JP6307385B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6307385B2
JP6307385B2 JP2014164299A JP2014164299A JP6307385B2 JP 6307385 B2 JP6307385 B2 JP 6307385B2 JP 2014164299 A JP2014164299 A JP 2014164299A JP 2014164299 A JP2014164299 A JP 2014164299A JP 6307385 B2 JP6307385 B2 JP 6307385B2
Authority
JP
Japan
Prior art keywords
cobalt
rubber
group
mass
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014164299A
Other languages
Japanese (ja)
Other versions
JP2016040347A (en
Inventor
亮介 酒井
亮介 酒井
史 八柳
史 八柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014164299A priority Critical patent/JP6307385B2/en
Priority to PCT/JP2015/072829 priority patent/WO2016024606A1/en
Publication of JP2016040347A publication Critical patent/JP2016040347A/en
Application granted granted Critical
Publication of JP6307385B2 publication Critical patent/JP6307385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、タイヤ用ゴム組成物および空気入りタイヤに関する。   The present invention relates to a tire rubber composition and a pneumatic tire.

乗用車、トラック、バス、建設車両等に装着される空気入りタイヤにおいては、近年、顧客使用時の安全性、経済性およびメンテナンス性といった点から、耐摩耗性が重要特性として位置づけられている。   In pneumatic tires mounted on passenger cars, trucks, buses, construction vehicles, etc., wear resistance has been positioned as an important characteristic in recent years from the viewpoints of safety, economic efficiency and maintainability when used by customers.

例えば、特許文献1には、ポリブタジエンゴム中のフィラーの分散性を向上させ、耐摩耗性を上げる目的で、「(A)リニアリティ指数が110〜140でかつニュートン流動性指数(n)が2.2〜3.0(ここで、リニアリティ指数はポリマーの5重量%トルエン溶液の30℃での溶液粘度(センチポイズ)であり、ニュートン流動指数は式:γ=K・τn(式中、γ=K・τn(γはせん断速度(単位:1/sec)、τはせん断応力(Pa)、Kは1/η(η:ポリマーの粘度(Pa・sec))の定数である)で示される)のポリブタジエンゴム10重量部以上を含むジエン系ゴム100重量部、(B)(i)CTABが70m2/g以上のカーボンブラック及び/又は(ii)BET比表面積が100m2/g以上のシリカを成分(B)(i)及び(ii)の合計量で30〜150重量部含んでなるタイヤトレッド用ゴム組成物」が記載されている([請求項1][0004])。 For example, Patent Document 1 discloses that “(A) linearity index is 110 to 140 and Newton's fluidity index (n) is 2. for the purpose of improving the dispersibility of fillers in polybutadiene rubber and improving wear resistance. 2 to 3.0 (where the linearity index is the solution viscosity (centipoise) of a 5% by weight toluene solution of the polymer at 30 ° C., and the Newtonian flow index is expressed by the formula: γ = K · τn (where γ = K Τn (γ is a shear rate (unit: 1 / sec), τ is a shear stress (Pa), and K is a constant of 1 / η (η: polymer viscosity (Pa · sec))) 100 parts by weight of diene rubber containing 10 parts by weight or more of polybutadiene rubber, (B) (i) carbon black having a CTAB of 70 m 2 / g or more and / or (ii) silica having a BET specific surface area of 100 m 2 / g or more (B) i) and (a total amount of the rubber composition for a tire tread comprising 30 to 150 parts by weight of ii) "is described ([Claim 1] [0004]).

特開2009−057398号公報JP 2009-057398 A

本発明者らは、特許文献1などに記載された、ブタジエンゴムを配合した従来公知のタイヤ用ゴム組成物について検討したところ、ブタジエンゴムを配合することにより耐摩耗性は改善するものの、ブタジエンゴムの配合量によっては、破断伸びが低下する場合があり、その結果、作製されるタイヤにクラックなどの不具合が発生する場合があることを明らかとした。   The inventors of the present invention have studied a conventionally known rubber composition for tires containing butadiene rubber described in Patent Document 1 and the like. However, although the wear resistance is improved by adding butadiene rubber, the butadiene rubber is improved. It has been clarified that the elongation at break may be reduced depending on the blending amount, and as a result, defects such as cracks may occur in the manufactured tire.

そこで、本発明は、耐摩耗性および破断伸びのいずれにも優れたタイヤ用ゴム組成物およびそれを用いた空気入りタイヤを提供することを課題とする。   Then, this invention makes it a subject to provide the rubber composition for tires excellent in both abrasion resistance and breaking elongation, and a pneumatic tire using the same.

本発明者らは、上記課題を解決するため鋭意検討した結果、ブタジエンゴムを所定量含有するジエン系ゴムに対してコバルトまたはコバルト化合物を特定量配合させたゴム組成物が、耐摩耗性および破断伸びがいずれも良好となることを見出し、本発明を完成させた。
すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
As a result of diligent studies to solve the above problems, the present inventors have found that a rubber composition in which a specific amount of cobalt or a cobalt compound is blended with a diene rubber containing a predetermined amount of butadiene rubber has wear resistance and fracture. The inventors found that all the elongations were good and completed the present invention.
That is, the present inventor has found that the above problem can be solved by the following configuration.

[1] ジエン系ゴムと、コバルトまたはコバルト化合物と、を含有し、
上記ジエン系ゴムが、ブタジエンゴムを5〜70質量%含み、
上記コバルトまたは上記コバルト化合物の含有量が、上記ジエン系ゴム100質量部に対してコバルト量として0.01〜5質量部である、タイヤ用ゴム組成物。
[2] 上記コバルト化合物を含有し、上記コバルト化合物がコバルト塩またはコバルト錯体である、[1]に記載のタイヤ用ゴム組成物。
[3] 上記コバルト塩を含有し、上記コバルト塩が有機酸コバルト塩である、[2]に記載のタイヤ用ゴム組成物。
[4] [1]〜[3]のいずれかに記載のゴム組成物を、トレッドおよびサイドウォールからなる群から選択される少なくとも1つの構成部材に用いた空気入りタイヤ。
[1] containing a diene rubber and cobalt or a cobalt compound,
The diene rubber contains 5 to 70% by mass of butadiene rubber,
The rubber composition for tires whose content of the said cobalt or the said cobalt compound is 0.01-5 mass parts as a cobalt amount with respect to 100 mass parts of said diene rubbers.
[2] The rubber composition for tires according to [1], containing the cobalt compound, wherein the cobalt compound is a cobalt salt or a cobalt complex.
[3] The rubber composition for tires according to [2], containing the cobalt salt, wherein the cobalt salt is an organic acid cobalt salt.
[4] A pneumatic tire using the rubber composition according to any one of [1] to [3] as at least one constituent member selected from the group consisting of a tread and a sidewall.

本発明によれば、耐摩耗性および破断伸びのいずれにも優れたタイヤ用ゴム組成物およびそれを用いた空気入りタイヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber composition for tires excellent in both abrasion resistance and breaking elongation, and a pneumatic tire using the same can be provided.

本発明の空気入りタイヤの実施態様の一例を表すタイヤの模式的な部分断面図である。It is a typical fragmentary sectional view of the tire showing an example of the embodiment of the pneumatic tire of the present invention.

[タイヤ用ゴム組成物]
本発明のタイヤ用ゴム組成物(以下、単に「本発明のゴム組成物」とも略す。)は、ジエン系ゴムと、コバルトまたはコバルト化合物とを含有し、上記ジエン系ゴムがブタジエンゴムを5〜70質量%含み、上記コバルトまたは上記コバルト化合物の含有量が上記ジエン系ゴム100質量部に対してコバルト量として0.01〜5質量部である、タイヤ用のゴム組成物である。
[Rubber composition for tire]
The rubber composition for tires of the present invention (hereinafter also simply referred to as “the rubber composition of the present invention”) contains a diene rubber and cobalt or a cobalt compound. A rubber composition for tires containing 70% by mass and having a cobalt content of 0.01 to 5 parts by mass with respect to 100 parts by mass of the diene rubber.

本発明においては、ブタジエンゴムを所定量含有するジエン系ゴムに対してコバルトまたはコバルト化合物を特定量配合させることにより、優れた耐摩耗性および破断伸びを達成することができる。
これは、ブタジエンゴムを所定量含有するゴム組成物において、コバルトまたはコバルト化合物を添加すると、その他のジエン系ゴムの劣化が抑えられるという新たな知見に基づくものである。すなわち、コバルトまたはコバルト化合物を配合していない系と比較して相対的にブタジエンゴムの配合量を減らしても耐摩耗性を向上させる効果を同等以上に発現させることができる。
以下に、本発明のゴム組成物が含有する各成分について詳細に説明する。
In the present invention, excellent wear resistance and elongation at break can be achieved by blending a specific amount of cobalt or a cobalt compound with a diene rubber containing a predetermined amount of butadiene rubber.
This is based on a new finding that when a cobalt or cobalt compound is added to a rubber composition containing a predetermined amount of butadiene rubber, deterioration of other diene rubbers can be suppressed. That is, even if the blending amount of butadiene rubber is relatively reduced as compared with a system in which cobalt or a cobalt compound is not blended, the effect of improving the wear resistance can be expressed to the same level or more.
Below, each component which the rubber composition of this invention contains is demonstrated in detail.

〔ジエン系ゴム〕
本発明のゴム組成物が含有するジエン系ゴムは、少なくともブタジエンゴムを5〜70質量%含むものであれば特に限定されない。
ここで、上記ブタジエンゴムは、アルキル基、アリル基、アミノ基、イソシアネート基、ヒドロキシル基、チオール基、ビニル基、エポキシ基、チイラン基、カルボキシ基、カルボニル基含有基、アミド基、エステル基、イミド基、ニトリル基、チオシアン基、アルコキシ基、シリル基、アルコキシシリル基、ニトロ基等の中から選択される少なくとも1種の官能基で、側鎖や片末端または両末端が変成(変性)された誘導体であってもよい。
[Diene rubber]
The diene rubber contained in the rubber composition of the present invention is not particularly limited as long as it contains at least 5-70% by mass of butadiene rubber.
Here, the butadiene rubber is an alkyl group, allyl group, amino group, isocyanate group, hydroxyl group, thiol group, vinyl group, epoxy group, thiirane group, carboxy group, carbonyl group-containing group, amide group, ester group, imide. At least one functional group selected from a group, a nitrile group, a thiocyan group, an alkoxy group, a silyl group, an alkoxysilyl group, a nitro group, etc., has modified (modified) the side chain, one end or both ends It may be a derivative.

また、上記ブタジエンゴムの重量平均分子量は、50000〜1000000であることが好ましく、200000〜800000であることがより好ましい。重量平均分子量をこのような範囲にすることにより、耐摩耗性をより向上させることができる。
ここで、ブタジエンゴムの重量平均分子量(Mw)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
The weight average molecular weight of the butadiene rubber is preferably 50,000 to 1,000,000, and more preferably 200,000 to 800,000. By setting the weight average molecular weight in such a range, the wear resistance can be further improved.
Here, the weight average molecular weight (Mw) of butadiene rubber shall be measured by standard polystyrene conversion by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.

更に、上記ブタジエンゴムは、耐摩耗性がより良好となり、破断伸びとのバランスも向上する理由から、ジエン系ゴムに5〜50質量%含まれていることが好ましく、5〜40質量%含まれていることがより好ましい。   Furthermore, the butadiene rubber is preferably contained in the diene rubber in an amount of 5 to 50% by mass and more preferably in the range of 5 to 40% by mass because the wear resistance is improved and the balance with the elongation at break is improved. More preferably.

本発明においては、上記ブタジエンゴム以外のジエン系ゴムは、主鎖に二重結合を有するものであれば特に限定されず、その具体例としては、天然ゴム(NR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエンゴム(NBR)、芳香族ビニル−共役ジエン共重合ゴム〔例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレンゴム、スチレン−ブタジエン−イソプレンゴム(SBIR)〕、スチレン−イソプレンゴム(SIR)、スチレン−イソプレン−ブタジエンゴム(SIBR)等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
また、これらのジエン系ゴムは、アルキル基、アリル基、アミノ基、イソシアネート基、ヒドロキシル基、チオール基、ビニル基、エポキシ基、チイラン基、カルボキシ基、カルボニル基含有基、アミド基、エステル基、イミド基、ニトリル基、チオシアン基、アルコキシ基、シリル基、アルコキシシリル基、ニトロ基等の中から選択される少なくとも1種の官能基で、側鎖や片末端または両末端が変成(変性)された誘導体であってもよい。
これらのうち、耐摩耗性がより良好となり、加工性に優れるという観点から、NR、SBRを用いるのが好ましい。
In the present invention, the diene rubber other than the butadiene rubber is not particularly limited as long as it has a double bond in the main chain. Specific examples thereof include natural rubber (NR), isoprene rubber (IR), Acrylonitrile-butadiene rubber (NBR), aromatic vinyl-conjugated diene copolymer rubber [eg, styrene-butadiene rubber (SBR), styrene-isoprene rubber, styrene-butadiene-isoprene rubber (SBIR)], styrene-isoprene rubber (SIR) ), Styrene-isoprene-butadiene rubber (SIBR), and the like. These may be used alone or in combination of two or more.
These diene rubbers are alkyl groups, allyl groups, amino groups, isocyanate groups, hydroxyl groups, thiol groups, vinyl groups, epoxy groups, thiirane groups, carboxy groups, carbonyl group-containing groups, amide groups, ester groups, At least one functional group selected from imide group, nitrile group, thiocyan group, alkoxy group, silyl group, alkoxysilyl group, nitro group, etc., the side chain, one end or both ends are modified (modified) Derivatives may also be used.
Of these, NR and SBR are preferably used from the viewpoint of better wear resistance and excellent workability.

〔コバルトまたはコバルト化合物〕
本発明のゴム組成物は、上述したように、コバルトまたはコバルト化合物を上記ジエン系ゴム100質量部に対してコバルト量として0.01〜5質量部含有する。
ここで、「コバルト」とは金属コバルトを意味し、また、「コバルト化合物」とは金属コバルトを含有する化合物を意味する。
[Cobalt or cobalt compound]
As described above, the rubber composition of the present invention contains 0.01 to 5 parts by mass of cobalt or a cobalt compound as a cobalt amount with respect to 100 parts by mass of the diene rubber.
Here, “cobalt” means metallic cobalt, and “cobalt compound” means a compound containing metallic cobalt.

本発明においては、ジエン系ゴムとの親和性の観点から、コバルトおよびコバルト化合物のうち、コバルト化合物を用いるのが好ましく、具体的には、後述するコバルト塩やコバルト錯体などを用いるのがより好ましい。   In the present invention, from the viewpoint of affinity with the diene rubber, it is preferable to use a cobalt compound among cobalt and a cobalt compound. Specifically, it is more preferable to use a cobalt salt or a cobalt complex described later. .

<コバルト塩>
上記コバルト塩としては、具体的には、例えば、塩化コバルト、臭化コバルトなどのハロゲン化コバルト;水酸化コバルト、硝酸コバルト、硫酸コバルトなどの無機コバルト塩;酢酸コバルト、オクチル酸コバルト、ナフテン酸コバルト、マロン酸コバルト、ネオデカン酸コバルト、ステアリン酸コバルト、プロピオン酸コバルト、安息香酸コバルト、p−ヒドロキシ安息香酸コバルト、脂肪酸コバルト・ホウ素化合物〔例えば、マノボンド C CP420(マンケム社製)、マノボンド C C680(マンケム社製)の市販品など〕、ロジン酸コバルト、バーサチック酸コバルト、トール油酸コバルトなどの有機酸コバルト塩;が挙げられる。
これらうち、耐摩耗性と破断伸びとのバランスが向上する理由から、有機酸コバルト塩であるのが好ましい。
<Cobalt salt>
Specific examples of the cobalt salt include cobalt halides such as cobalt chloride and cobalt bromide; inorganic cobalt salts such as cobalt hydroxide, cobalt nitrate and cobalt sulfate; cobalt acetate, cobalt octylate and cobalt naphthenate. , Cobalt malonate, cobalt neodecanoate, cobalt stearate, cobalt propionate, cobalt benzoate, cobalt p-hydroxybenzoate, fatty acid cobalt-boron compound [e.g. Etc.), and organic acid cobalt salts such as cobalt rosinate, cobalt versatate and cobalt tall oil.
Among these, the organic acid cobalt salt is preferable because the balance between wear resistance and elongation at break improves.

<コバルト錯体>
上記コバルト錯体としては、具体的には、例えば、コバルト(II)ビスアセチルアセトネート;コバルト(III)トリスアセチルアセトネート;アセト酢酸エチルエステルコバルト;ハロゲン化コバルトの有機塩基錯体(例えば、トリアリールフォスフィン錯体、トリアルキルフォスフィン錯体、ピリジン錯体、ピコリン錯体、エチルアルコール錯体など);が挙げられる。
<Cobalt complex>
Specific examples of the cobalt complex include cobalt (II) bisacetylacetonate; cobalt (III) trisacetylacetonate; acetoacetic acid ethyl ester cobalt; cobalt halide organic base complex (for example, triarylphosphine). A fin complex, a trialkylphosphine complex, a pyridine complex, a picoline complex, an ethyl alcohol complex, and the like).

本発明においては、上記コバルトまたは上記コバルト化合物の含有量は、上記ジエン系ゴム100質量部に対して、コバルト量として0.01〜5質量部であり、0.01〜1質量部であるのが好ましく、0.01〜0.5質量部であるのがより好ましい。   In this invention, content of the said cobalt or the said cobalt compound is 0.01-5 mass parts as a cobalt amount with respect to 100 mass parts of said diene rubbers, and is 0.01-1 mass part. Is preferable, and it is more preferable that it is 0.01-0.5 mass part.

〔カーボンブラック〕
本発明のゴム組成物は、カーボンブラックを含有しているのが好ましい。
上記カーボンブラックとしては、具体的には、例えば、SAF、ISAF、HAF、FEF、GPE、SRF等のファーネスカーボンブラックが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
また、上記カーボンブラックは、ゴム組成物の混合時の作業性等の観点から、窒素吸着比表面積(N2SA)が10〜300m2/gであるのが好ましく、20〜200m2/gであるのがより好ましい。
ここで、N2SAは、カーボンブラック表面への窒素吸着量をJIS K 6217−2:2001「第2部:比表面積の求め方−窒素吸着法−単点法」にしたがって測定した値である。
〔Carbon black〕
The rubber composition of the present invention preferably contains carbon black.
Specific examples of the carbon black include furnace carbon blacks such as SAF, ISAF, HAF, FEF, GPE, and SRF. These may be used alone or in combination of two or more. May be.
Further, the carbon black, from the viewpoint of workability and the like at the time of mixing of the rubber composition is preferably a nitrogen adsorption specific surface area (N 2 SA) is 10 to 300 m 2 / g, with 20 to 200 m 2 / g More preferably.
Here, N 2 SA is a value obtained by measuring the amount of nitrogen adsorbed on the carbon black surface in accordance with JIS K 6217-2: 2001 “Part 2: Determination of specific surface area—nitrogen adsorption method—single point method”. .

上記カーボンブラックを含有する場合の含有量は、上記ジエン系ゴム100質量部に対して、1〜100質量部であるのが好ましく、5〜80質量部であるのがより好ましい。   When the carbon black is contained, the content is preferably 1 to 100 parts by mass and more preferably 5 to 80 parts by mass with respect to 100 parts by mass of the diene rubber.

〔その他の成分〕
本発明のゴム組成物は、上述した成分以外に、シリカ、炭酸カルシウムなどのフィラー;シランカップリング剤;硫黄等の加硫剤;スルフェンアミド系、グアニジン系、チアゾール系、チオウレア系、チウラム系などの加硫促進剤;酸化亜鉛、ステアリン酸などの加硫促進助剤;ワックス;アロマオイル;パラフェニレンジアミン類(例えば、N,N′−ジ−2−ナフチル−p−フェニレンジアミン、N−1,3−ジメチルブチル−N′−フェニル−p−フェニレンジアミン等)、ケトン−アミン縮合物(例えば、2,2,4−トリメチル−1,2−ジヒドロキノリン等)などのアミン系老化防止剤;可塑剤;中空ポリマーなどの化学発泡剤;等のタイヤ用のゴム組成物に一般的に用いられている各種のその他添加剤を配合することができる。
[Other ingredients]
In addition to the components described above, the rubber composition of the present invention includes fillers such as silica and calcium carbonate; silane coupling agents; vulcanizing agents such as sulfur; sulfenamide-based, guanidine-based, thiazole-based, thiourea-based, and thiuram-based materials. Vulcanization accelerators such as zinc oxide and stearic acid; waxes; aroma oils; paraphenylenediamines (for example, N, N'-di-2-naphthyl-p-phenylenediamine, N- 1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine, etc.), ketone-amine condensates (eg, 2,2,4-trimethyl-1,2-dihydroquinoline, etc.) Various plastic additives, chemical foaming agents such as hollow polymers, and the like, and various other additives generally used in rubber compositions for tires can be blended.

〔ゴム組成物の製造方法〕
本発明のゴム組成物の製造方法は、特に限定されず、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロール等)を用いて、混練する方法等が挙げられる。
また、本発明のゴム組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[Method for producing rubber composition]
The method for producing the rubber composition of the present invention is not particularly limited, and examples thereof include a method of kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). It is done.
The rubber composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.

[空気入りタイヤ]
本発明の空気入りタイヤ(以下、単に「本発明のタイヤ」ともいう。)は、上述した本発明のゴム組成物を構成(ゴム)部材に用いた空気入りタイヤである。
ここで、本発明のゴム組成物を用いる構成部材は、トレッド部および/またはサイドウォール部であり、トレッド部であるのが好ましい。
図1に、本発明のタイヤの実施態様の一例を表すタイヤの模式的な部分断面図を示すが、本発明のタイヤは図1に示す態様に限定されるものではない。
[Pneumatic tire]
The pneumatic tire of the present invention (hereinafter also simply referred to as “the tire of the present invention”) is a pneumatic tire using the above-described rubber composition of the present invention as a constituent (rubber) member.
Here, the constituent member using the rubber composition of the present invention is a tread portion and / or a sidewall portion, and is preferably a tread portion.
FIG. 1 shows a schematic partial cross-sectional view of a tire representing an example of an embodiment of the tire of the present invention, but the tire of the present invention is not limited to the embodiment shown in FIG.

図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3は本発明のゴム組成物から構成されるトレッド部を表す。
また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
また、タイヤトレッド3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
また、タイヤの内面には、タイヤ内部に充填された空気がタイヤ外部に漏れるのを防止するために、インナーライナー9が配置されている。
In FIG. 1, the code | symbol 1 represents a bead part, the code | symbol 2 represents a sidewall part, and the code | symbol 3 represents the tread part comprised from the rubber composition of this invention.
Further, a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
In the tire tread 3, a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
Moreover, in the bead part 1, the rim cushion 8 is arrange | positioned in the part which touches a rim | limb.
Further, an inner liner 9 is disposed on the inner surface of the tire in order to prevent air filled in the tire from leaking outside the tire.

本発明のタイヤは、例えば、本発明のゴム組成物をタイヤトレッド部に用いた場合、優れた加硫物性と低発熱化の両立を図ることができる。
また、本発明のタイヤは、例えば、本発明のゴム組成物に用いられたジエン系ゴム、加硫または架橋剤、加硫または架橋促進剤の種類およびその配合割合に応じた温度で加硫または架橋し、タイヤトレッド部を形成することにより製造することができる。
For example, when the rubber composition of the present invention is used in a tire tread portion, the tire of the present invention can achieve both excellent vulcanization properties and low heat generation.
In addition, the tire of the present invention is vulcanized or cured at a temperature corresponding to, for example, the type of diene rubber, vulcanization or crosslinking agent, vulcanization or crosslinking accelerator used in the rubber composition of the present invention, and the blending ratio thereof It can manufacture by bridge | crosslinking and forming a tire tread part.

以下、実施例を示して、本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

<実施例および比較例1〜6>
下記第1表および第2表に示す成分を、下記第1表および第2表に示す割合(質量部)で配合した。
具体的には、まず、下記第1表および第2表に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉型ミキサーで5分間混練し、135℃に達したときに放出して室温で冷却し、マスターバッチを得た。
次に、得られたマスターバッチに硫黄および加硫促進剤をオープンロールで混練し、ゴム組成物を調製した。
次に、得られたゴム組成物をランボーン摩耗用金型(直径63.5mm、厚さ5mmの円板状)中で、148℃で30分間加硫して加硫ゴムシートを作製した。
<Example 3 and Comparative Examples 1-6>
The components shown in Tables 1 and 2 below were blended in the proportions (parts by mass) shown in Tables 1 and 2 below.
Specifically, first, the components shown in Tables 1 and 2 below, excluding sulfur and the vulcanization accelerator, were kneaded for 5 minutes with a 1.7 liter closed mixer and reached 135 ° C. Occasionally discharged and cooled at room temperature to obtain a masterbatch.
Next, sulfur and a vulcanization accelerator were kneaded with the obtained masterbatch with an open roll to prepare a rubber composition.
Next, the obtained rubber composition was vulcanized at 148 ° C. for 30 minutes in a lamborn abrasion mold (disk shape having a diameter of 63.5 mm and a thickness of 5 mm) to produce a vulcanized rubber sheet.

<切断時伸び(EB):(破断伸びの指標)>
作製した加硫ゴムシートからJIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251:2010に準拠して行い、切断時伸び(EB)を室温(23℃)にて測定した。
測定結果は、下記第1表については比較例1の値を100とする指数で表し、下記第2表については比較例4の値を100とする指数で表し、それぞれ下記第1表〜第2表に示した。この指数が大きいほど破断伸びに優れることを意味する。
<Elongation at break (E B ): (Indicator of elongation at break)>
A JIS No. 3 dumbbell-shaped test piece was punched out of the vulcanized rubber sheet thus prepared, and a tensile test at a tensile speed of 500 mm / min was conducted in accordance with JIS K6251: 2010, and the elongation at break (E B ) was room temperature (23 ° C.). Measured with
The measurement results are represented by an index with the value of Comparative Example 1 as 100 for the following Table 1, and are represented by an index with the value of Comparative Example 4 as 100 for the following Table 2, respectively. Shown in the table. It means that it is excellent in elongation at break, so that this index | exponent is large.

<耐摩耗性>
作製した加硫ゴムシートについて、ランボーン摩耗試験機(岩本製作所社製)を用いて、JIS K 6264−2:2005に準拠し、付加力1.5kg/cm3(=15N)、スリップ率50%、摩耗試験時間10分、試験温度を室温の条件で摩耗試験を行い、摩耗質量を測定した。
試験結果は、下記第1表については下記式(A)に示すように比較例1の測定値を基準とする指数(インデックス)で表し、下記第2表については下記式(B)に示すように比較例4の測定値を基準とする指数(インデックス)で表し、それぞれ下記第1表〜第2表に示した。この指数(インデックス)が大きいほど摩耗量が少なく、耐摩耗性が良好である。
指数=(比較例1の試験片の摩耗質量/測定値)×100 ・・・ (A)
指数=(比較例4の試験片の摩耗質量/測定値)×100 ・・・ (B)
<Abrasion resistance>
About the produced vulcanized rubber sheet, using an Lambourn abrasion tester (made by Iwamoto Seisakusho Co., Ltd.), the applied force is 1.5 kg / cm 3 (= 15 N) and the slip rate is 50% in accordance with JIS K 6264-2: 2005. The wear test was performed for 10 minutes at a test temperature of room temperature, and the wear mass was measured.
As shown in the following formula (A) for the following Table 1, the test results are represented by an index (index) based on the measured value of Comparative Example 1, and as shown in the following Formula (B) for the following Table 2. Are represented by indices based on the measured values of Comparative Example 4, and are shown in Tables 1 and 2 below. The larger this index (index), the smaller the amount of wear and the better the wear resistance.
Index = (Abrasion mass / measured value of test piece of Comparative Example 1) × 100 (A)
Index = (Abrasion mass / measured value of test piece of Comparative Example 4) × 100 (B)

第1表および第2表に示す各成分は下記のとおりである。
・天然ゴム:RSS#3
・ブタジエンゴム:NIPOL BR 1220(日本ゼオン社製)
・カーボンブラック:ショウブラックN234(昭和キャボット社製)
・酸化亜鉛:亜鉛華3号(正同化学工業社製)
・ステリアン酸:ビーズステアリン酸(日本油脂社製)
・老化防止剤1:アミン系老化防止剤(サントフレックス 6PPD、フレクシス社製)
・老化防止剤2:アミン−ケトン系老化防止剤(ノクラック224、大内新興化学工業株式会社)
・ワックス:サンノック(大内新興化学工業株式会社)
・ナフテン酸コバルト:コバルト量10質量%(DIC社製)
・水酸化コバルト:コバルト量62.5質量%(和光純薬社製)
・硫黄:油処理硫黄(軽井沢精錬所社製)
・加硫促進剤:ノクセラーNS−P(大内新興化学工業社製)
The components shown in Tables 1 and 2 are as follows.
・ Natural rubber: RSS # 3
-Butadiene rubber: NIPOL BR 1220 (manufactured by Nippon Zeon)
・ Carbon black: Show Black N234 (made by Showa Cabot)
・ Zinc oxide: Zinc Hana 3 (manufactured by Shodo Chemical Industry Co., Ltd.)
・ Stearic acid: Bead stearic acid (manufactured by NOF Corporation)
-Anti-aging agent 1: Amine-based anti-aging agent (Santflex 6PPD, manufactured by Flexsys)
-Anti-aging agent 2: Amine-ketone type anti-aging agent (NOCRACK 224, Ouchi Shinsei Chemical Co., Ltd.)
・ Wax: Sunnock (Ouchi Shinsei Chemical Co., Ltd.)
・ Cobalt naphthenate: 10% by mass of cobalt (manufactured by DIC)
・ Cobalt hydroxide: Cobalt amount 62.5% by mass (Wako Pure Chemical Industries, Ltd.)
・ Sulfur: Oil-treated sulfur (manufactured by Karuizawa Refinery)
・ Vulcanization accelerator: Noxeller NS-P (manufactured by Ouchi Shinsei Chemical Co., Ltd.)

上記第1表に示す結果から、ブタジエンゴムを配合せずに調製した比較例1〜3のゴム組成物は、コバルト化合物の有無に問わず、耐摩耗性および破断伸びに変化がないことが分かった。
また、第2表に示す結果から、ブタジエンゴムを配合し、コバルト化合物を配合せずに調製した比較例4〜6のゴム組成物は、ブタジエゴムの配合量の増加とともに耐摩耗性が向上することが分かったが、ブタジエゴムの配合量の増加とともに破断伸びが劣ることも分かった。
これに対し、ブタジエンゴムとともに水酸化コバルトを配合して調製した実施例3のゴム組成物は、比較例4よりも耐摩耗性が良好となり、また、破断伸びの低下も少なく、良好な破断伸びも維持できることが分かった
From the results shown in Table 1, it can be seen that the rubber compositions of Comparative Examples 1 to 3 prepared without compounding butadiene rubber have no change in wear resistance and elongation at break regardless of the presence or absence of a cobalt compound. It was.
In addition, from the results shown in Table 2, the rubber compositions of Comparative Examples 4 to 6 prepared by adding butadiene rubber and not by adding a cobalt compound have improved wear resistance as the amount of butadiene rubber increases. However, it was also found that the elongation at break was inferior with the increase in the amount of butadiene rubber.
In contrast, the rubber composition of Example 3 was prepared by blending hydroxide cobalt with butadiene rubber, the wear resistance becomes better than Comparative Example 4, also less reduction in elongation at break, good break It was found that the elongation can be maintained .

1 ビード部
2 サイドウォール部
3 タイヤトレッド部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 リムクッション
9 インナーライナー
DESCRIPTION OF SYMBOLS 1 Bead part 2 Side wall part 3 Tire tread part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Rim cushion 9 Inner liner

Claims (1)

ジエン系ゴムと、水酸化コバルトと、酸化亜鉛と、を含有し、
前記ジエン系ゴムが、ブタジエンゴムを5〜70質量%含み、
前記水酸化コバルトの含有量が、前記ジエン系ゴム100質量部に対してコバルト量として0.01〜質量部である、タイヤ用ゴム組成物を、
トレッドおよびサイドウォールからなる群から選択される少なくとも1つの構成部材に用いた空気入りタイヤ。
Containing a diene rubber, a hydroxide cobalt, and zinc oxide, and
The diene rubber contains 5 to 70% by mass of butadiene rubber,
The content of hydroxide cobalt is a 0.01 to 1 parts by weight of cobalt content to the diene rubber 100 parts by mass, the rubber composition for a tire,
A pneumatic tire used for at least one component selected from the group consisting of a tread and a sidewall.
JP2014164299A 2014-08-12 2014-08-12 Pneumatic tire Expired - Fee Related JP6307385B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014164299A JP6307385B2 (en) 2014-08-12 2014-08-12 Pneumatic tire
PCT/JP2015/072829 WO2016024606A1 (en) 2014-08-12 2015-08-12 Rubber composition for tires and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164299A JP6307385B2 (en) 2014-08-12 2014-08-12 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2016040347A JP2016040347A (en) 2016-03-24
JP6307385B2 true JP6307385B2 (en) 2018-04-04

Family

ID=55540779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164299A Expired - Fee Related JP6307385B2 (en) 2014-08-12 2014-08-12 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6307385B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002216308A1 (en) * 2001-12-21 2003-07-09 Pirelli Pneumatici S.P.A. Tyre for vehicle wheels, tread band and elastomeric composition used therein
JP2004026862A (en) * 2002-06-21 2004-01-29 Sumitomo Rubber Ind Ltd Rubber composition and tyre using the same
JP2006249361A (en) * 2005-03-14 2006-09-21 Bridgestone Corp Rubber composition for tread and tire
KR20100103853A (en) * 2007-12-27 2010-09-28 가부시키가이샤 브리지스톤 Rubber composition
JP5563233B2 (en) * 2009-04-22 2014-07-30 住友ゴム工業株式会社 Steel cord bonding rubber composition and pneumatic tire
JP5395113B2 (en) * 2011-05-13 2014-01-22 住友ゴム工業株式会社 Rubber composition for breaker topping and pneumatic tire
JP2013043915A (en) * 2011-08-23 2013-03-04 Yokohama Rubber Co Ltd:The Rubber composition for tire and pneumatic tire using the same
EP2607381B1 (en) * 2011-12-21 2018-01-24 The Goodyear Tire & Rubber Company Functionalized elastomer, rubber composition and tire
JP6065575B2 (en) * 2012-10-05 2017-01-25 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire using the same
JP6036148B2 (en) * 2012-10-12 2016-11-30 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same

Also Published As

Publication number Publication date
JP2016040347A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP2016113051A (en) Pneumatic tire
JP6036148B2 (en) Rubber composition and pneumatic tire using the same
WO2015199123A1 (en) Rubber composition and pneumatic tire using same
JP6040967B2 (en) Rubber composition for pneumatic tire and pneumatic tire using the same
JP2011246563A (en) Rubber composition for tire and pneumatic tire using the same
JP2015089784A (en) Pneumatic tire
JP2011246565A (en) Rubber composition for tire, and pneumatic tire using the same
WO2016039384A1 (en) Resin composition and pneumatic tire using same
JP2013147561A (en) Rubber composition for tire and pneumatic tire using the same
JP6307385B2 (en) Pneumatic tire
JP2009114367A (en) Rubber composition for tire tread and pneumatic tire having tread using it
JP6628367B2 (en) Rubber composition for tire tread and pneumatic tire for passenger car using the same
JP6213023B2 (en) Rubber composition and pneumatic tire
JP2013213125A (en) Rubber composition for tire and pneumatic tire using the same
JP5625964B2 (en) Pneumatic tire
JP6187443B2 (en) Pneumatic tire
JP2010144069A (en) Rubber composition for tire and pneumatic tire using the same
WO2016024606A1 (en) Rubber composition for tires and pneumatic tire
JP2008291087A (en) Rubber composition for tire tread, and pneumatic tire having tread using the same
JP5073280B2 (en) Rubber composition for tread and pneumatic tire having tread using the same
JP6701664B2 (en) Rubber composition for tires
JP5862715B2 (en) Rubber composition and pneumatic tire using the same
JP6701665B2 (en) Rubber composition for tires
JP2020180253A (en) Rubber composition for studless tire and studless tire
JP7040161B2 (en) Rubber composition for tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170509

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6307385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees