3(a)は平面図、図3(b)は図3(a)のIII−III方向に沿った断面図である。It is a schematic diagram which shows the area | region where a polarization inversion structure is formed, FIG. 3 (a) is a top view, FIG.3 (b) is sectional drawing along the III-III direction of Fig.3 (a). 本発明の実施形態に係る周期分極反転用電極を用いた分極反転後の状態を示す写真である。It is a photograph which shows the state after polarization reversal using the electrode for periodic polarization reversal which concerns on embodiment of this invention. 本発明のその他の実施形態に係る周期分極反転用電極の構成を示す模式的な平面図である。It is a typical top view which shows the structure of the electrode for periodic polarization inversion which concerns on other embodiment of this invention.

図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る周期分極反転用電極10は、強誘電体結晶基板20の内部に分極方向が周期的に反転する周期分極反転構造を形成するための周期分極反転用電極である。周期分極反転用電極10は、図1(a)に示すように、強誘電体結晶基板20の分極方向と垂直な+Z面21上に配置された表面電極11と、+Z面21と対向する強誘電体結晶基板20の−Z面22上に配置された裏面電極12とを備える。   The periodic polarization reversal electrode 10 according to the embodiment of the present invention is a periodic polarization reversal electrode for forming a periodic polarization reversal structure in which the polarization direction is periodically reversed inside the ferroelectric crystal substrate 20. As shown in FIG. 1A, the periodic polarization reversal electrode 10 includes a surface electrode 11 disposed on a + Z plane 21 perpendicular to the polarization direction of the ferroelectric crystal substrate 20, and a strong electrode facing the + Z plane 21. And the back electrode 12 disposed on the −Z surface 22 of the dielectric crystal substrate 20.

表面電極11は、電気的に相互に接続され且つ周期的に互いに平行に延伸するストライプ状の複数の反転用電極111を有する。反転用電極111の延伸する方向を、以下において「延伸方向」という。図1(a)に示した表面電極11は梯子形状であり、反転用電極111の両端に給電部112が配置されている。複数の反転用電極111は、給電部112によって電気的に接続されている。   The surface electrode 11 has a plurality of stripe-shaped inversion electrodes 111 that are electrically connected to each other and periodically extend in parallel with each other. The extending direction of the reversal electrode 111 is hereinafter referred to as “stretching direction”. The surface electrode 11 shown in FIG. 1A has a ladder shape, and power feeding portions 112 are disposed at both ends of the inversion electrode 111. The plurality of inversion electrodes 111 are electrically connected by the power feeding unit 112.

強誘電体結晶基板20の反転用電極111直下の領域が分極反転する。このため、反転用電極111の幅w、及び隣接する反転用電極111間の間隔dは、強誘電体結晶基板20の分極反転させる領域に応じて設定される。例えば、周期分極反転素子を擬似位相整合(QPM)型の波長変換素子として使用する場合は、波長変換素子に入射されるレーザ光の波長及び出力されるレーザ光の波長に応じて、強誘電体結晶基板20の分極反転させる領域の幅w及び間隔dが適宜設定される。   The region immediately below the inversion electrode 111 of the ferroelectric crystal substrate 20 undergoes polarization inversion. For this reason, the width w of the inversion electrode 111 and the interval d between the adjacent inversion electrodes 111 are set according to the region of the ferroelectric crystal substrate 20 where the polarization is inverted. For example, when a periodically poled element is used as a quasi-phase matching (QPM) type wavelength conversion element, a ferroelectric material is used depending on the wavelength of the laser light incident on the wavelength conversion element and the wavelength of the output laser light. The width w and interval d of the region of the crystal substrate 20 where the polarization is inverted are set as appropriate.

裏面電極12は、+Z面21から見て反転用電極111の延伸方向に対して斜めに延伸する分割領域120によって、図1(b)に示すように複数の領域121〜122に分割されている。図2(a)に示すように、分割領域120の延伸する方向と垂直な分割領域120の幅を「幅A」とする。また、反転用電極111の延伸方向と分割領域120の延伸する方向とのなす角度を「角度θ」とする。   The back electrode 12 is divided into a plurality of regions 121 to 122 as shown in FIG. 1B by divided regions 120 extending obliquely with respect to the extending direction of the inversion electrode 111 when viewed from the + Z surface 21. . As shown in FIG. 2A, the width of the divided region 120 perpendicular to the extending direction of the divided region 120 is “width A”. In addition, an angle formed between the extending direction of the inversion electrode 111 and the extending direction of the divided region 120 is defined as “angle θ”.

ここで、分割領域120によって分割された領域121と領域122間の、反転用電極111の延伸方向に沿った間隔を「距離Dy」とする。距離Dyは、Dy=A/sinθで表される。   Here, the distance along the extending direction of the inversion electrode 111 between the region 121 and the region 122 divided by the divided region 120 is defined as “distance Dy”. The distance Dy is expressed as Dy = A / sin θ.

強誘電体結晶基板20の内部に周期分極反転構造を形成するために表面電極11と裏面電極12間に電圧を印加した場合に、裏面電極12の面積が広いほど強誘電体結晶基板内に生じる電界の面内分布はバラツキが大きい。その結果、周期分極反転構造が面内で均一にならず、所望の特性の周期分極反転素子が得られない。   When a voltage is applied between the front electrode 11 and the back electrode 12 in order to form a periodically poled structure inside the ferroelectric crystal substrate 20, the larger the area of the back electrode 12, the more in the ferroelectric crystal substrate. The in-plane distribution of the electric field varies greatly. As a result, the periodically poled structure is not uniform in the plane, and a periodically poled element having desired characteristics cannot be obtained.

しかし、図1(a)、図1(b)に示した周期分極反転用電極10では、裏面電極12が複数の領域121〜122に分割されている。そして、表面電極11との間で裏面電極12の分割された領域121〜122それぞれに独立して電圧が印加される。つまり、電圧が印加される面積が小さい。このため、電界の面内分布のバラツキが抑制される。したがって、強誘電体結晶基板20が大型である場合にも、周期分極反転構造を面内で均一にすることができる。   However, in the periodic polarization inversion electrode 10 shown in FIGS. 1A and 1B, the back electrode 12 is divided into a plurality of regions 121 to 122. A voltage is applied independently to each of the divided regions 121 to 122 of the back electrode 12 between the front electrode 11 and the front electrode 11. That is, the area to which the voltage is applied is small. For this reason, variation in the in-plane distribution of the electric field is suppressed. Therefore, even when the ferroelectric crystal substrate 20 is large, the periodically poled structure can be made uniform in the plane.

上記効果を得るためには、分割領域120の幅Aは、領域121と領域122のいずれかと表面電極11との間に印加電圧Vが印加されたときに、領域121と領域122間を電気的に絶縁できる距離に設定される。つまり、分割領域120の幅Aは、印加電圧Vの大きさに依存する。本発明者らの検討によれば、例えば印加電圧Vが数kVである場合に、分割領域120の幅Aが80μm以上であればよい。   In order to obtain the above effect, the width A of the divided region 120 is such that when the applied voltage V is applied between any one of the region 121 and the region 122 and the surface electrode 11, the region 121 and the region 122 are electrically connected. It is set to a distance that can be insulated. That is, the width A of the divided region 120 depends on the magnitude of the applied voltage V. According to the study by the present inventors, for example, when the applied voltage V is several kV, the width A of the divided region 120 may be 80 μm or more.

一方、分極反転する領域が延伸方向に連続するように、以下のように距離Dyは一定の距離以下に設定される。即ち、印加電圧Vを印加した際に表面電極11と裏面電極12に挟まれた領域を越えて、裏面電極12が配置されていない領域にも分極反転構造が形成される現象を利用する。この現象は、図3(a)、図3(b)にグレーで示した領域Eのように、裏面電極12が配置されていない領域にも、分極の向きを反転させる抗電界以上の電界が発生するために生じる。以下において、延伸方向に反転用電極111の端部よりも外側に形成される分極反転構造の延伸方向に沿った距離を「距離Ly」とする。このとき、Dy≦2×Lyとなるよう距離Dyを設定することによって、分極反転構造が延伸方向に連続する。即ち、領域121と領域122間の距離Dyは、裏面電極12が配置されていない領域において強誘電体結晶基板20の内部で延伸方向に抗電界以上の電界が生じる距離よりも短く設定される。   On the other hand, the distance Dy is set to be equal to or less than a certain distance so that the region where the polarization is reversed continues in the extending direction. That is, a phenomenon is used in which a domain-inverted structure is formed in a region where the back electrode 12 is not disposed beyond the region sandwiched between the front electrode 11 and the back electrode 12 when the applied voltage V is applied. This phenomenon is caused by an electric field higher than the coercive electric field that reverses the direction of polarization, even in a region where the back electrode 12 is not disposed, as in the region E shown in gray in FIGS. 3 (a) and 3 (b). It happens to occur. Hereinafter, the distance along the extending direction of the domain-inverted structure formed outside the end portion of the inversion electrode 111 in the extending direction is referred to as “distance Ly”. At this time, by setting the distance Dy to satisfy Dy ≦ 2 × Ly, the domain-inverted structure continues in the stretching direction. That is, the distance Dy between the region 121 and the region 122 is set to be shorter than the distance at which an electric field equal to or higher than the coercive electric field is generated in the extending direction in the ferroelectric crystal substrate 20 in the region where the back electrode 12 is not disposed.

なお、図3(a)に示したように、強誘電体結晶基板20の特にY軸方向において、距離Lyが長い。したがって、図2(a)に示したように、反転用電極111の延伸方向をY軸方向にすることが好ましい。これにより、より確実に分極反転構造を延伸方向に連続させることができる。本発明者らの調査によれば、強誘電体結晶基板20の材料や印加電圧Vなどに依存するが、Y軸方向の距離Lyは数十μm〜数百μmである。   As shown in FIG. 3A, the distance Ly is long in the ferroelectric crystal substrate 20 particularly in the Y-axis direction. Therefore, as shown in FIG. 2A, the extending direction of the inversion electrode 111 is preferably the Y-axis direction. As a result, the domain-inverted structure can be more reliably continued in the stretching direction. According to the investigation by the present inventors, the distance Ly in the Y-axis direction is several tens of μm to several hundreds of μm, depending on the material of the ferroelectric crystal substrate 20 and the applied voltage V.

ただし、−Z面21の近傍では、表面電極11と裏面電極12に挟まれていない領域での分極反転構造の延伸する距離が小さい。このため、図3(b)に示すように、裏面電極12の直上にしか分極反転構造が形成されない。つまり、−Z面21の近傍には分極反転されていない領域Bが残り、この領域Bによって分極反転領域が分割される。しかし、分割領域120の上方に配置されていない分極反転領域では、−Z面21の近傍においても分極反転領域は連続する。   However, in the vicinity of the −Z plane 21, the extending distance of the domain-inverted structure is small in a region not sandwiched between the front electrode 11 and the back electrode 12. For this reason, as shown in FIG. 3B, the domain-inverted structure is formed only directly above the back electrode 12. That is, a region B that is not polarization-inverted remains in the vicinity of the −Z plane 21, and the domain-inverted region is divided by this region B. However, in the domain-inverted region that is not arranged above the divided region 120, the domain-inverted region continues even in the vicinity of the -Z plane 21.

なお、Dy=A/sinθの関係から、距離Dyを小さくするために角度θは大きいほど好ましい。しかし、θが90度であると領域121〜122の面積が大きくなり、電界の面内分布のバラツキを抑制する効果が得られない。一方、角度θが0度であると、分割領域120の幅Aが分極反転構造の周期よりも一般的に長いために、分割領域120が形成された領域で分極反転されない領域の幅が広くなる。つまり、周期分極反転構造が連続して形成されない。   From the relationship of Dy = A / sin θ, the angle θ is preferably as large as possible in order to reduce the distance Dy. However, if θ is 90 degrees, the areas of the regions 121 to 122 become large, and the effect of suppressing variation in the in-plane distribution of the electric field cannot be obtained. On the other hand, when the angle θ is 0 degree, since the width A of the divided region 120 is generally longer than the period of the domain-inverted structure, the region where the domain is not inverted in the region where the divided region 120 is formed becomes wider. . That is, the periodic polarization inversion structure is not continuously formed.

このため、角度θは例えば10度〜80度に設定される。より好ましくは、角度θは30度以上であり、例えば30度〜70度程度である。また、本発明者らの検討によれば、裏面電極12の分割された領域間を電気的に絶縁し、且つ、分極反転構造を連続させるためには、分割領域120の幅Aは80μm〜600μm程度であることが好ましい。   For this reason, the angle θ is set to, for example, 10 degrees to 80 degrees. More preferably, the angle θ is 30 degrees or more, for example, about 30 degrees to 70 degrees. Further, according to the study by the present inventors, in order to electrically insulate the divided regions of the back electrode 12 and make the domain-inverted structure continuous, the width A of the divided region 120 is 80 μm to 600 μm. It is preferable that it is a grade.

ところで、強誘電体結晶基板20は、例えばタンタル酸リチウム(LT)単結晶やニオブ酸リチウム(LN)単結晶などからなる。強誘電体結晶基板20の厚みは、例えば0.4〜1mm程度である。強誘電体結晶基板20の材料及び厚さなどに応じて、印加電圧Vの大きさが設定される。したがって、分割領域120の幅A、角度θは、強誘電体結晶基板20の材料及び厚さに依存する。   By the way, the ferroelectric crystal substrate 20 is made of, for example, a lithium tantalate (LT) single crystal, a lithium niobate (LN) single crystal, or the like. The thickness of the ferroelectric crystal substrate 20 is, for example, about 0.4 to 1 mm. The magnitude of the applied voltage V is set according to the material and thickness of the ferroelectric crystal substrate 20. Therefore, the width A and the angle θ of the divided region 120 depend on the material and thickness of the ferroelectric crystal substrate 20.

強誘電体結晶基板20に採用するタンタル酸リチウム(LiTaO3)単結晶やニオブ酸リチウム(LiNbO3)単結晶は、コングルエント組成(一致溶融組成)又はストイキオメトリ組成(化学量論的組成)のものが用いられる。例えば、タンタル酸リチウムの場合、ストイキオメトリ組成にすることによって、抗電界が10分の1程度になる。つまり、印加電圧Vを10分の1にすることができる。 The lithium tantalate (LiTaO 3 ) single crystal and the lithium niobate (LiNbO 3 ) single crystal used for the ferroelectric crystal substrate 20 have a congruent composition (coincidence melting composition) or stoichiometric composition (stoichiometric composition). Things are used. For example, in the case of lithium tantalate, the coercive electric field is reduced to about 1/10 by using the stoichiometric composition. That is, the applied voltage V can be reduced to 1/10.

また、タンタル酸リチウム単結晶やニオブ酸リチウム単結晶からなる強誘電体結晶基板20に、マグネシウム(Mg)や亜鉛(Zn)、スカンジウム(Sc)、インジウム(In)などが添加されていてもよい。これにより、耐光損傷性を高めることができる。また、ニオブ酸リチウムの場合、Mgを5モル%程度添加することにより、抗電界を4分の1程度に減少することができる。これにより、印加電圧Vを4分の1程度にすることができる。   Further, magnesium (Mg), zinc (Zn), scandium (Sc), indium (In), or the like may be added to the ferroelectric crystal substrate 20 made of lithium tantalate single crystal or lithium niobate single crystal. . Thereby, light damage resistance can be improved. In the case of lithium niobate, the coercive electric field can be reduced to about a quarter by adding about 5 mol% of Mg. Thereby, the applied voltage V can be reduced to about a quarter.

周期分極反転用電極10には、例えばタンタル(Ta)膜やアルミニウム(Al)膜などが採用可能である。他にも、金(Au)膜、銀(Ag)膜、クロム(Cr)膜、銅(Cu)膜、ニッケル(Ni)膜、ニッケルクロム合金(Ni-Cr)膜、パラジウム(Pd)膜、モリブデン(Mo)膜、タングステン(W)膜なども使用可能である。   For example, a tantalum (Ta) film or an aluminum (Al) film can be used for the periodic polarization reversal electrode 10. Besides, gold (Au) film, silver (Ag) film, chromium (Cr) film, copper (Cu) film, nickel (Ni) film, nickel chromium alloy (Ni-Cr) film, palladium (Pd) film, A molybdenum (Mo) film, a tungsten (W) film, or the like can also be used.

表面電極11は、例えば、強誘電体結晶基板20の+Z面21上に形成されたTa膜をフォトリソグラフィ技術とエッチング技術などを用いてパターニングすることにより形成される。   The surface electrode 11 is formed, for example, by patterning a Ta film formed on the + Z surface 21 of the ferroelectric crystal substrate 20 by using a photolithography technique and an etching technique.

裏面電極12には、例えばTa膜やAl膜などの金属膜が採用可能である。例えば、強誘電体結晶基板20の−Z面22上に一様に金属膜を形成した後、フォトリソグラフィ技術とエッチング技術などを用いて分割領域120を形成する。また、リフトオフ法によって分割領域120を形成してもよい。或いは、ダイサーによって分割領域120を形成してもよいが、この場合には強誘電体結晶基板20の−Z面22にダイサーによって削られた溝が形成されやすい。   For the back electrode 12, for example, a metal film such as a Ta film or an Al film can be employed. For example, after a metal film is uniformly formed on the −Z surface 22 of the ferroelectric crystal substrate 20, the divided regions 120 are formed using a photolithography technique and an etching technique. Further, the divided region 120 may be formed by a lift-off method. Alternatively, the divided region 120 may be formed by a dicer. In this case, a groove cut by the dicer is easily formed on the −Z surface 22 of the ferroelectric crystal substrate 20.

以下に、周期分極反転用電極10を用いた分極反転構造の形成について説明する。ここでは、強誘電体結晶基板20としてMgOがドープされたニオブ酸リチウム基板を使用した。また、反転用電極111の延伸方向を、強誘電体結晶基板20のY軸方向とした。つまり、反転用電極111をX軸方向に周期的に配列した。更に、分割領域120の幅Aは80μmとし、Y軸方向と分割領域120の延伸する方向とのなす角度は45度に設定した。   Hereinafter, formation of a domain-inverted structure using the periodic domain-inverted electrode 10 will be described. Here, a lithium niobate substrate doped with MgO was used as the ferroelectric crystal substrate 20. The extending direction of the inversion electrode 111 was set to the Y-axis direction of the ferroelectric crystal substrate 20. That is, the inversion electrodes 111 are periodically arranged in the X-axis direction. Further, the width A of the divided region 120 was 80 μm, and the angle formed by the Y-axis direction and the extending direction of the divided region 120 was set to 45 degrees.

先ず、図1(a)に示したような、反転用電極111と給電部112を有する梯子形状の表面電極11を、強誘電体結晶基板20の+Z面21上に配置する。更に、分割領域120によって複数の領域に分割された裏面電極12を、強誘電体結晶基板20の−Z面22上に配置する。   First, the ladder-shaped surface electrode 11 having the inversion electrode 111 and the power feeding portion 112 as shown in FIG. 1A is disposed on the + Z plane 21 of the ferroelectric crystal substrate 20. Further, the back electrode 12 divided into a plurality of regions by the divided region 120 is disposed on the −Z surface 22 of the ferroelectric crystal substrate 20.

その後、表面電極11との間で裏面電極12の分割された複数の領域それぞれに独立して印加電圧Vを印加して、強誘電体結晶基板20の内部に分極反転構造を形成する。例えば、裏面電極12の分割された複数の領域に印加電圧Vを順次印加する。   Thereafter, an applied voltage V is independently applied to each of the plurality of divided regions of the back electrode 12 between the surface electrode 11 and a polarization inversion structure is formed inside the ferroelectric crystal substrate 20. For example, the applied voltage V is sequentially applied to a plurality of divided regions of the back electrode 12.

即ち、先ず+Z面21上に配置された表面電極11の給電部112と−Z面22上に配置された裏面電極12の領域121間に、印加電圧Vを印加する。これにより、反転用電極111と領域121間に分極反転構造が形成される。このとき、反転用電極111の端部の外側下方に距離Dyの分極反転構造(以下において、「第1の延伸領域」という。)が形成される。   That is, first, an applied voltage V is applied between the power feeding portion 112 of the front surface electrode 11 disposed on the + Z surface 21 and the region 121 of the back surface electrode 12 disposed on the −Z surface 22. Thereby, a domain-inverted structure is formed between the inversion electrode 111 and the region 121. At this time, a domain-inverted structure (hereinafter referred to as “first stretched region”) having a distance Dy is formed below the outer end of the inversion electrode 111.

次いで、表面電極11の給電部112と裏面電極12の領域122間に、印加電圧Vを印加する。これにより、反転用電極111と領域122間に分極反転構造が形成される。このとき、反転用電極111の端部の外側下方に距離Dyの分極反転構造(以下において、「第2の延伸領域」という。)が形成される。   Next, an applied voltage V is applied between the power feeding portion 112 of the front electrode 11 and the region 122 of the back electrode 12. As a result, a domain-inverted structure is formed between the inversion electrode 111 and the region 122. At this time, a domain-inverted structure (hereinafter referred to as “second stretched region”) having a distance Dy is formed below the outer end of the inversion electrode 111.

領域121と領域122を用いて分極反転構造を形成した結果、領域121に電圧印加した際に形成された第1の延伸領域と、領域122に電圧印加した際に形成された第2の延伸領域とが、分割領域120において連結する。その結果、強誘電体結晶基板20内部の少なくとも+Z面21の近傍において、分極反転領域のそれぞれが延伸方向に連続して形成される。   As a result of forming the domain-inverted structure using the region 121 and the region 122, a first stretched region formed when a voltage is applied to the region 121 and a second stretched region formed when a voltage is applied to the region 122 Are connected in the divided region 120. As a result, each of the domain-inverted regions is continuously formed in the extending direction at least in the vicinity of the + Z plane 21 inside the ferroelectric crystal substrate 20.

一方、分割領域120の上方に形成された分極反転領域では、図3(b)に示したように、−Z面22の近傍において分極反転されていない領域Bを含む。隣接する分極反転領域それぞれの分極反転されていない領域をつなぐ仮想線は、分割領域120に沿って延伸する。反転用電極111の延伸方向と分割領域120の延伸する方向とのなす角度を45度に設定したため、この仮想線の延伸する方向と分極反転領域の延伸する方向とのなす角度は、45度である。   On the other hand, the domain-inverted region formed above the divided region 120 includes a region B that is not domain-inverted in the vicinity of the −Z plane 22 as shown in FIG. The imaginary line that connects the non-polarized regions of the adjacent domain-inverted regions extends along the divided region 120. Since the angle formed between the extending direction of the inversion electrode 111 and the extending direction of the divided region 120 is set to 45 degrees, the angle formed between the extending direction of the imaginary line and the extending direction of the domain-inverted region is 45 degrees. is there.

分極反転領域の形成後、強誘電体結晶基板20から表面電極11及び裏面電極12を剥離し、周期分極反転素子が完成する。なお、強誘電体結晶基板20の不要な部分を切断除去することによって、周期分極反転構造が形成された領域のみが残るように周期分極反転素子を成形してもよい。   After the domain-inverted region is formed, the front electrode 11 and the back electrode 12 are peeled from the ferroelectric crystal substrate 20 to complete the periodic domain-inverted element. The periodic polarization reversal element may be formed so that only the region where the periodic polarization reversal structure is formed remains by cutting and removing unnecessary portions of the ferroelectric crystal substrate 20.

上記のように、本発明の実施形態に係る周期分極反転構造の形成方法では、−Z面22近傍に分極反転されていない領域が残る。このため、強誘電体結晶基板20の+Z面21近傍だけを用いる導波路型波長変換素子や導波路型空間光変調器として、上記方法により形成される周期分極反転素子は好適に使用される。   As described above, in the method for forming a periodic polarization reversal structure according to the embodiment of the present invention, a region where the polarization is not reversed remains in the vicinity of the −Z plane 22. For this reason, the periodic polarization inversion element formed by the above method is preferably used as a waveguide type wavelength conversion element or a waveguide type spatial light modulator that uses only the vicinity of the + Z plane 21 of the ferroelectric crystal substrate 20.

図4に、上記の周期分極反転構造の形成方法により試作した周期分極反転素子の例を示す。分極反転構造が、X軸方向に一定の周期で形成されている。なお、図4の中央付近の黒い部分は、分割領域120をダイサーにより形成したことによって強誘電体結晶基板20の−Z面22に溝が形成されていることによる。分割領域120の上方にも、分極反転構造が連続して形成されていることがわかる。   FIG. 4 shows an example of a periodically poled device manufactured by the above-described method of forming a periodically poled structure. The domain-inverted structure is formed with a constant period in the X-axis direction. The black portion in the vicinity of the center in FIG. 4 is due to the formation of the groove on the −Z surface 22 of the ferroelectric crystal substrate 20 by forming the divided region 120 with a dicer. It can be seen that the domain-inverted structure is also continuously formed above the divided region 120.

以上に説明したように、本発明の実施形態に係る周期分極反転用電極10を用いた周期分極反転構造の形成方法では、−Z面22上に配置される裏面電極12を分割して小面積の領域とし、各領域のそれぞれにおいて順次分極反転構造を形成する。このため、電界の面内分布のバラツキが抑制され、大型の強誘電体結晶基板20内に均一な周期で分極反転構造を形成できる。例えば、多チャンネルの空間光変調器や、周期パターン数を多く必要とする大型の波長変換素子などに用いる分極反転構造の形成に、周期分極反転用電極10を好適に用いることができる。   As described above, in the method for forming a periodically poled structure using the periodically poled electrode 10 according to the embodiment of the present invention, the back surface electrode 12 disposed on the −Z plane 22 is divided to have a small area. The domain-inverted structure is sequentially formed in each region. For this reason, variation in the in-plane distribution of the electric field is suppressed, and a domain-inverted structure can be formed in the large ferroelectric crystal substrate 20 with a uniform period. For example, the periodic polarization reversal electrode 10 can be suitably used to form a polarization reversal structure used for a multi-channel spatial light modulator, a large wavelength conversion element that requires a large number of periodic patterns, and the like.

更に、裏面電極12を分割した各領域間の距離Dyが、表面電極11と裏面電極12に挟まれていない領域で反転用電極111の延伸方向に抗電界以上の電界が生じる距離よりも短く設定されている。このため、反転用電極111の一方の端部から他方の端部まで分極反転構造が連続して形成される。   Further, the distance Dy between the regions obtained by dividing the back electrode 12 is set to be shorter than the distance at which an electric field higher than the coercive electric field is generated in the extending direction of the inversion electrode 111 in the region not sandwiched between the front electrode 11 and the back electrode 12. Has been. For this reason, a domain-inverted structure is continuously formed from one end of the inversion electrode 111 to the other end.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

上記では、裏面電極12を2分割する場合を例示的に説明したが、裏面電極12の分割数は、形成する周期分極反転構造の大きさなどに応じて任意に設定可能であり、3分割以上に分割してもよいことはもちろんである。例えば、図5に示すように、分割領域120によって裏面電極12を領域121〜124に4分割してもよい。   In the above description, the case where the back electrode 12 is divided into two has been exemplarily described. However, the number of divisions of the back electrode 12 can be arbitrarily set according to the size of the periodically poled structure to be formed, and is divided into three or more. Of course, it may be divided. For example, as shown in FIG. 5, the back electrode 12 may be divided into four regions 121 to 124 by the divided region 120.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

10…周期分極反転用電極
11…表面電極
12…裏面電極
20…強誘電体結晶基板
21…裏面電極
21…+Z面
22…−Z面
111…反転用電極
112…給電部
120…分割領域
DESCRIPTION OF SYMBOLS 10 ... Periodic polarization reversal electrode 11 ... Front surface electrode 12 ... Back surface electrode 20 ... Ferroelectric crystal substrate 21 ... Back surface electrode 21 ... + Z surface 22 ... -Z surface 111 ... Reversal electrode 112 ... Feed part 120 ... Divided area

Claims (11)

強誘電体結晶基板の内部に分極方向が周期的に反転する周期分極反転構造を形成するための周期分極反転用電極であって、
前記強誘電体結晶基板の分極方向と垂直な+Z面上に配置され、電気的に相互に接続され且つ周期的に互いに平行に延伸するストライプ状の複数の反転用電極を有する表面電極と、
前記+Z面と対向する前記強誘電体結晶基板の−Z面上に配置され、前記+Z面から見て前記反転用電極の延伸する延伸方向に対して斜めに延伸する分割領域によって複数の領域に分割された裏面電極と
を備え、
前記分割領域によって分割された領域間の前記延伸方向に沿った距離が、前記周期分極反転構造を形成する電圧を前記表面電極と前記裏面電極との間に印加した時に前記裏面電極が配置されていない領域において前記強誘電体結晶基板の内部で抗電界以上の電界が生じる距離よりも短く設定され、
前記表面電極との間で前記裏面電極の分割された前記複数の領域それぞれに独立して前記電圧が印加されて、前記周期分極反転構造が形成されることを特徴とする周期分極反転用電極。
A periodic polarization reversal electrode for forming a periodic polarization reversal structure in which a polarization direction is periodically reversed inside a ferroelectric crystal substrate,
A surface electrode having a plurality of stripe-like inversion electrodes arranged on a + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate, electrically connected to each other and periodically extending in parallel with each other;
A plurality of regions are formed by divided regions arranged on the −Z surface of the ferroelectric crystal substrate facing the + Z surface and extending obliquely with respect to the extending direction in which the inversion electrode extends as viewed from the + Z surface. A divided back electrode, and
The distance between the regions divided by the divided regions along the extending direction is such that the back electrode is disposed when a voltage for forming the periodically poled structure is applied between the front electrode and the back electrode. Is set shorter than the distance at which an electric field equal to or higher than the coercive electric field is generated inside the ferroelectric crystal substrate in the non-region,
Said surface electrode independently the voltage to each divided plurality of regions of the back surface electrode is applied between the periodically poled electrode, characterized in that the periodically poled structure is formed.
前記反転用電極が前記強誘電体結晶基板のY軸方向に延伸していることを特徴とする請求項1に記載の周期分極反転用電極。   The periodic polarization reversal electrode according to claim 1, wherein the reversal electrode extends in the Y-axis direction of the ferroelectric crystal substrate. 前記延伸方向と前記分割領域の延伸する方向とのなす角度が30度以上であることを特徴とする請求項1又は2に記載の周期分極反転用電極。   3. The periodic polarization inversion electrode according to claim 1, wherein an angle formed between the extending direction and the extending direction of the divided region is 30 degrees or more. 強誘電体結晶基板の内部に分極方向が周期的に反転する周期分極反転構造を形成する方法であって、
電気的に相互に接続され且つ周期的に互いに平行に延伸するストライプ状の複数の反転用電極を有する表面電極を、前記強誘電体結晶基板の分極方向と垂直な+Z面上に配置するステップと、
前記+Z面から見て前記反転用電極の延伸する延伸方向に対して斜めに延伸する分割領域によって複数の領域に分割された裏面電極を、前記+Z面と対向する前記強誘電体結晶基板の−Z面上に配置するステップと、
前記表面電極との間で前記裏面電極の分割された前記複数の領域それぞれに独立して電圧を印加して、前記複数の反転用電極の下方の前記強誘電体結晶基板の内部に分極反転構造を形成するステップと
を含み、
前記分割領域によって分割された領域間の前記延伸方向に沿った距離が、前記電圧を印加した時に前記裏面電極が配置されていない領域において前記強誘電体結晶基板の内部で抗電界以上の電界が生じる距離よりも短く設定されていることを特徴とする周期分極反転構造の形成方法。
A method of forming a periodically poled structure in which a polarization direction is periodically reversed inside a ferroelectric crystal substrate,
Disposing on the + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate, a surface electrode having a plurality of stripe-like inversion electrodes electrically connected to each other and periodically extending parallel to each other; ,
A back electrode divided into a plurality of regions by a divided region extending obliquely with respect to the extending direction in which the inversion electrode extends as viewed from the + Z plane is a negative electrode of the ferroelectric crystal substrate facing the + Z plane. Placing on the Z plane;
A voltage inversion structure is formed inside the ferroelectric crystal substrate below the plurality of inversion electrodes by applying a voltage independently to each of the plurality of divided regions of the back electrode between the front surface electrodes. look including a step of forming,
The distance along the stretching direction between the regions divided by the divided regions is such that an electric field equal to or greater than the coercive electric field is generated inside the ferroelectric crystal substrate in the region where the back electrode is not disposed when the voltage is applied. A method for forming a periodic domain-inverted structure, characterized in that the period is set to be shorter than a generated distance .
前記反転用電極が前記強誘電体結晶基板のY軸方向に延伸していることを特徴とする請求項に記載の周期分極反転構造の形成方法。 5. The method for forming a periodically poled structure according to claim 4 , wherein the inversion electrode extends in the Y-axis direction of the ferroelectric crystal substrate. 前記延伸方向と前記分割領域の延伸する方向とのなす角度が30度以上であることを特徴とする請求項4又は5に記載の周期分極反転構造の形成方法。 6. The method for forming a periodically poled structure according to claim 4 , wherein an angle formed between the extending direction and the extending direction of the divided regions is 30 degrees or more. 前記裏面電極の分割された前記複数の領域に前記電圧を順次印加することを特徴とする請求項4乃至6のいずれか1項に記載の周期分極反転構造の形成方法。 The method for forming a periodically poled structure according to any one of claims 4 to 6 , wherein the voltage is sequentially applied to the divided regions of the back electrode. 強誘電体結晶基板を備え、
前記強誘電体結晶基板の内部に、前記強誘電体結晶基板の分極方向と垂直な+Z面から見て周期的に互いに平行に延伸するストライプ状の複数の分極反転領域が形成され、
前記+Z面の近傍において、前記複数の分極反転領域のそれぞれが延伸方向に連続して形成され、
前記+Z面と対向する前記強誘電体結晶基板の−Z面の近傍において、前記複数の分極反転領域のうちの少なくともいくつかが、前記+Z面の近傍において前記延伸方向に連続して形成された領域と対向する領域において、分極反転されていない領域によって分割されていることを特徴とする周期分極反転素子。
A ferroelectric crystal substrate;
A plurality of striped domain-inverted regions extending in parallel with each other when viewed from the + Z plane perpendicular to the polarization direction of the ferroelectric crystal substrate are formed inside the ferroelectric crystal substrate,
In the vicinity of the + Z plane, each of the plurality of domain-inverted regions is formed continuously in the stretching direction ,
In the vicinity of the −Z plane of the ferroelectric crystal substrate facing the + Z plane, at least some of the plurality of domain-inverted regions are continuously formed in the stretching direction in the vicinity of the + Z plane. A periodic polarization reversal element characterized in that a region opposite to the region is divided by a region that is not polarization-reversed.
前記分極反転領域が前記強誘電体結晶基板のY軸方向に延伸していることを特徴とする請求項に記載の周期分極反転素子。 The periodic polarization reversal element according to claim 8 , wherein the domain-inverted region extends in a Y-axis direction of the ferroelectric crystal substrate. 前記+Z面から見て、隣接する前記分極反転領域それぞれの前記分極反転されていない領域により分割された位置をつなぐ仮想線の延伸する方向と前記分極反転領域の延伸する方向とのなす角度が30度以上であることを特徴とする請求項8又は9に記載の周期分極反転素子。 When viewed from the + Z plane, the angle formed by the extending direction of the imaginary line connecting the positions divided by the non-polarized regions of each of the adjacent domain-inverted regions and the extending direction of the domain-inverted regions is 30. The periodic polarization reversal element according to claim 8 or 9 , wherein the periodic polarization reversal element is at least. 前記強誘電体結晶基板の前記分極反転されていない領域の幅が前記−Z面から前記+Z面に向かって次第に狭くなり、前記+Z面の近傍において前記分極反転領域が前記延伸方向に連続していることを特徴とする請求項8乃至10のいずれか1項に記載の周期分極反転素子。The width of the non-polarized region of the ferroelectric crystal substrate is gradually narrowed from the −Z plane toward the + Z plane, and the domain-inverted region is continuous in the stretching direction in the vicinity of the + Z plane. The periodic polarization reversal element according to claim 8, wherein the periodic polarization reversal element is provided.
JP2014101994A 2014-05-16 2014-05-16 Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element Active JP6308010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101994A JP6308010B2 (en) 2014-05-16 2014-05-16 Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101994A JP6308010B2 (en) 2014-05-16 2014-05-16 Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element

Publications (2)

Publication Number Publication Date
JP2015219335A JP2015219335A (en) 2015-12-07
JP6308010B2 true JP6308010B2 (en) 2018-04-11

Family

ID=54778768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101994A Active JP6308010B2 (en) 2014-05-16 2014-05-16 Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element

Country Status (1)

Country Link
JP (1) JP6308010B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269517A (en) * 1996-03-29 1997-10-14 Kyocera Corp Manufacture of polarization inversion and device therefor
US6900928B2 (en) * 2002-03-19 2005-05-31 Hc Photonics Corporation Method of patterning and fabricating poled dielectric microstructures within dielectric materials
US7145714B2 (en) * 2004-07-26 2006-12-05 Advr, Inc. Segmented electrodes for poling of ferroelectric crystal materials
JP2008268547A (en) * 2007-04-20 2008-11-06 Oxide Corp Laser device, wavelength conversion element, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015219335A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
Chen et al. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals
JP4243995B2 (en) Method of manufacturing polarization inversion part and optical device
JP6308010B2 (en) Periodic polarization inversion electrode, method of forming periodic polarization inversion structure, and periodic polarization inversion element
JP5300664B2 (en) Method for manufacturing polarization reversal part
WO2014045658A1 (en) Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element
JP2008268547A (en) Laser device, wavelength conversion element, and manufacturing method thereof
US7522791B2 (en) Method for fabricating polarization reversal structure and reversal structure
JP6031852B2 (en) Periodic polarization inversion electrode and method of forming periodic polarization inversion structure
GB2416597A (en) Method of manufacturing domain inverted crystal
JP2013160970A (en) Periodic polarization inverting electrode, method for forming periodic polarization inverting structure, and periodic polarization inverting element
JP6002390B2 (en) Method for forming periodic domain inversion structure and electrode for periodic domain inversion
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
US9599876B2 (en) Periodic polarization reversal electrode, periodic polarization reversal structure forming method and periodic polarization reversal element
JP5872779B2 (en) Ferroelectric crystal substrate provided with periodic polarization reversal electrode and method of manufacturing periodic polarization reversal element
JP4854187B2 (en) Method for manufacturing polarization reversal part
JP6591117B2 (en) Method for manufacturing periodically poled structure
JP4372489B2 (en) Method for manufacturing periodically poled structure
JPH07281224A (en) Formation of domain inversion structure of feproelectric substance
JP2003307757A (en) Method for manufacturing domain inversion part
Chezganov et al. Periodical poling of LiNbO3: MgO by electron beam
JP3884197B2 (en) Fabrication method of domain-inverted structure
JP2002372731A (en) Element for waveguide conversion and element for optical operation
JP5754075B2 (en) Method for manufacturing wavelength conversion element
JP5105358B2 (en) Periodic polarization reversal member and method of manufacturing periodic polarization reversal element
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R151 Written notification of patent or utility model registration

Ref document number: 6308010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151