JP6304783B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6304783B2
JP6304783B2 JP2016517798A JP2016517798A JP6304783B2 JP 6304783 B2 JP6304783 B2 JP 6304783B2 JP 2016517798 A JP2016517798 A JP 2016517798A JP 2016517798 A JP2016517798 A JP 2016517798A JP 6304783 B2 JP6304783 B2 JP 6304783B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor unit
type indoor
pipe
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016517798A
Other languages
Japanese (ja)
Other versions
JPWO2015170431A1 (en
Inventor
尊宣 村上
尊宣 村上
Original Assignee
株式会社 エコファクトリー
株式会社 エコファクトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エコファクトリー, 株式会社 エコファクトリー filed Critical 株式会社 エコファクトリー
Publication of JPWO2015170431A1 publication Critical patent/JPWO2015170431A1/en
Application granted granted Critical
Publication of JP6304783B2 publication Critical patent/JP6304783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • F28F2275/085Fastening; Joining by clamping or clipping with snap connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、空気調和装置に関するものである。更に詳しくは、対流型室内機と輻射型室内機を備えたものにおいて、圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止したものに関する。   The present invention relates to an air conditioner. More specifically, the present invention relates to an apparatus provided with a convection type indoor unit and a radiation type indoor unit that prevents damage to the compressor and prevents deterioration of the reliability of the compressor.

圧縮機、室外熱交換器、膨張弁、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機が、一般的に使用されている。この空気調和機は、冷却または加熱した空気を空気調和対象空間である室内にファンで送風し、室内の空気を循環または対流して空気調和を行う。
また、輻射型室内機の中に冷媒を通して、空調対象空間である室内の空気を冷却または加熱する空気調和も行われている。
An air conditioner having a refrigerant pipe connecting a compressor, an outdoor heat exchanger, an expansion valve, a convection indoor unit, and these devices is generally used. In this air conditioner, cooled or heated air is blown by a fan into a room which is an air conditioning target space, and air is conditioned by circulating or convection in the room.
In addition, air conditioning is also performed to cool or heat indoor air, which is a space to be air-conditioned, through a refrigerant in a radiant indoor unit.

対流型室内機を使用した対流式空気調和の場合は、立ち上がり時間は早いが、送風した空気を体感する、いわゆるドラフト感を感じるため快感度が低い。
他方、輻射型室内機を使用した輻射式空気調和は、立ち上がり時間が長い欠点はあるが、人体に対する快感度が高く、室内の空気温度が低くても暖房効果があり、熱損失が少ないという長所を有する。
したがって、対流式空気調和と輻射式空気調和を併せて使用すれば、それぞれの長所によって短所が打ち消されて、快適で理想的な空気調和が可能となる。
In the case of convection-type air conditioning using a convection type indoor unit, the rise time is fast, but the so-called draft feeling that feels the blown air is felt, so that the pleasant sensitivity is low.
On the other hand, radiant air conditioning using a radiant indoor unit has the disadvantages of long rise time, but high sensitivity to the human body, high heating effect even at low indoor air temperature, and low heat loss. Have
Therefore, if convection type air conditioning and radiant type air conditioning are used together, the disadvantages are canceled out by the respective advantages, and a comfortable and ideal air conditioning becomes possible.

対流型室内機を備えた空気調和機に輻射型室内機を増設した空気調和装置は、本発明者によって既に特許文献1において提案している。   An air conditioner in which a radiation type indoor unit is added to an air conditioner provided with a convection type indoor unit has already been proposed in Patent Document 1 by the present inventor.

特許第5285179号Patent No. 5285179

本発明者は、対流型室内機を備えた空気調和機に輻射型室内機を増設した空気調和装置の実用化に向けて実験を重ね、輻射型室内機の冷媒管を、鉛直方向に並設されている複数の直管と、隣接する直管の上端間と下端間とを接続する接続管と、を備えて蛇行状に形成(以下、該冷媒管を「蛇行管」という)したところ、冷媒管の下部に油溜まりが生じることを知見した。   The present inventor has conducted experiments toward practical use of an air conditioner in which a radiant indoor unit is added to an air conditioner equipped with a convection type indoor unit, and the refrigerant pipes of the radiant type indoor unit are arranged in parallel in the vertical direction. A plurality of straight pipes and connection pipes connecting between the upper end and the lower end of adjacent straight pipes are formed in a meandering shape (hereinafter, the refrigerant pipe is referred to as a “meander pipe”), It has been found that an oil reservoir is formed in the lower part of the refrigerant pipe.

空気調和機の冷媒は、一部、気体と液体の二相冷媒となって冷媒配管内を循環しているが、この冷媒の中には、圧縮機の潤滑油が含まれており、前記油溜まりは、冷媒中の潤滑油が分離したものと思われる。冷媒中の潤滑油が分離して失われると圧縮機は潤滑油不足となり、圧縮機に過剰な負荷がかかり、故障の原因となりうる。   The refrigerant of the air conditioner partially circulates in the refrigerant pipe as a two-phase refrigerant of gas and liquid, and this refrigerant contains the lubricating oil of the compressor. The pool is thought to be the separation of the lubricating oil in the refrigerant. If the lubricating oil in the refrigerant is separated and lost, the compressor becomes insufficient in lubricating oil, and an excessive load is applied to the compressor, which may cause a failure.

冷媒中の潤滑油が分離する原因はよく分かっていないが、一応次のように考えられる。つまり、対流型室内機を備えた空気調和機に輻射型室内機を増設した場合は、冷媒配管が長くなった場合と同様に考えられる。圧縮機の能力は、輻射型室内機の増設を考慮していない設計で決まっているため、結果的に圧縮機の能力不足を招き、このため冷媒の流速が低下し、これによって輻射型室内機の冷媒管の下部に油溜まりが生じたもののようである。   The cause of the separation of the lubricating oil in the refrigerant is not well understood, but it is thought to be as follows. That is, when a radiation type indoor unit is added to an air conditioner equipped with a convection type indoor unit, it can be considered in the same manner as when the refrigerant pipe becomes long. The capacity of the compressor is determined by a design that does not take into account the expansion of the radiant indoor unit. As a result, the capacity of the compressor is insufficient, and the flow rate of the refrigerant is reduced, which causes the radiant indoor unit to be reduced. It seems that an oil sump has occurred in the lower part of the refrigerant pipe.

この対策としては、圧縮機の能力を高めれば解決できると思われるが、既設の空気調和機に輻射型室内機を増設する場合、既設の圧縮機を、より能力の高い圧縮機と交換することは、コストの点で難点がある。また、新規に製造する空気調和機の場合は、使用するかどうかわからない輻射型室内機の配備を予定して圧縮の能力を高いものにすることは、コストの増加につながる。   This measure can be solved by increasing the capacity of the compressor, but when adding a radiant indoor unit to an existing air conditioner, replace the existing compressor with a compressor with higher capacity. Is difficult in terms of cost. Further, in the case of a newly manufactured air conditioner, it is likely to increase the cost to increase the compression capacity by planning the deployment of a radiation type indoor unit that is not used or not.

本発明者は、この課題の解決について、輻射型室内機側で対応することについて鋭意研究を重ね、輻射型室内機を流れる冷媒の流速を低下させなければ、油溜まりの課題は解決できることに着目し、本発明を完成するに到った。   The present inventor has conducted extensive research on the solution of this problem on the side of the radiant indoor unit, and pays attention to the problem of oil sump unless the flow rate of the refrigerant flowing through the radiant indoor unit is reduced. The present invention has been completed.

(本発明の目的)
本発明は前記課題を解決するためになされたもので、対流型室内機と輻射型室内機を備えた空気調和装置において、冷媒中の潤滑油の分離を防止し、ひいては圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止できる空気調和装置を提供することを第1の目的としている。
また第1の目的に加えて、輻射型室内機が大型化した場合でも、冷媒の流速が低下するのを防止する空気調和装置を提供することを第二の目的としている。
(Object of the present invention)
The present invention has been made to solve the above-mentioned problems, and in an air conditioner equipped with a convection type indoor unit and a radiation type indoor unit, it prevents separation of lubricating oil in the refrigerant and thus prevents damage to the compressor. The first object of the present invention is to provide an air conditioner that can prevent a reduction in the reliability of the compressor.
In addition to the first object, a second object is to provide an air conditioner that prevents the flow rate of the refrigerant from decreasing even when the radiation type indoor unit is enlarged.

前記課題を解決するために本発明が講じた手段は次のとおりである。
本発明は、少なくとも、圧縮機、室外熱交換器及び膨張弁を有する室外機と、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機と、前記対流型室内機と前記室外機との間に配備され、同対流型室内機と同室外機との間を接続するための前記冷媒配管よりも内径が小さい冷媒管を有する輻射型室内機とを備える空気調和装置である。
Means taken by the present invention to solve the above-mentioned problems are as follows.
The present invention includes at least an outdoor unit having a compressor, an outdoor heat exchanger and an expansion valve, an air conditioner having a convection type indoor unit and a refrigerant pipe connecting these devices, the convection type indoor unit, An air conditioner including a radiation-type indoor unit that is provided between the outdoor unit and has a refrigerant pipe having an inner diameter smaller than that of the refrigerant pipe for connecting the convection type indoor unit and the outdoor unit. .

輻射型室内機の冷媒管の内径及び長さは、下記の説明及び実施の形態における説明のように、空気調和装置が機能する設計の範囲内において任意に定めることができる。冷媒管の内径が小さすぎる場合は、冷媒の流速は速くなるが、抵抗による圧力損失が増し、圧縮機の負荷を増大させて、効率が悪くなるようである。   The inner diameter and length of the refrigerant pipe of the radiation type indoor unit can be arbitrarily determined within the range of the design in which the air conditioner functions, as described below and in the embodiment. When the inner diameter of the refrigerant pipe is too small, the flow rate of the refrigerant is increased, but the pressure loss due to the resistance increases, and the load on the compressor is increased, which seems to deteriorate the efficiency.

空気調和機の冷媒配管の内径及び輻射型室内機の冷媒管の内径の関係は、具体的には、下記のようである。
(1)例えば、空気調和機の冷媒配管〔内径7.92φ(49.2mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径4.75φ(17.7mm2)〕で2系統に分岐する。蛇行管の直管部分は鉛直方向に配置する。
内径4.75φ(17.7mm2)の冷媒管の合計断面積(35.4mm2)は、冷媒配管の内径7.92φ(49.2mm2)と比べ約72%であり、冷媒配管よりも冷媒管の内径は小さく、したがって冷媒管内の冷媒の流速は速くなる。
The relationship between the inner diameter of the refrigerant pipe of the air conditioner and the inner diameter of the refrigerant pipe of the radiation type indoor unit is specifically as follows.
(1) For example, the refrigerant pipe of an air conditioner [inner diameter 7.92φ (49.2mm 2 )] is a refrigerant pipe of a radiant indoor unit composed of two meandering pipes [inner diameter 4.75φ (17.7mm 2 )] To branch into two systems. The straight pipe part of the meandering pipe is arranged in the vertical direction.
Total cross-sectional area of the refrigerant tube having an inner diameter 4.75φ (17.7mm 2) (35.4mm 2 ) is about 72% compared to the inside diameter of the refrigerant pipe 7.92φ (49.2mm 2), the inside diameter of the refrigerant pipe than the refrigerant pipe Therefore, the flow rate of the refrigerant in the refrigerant pipe is small.

冷媒管を備える輻射型室内機の発熱体は、1系統の蛇行管につき6枚とし、蛇行管2系統、つまり1ユニットの放熱板の枚数は12枚とし、これを輻射型室内機1台の基準ユニットとした。なお、前記実験はこの基準ユニットで行ったものである。 The number of heat generating elements of the radiation type indoor unit including the refrigerant pipe is six per one meandering pipe, and the number of the two meandering pipes, that is, the number of heat radiation plates of one unit is 12, which is the same as that of one radiation type indoor unit. A reference unit was used. The experiment was conducted with this reference unit.

(2)例えば、空気調和機の冷媒配管〔内径11.1φ(96.7mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径7.92φ(49.2mm2)〕で2系統に分岐する。蛇行管の直管部分を鉛直方向に配置する。
内径7.92φ(49.2mm2)の冷媒管の合計断面積(98.4mm2)は、冷媒配管の内径11.1φ(96.7mm2)と比べ101.7%であり、冷媒の流速は略同じとなる。
(2) For example, the refrigerant pipe of the refrigerant flowing through the refrigerant pipe of an air conditioner mm Inside diameter 11.1φ (96.7mm 2)], the radiation type indoor unit constituted by serpentine tubes of two systems [inner diameter 7.92Fai (49.2 mm 2 )] To branch into two systems. The straight pipe part of the meandering pipe is arranged in the vertical direction.
Total cross-sectional area of the refrigerant tube having an inner diameter 7.92φ (49.2mm 2) (98.4mm 2 ) is 101.7% compared to the inside diameter of the refrigerant pipe 11.1φ (96.7mm 2), the flow rate of the refrigerant is substantially identical.

(3)例えば、空気調和機の冷媒配管〔内径13.88φ(151.2mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径6.4φ(32.2mm2)〕の冷媒配管2系統に分岐する。蛇行管の直管部分は鉛直方向に配置する。2系統の蛇行管を並設して4系統(輻射型室内機2台)とすれば、内径6.4φ(32.2mm2)の冷媒管の合計断面積(128.8mm2)は、冷媒配管の内径13.88φ(151.2mm2)の面積と比べ85.1%であり、流速は速くなる。(3) For example, the refrigerant pipe of the refrigerant flowing through the refrigerant pipe of an air conditioner mm Inside diameter 13.88φ (151.2mm 2)], the radiation type indoor unit constituted by serpentine tubes of two systems [inner diameter 6.4φ (32.2mm 2 Branches into two refrigerant piping systems. The straight pipe part of the meandering pipe is arranged in the vertical direction. If 4 lines are juxtaposed serpentine tube of two systems (two radiation type indoor unit), the total cross-sectional area of the refrigerant tube having an inner diameter of 6.4φ (32.2mm 2) (128.8mm 2 ) has an inner diameter of the refrigerant pipe Compared to the area of 13.88φ (151.2mm 2 ), it is 85.1%, and the flow velocity is faster.

輻射型室内機が大型化すると、それに伴って冷媒管が長くなる。冷媒は、冷媒管の入口付近から徐々に放熱しながら出口まで移動する為、入口付近と出口付近に温度差が生じ、輻射型室内機の発熱体の能力が十分に発揮されない事が考えられる。つまり、発熱体の温度むらにより発熱体の放熱能力が十分に発揮できない事態が生じる。また、冷媒の流速が遅くなり油溜まりの原因ともなる。   As the radiant indoor unit becomes larger, the refrigerant pipe becomes longer accordingly. Since the refrigerant moves from the vicinity of the inlet of the refrigerant pipe to the outlet while gradually radiating heat, there is a temperature difference between the vicinity of the inlet and the vicinity of the outlet, and the capability of the heating element of the radiation type indoor unit may not be sufficiently exhibited. That is, there arises a situation in which the heat dissipating ability of the heat generating element cannot be sufficiently exhibited due to uneven temperature of the heat generating element. In addition, the flow rate of the refrigerant is slowed down, causing oil accumulation.

したがって、空気調和装置が十分に機能する設計の範囲内において、冷媒を分岐するために、輻射型室内機は、冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部と、を備えるのが好ましい。
なお、冷媒管の内径を空気調和装置が機能する設計の範囲内において小さくし、輻射型室内機を複数台設置すると、輻射型室内機全体として熱効率を高めることができる。
Therefore, in order to branch the refrigerant within a design range in which the air conditioner functions sufficiently, the radiant indoor unit has a branching part that branches the refrigerant flow into a plurality of parts, and a refrigerant branched by the branching part. And a collecting portion for collecting.
If the inside diameter of the refrigerant pipe is reduced within the design range in which the air conditioner functions and a plurality of radiant indoor units are installed, the thermal efficiency of the radiant indoor unit as a whole can be increased.

輻射型室内機の冷媒管は、鉛直方向に並設されている複数の直管と、隣接する直管の上端間と下端間とを接続する接続管と、を備えて蛇行状に形成するのが、冷媒の流れを円滑にする観点から好ましい。   The refrigerant pipe of the radiant indoor unit has a plurality of straight pipes arranged in parallel in the vertical direction, and a connecting pipe that connects between the upper ends and lower ends of adjacent straight pipes, and is formed in a meandering shape. Is preferable from the viewpoint of smoothing the flow of the refrigerant.

複数の直管は、対向壁の外面が外方に向けて膨出する楕円形状の放熱部で覆われており、該放熱部は、隣接する放熱部の端部が連続しない折れ線状に配置するとよい。
実験によれば、放熱部の膨出部分を互いに向かい合わせに配置した場合、輻射型室内機の上下方向の温度差は大きくなる。これは放熱部の膨出部分を向かい合わせることによって、空気を暖め、また、冷やすことが促進されるからと思われる。
また、放熱部の膨出部分を横一列方向に配置した場合は、輻射型室内機の輻射熱の放出能力に優れる。したがって、放熱部を折れ線状に配置することによって、必要な輻射放熱面を確保しながら室内空気の上下の対流も確保できるようである。
The plurality of straight pipes are covered with an elliptical heat radiating portion in which the outer surface of the opposing wall bulges outward, and the heat radiating portion is arranged in a broken line shape in which the end portions of the adjacent heat radiating portions are not continuous. Good.
According to experiments, when the bulging portions of the heat radiating portion are arranged facing each other, the temperature difference in the vertical direction of the radiation type indoor unit becomes large. This is presumably because warming and cooling of the air is promoted by facing the bulging portions of the heat radiation part.
Moreover, when the bulging part of a thermal radiation part is arrange | positioned in a horizontal line direction, it is excellent in the discharge | release capability of the radiation type indoor unit. Therefore, by arranging the heat dissipating portions in a polygonal line, it seems that the upper and lower convection of the room air can be secured while securing the necessary radiation heat dissipating surface.

室外側熱交換器には、冬期に霜または氷が付着し、運転能力を低下させるので、定期的に除霜運転が行われる。輻射型室内機を配備することによって、配備しない場合と比べて除霜運転の回数が減るようである。その理由ははっきりしないが、輻射型室内機を配備することによって冷媒の凝縮と蒸発の効率がよくなり、圧縮機への負荷が小さくなるので、室外機の熱交換器に霜がつきにくくなることのようである。
この除霜運転の回数が少なくなることによって、省エネルギーとなる。また、除霜運転の際の室内側の温度低下も防止できる。
Since frost or ice adheres to the outdoor heat exchanger in the winter, and the operation capacity is reduced, the defrosting operation is periodically performed. By deploying the radiation type indoor unit, it seems that the number of defrosting operations is reduced as compared with the case where it is not deployed. The reason is not clear, but deploying a radiation-type indoor unit increases the efficiency of refrigerant condensation and evaporation and reduces the load on the compressor, making it difficult for the outdoor unit heat exchanger to form frost. It seems to be.
Energy is saved by reducing the number of times of the defrosting operation. Further, it is possible to prevent a temperature drop on the indoor side during the defrosting operation.

圧縮機の能力が大きい場合は、複数の輻射型室内機を冷媒回路に直列に接続することができる。
その他の方法として、全ての冷媒を輻射型室内機を経由した冷媒回路構成とする以外に、一部の冷媒が、輻射型室内機を経由せずに、室外機と対流型室内機に流れる経路を確保すれば、輻射型室内機による、冷媒の圧力損失を防止して、コンプレッサーに負荷を与える事無く、稼働させることもできる。
When the capacity of the compressor is large, a plurality of radiation type indoor units can be connected in series to the refrigerant circuit.
As another method, in addition to a refrigerant circuit configuration in which all refrigerants pass through the radiant indoor unit, a route through which some refrigerant flows to the outdoor unit and the convective indoor unit without passing through the radiant indoor unit. If it is ensured, the pressure loss of the refrigerant caused by the radiation type indoor unit can be prevented, and the operation can be performed without applying a load to the compressor.

(作用)
対流型室内機と輻射型室内機を備えた空気調和装置において、輻射型室内機の冷媒管の内径を、空気調和機の冷媒配管よりも小さくしたので、冷媒管を流れる冷媒の流速の低下を防止し、輻射型室内機の冷媒管に生じる油だまり現象を防止できる。
(Function)
In an air conditioner equipped with a convection type indoor unit and a radiant type indoor unit, the refrigerant pipe of the radiant type indoor unit is made smaller than the refrigerant pipe of the air conditioner, so that the flow velocity of the refrigerant flowing through the refrigerant pipe is reduced. It is possible to prevent the oil pool phenomenon that occurs in the refrigerant pipe of the radiation type indoor unit.

本発明によれば、対流型室内機と輻射型室内機を備えた空気調和装置において、輻射型室内機の冷媒管の内径を、空気調和機の冷媒配管よりも小さくしたので、冷媒中の潤滑油の分離を防止し、ひいては圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止できる空気調和装置が提供できる。
また、輻射型室内機が、冷媒管を流れる冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部と、を備えるものは、輻射型室内機が大型化した場合でも、冷媒管を複数に分岐することによって冷媒管中の冷媒の流速が低下するのを防止することができる。
According to the present invention, in the air conditioner including the convection type indoor unit and the radiation type indoor unit, the inner diameter of the refrigerant pipe of the radiation type indoor unit is made smaller than that of the refrigerant pipe of the air conditioner. It is possible to provide an air-conditioning apparatus that can prevent oil from being separated, thereby preventing damage to the compressor and preventing deterioration in the reliability of the compressor.
In addition, the radiation type indoor unit is provided with a branching part that branches the flow of the refrigerant flowing through the refrigerant pipe into a plurality of parts and a collecting part that collects the refrigerant branched by the branching part. Even if it does, it can prevent that the flow velocity of the refrigerant | coolant in a refrigerant pipe falls by branching a refrigerant pipe into plurality.

実施の形態にかかる空気調和装置の概略説明図である。It is a schematic explanatory drawing of the air conditioning apparatus concerning embodiment. 図1に示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus shown in FIG. 上部の目隠し化粧板を一部省略した輻射型室内機の概略説明図である。It is a schematic explanatory drawing of the radiation type indoor unit which abbreviate | omitted a part of upper blindfolded decorative board. 図3のA−A方向から見た概略説明図である。It is the schematic explanatory drawing seen from the AA direction of FIG. 輻射型室内機の冷媒管の構造を示し、暖房時における冷媒の流れを矢印で示した平面視概略説明図である。FIG. 2 is a schematic plan view illustrating the structure of a refrigerant pipe of a radiant indoor unit, in which the refrigerant flow during heating is indicated by arrows. 図5に示す輻射型室内機の冷媒管の構造を示し、暖房時における冷媒の流れを矢印で示した正面視概略説明図である。FIG. 6 is a schematic front view illustrating the structure of the refrigerant pipe of the radiation type indoor unit illustrated in FIG. 5, in which the refrigerant flow during heating is indicated by arrows. 図3の輻射型室内機を上方向から見た概略説明図である。It is the schematic explanatory drawing which looked at the radiation type indoor unit of FIG. 3 from the upper direction . 直管と放熱面積拡大部材との関係を示す概略断面説明図である。It is a schematic cross-section explanatory drawing which shows the relationship between a straight pipe and a heat radiating area expansion member. 輻射型室内機の冷媒管の構造を示し、冷房時における冷媒の流れを矢印で示した平面視概略説明図である。FIG. 3 is a schematic plan view showing the structure of a refrigerant pipe of a radiation type indoor unit, and the flow of refrigerant during cooling is indicated by arrows. 図9に示す輻射型室内機の冷媒管の構造を示し、冷房時における冷媒の流れを矢印で示した正面視概略説明図である。FIG. 10 is a schematic front view illustrating the structure of the refrigerant pipe of the radiation type indoor unit illustrated in FIG. 9, and the refrigerant flow during cooling is indicated by arrows. 本発明の輻射型室内機の変形例における冷媒管の構造を示した正面視概略説明図である。FIG. 5 is a schematic front view illustrating the structure of a refrigerant pipe in a modification of the radiation type indoor unit of the present invention.

本発明を図に示した実施の形態に基づき詳細に説明する。なお、図に付した符号は、煩雑さを避けるため、理解を助ける範囲で付している。   The present invention will be described in detail based on the embodiments shown in the drawings. In addition, the code | symbol attached | subjected to the figure is attached | subjected in the range which helps an understanding, in order to avoid complexity.

図1に示すように、空気調和装置100は、一台の室外機1と、この室外機1に直列に接続されている二台の室内機で構成されている。二台の室内機のうち一台は、一般的な対流型室内機2であり、他の一台は輻射型室内機10である。
対流型室内機2及び輻射型室内機10は、空気調和対象域を有する部屋等に設置され、その空気調和対象域に冷房または暖房する機能を有している。
As shown in FIG. 1, the air conditioner 100 includes a single outdoor unit 1 and two indoor units connected in series to the outdoor unit 1. One of the two indoor units is a general convection type indoor unit 2, and the other is a radiation type indoor unit 10.
The convection type indoor unit 2 and the radiation type indoor unit 10 are installed in a room or the like having an air conditioning target area, and have a function of cooling or heating the air conditioning target area.

対流型室内機2と輻射型室内機10とは、冷媒配管7で接続されて連絡している。したがって、空気調和装置100の対流型室内機2と輻射型室内機10は、冷媒回路の一部を形成し、この冷媒回路に冷媒を循環させることによって、冷房運転又は暖房運転することが可能になっている。   The convection type indoor unit 2 and the radiation type indoor unit 10 are connected by a refrigerant pipe 7 to communicate with each other. Therefore, the convection type indoor unit 2 and the radiant type indoor unit 10 of the air conditioner 100 form part of the refrigerant circuit, and the refrigerant can be circulated through the refrigerant circuit, thereby enabling a cooling operation or a heating operation. It has become.

なお、図1,2では室外機一台、対流型室内機2及び輻射型室内機10は、それぞれ一台の構成となっているが、図示してある台数に限定するものではない。   1 and 2, each of the outdoor unit, the convection type indoor unit 2 and the radiation type indoor unit 10 has a single configuration, but is not limited to the number shown.

図2に示すように、室外機1は、圧縮機3、室外側熱交換器4、膨張弁5を備える公知の構造である。また、対流型室内機2は、室内側熱交換器6と、室内側熱交換器6に風を送る送風ファン(図示省略)を備えている公知の構造である。   As shown in FIG. 2, the outdoor unit 1 has a known structure including a compressor 3, an outdoor heat exchanger 4, and an expansion valve 5. The convection type indoor unit 2 has a known structure including an indoor heat exchanger 6 and a blower fan (not shown) that sends air to the indoor heat exchanger 6.

室内側熱交換器6は、冷房運転時には蒸発器として、暖房運転時には凝縮器(放熱器)として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行ない、空気調和対象域に供給するための暖房空気あるいは冷房空気を作成する。
前記機器類は、冷媒配管7により接続されて、空気調和装置100の冷凍サイクル(冷媒回路)の一部を構成している。
The indoor heat exchanger 6 functions as an evaporator during cooling operation, and functions as a condenser (heat radiator) during heating operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant. Then, heating air or cooling air to be supplied to the air conditioning target area is created.
The devices are connected by a refrigerant pipe 7 and constitute a part of the refrigeration cycle (refrigerant circuit) of the air conditioner 100.

〔輻射型室内機〕
空気調和装置100の冷凍サイクルには、輻射型室内機10が配備されている。
輻射型室内機10は、発熱体11と、発熱体11を固定し支持するフレーム12を備える。フレーム12は、左右両側に、鉛直方向に並行に立設された縦フレーム12a、12bを備える。フレーム12の材料は、例えば、木、合成樹脂やアルミニウム等の金属を採用することができる。
本実施の形態では、フレーム12は、輻射熱を反射する反射材又は断熱材となる背面板を備えているが、背面板がない構造とすることもできる。
[Radiation type indoor unit]
The refrigeration cycle of the air conditioner 100 is provided with a radiation type indoor unit 10.
The radiant indoor unit 10 includes a heating element 11 and a frame 12 that fixes and supports the heating element 11. The frame 12 includes vertical frames 12a and 12b that are erected in parallel in the vertical direction on both the left and right sides. As the material of the frame 12, for example, a metal such as wood, synthetic resin, or aluminum can be adopted.
In the present embodiment, the frame 12 includes a back plate serving as a reflective material or a heat insulating material that reflects radiant heat, but may have a structure without a back plate.

縦フレーム12a、12bの間には、発熱体11が配置されている。
発熱体11は、長手方向を鉛直方向に配置し、横方向に複数本が並行に配置された直管112と、隣接する直管112の上端間と下端間を接続する接続管114を有し、全体形状を蛇行状に配置して形成した冷媒管110を有する。冷媒管110のうち図3に示すように直管112は、放熱面積拡大部材111で囲繞されて、発熱体11は構成されている。
冷媒管110は、アルミニウムや銅等の金属製のほか、必要に応じて他の素材を使用することもできる。
A heating element 11 is disposed between the vertical frames 12a and 12b.
The heating element 11 has a straight pipe 112 in which the longitudinal direction is arranged in the vertical direction and a plurality of pipes are arranged in parallel in the lateral direction, and a connecting pipe 114 that connects between the upper end and the lower end of the adjacent straight pipes 112. The refrigerant pipe 110 is formed by arranging the whole shape in a meandering manner. As shown in FIG. 3 in the refrigerant pipe 110, the straight pipe 112 is surrounded by a heat radiating area expanding member 111, and the heating element 11 is configured.
The refrigerant pipe 110 may be made of a metal such as aluminum or copper, or other materials as required.

発熱体11の上側には、冷媒配管7を流れる冷媒の流れを複数に、本実施の形態では二つに分岐する分岐部113と、該分岐部113によって分岐された冷媒を集める集結部115とを有する。分岐部113の接続口と集結部115の接続口は、それぞれ、冷媒配管7に接続され、輻射型室内機10は冷媒回路に組み込まれている。   On the upper side of the heating element 11, a branch portion 113 that branches into a plurality of refrigerant flows through the refrigerant pipe 7, and in this embodiment, a branch portion 113, and a collecting portion 115 that collects the refrigerant branched by the branch portion 113, Have The connection port of the branch part 113 and the connection port of the concentration part 115 are each connected to the refrigerant pipe 7, and the radiation type indoor unit 10 is incorporated in the refrigerant circuit.

なお、図3,4,6に示す本実施の形態においては、分岐部113と集結部115が発熱体11の上側に配置されているが、これに限定するものではなく、例えば、図11(輻射型室内機の変形例)に示すように、分岐部113と集結部115を発熱体11の下側に配置するものであってもよい。   In addition, in this Embodiment shown to FIG.3,4,6, although the branch part 113 and the concentration part 115 are arrange | positioned above the heat generating body 11, it is not limited to this, For example, FIG. As shown in a modification of the radiation type indoor unit), the branching portion 113 and the concentrating portion 115 may be arranged below the heating element 11.

分岐部113は、分岐管113a、113bを備える。分岐管113a、113bで冷媒を分流し、二つの冷媒の流れとなる。例えば、図6における矢印は冷媒の流れを示しており、分岐管113aによる一方の流れは、図6右側の6本の直管112中を流れ(第2の発熱体11b)、分岐管113bによる他方の流れは、図6における左側の6本の直管112中を流れる(第1の発熱体11a)。これらの冷媒は、集結部115で合流し、集結部115から冷媒回路7に流れる。 The branch part 113 includes branch pipes 113a and 113b. The refrigerant is divided by the branch pipes 113a and 113b, so that two refrigerant flows are obtained. For example, the arrows in FIG. 6 indicate the flow of the refrigerant, and one flow by the branch pipe 113a flows through the six straight pipes 112 on the right side of FIG. 6 (second heating element 11b), and by the branch pipe 113b. The other flow flows in the six straight pipes 112 on the left side in FIG. 6 (first heating element 11a). These refrigerants merge at the collecting portion 115 and flow from the collecting portion 115 to the refrigerant circuit 7.

なお、図5,6において矢印で示す冷媒の流れは、暖房時の冷媒の流れである。
一方、冷房時の冷媒の流れは、図9,10に示すように、暖房時とは逆の流れ(矢印の向きが逆)となる。
このように設定したのは、特に暖房時において、発熱体11の中を流れる冷媒が中央側から外方側に流れる場合(即ち、冷媒が分岐部113方向から入って集結部115方向へ出る流れ)の方が、放熱の効率が良いためである。
5 and 6, the refrigerant flow indicated by the arrows is the refrigerant flow during heating.
On the other hand, as shown in FIGS. 9 and 10, the flow of the refrigerant during cooling is the reverse of the flow during heating (the direction of the arrow is reversed).
The reason for this setting is that, particularly during heating, when the refrigerant flowing in the heating element 11 flows from the center side to the outside side (that is, the refrigerant enters from the direction of the branch portion 113 and flows out toward the concentration portion 115). This is because the heat dissipation efficiency is better.

この理由は、以下の通りである。即ち、暖房時において最も冷媒の温度が高いのは冷媒の入口付近であり、放熱に伴って出口付近に近づくにつれて徐々に温度が低下するのであるが、冷媒の入口が発熱体11の外側である(集結部115方向からの冷媒が流入する場合である)と、本実施の形態における輻射型室内機10の構造上、縦フレーム12a,12bによって熱が遮蔽される(換言すると、最も外側の発熱体が縦フレームの陰になる)こととなり、放熱の効率が最良とは言い難い。
一方、冷媒の入口が発熱体11の中央側であると、縦フレーム12a,12bのような放熱を遮るものがないため、放熱の効率が最良となる。
The reason for this is as follows. That is, the temperature of the refrigerant is highest near the inlet of the refrigerant during heating, and gradually decreases as the temperature approaches the vicinity of the outlet as heat is dissipated, but the refrigerant inlet is outside the heating element 11. When the refrigerant from the direction of the concentrating portion 115 flows in, the heat is shielded by the vertical frames 12a and 12b (in other words, the outermost heat generation) due to the structure of the radiation type indoor unit 10 in the present embodiment. The body is in the shadow of the vertical frame), and it is difficult to say that the heat dissipation efficiency is the best.
On the other hand, if the inlet of the refrigerant is on the center side of the heating element 11, there is nothing to block the heat dissipation like the vertical frames 12a and 12b, so that the heat dissipation efficiency is the best.

なお、本実施の形態においては、安全性や装置(特に発熱体)保護の観点から、縦フレーム12a,12bを設けているが、縦フレーム12a,12bを設けない態様、あるいは、縦フレーム12a,12bがスリットを設けるなどして放熱を妨げない態様である場合は、暖房時に、発熱体11の中を流れる冷媒が外方側から中央側に流れるもの(即ち、冷媒が集結部115方向から入って分岐部113方向へ出る流れであるもの。冷房時は逆の流れ)であってもよい。   In the present embodiment, the vertical frames 12a and 12b are provided from the viewpoint of safety and device (especially heating element) protection, but the vertical frames 12a and 12b are not provided. In the case where 12b is a mode that does not hinder heat dissipation by providing a slit or the like, the refrigerant flowing in the heating element 11 flows from the outside side to the center side during heating (that is, the refrigerant enters from the direction of the collecting portion 115). In other words, it may be a flow that flows out in the direction of the branching portion 113, or a reverse flow during cooling).

本実施の形態では、第1の発熱体11aと第2の発熱体11bの冷媒管の長さは同じであり、各々略6mである。また、冷媒配管7の径は、内径7.92φ(49.2mm2)、直管112の径は内径4.75(17.7mm2)で、冷媒配管7よりも径小となっている。
内径7.92φ(49.2mm2)の冷媒配管は、内径4.75φ(17.7mm2)の冷媒管2系統に分岐している。これによって、分岐部113と集結部115との間の発熱体11内における冷媒の流速は、冷媒配管7における流速よりも速く、二相冷媒中の潤滑油の分離が防止できる。
In the present embodiment, the lengths of the refrigerant tubes of the first heating element 11a and the second heating element 11b are the same, and are approximately 6 m. The refrigerant pipe 7 has an inner diameter of 7.92φ (49.2 mm 2 ), and the straight pipe 112 has an inner diameter of 4.75 (17.7 mm 2 ), which is smaller than the refrigerant pipe 7.
Refrigerant pipe inner diameter 7.92φ (49.2mm 2) is branched into the refrigerant pipes 2 systems of internal diameter 4.75φ (17.7mm 2). Thereby, the flow rate of the refrigerant in the heating element 11 between the branching portion 113 and the concentrating portion 115 is faster than the flow rate in the refrigerant pipe 7, and separation of the lubricating oil in the two-phase refrigerant can be prevented.

図8に示すように、各直管112は、対向壁の外面が外方に向けて膨出する楕円形状の放熱面積拡大部材111で囲繞されている。放熱面積拡大部材111は、例えばアルミニウムで作られており、これによって直管112は、室内空間において熱交換を行う放熱面積を拡張する。   As shown in FIG. 8, each straight pipe 112 is surrounded by an elliptical heat radiation area expanding member 111 in which the outer surface of the opposing wall bulges outward. The heat radiating area expanding member 111 is made of, for example, aluminum, so that the straight pipe 112 expands the heat radiating area for heat exchange in the indoor space.

放熱面積拡大部材111は、二つの部品111a、111bで構成され、直管112の両側から直管112を挟んで当接部分の嵌着により結合されている。
また、直管112と放熱面積拡大部材111間との圧接接触は、放熱面積拡大部材111が、直管112を中心として回動することができる程度の強さである。これによって放熱面積拡大部材111の放熱面の方向を変えることができる。なお、回動しないようにすることもできる。
The heat dissipating area expanding member 111 is composed of two parts 111a and 111b, and is joined from both sides of the straight pipe 112 by fitting a contact portion with the straight pipe 112 interposed therebetween.
Further, the pressure contact between the straight pipe 112 and the heat radiating area expanding member 111 has such a strength that the heat radiating area expanding member 111 can rotate around the straight pipe 112. Thereby, the direction of the heat radiation surface of the heat radiation area expanding member 111 can be changed. In addition, it can also be made not to rotate.

また、図3,4に示すように、発熱体11の下側には、上方が開放された樋形状の集水部材であるドレンパン116が両端部を縦フレーム12a、12bの間に固定して配置されている。ドレンパン116の底部の一端側にはドレン管が接続されている。冷房時、発熱体11の表面に結露した結露水は、ドレンパン116に滴下し、適宜、ドレン管を通して集められ、処理される。符号117は、目隠し化粧板である。   As shown in FIGS. 3 and 4, a drain pan 116, which is a bowl-shaped water collecting member whose upper side is opened, is fixed at both ends between the vertical frames 12 a and 12 b below the heating element 11. Has been placed. A drain pipe is connected to one end side of the bottom of the drain pan 116. During cooling, the condensed water condensed on the surface of the heating element 11 is dropped on the drain pan 116 and appropriately collected through a drain pipe and processed. Reference numeral 117 denotes a blindfolded decorative board.

(作用)
図1,2を参照して空気調和装置100の各種運転時の冷媒の流れについて説明する。
(Function)
The flow of the refrigerant during various operations of the air conditioning apparatus 100 will be described with reference to FIGS.

〔冷房運転時 図2(a)〕
空気調和装置100が冷房運転を実行する場合、圧縮機3からの吐出冷媒が室外側熱交換器4に流入するように四方弁8が切り替えられ、圧縮機3が駆動される。
[During cooling operation, Fig. 2 (a)]
When the air-conditioning apparatus 100 performs the cooling operation, the four-way valve 8 is switched so that the refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 4, and the compressor 3 is driven.

圧縮機3に吸入された冷媒は、圧縮機3で高圧・高温のガス状態となって吐出され、四方弁8を介して室外側熱交換器4に流入する。この室外側熱交換器4に流入した冷媒は、図示省略の送風機から供給される空気に放熱しながら冷却され、低圧・高温の液冷媒となって室外側熱交換器4から流出する。   The refrigerant sucked into the compressor 3 is discharged in a high-pressure and high-temperature gas state by the compressor 3 and flows into the outdoor heat exchanger 4 through the four-way valve 8. The refrigerant that has flowed into the outdoor heat exchanger 4 is cooled while dissipating heat to air supplied from a blower (not shown), and flows out of the outdoor heat exchanger 4 as a low-pressure and high-temperature liquid refrigerant.

室外側熱交換器4から流出した液冷媒は、膨張弁5を通り対流型室内機2に流入する。対流型室内機2に流入した冷媒は、二相冷媒となる。この低圧二相冷媒は、室内側熱交換器6に流入し、図示省略の送風機から供給される空気から吸熱することで蒸発、ガス化する。このとき、室内等の空気調和対象空間に冷房空気が供給され、空気調和対象空間の冷房運転が実現される。   The liquid refrigerant flowing out from the outdoor heat exchanger 4 flows into the convection indoor unit 2 through the expansion valve 5. The refrigerant flowing into the convection indoor unit 2 becomes a two-phase refrigerant. This low-pressure two-phase refrigerant flows into the indoor heat exchanger 6 and is evaporated and gasified by absorbing heat from air supplied from a blower (not shown). At this time, cooling air is supplied to an air conditioning target space such as a room, and cooling operation of the air conditioning target space is realized.

室内側熱交換器6から流出した二相冷媒は、対流型室内機2から流出し、輻射型室内機10に流入し、冷媒管110内を通る。このとき、雰囲気との吸熱作用と共に室内等の空気調和対象空間の雰囲気、すなわち空気が冷され、空気調和対象空間の冷房が実現される。   The two-phase refrigerant that has flowed out of the indoor heat exchanger 6 flows out of the convective indoor unit 2, flows into the radiant indoor unit 10, and passes through the refrigerant pipe 110. At this time, the atmosphere of the air-conditioning target space such as the room, that is, the air is cooled together with the endothermic action with the atmosphere, and the air-conditioning target space is cooled.

輻射型室内機10から流出した冷媒は、室外機1に流入し、室外機1の四方弁8を通り、圧縮機3に再度吸入される。
以上の冷媒サイクルを繰り返して冷房運転を行う。
The refrigerant that has flowed out of the radiant indoor unit 10 flows into the outdoor unit 1, passes through the four-way valve 8 of the outdoor unit 1, and is sucked into the compressor 3 again.
The cooling cycle is performed by repeating the above refrigerant cycle.

〔暖房運転時図2(b)〕
空気調和装置100が暖房運転を実行する場合、圧縮機3からの吐出冷媒が室内側熱交換器6に流入するように四方弁8が切り替えられ、圧縮機3が駆動される。圧縮機3に吸入された冷媒は、圧縮機3で高圧・高温のガス状態となって吐出され、四方弁8を介して輻射型室内機10に流入する。
[Fig. 2 (b) during heating operation]
When the air conditioning apparatus 100 performs the heating operation, the four-way valve 8 is switched so that the refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 6 and the compressor 3 is driven. The refrigerant sucked into the compressor 3 is discharged in a high-pressure and high-temperature gas state by the compressor 3 and flows into the radiant indoor unit 10 through the four-way valve 8.

輻射型室内機10に流入した冷媒は、発熱体11の冷媒管110で輻射熱を放出して室内等の空気調和対象空間の雰囲気を温める。輻射型室内機10から流出した冷媒は、対流型室内機2の室内側熱交換器6に流入する。室内側熱交換器6に流入した冷媒は、図示省略の送風機から供給される空気に放熱しながら冷却され、液冷媒となる。このとき、室内等の空気調和対象空間に暖房空気が供給され、空気調和対象空間の暖房運転が実現される。

The refrigerant that has flowed into the radiant indoor unit 10 releases radiant heat through the refrigerant pipe 110 of the heating element 11 to warm the atmosphere of the air-conditioning target space such as the room. The refrigerant flowing out from the radiation type indoor unit 10 flows into the indoor heat exchanger 6 of the convection type indoor unit 2. The refrigerant that has flowed into the indoor heat exchanger 6 is cooled while dissipating heat to air supplied from a blower (not shown), and becomes a liquid refrigerant. At this time, heating air is supplied to an air conditioning target space such as a room, and a heating operation of the air conditioning target space is realized.

室内側熱交換器6から流出した液冷媒は、膨張弁5で減圧され、低圧二相冷媒となる。この低圧二相冷媒は、室外機1の室外側熱交換器4に流入する。室外側熱交換器4に流入した低圧二相冷媒は、図示省略の送風機から供給される空気から吸熱することで蒸発、ガス化する。この低圧ガス冷媒は、室外側熱交換器4から流出し、四方弁8を通り、圧縮機3に再度吸入される。
以上の冷媒サイクルを繰り返して暖房運転を行う。
The liquid refrigerant that has flowed out of the indoor heat exchanger 6 is decompressed by the expansion valve 5 and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the outdoor heat exchanger 4 of the outdoor unit 1. The low-pressure two-phase refrigerant that has flowed into the outdoor heat exchanger 4 is evaporated and gasified by absorbing heat from air supplied from a blower (not shown). The low-pressure gas refrigerant flows out of the outdoor heat exchanger 4, passes through the four-way valve 8, and is sucked into the compressor 3 again.
A heating operation is performed by repeating the above refrigerant cycle.

なお、本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。
また、第1、第2などの言葉は、等級や重要度を意味するものではなく、一つの要素を他の要素から区別するために使用したものである。
Note that the terms and expressions used in this specification are merely explanatory and are not limiting at all, and terms and expressions equivalent to the features described in this specification and parts thereof. There is no intention to exclude. It goes without saying that various modifications are possible within the scope of the technical idea of the present invention.
Moreover, the words such as “first” and “second” do not mean grade or importance, but are used to distinguish one element from other elements.

1 室外機、 2 対流型室内機、 3 圧縮機、 4 室外側熱交換器、 5 膨張弁、 6 室内側熱交換器、 7 冷媒配管、 8 四方弁、 10 輻射型室内機、 11 発熱体、 12 フレーム、 100 空気調和装置、 110 冷媒管、 111 放熱面積拡大部材、 112 直管、 113 分岐部、 115 集結部   DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 Convection type indoor unit, 3 Compressor, 4 Outdoor heat exchanger, 5 Expansion valve, 6 Indoor side heat exchanger, 7 Refrigerant piping, 8 Four-way valve, 10 Radiation type indoor unit, 11 Heating element, 12 frame, 100 air conditioner, 110 refrigerant pipe, 111 heat radiating area expanding member, 112 straight pipe, 113 branching part, 115 collecting part

Claims (3)

少なくとも、圧縮機、室外熱交換器及び膨張弁を有する室外機と、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機と、
前記対流型室内機と前記室外機との間に配備され、同対流型室内機と同室外機との間を接続するための前記冷媒配管よりも内径が小さく、複数の直管部分が鉛直方向となるように並設配置された蛇行管である冷媒管、前記直管部分の各々を個別に覆う楕円形状の管である放熱部を有し、該各放熱部が、前記直管部分を両側から挟む2つの部品で構成され、同直管部分に圧接することで同直管部分を挟んで当接する部分の嵌着により結合された構造であり、圧接接触は、放熱部が同直管部分を中心として回動することができる程度の強さである、輻射型室内機とを備える
空気調和装置。
At least an outdoor unit having a compressor, an outdoor heat exchanger and an expansion valve, an air conditioner having a refrigerant pipe connecting the convection type indoor unit and these devices, and
Deployed between the convection type indoor unit and the outdoor unit, and has a smaller inner diameter than the refrigerant pipe for connecting between the convection type indoor unit and the outdoor unit, and a plurality of straight pipe portions are in the vertical direction. and a serpentine tube disposed in parallel arranged so that refrigerant tubes having the heat radiating portion is a tube of elliptical shape that covers individually each of the straight tube portions, each of said heat radiation member, on both sides of the straight pipe portion is composed of two parts which sandwich from Ri structure der joined by fitted and abutting portions sandwiching the same straight tube portion by pressure contact in the straight pipe portion, pressure contact, the heat radiating portion is the straight pipe An air conditioner including a radiation-type indoor unit that is strong enough to rotate about a portion .
前記輻射型室内機は、冷媒管を流れる冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部とを備える
請求項1記載の空気調和装置。
The air conditioning apparatus according to claim 1 , wherein the radiation-type indoor unit includes a branching part that branches a refrigerant flow that flows through the refrigerant pipe into a plurality of branches, and a collecting part that collects the refrigerant branched by the branching part.
前記放熱部は、隣接する同放熱部の端部が連続しない折れ線状に配置されている
請求項1または請求項2に記載の空気調和装置。
3. The air conditioner according to claim 1 , wherein the heat dissipating part is arranged in a polygonal line in which ends of adjacent heat dissipating parts are not continuous .
JP2016517798A 2014-05-09 2014-12-26 Air conditioner Active JP6304783B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014097916 2014-05-09
JP2014097916 2014-05-09
PCT/JP2014/084498 WO2015170431A1 (en) 2014-05-09 2014-12-26 Air conditioning system

Publications (2)

Publication Number Publication Date
JPWO2015170431A1 JPWO2015170431A1 (en) 2017-05-25
JP6304783B2 true JP6304783B2 (en) 2018-04-04

Family

ID=54392296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016517798A Active JP6304783B2 (en) 2014-05-09 2014-12-26 Air conditioner

Country Status (10)

Country Link
US (1) US20160047577A1 (en)
EP (1) EP3141824B1 (en)
JP (1) JP6304783B2 (en)
CN (1) CN105264296A (en)
AU (1) AU2014393532B2 (en)
HK (1) HK1218949A1 (en)
MY (1) MY184976A (en)
PH (1) PH12015500378B1 (en)
SG (1) SG11201501227WA (en)
WO (1) WO2015170431A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948208B2 (en) * 2018-01-21 2021-03-16 Daikin Industries, Ltd. System and method for heating and cooling
CN111615608B (en) * 2018-02-19 2022-04-05 大金工业株式会社 Air conditioner
CN108489027B (en) * 2018-03-23 2021-01-15 陈旸 Control method for convection and radiation adaptive supply heating and ventilation system
CN111535726A (en) * 2020-05-08 2020-08-14 广东工业大学 Wet type radiation convection temperature-regulating door and window

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1252272A (en) * 1983-05-09 1989-04-11 Satoshi Tanno Method of manufacturing fin-tube heat exchangers
JPS6317975U (en) * 1986-07-21 1988-02-05
EP0269282B1 (en) * 1986-10-30 1992-09-30 Kabushiki Kaisha Toshiba Air conditioner
JPS63185023U (en) * 1987-05-21 1988-11-28
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5189887A (en) * 1989-12-29 1993-03-02 Kool-Fire Research & Development Heat condensing furnace with de-intensifier tubes
JPH0547974Y2 (en) * 1990-11-09 1993-12-17
JPH04371735A (en) * 1991-06-19 1992-12-24 Daiken Trade & Ind Co Ltd Radiation cooling material
FR2689215B1 (en) * 1992-03-30 1994-07-01 Sari AIR TREATMENT INSTALLATION.
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
US5647225A (en) * 1995-06-14 1997-07-15 Fischer; Harry C. Multi-mode high efficiency air conditioning system
US5752389A (en) * 1996-10-15 1998-05-19 Harper; Thomas H. Cooling and dehumidifying system using refrigeration reheat with leaving air temperature control
JPH11316067A (en) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd Air conditioner using combustible refrigerant
US5937665A (en) * 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit
FR2776757B1 (en) * 1998-03-24 2000-05-12 Electricite De France AIR CONDITIONER PROVIDING HEATING AND COOLING
JP2002130704A (en) * 2000-10-23 2002-05-09 Sanyo Electric Co Ltd Radiator for heating
DE10233506B4 (en) * 2002-07-24 2004-12-09 Bayer Technology Services Gmbh Mixer / heat exchanger
JP4832355B2 (en) * 2007-04-26 2011-12-07 三菱電機株式会社 Refrigeration air conditioner
JP5249117B2 (en) * 2009-04-09 2013-07-31 旭化成ホームズ株式会社 Radiant panel device
IT1397613B1 (en) * 2009-07-16 2013-01-18 Termal Srl IRRADIATION HEATING DEVICE
JP5492485B2 (en) * 2009-07-28 2014-05-14 アオキ住宅機材販売株式会社 Ceiling radiation system and radiation cooling method
JP2011058648A (en) * 2009-09-07 2011-03-24 Tokyo Gas Co Ltd Radiator for heating
JP2012017967A (en) * 2010-06-09 2012-01-26 Best-Thermal Co Ltd Air conditioning device
US20120012292A1 (en) * 2010-07-16 2012-01-19 Evapco, Inc. Evaporative heat exchange apparatus with finned elliptical tube coil assembly
JP2012083011A (en) * 2010-10-08 2012-04-26 Daikin Industries Ltd Air conditioner
JP2012141114A (en) * 2011-01-06 2012-07-26 Tabuchi Corp Radiation panel type cooling/heating machine
JP5823775B2 (en) * 2011-08-17 2015-11-25 旭化成ホームズ株式会社 Radiant panel device
US8640474B2 (en) * 2011-12-31 2014-02-04 Richard Ackner System and method for increasing the efficiency of a solar heating system
JP5898569B2 (en) * 2012-05-23 2016-04-06 シャープ株式会社 Radiant air conditioner
JP5285179B1 (en) 2012-11-07 2013-09-11 株式会社 エコファクトリー Air conditioner

Also Published As

Publication number Publication date
EP3141824A4 (en) 2017-12-27
CN105264296A (en) 2016-01-20
MY184976A (en) 2021-04-30
AU2014393532B2 (en) 2018-09-27
SG11201501227WA (en) 2015-12-30
WO2015170431A1 (en) 2015-11-12
AU2014393532A1 (en) 2017-01-05
PH12015500378A1 (en) 2015-09-28
JPWO2015170431A1 (en) 2017-05-25
EP3141824A1 (en) 2017-03-15
EP3141824B1 (en) 2020-09-16
US20160047577A1 (en) 2016-02-18
HK1218949A1 (en) 2017-03-17
PH12015500378B1 (en) 2015-09-28

Similar Documents

Publication Publication Date Title
EP3580516B1 (en) Condenser with tube support structure
JP6304783B2 (en) Air conditioner
EP3091322B1 (en) Fin and tube-type heat exchanger and refrigeration cycle device provided therewith
US10941985B2 (en) Heat exchanger
JP6590948B2 (en) Heat exchanger and refrigeration cycle equipment
ES2747048T3 (en) Modular coil for air cooled chillers
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2006284133A (en) Heat exchanger
JP5627635B2 (en) Air conditioner
JP2004069228A (en) Heat exchanger
EP2315997A2 (en) Heat exchanger fin including louvers
JP6298992B2 (en) Air conditioner
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP3918284B2 (en) Cross fin tube heat exchanger
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP2014114979A (en) Outdoor heat exchanger for heat pump refrigeration cycle
JP2021032428A (en) Outdoor heat exchanger for heat pump type refrigeration cycle
JPH09126592A (en) Outdoor heat exchanger for heat pump type refrigerating cycle
JP6921323B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2015087038A (en) Heat exchanger and refrigeration cycle device
JP4225170B2 (en) Heat pump equipment
WO2018037452A1 (en) Air conditioning device
JP2007210376A (en) Vehicle air conditioner
JP5849697B2 (en) Outdoor unit
JP2021196076A (en) Outdoor heat exchanger

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6304783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150