JP6304656B2 - Method for producing organometallic complex - Google Patents
Method for producing organometallic complex Download PDFInfo
- Publication number
- JP6304656B2 JP6304656B2 JP2014124746A JP2014124746A JP6304656B2 JP 6304656 B2 JP6304656 B2 JP 6304656B2 JP 2014124746 A JP2014124746 A JP 2014124746A JP 2014124746 A JP2014124746 A JP 2014124746A JP 6304656 B2 JP6304656 B2 JP 6304656B2
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- reaction
- organometallic complex
- reactor
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 125000002524 organometallic group Chemical group 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 109
- 239000003446 ligand Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 20
- 239000012264 purified product Substances 0.000 claims description 16
- 239000012043 crude product Substances 0.000 claims description 12
- 230000001815 facial effect Effects 0.000 claims description 12
- 150000002894 organic compounds Chemical class 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 150000004696 coordination complex Chemical class 0.000 claims description 2
- 239000003623 enhancer Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 35
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 25
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 21
- 239000002994 raw material Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000010521 absorption reaction Methods 0.000 description 19
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- -1 β-diketones Chemical class 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000012295 chemical reaction liquid Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 10
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 9
- 238000000921 elemental analysis Methods 0.000 description 9
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000001291 vacuum drying Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 7
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 229910052707 ruthenium Inorganic materials 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 229910052762 osmium Inorganic materials 0.000 description 6
- 230000001235 sensitizing effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- 229910052771 Terbium Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 150000005359 phenylpyridines Chemical class 0.000 description 5
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000006267 biphenyl group Chemical group 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000003709 fluoroalkyl group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000005041 phenanthrolines Chemical class 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 3
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002044 microwave spectrum Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BVPKYBMUQDZTJH-UHFFFAOYSA-N 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(F)(F)F BVPKYBMUQDZTJH-UHFFFAOYSA-N 0.000 description 1
- SHXHPUAKLCCLDV-UHFFFAOYSA-N 1,1,1-trifluoropentane-2,4-dione Chemical compound CC(=O)CC(=O)C(F)(F)F SHXHPUAKLCCLDV-UHFFFAOYSA-N 0.000 description 1
- FHUDAMLDXFJHJE-UHFFFAOYSA-N 1,1,1-trifluoropropan-2-one Chemical compound CC(=O)C(F)(F)F FHUDAMLDXFJHJE-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- 150000005045 1,10-phenanthrolines Chemical class 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 description 1
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 1
- RJNRKZBHLCOHNM-UHFFFAOYSA-N 2-(3-hydroxypyridin-2-yl)pyridin-3-ol Chemical compound OC1=CC=CN=C1C1=NC=CC=C1O RJNRKZBHLCOHNM-UHFFFAOYSA-N 0.000 description 1
- LTNAYKNIZNSHQA-UHFFFAOYSA-L 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid;ruthenium(2+);dithiocyanate Chemical compound N#CS[Ru]SC#N.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 LTNAYKNIZNSHQA-UHFFFAOYSA-L 0.000 description 1
- 150000005360 2-phenylpyridines Chemical class 0.000 description 1
- WPTCSQBWLUUYDV-UHFFFAOYSA-N 2-quinolin-2-ylquinoline Chemical compound C1=CC=CC2=NC(C3=NC4=CC=CC=C4C=C3)=CC=C21 WPTCSQBWLUUYDV-UHFFFAOYSA-N 0.000 description 1
- NPAXPTHCUCUHPT-UHFFFAOYSA-N 3,4,7,8-tetramethyl-1,10-phenanthroline Chemical compound CC1=CN=C2C3=NC=C(C)C(C)=C3C=CC2=C1C NPAXPTHCUCUHPT-UHFFFAOYSA-N 0.000 description 1
- INWFLBXPENDFJW-UHFFFAOYSA-N 3,4-dimethyl-2-pyridin-2-ylpyridine Chemical compound CC1=CC=NC(C=2N=CC=CC=2)=C1C INWFLBXPENDFJW-UHFFFAOYSA-N 0.000 description 1
- OWLPCALGCHDBCN-UHFFFAOYSA-N 4,4,4-trifluoro-1-(furan-2-yl)butane-1,3-dione Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CO1 OWLPCALGCHDBCN-UHFFFAOYSA-N 0.000 description 1
- VVXLFFIFNVKFBD-UHFFFAOYSA-N 4,4,4-trifluoro-1-phenylbutane-1,3-dione Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CC=C1 VVXLFFIFNVKFBD-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- FFOMEQIMPYKURW-UHFFFAOYSA-N 4-(trifluoromethyl)-2-[4-(trifluoromethyl)pyridin-2-yl]pyridine Chemical compound FC(F)(F)C1=CC=NC(C=2N=CC=C(C=2)C(F)(F)F)=C1 FFOMEQIMPYKURW-UHFFFAOYSA-N 0.000 description 1
- BGSNUDVDPJRWRH-UHFFFAOYSA-N 4-sulfanylidenepentan-2-one Chemical compound CC(=O)CC(C)=S BGSNUDVDPJRWRH-UHFFFAOYSA-N 0.000 description 1
- QQEQHUHZBMUJET-UHFFFAOYSA-N 5-phenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC2=CC=CN=C2C2=NC=CC=C12 QQEQHUHZBMUJET-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ROILHCALFYSDIE-UHFFFAOYSA-N C1(=CC=CC=C1)C1=CC(=NC=C1)C1=NC=CC(=C1)C1=CC=CC=C1.CC1=CC(=NC=C1)C1=NC=CC(=C1)C Chemical compound C1(=CC=CC=C1)C1=CC(=NC=C1)C1=NC=CC(=C1)C1=CC=CC=C1.CC1=CC(=NC=C1)C1=NC=CC(=C1)C ROILHCALFYSDIE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101000578940 Homo sapiens PDZ domain-containing protein MAGIX Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100028326 PDZ domain-containing protein MAGIX Human genes 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000005092 [Ru (Bpy)3]2+ Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- SRCZQMGIVIYBBJ-UHFFFAOYSA-N ethoxyethane;ethyl acetate Chemical compound CCOCC.CCOC(C)=O SRCZQMGIVIYBBJ-UHFFFAOYSA-N 0.000 description 1
- NQYDFSLFJNXWJE-UHFFFAOYSA-N europium;hydrate Chemical compound O.[Eu] NQYDFSLFJNXWJE-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- TXBBUSUXYMIVOS-UHFFFAOYSA-N thenoyltrifluoroacetone Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CS1 TXBBUSUXYMIVOS-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Description
本発明は、有機金属錯体の流通式製造方法に関するものであり、更に詳しくは、同軸線路型マイクロ波照射反応炉を用いる有機金属錯体の流通式製造方法、該製造方法によって得られた有機金属錯体、該有機金属錯体を含有してなる波長変換材料、有機色素増感材料および有機EL用錯体リン光材料に関するものである。 The present invention relates to a flow-through manufacturing method of an organometallic complex, and more specifically, a flow-through manufacturing method of an organometallic complex using a coaxial line type microwave irradiation reactor, and an organometallic complex obtained by the manufacturing method. The present invention relates to a wavelength conversion material, an organic dye-sensitized material, and a complex phosphorescent material for organic EL containing the organometallic complex.
有機金属錯体の用途は各方面で拡大してきている。例えば、太陽電池に利用される波長変換材料や有機色素増感材料として技術開発が進んでいる。波長変換材料として利用できるのは波長変換発光有機金属錯体であり、近紫外域の光で励起されて可視域や近赤外域で発光する有機金属錯体であって、主発光機構をエネルギー放出として利用することができる。
波長変換材料として好ましいのは、中心金属がIr、Ru、PtまたはOsであって、配位子がポリピリジンとその誘導体である有機金属錯体、並びに中心金属がEuまたはTbであって、配位子がβ−ジケトンとポリピリジンの混合配位である有機金属錯体などである。Applications of organometallic complexes are expanding in various directions. For example, technological development is progressing as a wavelength conversion material or an organic dye sensitizing material used for solar cells. Wavelength-converting light-emitting organometallic complexes can be used as wavelength conversion materials, which are excited by near-ultraviolet light and emit light in the visible and near-infrared regions, using the main light-emitting mechanism as energy release can do.
Preferred as the wavelength converting material is an organometallic complex in which the central metal is Ir, Ru, Pt or Os and the ligand is polypyridine and its derivative, and the central metal is Eu or Tb, Is an organometallic complex which is a mixed coordination of β-diketone and polypyridine.
また、太陽電池に利用される有機色素増感型材料としての有機金属錯体は、太陽光を有機金属錯体が吸収し、電子が励起され、酸化チタンの伝導帯に注入されて電解質間での電子の授受が起こり、太陽光を電気的エネルギーに変換することができる。
有機色素増感材料として好ましいのは、中心金属が、RuまたはOsで、配位子がポリピリジンなどの有機金属錯体であり、[Ru(bpy(COOH)2)2](SCN)2はN3色素としてよく知られている。In addition, organometallic complexes as organic dye-sensitized materials used in solar cells absorb sunlight and the electrons are excited, injected into the conduction band of titanium oxide, and electrons between electrolytes. Exchange of sunlight can be converted into electrical energy.
As an organic dye sensitizing material, a central metal is Ru or Os, a ligand is an organometallic complex such as polypyridine, and [Ru (bpy (COOH) 2 ) 2 ] (SCN) 2 is an N3 dye. Well known as.
また、有機金属錯体は、従来から有機ELディスプレイなどに利用される有機EL用りん光材料としても開発されてきている。有機EL用りん光材料としては、中心金属がIr、Ru、OsまたはPtなど、配位子としてはフェニルピリジンとその誘導体などが挙げられ、中心金属がIrのものは特に発光効率が良い。 In addition, organometallic complexes have been conventionally developed as phosphorescent materials for organic EL used for organic EL displays and the like. Examples of phosphorescent materials for organic EL include Ir, Ru, Os, or Pt as the central metal, and phenylpyridine and its derivatives as the ligand, and those having the central metal as Ir have particularly high luminous efficiency.
このように、波長変換材料、有機色素増感材料または有機EL用りん光材料をはじめとして有機金属錯体の用途は大きく展開してきており、その製造方法に関しては、従来からの加熱還流による方法が中心であった。しかし、従来の加熱製造法では製造効率、製造工程および消費エネルギー等において多くの問題点があった。これに対応して、有機金属錯体の合成反応において、反応場にマイクロ波を照射することにより、反応時間の大幅な短縮や反応収率の向上を可能とする多くのバッチ式マイクロ波照射技術が提案されてきたものの、反応管内へのマイクロ波の照射強度にムラが生じるため再現性に課題があり、生産性に欠けるという問題があった。 In this way, the use of organometallic complexes has been greatly expanded, including wavelength conversion materials, organic dye sensitized materials, or phosphorescent materials for organic EL, and the conventional method by heating and refluxing is the main method of production. Met. However, the conventional heating production method has many problems in production efficiency, production process, energy consumption, and the like. Correspondingly, in the synthesis reaction of organometallic complexes, many batch-type microwave irradiation technologies that can significantly shorten the reaction time and improve the reaction yield by irradiating the reaction field with microwaves are available. Although it has been proposed, there is a problem in reproducibility due to unevenness in the intensity of microwave irradiation into the reaction tube, and there is a problem that productivity is lacking.
そこで、マイクロ波を効率よく有効に利用でき、かつ連続的な流通型の生産が可能な工業的製造方法として、マイクロ波輸送線路に導波管を用い、流通管の内側を細管状ないしは非平滑状の形状としたプロセスが提案されている(例えば、特許文献1参照)。 Therefore, as an industrial manufacturing method that enables efficient and effective use of microwaves and enables continuous flow-type production, a waveguide is used for the microwave transport line, and the inside of the flow tube is narrow or non-smooth. A process for forming a shape has been proposed (see, for example, Patent Document 1).
しかしながら、特許文献1に記載の製造方法であっても、マイクロ波の照射効率や生産速度および生成物の純度の点においてやはり満足できるものではなかった。
本発明の目的は、マイクロ波の照射効率、生産速度および生成物の純度に優れる有機金属錯体の流通式製造方法を提供することにある。However, even the production method described in
An object of the present invention is to provide a flow-through production method of an organometallic complex that is excellent in microwave irradiation efficiency, production rate, and product purity.
本発明者らは、上記課題を解決するため鋭意検討した結果、本発明に到達した。すなわち、本発明は、反応液(A)にマイクロ波を照射する有機金属錯体の流通式製造方法であって、同軸線路型マイクロ波照射反応炉を用い、(A)の反応温度−比誘電率ε”の関係曲線が2種またはそれ以上の周波数の異なるマイクロ波ごとに異なる曲線で、該曲線が反応温度範囲において相互に交点を有するマイクロ波を反応温度に応じて選択し逐次照射することを特徴とする有機金属錯体の流通式製造方法である。なお、本発明における比誘電率ε”とは、溶媒または反応液の誘電率と真空の誘電率の比ε/ε0のうち複素項の部分と定義され、該比誘電率は無次元量(単位なし)である。
上記比誘電率ε”は、反応温度に依存して変化するが、照射するマイクロ波の周波数にも依存して変化し、(A)についての反応温度−比誘電率ε”の関係曲線は、2種またはそれ以上の周波数の異なるマイクロ波ごとに異なる曲線となり、これらの曲線は反応温度範囲において相互に交点を有することとなる。
従って、反応温度に応じて周波数を選択して照射することにより単一の周波数のマイクロ波を用いる場合に比べ異なる反応温度でより高い比誘電率ε”を選択することができる。そこで、上昇する反応温度に応じて2種またはそれ以上の周波数の異なるマイクロ波を選択し、それぞれを逐次照射する。これにより反応液の比誘電率ε”をできるだけ大きく保持しマイクロ波の吸収性を高め反応をより促進できる。同軸線路型マイクロ波照射反応炉は、従来の導波管型マイクロ波照射反応炉よりも利用できる周波数帯域が広いため、同軸線路型マイクロ波照射反応炉を用いた本発明の構成とすることにより、後述する本発明の著しい効果を奏することを初めて見い出したものである。As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention. That is, the present invention is a flow-through manufacturing method of an organometallic complex for irradiating a reaction solution (A) with microwaves, using a coaxial line type microwave irradiation reactor, and (A) reaction temperature-relative permittivity. The relationship curve of ε ″ is different for each of two or more types of microwaves having different frequencies, and the curves are selected according to the reaction temperature and sequentially irradiated with the microwaves that intersect each other in the reaction temperature range. In the present invention, the relative permittivity ε ″ is a complex term of the ratio ε / ε 0 of the permittivity of the solvent or the reaction solution and the permittivity of the vacuum. The relative permittivity is a dimensionless quantity (no unit).
The relative dielectric constant ε ″ varies depending on the reaction temperature, but also varies depending on the frequency of the microwave to be irradiated. The relationship curve of the reaction temperature-relative dielectric constant ε ″ for (A) is: Different microwaves have different frequencies at two or more frequencies, and these curves intersect each other in the reaction temperature range.
Accordingly, by selecting and irradiating the frequency according to the reaction temperature, it is possible to select a higher relative dielectric constant ε ″ at a different reaction temperature compared to the case of using a single frequency microwave. Select two or more microwaves with different frequencies according to the reaction temperature, and irradiate each one sequentially. This keeps the relative permittivity ε ″ of the reaction solution as large as possible to increase the absorption of the microwave and react. Can promote more. Since the coaxial line type microwave irradiation reactor has a wider frequency band than the conventional waveguide type microwave irradiation reactor, by adopting the configuration of the present invention using the coaxial line type microwave irradiation reactor. This is the first time that the remarkable effects of the present invention described later are achieved.
本発明に係る構造を有する同軸線路型マイクロ波照射反応炉(以下において反応炉は装置ということがある)によれば、従来の方形型導波管を用いたマイクロ波照射反応炉や、電子レンジに見られるような散乱と不定伝播状態の反応容器に比べ、均一な電界を発生させることが可能であり、マイクロ波照射による化学反応促進効果を有効に生かすことができる。 According to the coaxial line type microwave irradiation reactor having the structure according to the present invention (hereinafter, the reactor may be referred to as an apparatus), a microwave irradiation reactor using a conventional rectangular waveguide, or a microwave oven Compared with the reaction vessel in the scattering and indefinite propagation state as shown in FIG. 1, it is possible to generate a uniform electric field, and the chemical reaction promoting effect by microwave irradiation can be effectively utilized.
また、方形型導波管は化学反応炉として一般的に用いられているが、方形型導波管は、JIS規格、IEC規格、EIA規格、EIAJ規格等において利用される周波数ごとに規格化された断面形状および寸法を有し、通常、最低次元に相当する電磁波のTE01モードと呼ばれる導波管内電磁波伝播モードで利用されるために、前述の規格化された単一の周波数帯域のみでしか用いられることはない。 In addition, rectangular waveguides are generally used as chemical reactors, but rectangular waveguides are standardized for each frequency used in JIS standards, IEC standards, EIA standards, EIAJ standards, and the like. In order to be used in an electromagnetic wave propagation mode in a waveguide called a TE01 mode of electromagnetic waves corresponding to the lowest dimension, it is used only in the above-mentioned standardized single frequency band. It will never be done.
一方、同軸線路型化学反応炉(同軸線路型マイクロ波照射反応炉に同じ)は、伝播モードは、図1の10の内部導体(マイクロ波の中心電極)と図1の20の外部導体(反応炉壁)の隙間よりも波長が長い(低い周波数)に対しては、極端なモードの変化やインピーダンスの変化は起こらないので、工業的に利用可能な周波数(総務省告示周波数割当によれば、900MHz帯、2.45GHz帯、5.80GHz帯等)の中で変化させても同一の反応炉で利用できるという利点がある。反応炉に導入できるマイクロ波の周波数を変更できるということは、反応温度に応じて、反応液の比誘電率ε”の高いほうを選択することで、下記の関係式(1)で表されるマイクロ波の吸収反応に適したマイクロ波源周波数を選択することができ、高効率な迅速合成と省電力化に寄与できることになる。
P=1/2σ|E|+πfε0εr”|E|+πfμ0μr”|H| (1)
但し、関係式(1)においては、P:単位体積当りの発熱量[W/m3]、|E|:電場[V/m]、|H|:磁場[A/m]、f:周波数[Hz]、σ:導電率[S/m]、ε0:誘電率[F/m]、εr”:誘電損失、μ0:透磁率[H/m]、μr”:磁気損失係数
本発明においては、同軸線路型マイクロ波照射反応炉を用いることにより、迅速かつ高純度な化学合成を実現した。On the other hand, in the coaxial line type chemical reactor (same as the coaxial line type microwave irradiation reactor), the propagation mode is 10 inner conductors (microwave central electrode) in FIG. 1 and 20 outer conductors (reactions in FIG. 1). For wavelengths longer than the gap in the furnace wall (low frequency), there is no extreme mode change or impedance change, so industrially available frequencies (according to the Ministry of Internal Affairs and Communications notification frequency allocation) 900 MHz band, 2.45 GHz band, 5.80 GHz band, etc.) is advantageous in that it can be used in the same reactor. The fact that the frequency of the microwave that can be introduced into the reaction furnace can be changed is expressed by the following relational expression (1) by selecting the higher relative dielectric constant ε ″ of the reaction liquid according to the reaction temperature. A microwave source frequency suitable for the microwave absorption reaction can be selected, which can contribute to high-efficiency rapid synthesis and power saving.
P = 1 / 2σ | E | + πfε 0 εr ″ | E | + πfμ 0 μr ″ | H | (1)
However, in relational expression (1), P: calorific value per unit volume [W / m 3 ], | E |: electric field [V / m], | H |: magnetic field [A / m], f: frequency [Hz], σ: conductivity [S / m], ε 0 : dielectric constant [F / m], εr ″: dielectric loss, μ 0 : permeability [H / m], μr ″: magnetic loss coefficient Has achieved rapid and high-purity chemical synthesis by using a coaxial line type microwave irradiation reactor.
本発明の製造方法または得られる有機金属錯体は下記の効果を奏する。
(1)生産性に優れる。
(2)反応収率に優れる。
(3)得られる有機金属錯体は純度が高い。The production method of the present invention or the obtained organometallic complex has the following effects.
(1) Excellent productivity.
(2) Excellent reaction yield.
(3) The resulting organometallic complex has high purity.
[有機金属錯体]
本発明における有機金属錯体は限定されることはないが、該有機金属錯体には、波長変換材料、有機色素増感材料および有機EL用錯体リン光材料に使用できる有機金属錯体が含まれる。[Organic metal complex]
Although the organometallic complex in the present invention is not limited, the organometallic complex includes an organometallic complex that can be used for a wavelength conversion material, an organic dye sensitizing material, and a complex phosphorescent material for organic EL.
有機金属錯体の中心金属(以下においてMとする)としては、遷移金属、希土類元素および典型金属が挙げられる。
遷移金属としては、Ir、Pt、Pd、Rh、Re、Ru、Os、Au、Ag、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、TcおよびWなどが挙げられる。
希土類元素としては、Eu、Tb、La、Ce、Pr、Nd、Pm、Sm、Gd、Dy、Ho、ErおよびTmなどが挙げられる。
典型金属としては、Al、In、Ga、Zn、Cd、Sb、Sn、Ge、BeおよびMgなどが挙げられる。Examples of the central metal (hereinafter referred to as M) of the organometallic complex include transition metals, rare earth elements, and typical metals.
As transition metals, Ir, Pt, Pd, Rh, Re, Ru, Os, Au, Ag, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc And W.
Examples of rare earth elements include Eu, Tb, La, Ce, Pr, Nd, Pm, Sm, Gd, Dy, Ho, Er, and Tm.
Typical metals include Al, In, Ga, Zn, Cd, Sb, Sn, Ge, Be, and Mg.
これらのMのうち、波長変換材料または有機色素増感材料として使用される有機金属錯体のMとして好ましいのは変換効率または増感効率の観点から、遷移金属および希土類元素であり、特に好ましいのは遷移金属ではIr、Pt、RuおよびOsであり、希土類元素ではEuおよびTbである。 Among these M, preferred as M of the organometallic complex used as the wavelength converting material or the organic dye sensitizing material are transition metals and rare earth elements from the viewpoint of conversion efficiency or sensitizing efficiency, and particularly preferred are The transition metals are Ir, Pt, Ru and Os, and the rare earth elements are Eu and Tb.
また、有機EL用錯体リン光材料として使用される有機金属錯体のMとして好ましいのは、発光効率の観点から遷移金属および希土類元素であり、特に好ましいのは遷移金属ではIr、Pt、RuおよびOsであり、希土類元素ではEuおよびTbである。 Further, M as the organometallic complex used as the complex phosphorescent material for organic EL is preferably a transition metal or a rare earth element from the viewpoint of luminous efficiency, and Ir, Pt, Ru and Os are particularly preferable as the transition metal. Eu and Tb for rare earth elements.
有機金属錯体の中心金属Mに配位する配位子としては、Mと電子受容性の大きいπ結合性を有する配位子であって、中心金属Mと1つ以上の−O−M−O−、−N−M−N−、−C−M−N−、−S−M−S−、−S−M−N−、−S−M−O−および/または−C−M−S−の結合(ここで、C、N、OおよびSは、それぞれ配位子中の炭素、窒素、酸素、硫黄元素を示す)を有する有機化合物であることが望ましい。
上記配位子としては二座配位子および三座以上の配位子が挙げられる。The ligand coordinated to the central metal M of the organometallic complex is a ligand having a π-bonding property that has a large electron-accepting property with M, and the central metal M and one or more —O—M—O. -, -N-M-N-, -C-M-N-, -S-M-S-, -S-M-N-, -S-M-O- and / or -C-M-S It is desirable to be an organic compound having a bond of-(wherein C, N, O and S represent carbon, nitrogen, oxygen and sulfur elements in the ligand, respectively).
Examples of the ligand include bidentate ligands and tridentate or higher ligands.
二座配位子を構成する有機化合物としては、ビピリジン類、フェニルピリジン類、フェナントロリン類、キノリン類、β−ジケトン類、8−キノリノール類およびチエニルピリジン類などが挙げられる。 Examples of the organic compound constituting the bidentate ligand include bipyridines, phenylpyridines, phenanthrolines, quinolines, β-diketones, 8-quinolinols, and thienylpyridines.
二座配位子のうち、ビピリジン類としては、2,2’−ビピリジン(以下、bpyと略記する)が挙げられ、さらにその誘導体としては、フッ素原子、アルキル基、フェニル基、ジフェニル基、アリル基、フルオロアルキル基、ヒドロキシル基およびカルボキシル基などの置換基を有する2,2’−ビピリジン誘導体(以下、R−bpyと略記する)、例えば、4,4’−ジメチル−2,2’−ビピリジン、4,4’−ジフェニル−2,2’−ビピリジン、4,4’−ジ−トリフルオロメチル−2,2’−ビピリジン、2,2’−ビピリジン−3,3’−ジオールおよび2,2’−ビピリジン−4,4’−ジカルボン酸などが挙げられる。 Among the bidentate ligands, bipyridines include 2,2′-bipyridine (hereinafter abbreviated as bpy), and derivatives thereof include fluorine atom, alkyl group, phenyl group, diphenyl group, allyl. 2,2′-bipyridine derivative (hereinafter abbreviated as R-bpy) having a substituent such as a group, a fluoroalkyl group, a hydroxyl group and a carboxyl group, for example, 4,4′-dimethyl-2,2′-
フェナントロリン類としては、1,10−フェナントロリン(以下、phenと略記する)が挙げられ、さらにその誘導体としては、フッ素原子、アルキル基、フェニル基、ジフェニル基、アリル基、フルオロアルキル基、ヒドロキシル基およびカルボキシル基などの置換基を有する1,10−フェナントロリン誘導体(以下、R−phenと略記する)、例えば、4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、5−フェニル−1,10−フェナントロリンおよび3,4,7,8−テトラメチル−1,10−フェナントロリンなどが挙げられる。 Examples of phenanthrolines include 1,10-phenanthroline (hereinafter abbreviated as phen), and derivatives thereof include fluorine atom, alkyl group, phenyl group, diphenyl group, allyl group, fluoroalkyl group, hydroxyl group and 1,10-phenanthroline derivative (hereinafter abbreviated as R-phen) having a substituent such as a carboxyl group, such as 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl Examples include -1,10-phenanthroline, 5-phenyl-1,10-phenanthroline and 3,4,7,8-tetramethyl-1,10-phenanthroline.
フェニルピリジン類としては、2−フェニルピリジン(以下、ppyと略記する)が挙げられ、さらにその誘導体としては、フッ素原子、アルキル基、フェニル基、ジフェニル基、アリル基、フルオロアルキル基、ヒドロキシル基およびカルボキシル基などの置換基を有する2−フェニルピリジン誘導体(以下、R−ppyと略記する)などが挙げられる。 Examples of phenylpyridines include 2-phenylpyridine (hereinafter abbreviated as ppy), and derivatives thereof include fluorine atom, alkyl group, phenyl group, diphenyl group, allyl group, fluoroalkyl group, hydroxyl group and And 2-phenylpyridine derivatives having a substituent such as a carboxyl group (hereinafter abbreviated as R-ppy).
キノリン類としては、2,2’−ビキノリン、2,2’−ビキノリン−4,4’−ジカルボン酸、およびイソキノリンとその誘導体などが挙げられる。 Examples of quinolines include 2,2'-biquinoline, 2,2'-biquinoline-4,4'-dicarboxylic acid, and isoquinoline and its derivatives.
β−ジケトン類としては、アセチルアセトン(以下、acacと略記する)、テノイルトリフルオロアセトン、トリフルオロアセチルアセトン、ヘキサフルオロアセチルアセトン、フルイルトリフルオロアセトン、ピバロイルトリフルオロアセトン、ベンゾイルトリフルオロアセトン、ベンゾイルアセトン、ジピバロイルメタンおよびモノチオアセチルアセトンなどが挙げられる。 β-diketones include acetylacetone (hereinafter abbreviated as acac), thenoyltrifluoroacetone, trifluoroacetylacetone, hexafluoroacetylacetone, furyltrifluoroacetone, pivaloyltrifluoroacetone, benzoyltrifluoroacetone, benzoylacetone, Examples include dipivaloylmethane and monothioacetylacetone.
三座以上の配位子を構成する有機化合物としては、ターピリジン類、ポルフィリン類、フタロシアニン類、エチレンジアミン4酢酸類、クラウンエーテル類、アザクラウンエーテル類およびチオアザクラウンエーテル類など、並びにアルキル基およびフルオロアルキル基などの置換基を有するこれらの誘導体が挙げられる。
なお、前記配位子としては前記の有機化合物の2種以上を併用して用いてもよい。Organic compounds constituting tridentate or higher ligands include terpyridines, porphyrins, phthalocyanines, ethylenediaminetetraacetic acids, crown ethers, azacrown ethers and thioazacrown ethers, alkyl groups and fluoro These derivatives having a substituent such as an alkyl group can be mentioned.
In addition, as said ligand, you may use together and
なお、Mが希土類元素の場合、発光中心は金属のf軌道にあるため、配位子としては、上記配位子に加えて、2座配位子として、β−ジケトン類およびシッフ塩基とその誘導体が好ましく、これらの配位子とビピリジン類、フェナントロリン類あるいはフェニルピリジン類との混合配位子であってもよい。 When M is a rare earth element, the emission center is in the f-orbital of the metal. Therefore, as a ligand, in addition to the above ligand, a bidentate ligand includes β-diketones and Schiff base and its Derivatives are preferred, and mixed ligands of these ligands with bipyridines, phenanthrolines or phenylpyridines may be used.
配位子としては、さらに、補助的な配位子として、ハロゲン化物イオン、シアン化物イオン、チオシアン化物イオン、カルボン酸イオン、アンモニウムイオン、アミン(アルキルアミン、アリルアミン等)、ピリジン、イミダゾール、トリフェニルホスフィン等の単座配位子を含んでもよい。 As ligands, auxiliary ligands include halide ion, cyanide ion, thiocyanide ion, carboxylate ion, ammonium ion, amine (alkylamine, allylamine, etc.), pyridine, imidazole, triphenyl. A monodentate ligand such as phosphine may be included.
有機金属錯体の電荷が零でないときは、対イオンXとして、6フッ化リン酸イオン、4フッ化ホウ素イオン、過塩素酸イオン、塩化物イオン、臭化物イオン、硫酸イオン、硝酸イオン、沃化物イオン、テトラフェニルホウ素イオン、シアン酸イオン、チオシアン酸イオン、パラトルエンスルホン酸イオンおよびカルボン酸イオンからなる群から選ばれる1または複数の陰イオンを含んでもよい。 When the charge of the organometallic complex is not zero, the counter ion X is hexafluorophosphate ion, tetrafluoride ion, perchlorate ion, chloride ion, bromide ion, sulfate ion, nitrate ion, iodide ion. One or more anions selected from the group consisting of tetraphenylboron ion, cyanate ion, thiocyanate ion, p-toluenesulfonate ion and carboxylate ion may be included.
波長変換材料として好ましいのは、中心金属イオンがIr(III)、Ru(II)、Eu(III)またはTb(III)であって、配位子としては、前記のbpy、ppy、phen、R−bpyおよびR−phen等であるものである。具体的には、−N−M−N−結合を有し近紫外から可視光部の発光を示すIr(R−bpy)3、610nmの赤色〜近赤外部の発光を示すRu(R−bpy)3、β−ジケトン類、並びにβ−ジケトン類とR−phenもしくはR−bpyとの混合配位子を持ちR−N−M−N−およびO−M−O−結合を有し、近紫外の光照射により赤(Eu)または緑(Tb)の発光を示すEuまたはTb錯体等が挙げられる。
これらの有機金属錯体は、シリコン系太陽電池では利用されていない近紫外や可視領域の光吸収帯を有するため、発光機構をエネルギー放出として利用する波長変換材料として好ましい。As the wavelength conversion material, the central metal ion is Ir (III), Ru (II), Eu (III) or Tb (III), and the ligands are bpy, ppy, phen, R -Bpy and R-phen etc. Specifically, Ir (R-bpy) 3 having a —N—M—N— bond and emitting light from the near ultraviolet to visible light region, Ru (R-bpy) emitting from 610 nm red to near infrared light. 3 ), β-diketones, and mixed ligands of β-diketones and R-phen or R-bpy, having R—N—M—N— and O—M—O— bonds, Examples thereof include Eu or Tb complexes that emit red (Eu) or green (Tb) light when irradiated with ultraviolet light.
Since these organometallic complexes have light absorption bands in the near ultraviolet and visible regions that are not used in silicon solar cells, they are preferable as wavelength conversion materials that utilize the light emission mechanism as energy release.
有機色素増感材料として好ましいのは、中心金属イオンがRu(II)またはOs(II)であって、配位子としては、前記のbpy、ppy、phen、R−bpyおよびR−phen等である。
具体的にはRu[bpy(COOH)2]3(SCN)2、[Os(R−bpy)3]2+および[Os(R−phen)3]2+等が挙げられる。As the organic dye sensitizing material, the central metal ion is Ru (II) or Os (II), and the ligand is bpy, ppy, phen, R-bpy, R-phen or the like. is there.
Specific examples include Ru [bpy (COOH) 2 ] 3 (SCN) 2 , [Os (R-bpy) 3 ] 2+ and [Os (R-phen) 3 ] 2+ .
有機EL用錯体リン光材料に使用される有機金属錯体として好ましいのは、中心金属イオンがIr(III)、Ru(II)、Pt(II)、Eu(III)およびTb(III)であって、配位子としては、Ir(III)、Ru(II)およびPt(II)についてはppyおよびR−ppyであり、Eu(III)およびTb(III)についてはβ−ジケトン類、並びにβ−ジケトン類とR−phenもしくはR−bpyとの混合配位子である。 As the organometallic complex used in the complex phosphorescent material for organic EL, the central metal ions are Ir (III), Ru (II), Pt (II), Eu (III) and Tb (III). , Ligands are ppy and R-ppy for Ir (III), Ru (II) and Pt (II), β-diketones for Eu (III) and Tb (III), and β- It is a mixed ligand of diketones and R-phen or R-bpy.
本発明の有機金属錯体の製造方法において利用される反応は、例えば、下記の反応である。
RuCl3・H2O+bpy→[Ru(bpy)3]2+ (1)
IrCl3・3H2O+3ppy+3(n‐Bu)3N→
Ir(ppy)3+3(n‐Bu)3N・HCl (2)The reaction utilized in the manufacturing method of the organometallic complex of this invention is the following reaction, for example.
RuCl 3 .H 2 O + bpy → [Ru (bpy) 3 ] 2+ (1)
IrCl 3 .3H 2 O + 3ppy + 3 (n-Bu) 3 N →
Ir (ppy) 3 +3 (n-Bu) 3 N · HCl (2)
さらに有機金属錯体製造の反応条件を良くするためには、中間体を経由して製造する2段階過程を含む製造方法を採用してもよい。この方法では、初めに安定な中間体を製造することによって反応収率が向上する。この方法は、仕込みの配位子の当量比が少なくても製造できるという点で好ましく、また、meridional体の生成が抑えられる点で優位性がある。該2段階過程を含む製造方法において利用される反応は、例えば、
(1段階目)
2IrCl3・3H2O+4ppy→Ir2(ppy)4Cl2+4HCl (3)
(2段階目)
Ir2(ppy)4Cl2+2ppy+2(n‐Bu)3N→
2Ir(ppy)3+2(n‐Bu)3N・HCl (4)
のような反応である。Furthermore, in order to improve the reaction conditions for producing the organometallic complex, a production method including a two-stage process for producing via an intermediate may be employed. In this method, the reaction yield is improved by first producing a stable intermediate. This method is preferable in that it can be produced even if the equivalent ratio of the charged ligand is small, and has an advantage in that the formation of a meridional body is suppressed. The reaction used in the production method including the two-stage process is, for example,
(First stage)
2IrCl 3 · 3H 2 O + 4 ppy → Ir 2 (ppy) 4 Cl 2 + 4HCl (3)
(Second stage)
Ir 2 (ppy) 4 Cl 2 +2 ppy + 2 (n-Bu) 3 N →
2Ir (ppy) 3 +2 (n-Bu) 3 N · HCl (4)
It is a reaction like this.
[有機金属錯体の製造]
本発明の製造方法における反応液(A)は、有機金属錯体の中心金属Mを構成する金属の塩、配位子を構成する有機化合物および溶媒を含有してなる。従って、本発明の有機金属錯体を製造するためには、中心金属を構成する金属Mの塩に、配位子を構成する有機化合物を溶媒の存在下で混合し、溶液または懸濁液としてこれを反応液(A)として、これにマイクロ波を照射して反応させる。
反応に用いる該金属塩と配位子を構成する有機化合物の割合は、通常は、製造する錯体の化学量論比、ないしは該配位子を過剰に使用する。該配位子の過剰割合は、好ましくは金属塩に対して7倍当量以下、さらに好ましくは4倍当量以下である。本発明の製造方法では、従来の方法よりも低い過剰割合であっても、高収率で高純度の有機金属錯体が製造できる。
反応に用いる金属塩と配位子を構成する有機化合物のモル比は、中心金属Mの価数と配位子の座数に依るが、好ましくは1:1〜1:20、さらに好ましくは1:4〜1:10である。[Production of organometallic complexes]
The reaction solution (A) in the production method of the present invention contains a metal salt constituting the central metal M of the organometallic complex, an organic compound constituting the ligand, and a solvent. Therefore, in order to produce the organometallic complex of the present invention, an organic compound constituting a ligand is mixed with a salt of the metal M constituting the central metal in the presence of a solvent, and the resulting solution or suspension is mixed. As a reaction liquid (A), this is reacted with microwave irradiation.
The ratio between the metal salt used in the reaction and the organic compound constituting the ligand is usually the stoichiometric ratio of the complex to be produced, or the ligand is used in excess. The excess ratio of the ligand is preferably not more than 7 times equivalent, more preferably not more than 4 times equivalent to the metal salt. In the production method of the present invention, a high-purity organometallic complex can be produced in a high yield even at an excess ratio lower than that of the conventional method.
The molar ratio of the metal salt used in the reaction to the organic compound constituting the ligand depends on the valence of the central metal M and the ligand locator, but is preferably 1: 1 to 1:20, more preferably 1 : 4 to 1:10.
用いる溶媒としては、マイクロ波の吸収が大きいとの観点から極性溶媒が好ましく、高反応温度の観点から沸点の高い溶媒が好適に使用される。該好ましい溶媒には、多価アルコール[ジオール(炭素数2〜4、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール)、トリオール(炭素数3〜6、例えばグリセリン)等]、ジメチルホルムアミド等が含まれる。1価アルコール(炭素数2〜4、例えばエタノール、ブタノール)、水およびその他の溶媒も使用することができ、これらの溶媒を混合して用いることも差し支えない。 As a solvent to be used, a polar solvent is preferable from the viewpoint of large microwave absorption, and a solvent having a high boiling point is preferably used from the viewpoint of a high reaction temperature. The preferable solvent includes polyhydric alcohol [diol (having 2 to 4 carbon atoms, such as ethylene glycol, diethylene glycol, propylene glycol), triol (3 to 6 carbon atoms, such as glycerin)], dimethylformamide and the like. Monohydric alcohols (having 2 to 4 carbon atoms, such as ethanol and butanol), water, and other solvents can also be used, and these solvents can be used in combination.
従来は、マイクロ波の吸収が大きい溶媒が望ましいとされてきたが、本発明では、マイクロ波の吸収が小さい溶媒(トルエン、アセトン、ベンゼン、ヘキサン、シクロヘキサン等)であっても前記の溶媒や後述するマイクロ波吸収性向上剤を加えることで、本発明の効果を阻害しない範囲で反応溶媒として使用することができる。 Conventionally, it has been desirable to use a solvent having a high microwave absorption. However, in the present invention, a solvent having a low microwave absorption (toluene, acetone, benzene, hexane, cyclohexane, etc.) can be used. By adding a microwave absorptive improver, it can be used as a reaction solvent as long as the effects of the present invention are not impaired.
前記マイクロ波吸収性向上剤としては、イオン液体等が挙げられる。イオン液体は、液体で存在し、陽イオンと陰イオンで構成される塩を指し、陽イオンの種類でピリジン系、脂環族アミン系および脂肪族アミン系に分けられる。
陽イオンとしては、アンモニウム系(イミダゾリウム塩類、ピリジニウム塩類等)イオン、ホスホニウム系イオン、また陰イオンとしては、ハロゲン系(臭化物、トリフラート等)イオン、ホウ素系(テトラフェニルボレート等)イオン、リン系(ヘキサフルオロホスフェート等)イオン等が挙げられる。イオン液体の具体例としてはヘキサフルオロリン酸1−ブチル−3−メチルイミダゾリウム等が挙げられる。Examples of the microwave absorption improver include ionic liquids. An ionic liquid refers to a salt that exists as a liquid and is composed of a cation and an anion. The ionic liquid is classified into a pyridine type, an alicyclic amine type, and an aliphatic amine type depending on the type of cation.
As cations, ammonium ions (imidazolium salts, pyridinium salts, etc.) ions, phosphonium ions, and as anions, halogen ions (bromide, triflate, etc.) ions, boron ions (tetraphenylborate, etc.) ions, phosphorus ions (Hexafluorophosphate, etc.) ions and the like. Specific examples of the ionic liquid include 1-butyl-3-methylimidazolium hexafluorophosphate.
マイクロ波吸収性向上剤は、マイクロ波の吸収が小さい溶媒に添加して用いることはもとより、マイクロ波の吸収が大きい極性溶媒に添加して用いることもできる。
前者の場合の該向上剤の添加量は、該溶媒の重量に基づいて、マイクロ波吸収向上効果および反応性の観点から好ましくは10〜20%、さらに好ましくは12〜18%;また、後者の場合の該向上剤の添加量は、該溶媒の重量に基づいて、同様の観点から好ましくは5〜15%、さらに好ましくは7〜12%である。The microwave absorptivity improver can be used not only by adding it to a solvent having low microwave absorption but also by adding it to a polar solvent having high microwave absorption.
In the former case, the addition amount of the improver is preferably 10 to 20%, more preferably 12 to 18%, more preferably 12 to 18% from the viewpoint of the microwave absorption improvement effect and reactivity based on the weight of the solvent; From the same viewpoint, the amount of the improver added is preferably 5 to 15%, more preferably 7 to 12% based on the weight of the solvent.
また、反応液(A)には、副生成物として生成するHClなどの酸性物質を中和するために、塩基性物質を加えることが好ましい。塩基性物質としては従来は炭酸ナトリウムなどが用いられることが多いが、本発明では中和塩の溶解性の良いトリアルキル(アルキル基の炭素数2〜4)アミンなどが好ましく、特にトリエチルアミンおよびトリブチルアミンが好ましく用いられる。 Moreover, in order to neutralize acidic substances, such as HCl produced | generated as a by-product, it is preferable to add a basic substance to a reaction liquid (A). Conventionally, sodium carbonate or the like is often used as the basic substance, but in the present invention, trialkyl (alkyl group having 2 to 4 carbon atoms) amine having a good neutral salt solubility is preferable, and triethylamine and triethylamine are particularly preferable. Butylamine is preferably used.
本発明における反応液(A)の比誘電率ε”は、マイクロ波吸収性の観点から好ましくは2〜85、さらに好ましくは5〜80である。 The relative dielectric constant ε ″ of the reaction liquid (A) in the present invention is preferably 2 to 85, more preferably 5 to 80, from the viewpoint of microwave absorption.
(A)の比誘電率ε”は、マイクロ波照射反応炉内の反応温度および照射するマイクロ波の周波数に応じて変化する。図3にエチレングリコール、図4にジエチレングリコールの比誘電率ε”の周波数別温度変化グラフを示す。
これらの溶媒は約60℃以下では、比誘電率ε”は2.45GHzの方が高く、約60℃以上では5.80GHzの方が高いことがわかる。本発明では、このように温度および溶媒に応じて加熱に適した周波数が存在することに着目し、照射対象の温度に応じて周波数の選択が可能な同軸線路型マイクロ波照射反応炉を用いて有機金属錯体合成が行われる。The relative dielectric constant ε ″ of (A) varies depending on the reaction temperature in the microwave irradiation reactor and the frequency of the microwave to be irradiated. FIG. 4 shows the relative dielectric constant ε ″ of ethylene glycol and FIG. The temperature change graph according to frequency is shown.
It can be seen that these solvents have a relative dielectric constant ε ″ of 2.45 GHz higher at about 60 ° C. or lower, and higher at 5.80 GHz at about 60 ° C. or higher. Focusing on the existence of a frequency suitable for heating depending on the temperature, organometallic complex synthesis is performed using a coaxial line type microwave irradiation reactor capable of selecting a frequency according to the temperature of the irradiation target.
さらに付言すると、前記いずれの図でも、温度−比誘電率ε”曲線は照射するマイクロ波の周波数が異なると、異なる曲線となり、これらの曲線は示された温度範囲で相互に交点を有している。そして、交点からさらなる温度上昇とともにε”は一方では減少し、他方では増加してピークを迎えた後やはり減少するが、周波数が高い方が比誘電率ε”のピークが高温側にシフトしていることがわかる。また、約60℃以上の高温領域では低周波数の場合の比誘電率ε”が高周波数の場合より低くなっている。
従って、図3、4の場合は温度が約60℃以下では低周波数のマイクロ波を用い、約60℃を超える温度ではより高周波数のマイクロ波を用いる、すなわち、本発明における反応液(A)に置き換えると、異なる2種の周波数のマイクロ波を反応温度に応じて選択して逐次照射することで(A)の比誘電率が比較的高い状態を維持したまま反応を継続させることができることになる。
なお、照射するマイクロ波の周波数の高低と、各反応温度における比誘電率ε”の大小の関係は必ずしも一通りではなく、比誘電率ε”の支配的要因のひとつである反応溶媒の種類によっても異なる。従って、反応溶媒の種類によっては反応温度の上昇とともにマイクロ波の逐次照射が低周波数側からの場合もあり、高周波数側からの場合もあり得ることになる。In addition, in any of the above figures, the temperature-relative permittivity ε ″ curve becomes different when the frequency of the microwave to be irradiated is different, and these curves have intersections with each other in the indicated temperature range. As the temperature further increases from the intersection, ε ″ decreases on the one hand, and increases on the other hand and then decreases again. However, the higher the frequency, the higher the relative permittivity ε ″ peak shifts to the higher temperature side. In addition, in a high temperature region of about 60 ° C. or higher, the relative dielectric constant ε ″ at the low frequency is lower than that at the high frequency.
Therefore, in the case of FIGS. 3 and 4, a low frequency microwave is used when the temperature is about 60 ° C. or lower, and a higher frequency microwave is used when the temperature exceeds about 60 ° C. That is, the reaction liquid (A) in the present invention. In other words, it is possible to continue the reaction while maintaining a relatively high relative dielectric constant in (A) by selecting and sequentially irradiating microwaves of two different frequencies according to the reaction temperature. Become.
Note that the relationship between the level of the microwave frequency to be irradiated and the relative dielectric constant ε ″ at each reaction temperature is not necessarily one-way, depending on the type of reaction solvent that is one of the dominant factors of the relative dielectric constant ε ″. Is also different. Accordingly, depending on the type of the reaction solvent, the sequential microwave irradiation may be from the low frequency side or the high frequency side as the reaction temperature is increased.
但し、工業的に利用可能な周波数帯域が法令により定められていることから、その周波数帯域を選択して用いることとなる。従って、連続的に周波数を変化させるマイクロ波電波源のほか、異なる周波数帯のマイクロ波を出力する複数の単一電波源を用いて周波数を切り替えることにより、商業化された半導体マイクロ波電源を用いることができる。 However, since an industrially usable frequency band is defined by law, the frequency band is selected and used. Therefore, in addition to a microwave radio source that continuously changes the frequency, a commercial semiconductor microwave power source is used by switching the frequency using a plurality of single radio sources that output microwaves of different frequency bands. be able to.
反応温度は生成物の熱劣化抑制の観点から好ましくは300℃以下、さらに好ましくは100〜240℃である。該反応温度範囲において、2種またはそれ以上の周波数の異なるマイクロ波を選択し、これを逐次照射することにより、より高い比誘電率ε”の条件下でマイクロ波を効率良く吸収させて反応を促進させることができる。 The reaction temperature is preferably 300 ° C. or less, more preferably 100 to 240 ° C. from the viewpoint of suppressing thermal degradation of the product. In the reaction temperature range, two or more types of microwaves having different frequencies are selected and sequentially irradiated to efficiently absorb the microwaves under the condition of a higher relative dielectric constant ε ″. Can be promoted.
例えば、前記図3のエチレングリコール溶媒では、温度が約60℃まではマイクロ波周波数が2.45GHzの場合の方が5.80GHzの場合より比誘電率ε“が大きいが、60℃を超えるとマイクロ波周波数が5.80GHzの場合の方が2.45GHzの場合より大きくなる。これを本発明における反応液(A)の場合に適用すると、反応温度が約60℃を超えるまでは周波数2.45GHzのマイクロ波を照射し、反応温度が60℃を超えた時点から周波数5.80GHzのマイクロ波を照射することによりマイクロ波の吸収性が高まり反応をより促進させることができる。 For example, in the ethylene glycol solvent of FIG. 3, the relative dielectric constant ε "is larger when the microwave frequency is 2.45 GHz than when it is 5.80 GHz until the temperature is about 60 ° C., but when the temperature exceeds 60 ° C. When the microwave frequency is 5.80 GHz, it becomes larger than the case of 2.45 GHz.When this is applied to the case of the reaction liquid (A) in the present invention, the frequency of 2. is increased until the reaction temperature exceeds about 60 ° C. By irradiating 45 GHz microwaves and irradiating microwaves having a frequency of 5.80 GHz from the time when the reaction temperature exceeds 60 ° C., the absorption of microwaves is increased and the reaction can be further promoted.
本発明における有機金属錯体は、流通式製造方法により製造される。流通式製造方法とは、反応炉中に循環させる通路を設け、外部のポンプを用いて反応させる材料を循環させながら有機金属錯体を合成することを特徴とするもので、バッチ式製造方法とは異なるいわゆる連続式製造方法に相当するものである。 The organometallic complex in the present invention is produced by a flow production method. The flow-type manufacturing method is characterized by synthesizing an organometallic complex while circulating a material to be reacted using an external pump by providing a passage to be circulated in the reaction furnace. This corresponds to a different so-called continuous production method.
本発明の有機金属錯体の流通式製造方法は、同軸線路型マイクロ波照射反応炉により行われる。マイクロ波照射装置としては、一般的には導波管型照射装置または同軸線路型照射装置が挙げられる。 The flow-through manufacturing method of the organometallic complex of the present invention is performed by a coaxial line type microwave irradiation reactor. As a microwave irradiation apparatus, a waveguide type irradiation apparatus or a coaxial line type irradiation apparatus is generally used.
導波管型照射装置は、単一の周波数帯域の伝送を目的とした導波管内のマイクロ波の電界を用いることができることを特徴とするものである。従来、該装置を用いた反応炉で有機金属錯体を製造する方法は知られているが、加熱効率を向上させることを目的に周波数を大幅に変更しようとする場合、導波管の寸法を変更する必要があるため周波数変更を伴う処理を行うことは到底困難であった。 The waveguide type irradiation apparatus is characterized in that a microwave electric field in the waveguide intended for transmission in a single frequency band can be used. Conventionally, a method for producing an organometallic complex in a reaction furnace using the apparatus is known. However, when the frequency is to be changed significantly for the purpose of improving the heating efficiency, the dimensions of the waveguide are changed. Therefore, it has been difficult to perform a process with a frequency change.
一方、同軸線路型照射装置は、図1、5に一例として示すように、マイクロ波源を用いて、複数の異なる周波数(例えば900MHz、2.45GHzおよび5.80GHz等)のマイクロ波を容易に供給できることを特徴とするものである。該装置は、装置のスケールアップが困難な従来の前記導波管型照射装置とは異なり、複数の異なる周波数のマイクロ波を容易に供給できることから、照射反応炉の物理的サイズに制限されることがなく、生産量のニーズに合わせての装置のスケールアップも容易である。
なお、国内的にも国際的にも、限られた電波資源を有効に活用するために、工業用に用いられる周波数帯について、予め総務省告示周波数割り当て計画や、国際電気通信連合(ITU)で定められているが、図1、5に示すような構成とすれば、商業化された複数の電波源を容易に用いることができる。
該装置を用いた流通式製造方法で有機金属錯体を製造することは従来知られておらず、ましてや、生産速度および生成物の純度に優れる有機金属錯体の製造方法は本発明により初めて見出されたものである。On the other hand, as shown in FIGS. 1 and 5 as an example, the coaxial line type irradiation apparatus easily supplies microwaves having a plurality of different frequencies (for example, 900 MHz, 2.45 GHz, and 5.80 GHz, etc.) using a microwave source. It is characterized by being able to. Unlike the conventional waveguide irradiation apparatus, which is difficult to scale up, the apparatus can easily supply a plurality of microwaves having different frequencies, and thus is limited to the physical size of the irradiation reactor. It is easy to scale up the equipment to meet the production needs.
In order to effectively use limited radio resources domestically and internationally, the frequency band used for industrial use is preliminarily announced by the Ministry of Internal Affairs and Communications' frequency allocation plan and the International Telecommunications Union (ITU). Although defined, the configuration shown in FIGS. 1 and 5 makes it possible to easily use a plurality of commercial radio wave sources.
It has not been known in the past to produce an organometallic complex by a flow-through production method using the apparatus, and, moreover, a method for producing an organometallic complex excellent in production rate and product purity has been found for the first time by the present invention. It is a thing.
本発明は、同軸線路型マイクロ波照射反応炉を用い、該反応炉内に連続的に供給される反応液(A)に対し、(A)の反応温度−比誘電率ε”の関係曲線が2種またはそれ以上の周波数の異なるマイクロ波ごとに異なる曲線で、該曲線が反応温度範囲において相互に交点を有するマイクロ波を反応温度に応じて選択し逐次照射することを特徴とする有機金属錯体の流通式製造方法であり、これにより短時間で、高い収率で、かつ高エネルギー効率で、連続的に、高純度の有機金属錯体を製造することができる。以下に、マイクロ波照射方法についてさらに詳細に説明する。 In the present invention, a coaxial line type microwave irradiation reactor is used, and for the reaction liquid (A) continuously supplied into the reactor, the relationship curve of (A) reaction temperature-relative permittivity ε ″ An organometallic complex characterized in that two or more microwaves having different frequencies have different curves, and that the curves have mutually intersecting points in the reaction temperature range according to the reaction temperature and sequentially irradiated. In this way, a high-purity organometallic complex can be produced continuously in a short time, with a high yield, and with a high energy efficiency. Further details will be described.
マイクロ波の周波数は通常900MHz〜30GHzであり、前記マイクロ波吸収反応管は、内径が1〜30mm程度の耐熱ガラス管、フッ素樹脂管または石英ガラス管等で製作されるものである。該マイクロ波吸収反応管を同軸線路型マイクロ波照射反応炉で用いることにより、マイクロ波吸収反応管で形成される流通路を流れる反応液全体に確実に、均一にマイクロ波が照射される。その結果として、高速、高収率、高純度の有機金属錯体の製造ができる。 The frequency of the microwave is usually 900 MHz to 30 GHz, and the microwave absorption reaction tube is made of a heat resistant glass tube, a fluororesin tube, a quartz glass tube or the like having an inner diameter of about 1 to 30 mm. By using the microwave absorption reaction tube in a coaxial line type microwave irradiation reactor, the entire reaction liquid flowing through the flow path formed by the microwave absorption reaction tube is surely and uniformly irradiated with microwaves. As a result, a high-speed, high-yield, high-purity organometallic complex can be produced.
図1に、本発明に係る同軸線路型マイクロ波照射反応炉を用いた化学合成装置の概略図を示す。図1において、10は内部導体(マイクロ波の中心電極)、20は外側導体(反応炉の壁)、30はマイクロ波吸収反応管である。
図2に、化学合成装置系統図を示す。FIG. 1 shows a schematic diagram of a chemical synthesis apparatus using a coaxial line type microwave irradiation reactor according to the present invention. In FIG. 1, 10 is an inner conductor (microwave central electrode), 20 is an outer conductor (reactor wall), and 30 is a microwave absorption reaction tube.
FIG. 2 shows a chemical synthesis system diagram.
本発明におけるマイクロ波のマイクロ波源は半導体マイクロ波源である。すなわち、半導体マイクロ波源を用いることにより、低出力化が可能で低消費電力化が図れるとともに、低電力で温度を高めることができることから不純物の生成割合が低くなる。
図6に半導体マイクロ波源とマグネトロンマイクロ波源の出力の周波数スペクトル図を示す。The microwave microwave source in the present invention is a semiconductor microwave source. That is, by using a semiconductor microwave source, the output can be reduced and the power consumption can be reduced, and the temperature can be increased with low power, so the generation rate of impurities is lowered.
FIG. 6 shows frequency spectrum diagrams of outputs of the semiconductor microwave source and the magnetron microwave source.
本発明の製造方法によれば、有機金属錯体の合成速度(g/hr)は、反応温度および照射反応炉のマイクロ波のエネルギー強度(ワット数)によって変わるが、通常、マイクロ波照射反応炉1台当たりで10〜1,000、好ましくは50〜1,000、さらに好ましくは300〜1,000である。
本発明で使用されるマイクロ波照射装置のワット数は好ましくは200W〜2kWである。According to the production method of the present invention, the synthesis rate (g / hr) of the organometallic complex varies depending on the reaction temperature and the microwave energy intensity (wattage) of the irradiation reactor. It is 10 to 1,000, preferably 50 to 1,000, more preferably 300 to 1,000 per table.
The wattage of the microwave irradiation apparatus used in the present invention is preferably 200 W to 2 kW.
本発明の製造方法によって得られる有機金属錯体の純度は、粗生成物(未精製物)の段階で好ましくは70%以上、さらに好ましくは80%以上であり;精製物の段階での純度は好ましくは90%以上、さらに好ましくは98%以上、とくに好ましくは99%以上である。上記のとおり、本発明の製造方法では、精製物の段階での高純度だけでなく、粗生成物(未精製物)の段階においても純度が比較的高い特徴がある。
本発明における純度とは、有機金属錯体に構造異性体としてfacial体とmeridional体が存在する場合には、全体のうちのfacial体の重量%を指し、構造異性体としてfacial体とmeridional体が存在しない場合には、全体のうちの目的とする化学構造式の生成物の重量%を指す。
facial体とmeridional体が存在する有機金属錯体としてはphenylpyridine誘導体のIr錯体等が挙げられる。
本発明における有機金属錯体の純度測定法は、元素分析法、HPLC法またはLC−TOF−MASSによる精密分析法である。The purity of the organometallic complex obtained by the production method of the present invention is preferably at least 70%, more preferably at least 80% at the stage of the crude product (unpurified product); the purity at the stage of the purified product is preferably Is 90% or more, more preferably 98% or more, and particularly preferably 99% or more. As described above, the production method of the present invention is characterized by not only high purity in the purified product stage but also relatively high purity in the crude product (unpurified product) stage.
The purity in the present invention refers to the weight% of the total facial isomer when the isomer is present in the organometallic complex as structural isomers. If not, it refers to the weight percent of the product of the desired chemical structure of the total.
As an organometallic complex in which a facial body and a meridional body exist, an Ir complex of a phenylpyridine derivative and the like can be given.
The method for measuring the purity of the organometallic complex in the present invention is an elemental analysis method, an HPLC method or a precise analysis method by LC-TOF-MASS.
有機EL用有機金属錯体としてphenylpyridine誘導体のIr錯体が利用される場合において、EL素子の製造工程で、通常はこれらのIr錯体が真空蒸着される。この際にfacial体もmeridional体も同時に蒸着されてしまうが、meridional体はfacial体の発光強度の1/10程度しかない。そのため、従来の通常の製造方法によって得られるmeridional体を多く含むIr錯体では、meridional体やその他の不純物を除去するためにカラムクロマトグラフィー等による煩雑で長時間の分離精製が必要であり、97%を越える高純度のものを大量に生産することは困難であった。
本発明の製造方法では、マイクロ波照射が高温で均一に行われることから、有機金属錯体がIr錯体である場合は、facial体が高純度で含まれる生成物が得られるため、簡単な短時間の工程である再結晶法でfacial体の純度が98%以上の有機金属錯体が得られる。In the case where an Ir complex of a phenylpyridine derivative is used as an organometallic complex for organic EL, these Ir complexes are usually vacuum-deposited in the EL device manufacturing process. At this time, both the facial body and the meridional body are deposited at the same time, but the meridional body has only about 1/10 of the emission intensity of the facial body. Therefore, in the Ir complex containing a large amount of meridional isomers obtained by a conventional ordinary production method, complicated and long-term separation and purification by column chromatography or the like is necessary to remove the meridional isomers and other impurities, and 97% It was difficult to produce a large amount of high purity products exceeding the above.
In the production method of the present invention, since microwave irradiation is uniformly performed at a high temperature, when the organometallic complex is an Ir complex, a product containing a facial body with high purity can be obtained. An organometallic complex having a facial isomer purity of 98% or more can be obtained by the recrystallization method which is the above step.
[有機金属錯体の製造プロセス]
本発明の製造方法の一般的なプロセスは以下のとおりである。
図2に代表的プロセスのフロー図(化学合成装置の系統図)を示す。但し、本発明の製造方法はこのプロセスに限定されるものではない。図2において、40は原料槽、45は原料を圧送する輸送ポンプ、1は流通式マイクロ波吸収反応管を内蔵する同軸線路型マイクロ波照射反応炉、41は回収槽、42は循環配管である。[Process for producing organometallic complexes]
The general process of the manufacturing method of the present invention is as follows.
FIG. 2 shows a flowchart of a typical process (system diagram of a chemical synthesis apparatus). However, the manufacturing method of the present invention is not limited to this process. In FIG. 2, 40 is a raw material tank, 45 is a transport pump for pumping the raw material, 1 is a coaxial line type microwave irradiation reactor incorporating a flow-type microwave absorption reaction tube, 41 is a recovery tank, and 42 is a circulation pipe. .
原料の仕込みと溶解、および反応の各操作は次のとおりである。
例えば、前記中心金属Mの塩化物と、配位子を構成する有機化合物を図2の原料槽40に入れて混合し、溶媒に溶解させて反応液(A)とする。(A)を図2の、流通式マイクロ波吸収反応管を内蔵する同軸線路型マイクロ波照射反応炉1に流通させ、マイクロ波を照射して反応させる。The operations of charging and dissolving the raw materials and the reaction are as follows.
For example, the chloride of the central metal M and the organic compound constituting the ligand are mixed in the
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。以下において%は重量%を表す。
以下の実施例では、図1、図5に示す同軸線路型マイクロ波照射反応炉を用いた化学合成装置のマイクロ波源51、アイソレータ52、パワーモニタ53、同軸型スタブ整合器54、および同軸型マイクロ波照射反応炉1を用いてマイクロ波を反応炉1に導入し、原材料は図1の原料槽40、輸送ポンプ45、反応炉1および循環配管42に満たしておく必要がある。EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples. In the following,% represents% by weight.
In the following embodiments, the microwave source 51, the
原材料を充填した後、マイクロ波を利用することとなる。図5に異なる2つの周波数帯のマイクロ波を反応炉に導入できるマイクロ波源51と反応炉1の例を示す。図5の切替器55で選択された半導体マイクロ波源51からマイクロ波を出力させる。徐々に出力を上げ、パワーモニター53で反射波の電力を計測しながら、随時整合器54を操作して反射波の電力が最小となるような条件で反応を進める。原材料が反応炉のマイクロ波吸収反応管内部に充填された状態から反応が開始される。 After filling the raw materials, microwaves will be used. FIG. 5 shows an example of the microwave source 51 and the
本発明で用いられるマイクロ波は、一般的に用いられるマグネトロン式マイクロ波源ではなく、半導体式マイクロ波源である。図6にマグネトロン方式のマイクロ波源が出力するマイクロ波スペクトラムと半導体方式のマイクロ波源が出力するマイクロ波スペクトラムの例を示す。図6より、マグネトロン方式の出力する周波数スペクトルの幅(ばらつき)は広く、半導体方式の出力するマイクロ波は周波数スペクトルの幅が狭いことがわかる。マイクロ波照射反応炉に対するこのばらつきは整合器による整合状態に影響する。ここでいう整合とは、整合器により反射波の電力が最小となるように調整することを指すが、マグネトロンのように幅広いスペクトルを持つ場合は、整合が取れた状態であってもなお幅広いスペクトルを有するため、整合が取れない周波数に電力が割かれることになり、化学反応および反応炉への電力供給の効率が悪い。 The microwave used in the present invention is not a commonly used magnetron type microwave source but a semiconductor type microwave source. FIG. 6 shows an example of a microwave spectrum output from a magnetron type microwave source and a microwave spectrum output from a semiconductor type microwave source. As can be seen from FIG. 6, the width (variation) of the frequency spectrum output by the magnetron system is wide, and the frequency spectrum of the microwave output by the semiconductor system is narrow. This variation for microwave irradiation reactors affects the alignment state of the matcher. Matching here refers to adjusting the power of the reflected wave to the minimum with a matching device. However, if the spectrum has a wide spectrum, such as a magnetron, a broad spectrum is still available even when the matching is achieved. Therefore, power is divided into frequencies that cannot be matched, and the efficiency of the chemical reaction and power supply to the reactor is poor.
一方、半導体方式のマイクロ波源の場合、出力されるマイクロ波のスペクトルは狭いことから整合が取れた周波数を中心に電力が供給されるため、同じ電力のマイクロ波を出力してもマグネトロン方式に比べて利用効率がよいという利点がある。同等の加熱性能を得るために電力が少なくて済むことから、マイクロ波源の消費電力、例えば錯体合成に必要な電力が少なくて済むという大きな利点がある。 On the other hand, in the case of a semiconductor-type microwave source, power is supplied around a matched frequency because the spectrum of the output microwave is narrow, so even if microwaves with the same power are output, compared to the magnetron method And has the advantage of good utilization efficiency. Since less power is required to obtain the same heating performance, there is a great advantage that the power consumption of the microwave source, for example, the power required for complex synthesis can be reduced.
反応生成物の分析評価は以下の装置で実施した。
(1)元素分析 マイクロコーダー JM10型
(2)HPLC Agilent1290,Shimazu LC20AL
(3)C−MS Agilent6230 TOF
有機EL発光材料の評価は、図7に示す構造の有機EL発光デバイスで行った。The analysis evaluation of the reaction product was carried out with the following apparatus.
(1) Elemental analysis Microcoder JM10 type (2) HPLC Agilent 1290, Shimazu LC20AL
(3) C-MS Agilent 6230 TOF
Evaluation of the organic EL light-emitting material was performed using an organic EL light-emitting device having a structure shown in FIG.
実施例1[波長変換材料用有機金属錯体:Ru(dmbpy)3(PF6)2の製造]
RuCl3・3H2O+3dmbpy→[Ru(dmbpy)3]2+ (5)
上記反応式(5)の反応を同軸線路型マイクロ波照射反応炉で行った。反応式(5)および以下において、dmbpyはdimethylbipyridineの略記である。3塩化ルテニウム水和物RuCl3・3H2O(39.3g)とdmbpy(85.5g)の混合物に、エチレングリコールを加えて溶解させた原料液[反応液(A−1)]を反応炉中に導入し、200Wのマイクロ波照射下(反応温度65℃未満までは周波数2.45GHz、65℃以上では周波数5.8GHzの各マイクロ波を照射)、170℃で毎分30mlの流速で反応管中を流通させた。得られた反応液にKPF6飽和水溶液50mlを加えて[Ru(dmbpy)3](PF6)2 128gを得た。反応炉内を流通させた時間は8分間であった。同軸線路型反応炉による粗生成物の合成速度(以下において、同軸線路型合成速度と略記する)は956g/hrに相当する。
であった。粗生成物の純度は95%であった。
アセトン−水から再結晶し、無水ジエチルエーテルで微量の配位子を除去し、真空乾燥させて127.5gを得た。収率は87%(収率は、中心金属を基準とした理論得量を100%として算出した。以下同様)、真空乾燥後の精製物の元素分析値は、理論値:C=45.77%、H=3.85%、N=8.91%に対し、実測値:C=45.66%、H=3.82%、N=8.85%であり、純度は98%以上であることを確認した。得られた精製物に近紫外域の光を照射し、600nmが発光ピークであることを確認した。Example 1 [Production of organometallic complex for wavelength converting material: Ru (dmbpy) 3 (PF 6 ) 2 ]
RuCl 3 .3H 2 O + 3 dmbpy → [Ru (dmbpy) 3 ] 2+ (5)
The reaction of the above reaction formula (5) was performed in a coaxial line type microwave irradiation reactor. In Reaction Formula (5) and the following, dmbpy is an abbreviation for dimethylbipyridine. A raw material solution [reaction solution (A-1)] obtained by adding ethylene glycol to a mixture of ruthenium trichloride hydrate RuCl 3 .3H 2 O (39.3 g) and dmbpy (85.5 g) and dissolving it was used as a reactor. Introduced into 200 W microwave irradiation (irradiates each microwave with frequency of 2.45 GHz until reaction temperature less than 65 ° C, frequency 5.8 GHz above 65 ° C), reacts at 170 ° C at a flow rate of 30 ml per minute Circulated in the tube. To the obtained reaction solution, 50 ml of a saturated aqueous solution of KPF 6 was added to obtain 128 g of [Ru (dmbpy) 3 ] (PF 6 ) 2 . The time for circulating in the reactor was 8 minutes. The synthesis rate of the crude product in the coaxial line reactor (hereinafter abbreviated as “coaxial line synthesis rate”) corresponds to 956 g / hr.
Met. The purity of the crude product was 95%.
Recrystallization from acetone-water, removal of a trace amount of ligand with anhydrous diethyl ether, and vacuum drying gave 127.5 g. The yield was 87% (yield was calculated with the theoretical yield based on the central metal as 100%. The same applies hereinafter), and the elemental analysis value of the purified product after vacuum drying was the theoretical value: C = 45.77. %, H = 3.85%, N = 8.91%, while the actual measurement values are: C = 45.66%, H = 3.82%, N = 8.85%, and the purity is 98% or more. I confirmed that there was. The obtained purified product was irradiated with light in the near ultraviolet region, and it was confirmed that 600 nm was an emission peak.
実施例2〔色素増感材料用有機金属錯体:[Ru(bpy(COOH)2)2](SCN)2の製造〕
RuCl3・3H2O+2bpy(COOH)2→
[Ru(bpy(COOH)2)2]2+ (6)
上記反応式(6)の反応を実施例1と同様の装置を用いて行った。原料槽中で、RuCl3・3H2O(32g)とビピリジンジカルボン酸[bpy(COOH)2と略記](53g)の混合物を溶媒のジメチルホルムアミド(240ml)に溶解させた原料液[反応液(A−2)]を、反応炉中に導入し、200Wのマイクロ波照射下(反応温度90℃未満までは周波数2.45GHz、90℃以上では周波数5.8GHzの各マイクロ波を照射)、150℃で毎分30mlの流速で反応管中を流通させた。反応炉内を流通させた時間は8分間であった。得られたRu(bpy(COOH)2)2Cl2溶液にNaOHを加え、Ru(bpy(COOH)2)2Cl2中のbpy(COOH)2をbpy(COO−)2とした後、飽和NaSCN溶液を加え[Ru(bpy(COO−)2)2](SCN)2を得た。HClO4で中和してRu(bpy(COOH)2)2(SCN)2 68gを得た。同軸線路型合成速度は510g/hrに相当する。粗生成物の純度は96%であった。エタノール−水から再結晶し63gの精製物を得た。収率は80%、真空乾燥後の精製物の元素分析値は、理論値:C=43.99%、H=2.82%、N=11.85%に対し、実測値:43.68%、H=2.80%、N=11.77%であり、純度は98%以上であることを確認した。Example 2 [Production of organometallic complex for dye-sensitized material: [Ru (bpy (COOH) 2 ) 2 ] (SCN) 2 ]
RuCl 3 .3H 2 O + 2 bpy (COOH) 2 →
[Ru (bpy (COOH) 2 ) 2 ] 2+ (6)
Reaction of the said Reaction formula (6) was performed using the apparatus similar to Example 1. FIG. In the raw material tank, RuCl 3 · 3H 2 O ( 32g) and bipyridine dicarboxylic acid [bpy (COOH) 2 abbreviated] (53 g) mixture material liquid is dissolved in a solvent of dimethylformamide (240 ml) of [reaction ( A-2)] is introduced into the reactor, and is irradiated with 200 W of microwaves (irradiates each microwave with a frequency of 2.45 GHz until the reaction temperature is lower than 90 ° C., and with a frequency of 5.8 GHz above 90 ° C.), It was circulated through the reaction tube at a flow rate of 30 ml / min. The time for circulating in the reactor was 8 minutes. The resulting Ru (bpy (COOH) 2) 2 Cl 2 solution of NaOH was added, the Ru (bpy (COOH) 2) 2 Cl 2 in bpy (COOH) 2 bpy (COO -) After 2, saturated A NaSCN solution was added to obtain [Ru (bpy (COO − ) 2 ) 2 ] (SCN) 2 . Neutralization with HClO 4 gave 68 g of Ru (bpy (COOH) 2 ) 2 (SCN) 2 . The coaxial line type combined speed corresponds to 510 g / hr. The purity of the crude product was 96%. Recrystallization from ethanol-water gave 63 g of a purified product. The yield was 80%, and the elemental analysis values of the purified product after vacuum drying were the theoretical values: C = 43.99%, H = 2.82%, N = 11.85%, and the actual measurement value: 43.68. %, H = 2.80%, N = 11.77%, and the purity was confirmed to be 98% or more.
実施例3[有機EL用錯体リン光材料用有機金属錯体:Ir(ppy)3(2段階プロセス)の製造]
実施例1と同様の装置を用いて合成を行った。
1段階目:Ir(ppy)4Cl2の製造
反応式は下記。
2IrCl3・3H2O+4ppy→Ir2(ppy)4Cl2+4HCl (7)
加熱したジエチレングリーコール240mlを、IrCl3・3H2O(34.8g)とppy(78g)[モル比1:4]の混合物を仕込んだ原料槽に注ぎ、得られた原料液[反応液(A−3)]を、窒素通気下で反応炉中に導入し、200Wのマイクロ波照射下(反応温度80℃未満までは周波数2.45GHz、80℃以上では周波数5.8GHzの各マイクロ波を照射)、220℃、毎分30mlの流速で8分間流通させ、生成物を酢酸エチルで洗浄し、Ir2(ppy)4Cl2 48gを得た。同軸線路型合成速度は360g/hrに相当する。生成物を酢酸エチルで洗浄し、Ir2(ppy)4Cl2を得た。Example 3 [Production of Complex for Organic EL Phosphorescent Organometallic Complex: Ir (ppy) 3 (Two-Step Process)]
The synthesis was performed using the same apparatus as in Example 1.
First stage: Production of Ir (ppy) 4 Cl 2 The reaction formula is as follows.
2IrCl 3 .3H 2 O + 4 ppy → Ir 2 (ppy) 4 Cl 2 + 4HCl (7)
240 ml of heated diethylene glycol was poured into a raw material tank charged with a mixture of IrCl 3 .3H 2 O (34.8 g) and ppy (78 g) [molar ratio 1: 4], and the resulting raw material liquid [reaction liquid ( A-3)] is introduced into the reaction furnace under nitrogen flow, and each microwave having a frequency of 2.45 GHz is irradiated under 200 W of microwave irradiation (reaction temperature is lower than 80 ° C., and a frequency of 5.8 GHz is higher than 80 ° C.). Irradiation) at 220 ° C. at a flow rate of 30 ml / min for 8 minutes, and the product was washed with ethyl acetate to obtain 48 g of Ir 2 (ppy) 4 Cl 2 . The coaxial line type combined speed corresponds to 360 g / hr. The product was washed with ethyl acetate to give Ir 2 (ppy) 4 Cl 2 .
2段階目:Ir(ppy)3の製造
反応式は下記。
Ir2(ppy)4Cl2+2ppy+2(n−Bu)3N→
2Ir(ppy)3+2(n−Bu)3N・HCl (8)
ジエチレングリコール240mlを原料槽に注ぎ、Ir2(ppy)4Cl2(48g)とppy(136g)[モル比1:10]の混合物およびトリブチルアミンを加えて、窒素通気下で反応炉中に導入し、1kWのマイクロ波照射下、220℃、毎分30mlの流速で8分間流通させ、Ir(ppy)3 50gを得た。同軸線路型合成速度は375g/hrに相当する。粗生成物のfacial体の純度は90%であった。ジクロロエタンで再結晶した後、酢酸エチルで洗浄し、49gを得た。収率84%、真空乾燥後の精製物の元素分析値は、理論値:C=60.53%、H=3.7%、N=6.42%に対し、実測値:C=60.52%、H=3.74%、N=6.48%であった。また、facial体の純度はHPLCおよびLC−MSより98%以上であることを確認した。Second stage: The production reaction formula of Ir (ppy) 3 is as follows.
Ir 2 (ppy) 4 Cl 2 +2 ppy + 2 (n-Bu) 3 N →
2Ir (ppy) 3 +2 (n-Bu) 3 N · HCl (8)
240 ml of diethylene glycol was poured into the raw material tank, a mixture of Ir 2 (ppy) 4 Cl 2 (48 g) and ppy (136 g) [molar ratio 1:10] and tributylamine were added, and the mixture was introduced into the reactor under nitrogen flow. Under an irradiation of 1 kW of microwave, it was circulated at 220 ° C. and a flow rate of 30 ml / min for 8 minutes to obtain 50 g of Ir (ppy) 3 . The coaxial line type combined speed corresponds to 375 g / hr. The purity of the facial form of the crude product was 90%. After recrystallization from dichloroethane, washing with ethyl acetate gave 49 g. Yield 84%, the elemental analysis values of the purified product after vacuum drying are the theoretical values: C = 60.53%, H = 3.7%, N = 6.42%, while the actual measurement value: C = 60. 52%, H = 3.74%, N = 6.48%. Moreover, it was confirmed that the purity of the facial isomer was 98% or more by HPLC and LC-MS.
実施例4[有機EL用錯体リン光材料用有機金属錯体:Ir(ppy)2acac(2段階プロセス)の製造]
実施例1と同様の装置を用いて合成を行った。
1段階目:Ir(ppy)4Cl2の製造
IrCl3・3H2O(38.7g)とppy(66g)の混合物を仕込んだ原料槽にジエチレングリーコール240mlを注ぎ、得られた原料液[反応液(A−4)]を、窒素通気下で反応炉中に導入し、200Wのマイクロ波照射下(反応温度80℃未満までは周波数2.45GHz、80℃以上では周波数5.8GHzの各マイクロ波を照射)、240℃、毎分30mlの流速で8分間流通させ、生成物を酢酸エチルで洗浄し、Ir2(ppy)4Cl2 53.3gを得た。同軸線路型合成速度は399g/hrに相当する。Example 4 [Production of Complex for Organic EL Phosphorescent Organometallic Complex: Ir (ppy) 2 acac (two-stage process)]
The synthesis was performed using the same apparatus as in Example 1.
First stage: Production of Ir (ppy) 4
2段階目:Ir(ppy)2acacの製造
次に異種配位子としてアセチルアセトン(以下acacと略記)を加えて反応を行った。ノルマルブチルは以下n−Buと略記する。
反応式は下記。
Ir2(ppy)4Cl2+2acac+2(n−Bu)3N→
2Ir(ppy)2(acac)+4(n−Bu)3N・HCl (9)
ジエチレングリコール240mlを原料槽に注ぎ、Ir2(ppy)4Cl2(53.3g)とacac(10g)の混合物およびトリブチルアミンを加えて、窒素通気下で反応炉中に導入し、200Wのマイクロ波照射下(前記1段階目と同条件で照射)、220℃、毎分30mlの流速で8分間流通させ、Ir(ppy)2 acac 54gを得た。同軸線路型合成速度は405g/hrに相当する。粗生成物のfacial体の純度は90%であった。酢酸エチル−ジエチルエーテルで再結晶し、精製物50gを得た。収率84%。真空乾燥による精製物の元素分析値は、理論値:C=54.07%、H=3.87%、N=4.67%に対し、実測値:C=53.98%、H=3.80%、N=4.60%であった。またfacial体の純度はHPLC及びLC−MSより98%以上であることを確認した。Second stage: Production of Ir (ppy) 2 acac Next, acetylacetone (hereinafter abbreviated as acac) was added as a heterogeneous ligand to carry out the reaction. Normal butyl is hereinafter abbreviated as n-Bu.
The reaction formula is as follows.
Ir 2 (ppy) 4 Cl 2 + 2acac + 2 (n-Bu) 3 N →
2Ir (ppy) 2 (acac) +4 (n-Bu) 3 N · HCl (9)
240 ml of diethylene glycol was poured into the raw material tank, a mixture of Ir 2 (ppy) 4 Cl 2 (53.3 g) and acac (10 g) and tributylamine were added, and the mixture was introduced into the reactor under a nitrogen atmosphere. Under irradiation (irradiation under the same conditions as in the first stage), it was passed at 220 ° C. and a flow rate of 30 ml for 8 minutes to obtain 54 g of Ir (ppy) 2 acac. The coaxial line type combined speed corresponds to 405 g / hr. The purity of the facial form of the crude product was 90%. Recrystallization from ethyl acetate-diethyl ether gave 50 g of a purified product. Yield 84%. The elemental analysis values of the purified product by vacuum drying are as follows: theoretical values: C = 54.07%, H = 3.87%, N = 4.67%, actual values: C = 53.98%, H = 3 .80% and N = 4.60%. Moreover, it was confirmed that the purity of the facial form was 98% or more by HPLC and LC-MS.
実施例5[波長変換材料用有機金属錯体:Eu(TTA)3phenの製造]
Eu(OAc)3・4H2O+3TTA+phen
→Eu(TTA)3phen (10)
上記反応式(10)の反応を実施例1と同様の装置を用いて行った。反応式(10)および以下において、OAcは昨酸イオンの略であり、TTAはテノイルトリフルオロアセトンの略記である。ユーロピウム水和物Eu(OAc)3・4H2O(22g)、TTA(36.5g)およびphen(10.9g)の混合物に、エチルアルコール−水の混合溶媒を加えて溶解した原料液[反応液(A−5)]を反応炉に導入し、200Wのマイクロ波照射下(反応温度70℃未満までは周波数2.45GHz、70℃以上では周波数900MHzの各マイクロ波を照射)、65℃で毎分60mlの流速で反応管中を流通させてEu(TTA)3phen 63gを得た。反応炉を流通させた時間は4分間である。同軸線路型合成速度は945g/hrに相当する。水を加えて沈殿させ、ジエチルエーテルで残存の配位子を除去し真空乾燥し、60gを得た。収率90%。真空乾燥後の精製物の元素分析値は、理論値:C=43.33%、H=2.00%、N=2.81%、S=11.77%に対し、実測値:C=43.22%、H=1.98%.N=2.79%、S=11.66%であった。純度は98%以上であることを確認した。得られた精製物に近紫外域の光を照射し、610nmが発光ピークであることを確認した。Example 5 [Production of organometallic complex for wavelength conversion material: Eu (TTA) 3phen]
Eu (OAc) 3 · 4H 2 O + 3TTA + phen
→ Eu (TTA) 3 phen (10)
Reaction of the said Reaction formula (10) was performed using the apparatus similar to Example 1. FIG. In the reaction formula (10) and the following, OAc is an abbreviation for yesteric acid ion, and TTA is an abbreviation for tenoyl trifluoroacetone. Europium hydrate Eu (OAc) 3 · 4H 2 O (22 g), TTA (36.5 g) and phen (10.9 g) in a mixture of ethyl alcohol-water mixed solvent and dissolved [reaction Liquid (A-5)] is introduced into the reaction furnace, and is irradiated with microwaves of 200 W (irradiation of each microwave with a frequency of 2.45 GHz until the reaction temperature is less than 70 ° C., and with a frequency of 900 MHz above 70 ° C.) at 65 ° C. The reaction tube was circulated at a flow rate of 60 ml / min to obtain 63 g of Eu (TTA) 3 phen. The time for circulating the reactor is 4 minutes. The coaxial line type combined speed corresponds to 945 g / hr. Water was added for precipitation, the remaining ligand was removed with diethyl ether and vacuum dried to obtain 60 g. Yield 90%. The elemental analysis values of the purified product after vacuum drying are as follows: theoretical values: C = 43.33%, H = 2.00%, N = 2.81%, S = 11.77%, measured values: C = 43.22%, H = 1.98%. N = 2.79% and S = 11.66%. The purity was confirmed to be 98% or more. The obtained purified product was irradiated with light in the near ultraviolet region, and it was confirmed that the emission peak was 610 nm.
比較例1[波長変換材料用有機金属錯体:Ru(dmbpy)3(PF6)2の製造]
特開2014−62085号公報の実施例1に記載の方法に準じて、Ru(dmbpy)3(PF6)2を製造した。
RuCl3・3H2O+3dmbpy→[Ru(dmbpy)3]2+ (11)
上記反応式(11)の反応をフローマイクロ波反応器(導波管型マイクロ波照射反応炉)で行った。3塩化ルテニウム水和物RuCl3・3H2O(39.3g)とdmbpy(85.5g)の混合物に、エチレングリコールを加えて溶解した原料液[反応液(比A−1)]をフローマイクロ波反応器中、1kWのマイクロ波照射下、170℃で毎分30mlの流速で反応管中を流通させた。生じた溶液にKPF6飽和水溶液50mlを加えて[Ru(dmbpy)3](PF6)2 128gを得た。フローマイクロ波反応器を流通させた時間は8分間である。フローマイクロ波反応器による粗生成物の合成速度(以下において、フローマイクロ波合成速度と略記する)は956g/hrに相当する。粗生成物の純度は84%であった。アセトン−水から再結晶し、無水ジエチルエーテルで微量の配位子を除去し真空乾燥し、127.5gを得た。収率87%、真空乾燥後の精製物の元素分析値は、理論値:C=45.77%、H=3.85%、N=8.91%に対し、実測値:C=45.66%、H=3.82%、N=8.85%であった。純度は、98%以上であることを確認した。得られた精製物に近紫外域の光を照射し、600nmが発光ピークであることを確認している。Comparative Example 1 [Production of Organometallic Complex for Wavelength Conversion Material: Ru (dmbpy) 3 (PF 6 ) 2 ]
Ru (dmbpy) 3 (PF 6 ) 2 was produced according to the method described in Example 1 of JP 2014-62085 A.
RuCl 3 .3H 2 O + 3 dmbpy → [Ru (dmbpy) 3 ] 2+ (11)
Reaction of the said Reaction formula (11) was performed with the flow microwave reactor (waveguide type | mold microwave irradiation reactor). A raw material solution [reaction solution (ratio A-1)] obtained by adding ethylene glycol to a mixture of ruthenium trichloride hydrate RuCl 3 .3H 2 O (39.3 g) and dmbpy (85.5 g) and dissolving it in a flow micro In a wave reactor, under a 1 kW microwave irradiation, the reaction tube was circulated at 170 ° C. at a flow rate of 30 ml / min. To the resulting solution, 50 ml of a saturated aqueous solution of KPF 6 was added to obtain 128 g of [Ru (dmbpy) 3 ] (PF 6 ) 2 . The flow time of the flow microwave reactor is 8 minutes. The synthesis rate of the crude product by the flow microwave reactor (hereinafter abbreviated as “flow microwave synthesis rate”) corresponds to 956 g / hr. The purity of the crude product was 84%. Recrystallization from acetone-water, a trace amount of the ligand was removed with anhydrous diethyl ether, and vacuum drying was performed to obtain 127.5 g. Yield 87%, the elemental analysis values of the purified product after vacuum drying are the theoretical values: C = 45.77%, H = 3.85%, N = 8.91%, while the actual measurement value: C = 45. 66%, H = 3.82%, N = 8.85%. The purity was confirmed to be 98% or more. The obtained purified product was irradiated with light in the near ultraviolet region, and it was confirmed that 600 nm was an emission peak.
比較例2[有機金属錯体:Ru(bpy)3(PF6)2の製造]
特開2010−215677号公報の実施例1に記載の方法に準じて、Ru(bpy)3を製造した。即ち、3塩化ルテニウム水和物RuCl3・3H2O(26.1mg)とbpy(78mg)のモル比1:5の混合物に、エチレングリコール50mlを加えて溶解し、原料液[反応液(比A−2)]を得た。のときのルテニウムのモル濃度は、2mMであり、ビピリジンのモル濃度は、10mMとした。流通管である反応管として、外径2mm、内径1mmの石英管を用いた。
原料の反応液(比A−2)は、シリンジポンプにより、毎分0.05ml〜1.1mlの速度で、反応管に注入した。中心軸に沿って、内径が細管状の石英反応管を円筒を貫通するように設置した装置を用いた。マイクロ波を10秒照射し、溶液温度を155℃とした場合、目的物質であるRu(bpy)3 2+を得た。生じた溶液にKPF6飽和水溶液100mlを加えて[Ru(bpy)3](PF6)3を得た。錯体は紫外線で610nmの発光を示した。収率70%。粗生成物の純度は85%であった。アセトン−水から再結晶し、無水ジエチルエーテルで微量の配位子を除去し真空乾燥した。収量0.10g、収率100%、生産速度0.10g/hr。元素分析値は、理論存在比:C=41.91%、H=2.79%、N=9.78%に対して、実測値:C=41.48%、H=2.76%、N=9.66%であった。Comparative Example 2 [Production of organometallic complex: Ru (bpy) 3 (PF 6 ) 2 ]
Ru (bpy) 3 was produced according to the method described in Example 1 of JP 2010-215677 A. That is, 50 ml of ethylene glycol was added to a mixture of ruthenium trichloride hydrate RuCl 3 .3H 2 O (26.1 mg) and bpy (78 mg) in a molar ratio of 1: 5 and dissolved in the raw material solution [reaction solution (ratio A-2)] was obtained. In this case, the molar concentration of ruthenium was 2 mM, and the molar concentration of bipyridine was 10 mM. A quartz tube having an outer diameter of 2 mm and an inner diameter of 1 mm was used as a reaction tube which is a flow tube.
The raw material reaction liquid (ratio A-2) was injected into the reaction tube by a syringe pump at a rate of 0.05 ml to 1.1 ml per minute. An apparatus was used in which a quartz reaction tube having a small inner diameter along the central axis was installed so as to penetrate the cylinder. When the microwave was irradiated for 10 seconds and the solution temperature was set to 155 ° C., the target substance Ru (bpy) 3 2+ was obtained. 100 ml of a saturated aqueous solution of KPF 6 was added to the resulting solution to obtain [Ru (bpy) 3 ] (PF 6 ) 3 . The complex emitted 610 nm in the ultraviolet. Yield 70%. The purity of the crude product was 85%. Recrystallization from acetone-water was performed, and a small amount of ligand was removed with anhydrous diethyl ether, followed by vacuum drying. Yield 0.10 g, yield 100%, production rate 0.10 g / hr. The elemental analysis values are as follows: theoretical abundance ratio: C = 41.91%, H = 2.79%, N = 9.78%, while actual measurement values: C = 41.48%, H = 2.76%, N = 9.66%.
実施例6[Ir(ppy)3を用いた有機EL発光デバイスの発光特性評価]
有機EL発光デバイスを作製し、実施例3で製造したIr(ppy)3を図7の発光層に注入し、有機EL発光特性を評価した。1,000cd/m2の条件において、有機EL用有機金属錯体リン光材料の発光特性を評価した結果、発光ピーク波長514nm、単位電流あたりの発光強度80cd/mAの特性を得た。結果を図8に示す。Example 6 [Evaluation of luminous characteristics of organic EL light emitting device using Ir (ppy) 3 ]
An organic EL light emitting device was produced, and Ir (ppy) 3 produced in Example 3 was injected into the light emitting layer of FIG. 7 to evaluate the organic EL light emitting characteristics. As a result of evaluating the light emission characteristics of the organometallic complex phosphorescent material for organic EL under the condition of 1,000 cd / m 2, the characteristics of a light emission peak wavelength of 514 nm and a light emission intensity of 80 cd / mA per unit current were obtained. The results are shown in FIG.
以上のように、比較例2では生成した錯体の量が本発明の方法に比較して極めて少ない。比較例2の方法は錯体をセンサーとして検出用に用いるなど、目的が本発明とは異なるため、少電力で少量を高速で合成することに重点を置いているので収率は良いが収量がきわめて少ない。本発明の方法ではフロー法を発展させて大量生産用の連続的合成法として極めて有用である。 As described above, in Comparative Example 2, the amount of the produced complex is extremely small as compared with the method of the present invention. The method of Comparative Example 2 uses a complex as a sensor for detection. The purpose of the method is different from that of the present invention. Therefore, since the emphasis is on synthesizing a small amount with a small amount of power, the yield is good, but the yield is extremely high. Few. The method of the present invention is very useful as a continuous synthesis method for mass production by developing a flow method.
本発明の製造方法は、生産性および反応収率に優れることから、有機金属錯体の製造方法として極めて有用であり、得られる有機金属錯体はfacial体の純度が非常に高いことから、波長変換材料、有機色素増感材料および有機EL用錯体リン光材料等幅広い分野で好適に用いることができ極めて有用である。 Since the production method of the present invention is excellent in productivity and reaction yield, it is extremely useful as a production method of an organometallic complex, and the obtained organometallic complex has a very high facial purity. It can be suitably used in a wide range of fields such as organic dye-sensitized materials and organic EL complex phosphorescent materials, and is extremely useful.
(図1、2の符号)
1 同軸線路型マイクロ波照射反応炉
10 内部導体(マイクロ波の中心電極)
20 外部導体(反応炉壁)
30 マイクロ波吸収反応管
40 原料槽
41 回収槽
42 循環配管
45 輸送ポンプ
50 マイクロ波供給部
(図5の符号)
1 同軸線路型マイクロ波照射反応炉
50 マイクロ波供給部
51 マイクロ波源
52 アイソレータ
53 パワーモニタ
54 整合器
55 切替器(Reference numerals in FIGS. 1 and 2)
1 Coaxial line type
20 External conductor (reactor wall)
30 Microwave
DESCRIPTION OF
Claims (9)
前記反応液(A)は、前記有機金属錯体の中心金属Mを構成する金属の塩と、前記有機金属錯体の配位子を構成する有機化合物と、溶媒と、を含んで構成され、
複数の異なる周波数のマイクロ波を供給可能なマイクロ波照射反応炉を用い、
前記反応液(A)の反応温度−比誘電率ε"の関係曲線が、前記複数の異なる周波数のマイクロ波ごとに異なる曲線で、該曲線が反応温度範囲において相互に交点を有する前記関係曲線に基づいて反応温度に応じて前記複数の異なる周波数のうち前記反応液(A)の比誘電率ε"が最も高くなる周波数のマイクロ波を選択し前記反応液(A)に逐次照射することによって、前記有機金属錯体を合成することを特徴とする有機金属錯体の流通式製造方法。 It is a flow-through method for producing an organometallic complex in which a reaction solution (A) is irradiated with microwaves,
The reaction solution (A) includes a metal salt constituting the central metal M of the organometallic complex, an organic compound constituting a ligand of the organometallic complex, and a solvent.
Using a microwave irradiation reactor that can supply microwaves of different frequencies ,
The reaction temperature of the reaction solution (A) - the relationship curve of dielectric constant epsilon ", the plurality of different curves for each microwave of different frequencies, the relationship curve curve having mutually intersecting point at the reaction temperature range The microwave having the highest relative dielectric constant ε ″ of the reaction solution (A) is selected from the plurality of different frequencies according to the reaction temperature, and sequentially irradiated to the reaction solution (A) . A method for producing an organometallic complex, comprising synthesizing the organometallic complex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124746A JP6304656B2 (en) | 2014-05-31 | 2014-05-31 | Method for producing organometallic complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124746A JP6304656B2 (en) | 2014-05-31 | 2014-05-31 | Method for producing organometallic complex |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015227322A JP2015227322A (en) | 2015-12-17 |
JP6304656B2 true JP6304656B2 (en) | 2018-04-04 |
Family
ID=54885038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014124746A Active JP6304656B2 (en) | 2014-05-31 | 2014-05-31 | Method for producing organometallic complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6304656B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636664B2 (en) * | 2000-10-11 | 2011-02-23 | 四国計測工業株式会社 | High-temperature and high-pressure vessel with microwave supply device for chemical reaction promotion |
JP3891783B2 (en) * | 2001-02-28 | 2007-03-14 | 株式会社トクヤマ | Liquid sample concentration method |
JP5324087B2 (en) * | 2007-12-28 | 2013-10-23 | 智 堀越 | Chemical reaction promotion method and microwave chemical reaction apparatus |
JP5578462B2 (en) * | 2009-03-12 | 2014-08-27 | 独立行政法人産業技術総合研究所 | Continuous synthesis of metal complexes |
JP5109004B1 (en) * | 2011-11-11 | 2012-12-26 | マイクロ波化学株式会社 | Chemical reactor |
JP2014062085A (en) * | 2012-02-27 | 2014-04-10 | Minerva Light Laboratory | Method for producing organometallic complex |
-
2014
- 2014-05-31 JP JP2014124746A patent/JP6304656B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015227322A (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet–white light-emitting diode | |
Noculak et al. | Bright blue and green luminescence of Sb (III) in double perovskite Cs2MInCl6 (M= Na, K) matrices | |
Olaru et al. | A small cationic organo–copper cluster as thermally robust highly photo-and electroluminescent material | |
Zhou et al. | Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission | |
Dash et al. | Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+-doped BiOX (X= Cl, Br, I) nanoflakes | |
Gupta et al. | Multifunctional pure and Eu 3+ doped β-Ag 2 MoO 4: photoluminescence, energy transfer dynamics and defect induced properties | |
CN109748938B (en) | Bivalent platinum complex, application thereof and organic photoelectric device | |
Pal et al. | Blue-to-green emitting neutral Ir (III) complexes bearing pentafluorosulfanyl groups: a combined experimental and theoretical study | |
Cortecchia et al. | Layered perovskite doping with Eu3+ and β-diketonate Eu3+ complex | |
Nguyen et al. | Design of lanthanide-based metal–organic frameworks with enhanced near-infrared emission | |
Ma et al. | Increased phosphorescent quantum yields of cationic iridium (III) complexes by wisely controlling the counter anions | |
González et al. | A comparative study of Ir (III) complexes with pyrazino [2, 3-f][1, 10] phenanthroline and pyrazino [2, 3-f][4, 7] phenanthroline ligands in light-emitting electrochemical cells (LECs) | |
Gull et al. | Stokes shift in inorganic lead halide perovskites: Current status and perspective | |
Jiang et al. | The influence of triplet energy levels of bridging ligands on energy transfer processes in Ir (III)/Eu (III) dyads | |
Yan et al. | Photoluminescence of rare earth phosphors Na 0.5 Gd 0.5 WO 4: RE 3+ and Na 0.5 Gd 0.5 (Mo 0.75 W 0.25) O 4: RE 3+(RE= Eu, Sm, Dy) | |
De Silva et al. | Adducts of lanthanide β-diketonates with 2, 4, 6-tri (2-pyridyl)-1, 3, 5-triazine: Synthesis, structural characterization, and photoluminescence studies | |
Ranjan et al. | Frequency upconversion and fluorescence intensity ratio method in Yb3+-ion-sensitized Gd2O3: Er3+-Eu3+ phosphors for display and temperature sensing | |
Wang et al. | Eu3+-Bi3+ Codoping Double Perovskites for Single-Component White-Light-Emitting Diodes | |
Zhang et al. | Isolated [SbCl6] 3–Octahedra Are the Only Active Emitters in Rb7Sb3Cl16 Nanocrystals | |
CN105600815B (en) | A kind of preparation method of doped nano zinc oxide light conversion agent | |
Lakshmanan et al. | Orange fluorescent Ru (III) complexes based on 4′-aryl substituted 2, 2′: 6′, 2 ″-terpyridine for OLEDs application | |
Park et al. | Ruthenium (II) complexes incorporating the bidentate ligand containing an imidazolium moiety: synthesis, characterization, and electrochemical properties and their application in a visible-light induced hydrogen-evolving system | |
JP6304656B2 (en) | Method for producing organometallic complex | |
Hierlinger et al. | A panchromatic, near infrared Ir (III) emitter bearing a tripodal C^ N^ C ligand as a dye for dye-sensitized solar cells | |
Li et al. | Efficient electrochemiluminescent cyclometalated iridium (III) complexes: synthesis, photophysical and electrochemiluminescent properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161021 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170904 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6304656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |