JP6303923B2 - Diffractive optical element - Google Patents

Diffractive optical element Download PDF

Info

Publication number
JP6303923B2
JP6303923B2 JP2014171666A JP2014171666A JP6303923B2 JP 6303923 B2 JP6303923 B2 JP 6303923B2 JP 2014171666 A JP2014171666 A JP 2014171666A JP 2014171666 A JP2014171666 A JP 2014171666A JP 6303923 B2 JP6303923 B2 JP 6303923B2
Authority
JP
Japan
Prior art keywords
optical element
meth
acrylate
refractive index
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014171666A
Other languages
Japanese (ja)
Other versions
JP2016044285A (en
Inventor
志保 西村
志保 西村
祥佑 井口
祥佑 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014171666A priority Critical patent/JP6303923B2/en
Publication of JP2016044285A publication Critical patent/JP2016044285A/en
Application granted granted Critical
Publication of JP6303923B2 publication Critical patent/JP6303923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、高屈折率低分散という特性を有し、複層型の回折光学素子に用いるのに適した樹脂前駆体組成物、およびこの樹脂前駆体組成物を用いた光学要素、さらに、この光学材料と低屈折率高分散という特性を有した樹脂との組合せにより得られる光学素子および回折光学素子に関する。   The present invention has a characteristic of high refractive index and low dispersion, and a resin precursor composition suitable for use in a multilayer diffractive optical element, an optical element using this resin precursor composition, The present invention relates to an optical element and a diffractive optical element obtained by a combination of an optical material and a resin having a characteristic of low refractive index and high dispersion.

回折光学素子を光学系に組み込む試みは古くから行われてきたが、中でも、格子の高さを1つの波長すなわち位相差2π相当分に加工した回折光学素子は一次回折光に光を集中させることが出来るため、光学系の色収差の補正や小型軽量化を目的とした用途が考えられてきた。
しかし、格子面が空気に触れている単層回折光学素子の場合、基準波長において一次回折効率を100%に出来るものの、波長が基準波長から離れるにつれ他次数の回折光が増加し、これがフレア光となる為にその光学性能を劣化させるという問題があった。
この問題を解決する為、特徴的な2種類の樹脂からなる二つの格子が密着した構造を有する、密着複層型回折光学素子が考案された(例えば文献1、2)。すなわち、
(n2-n1)×h=λ (1)
式(1)において、n1、n2はそれぞれ樹脂の屈折率(n2>n1)、hは回折光学素子の格子高さ、λは波長である。
使用波長範囲において式(1)が常に成り立てば、使用波長範囲全域において一次光の回折効率が100%となり、回折光によるフレアの発生を無くすことが出来る。
Attempts to incorporate a diffractive optical element into an optical system have been made for a long time, but in particular, a diffractive optical element in which the height of a grating is processed to one wavelength, that is, a phase difference equivalent to 2π, concentrates light on the first-order diffracted light. Therefore, there have been considered applications aimed at correcting the chromatic aberration of the optical system and reducing the size and weight.
However, in the case of a single-layer diffractive optical element whose grating surface is in contact with the air, the first-order diffraction efficiency can be made 100% at the reference wavelength, but the diffracted light of other orders increases as the wavelength goes away from the reference wavelength, which is the flare light. Therefore, there is a problem that the optical performance is deteriorated.
In order to solve this problem, a contact multilayer diffractive optical element having a structure in which two gratings made of two characteristic types of resin are in close contact has been devised (for example, References 1 and 2). That is,
(N2-n1) × h = λ (1)
In formula (1), n1 and n2 are the refractive indexes of the resin (n2> n1), h is the grating height of the diffractive optical element, and λ is the wavelength.
If Expression (1) always holds in the used wavelength range, the diffraction efficiency of the primary light becomes 100% in the entire used wavelength range, and flare caused by the diffracted light can be eliminated.

特開2003−262713号公報JP 2003-262713 A

鈴木憲三郎:「増補改訂版 回折光学素子入門」,163(オプトロニクス社、1997)Kensaburo Suzuki: "Introduction to the revised revised diffractive optical element", 163 (Opttronics, 1997)

式(1)によると、樹脂の屈折率差(n2−n1)と波長が比例関係にある事が分かる。波長が長くなるにつれ、2つの樹脂の屈折率差が大きくなるためには、第一の樹脂(屈折率n1)が低屈折率高分散樹脂、第二の樹脂(屈折率n2)が高屈折率低分散樹脂でそれぞれ構成されることが必要である。言い替えれば、2つの樹脂の分散値(アッベ数もしくは平均分散(nF−nC))の差が大きくなる樹脂の組み合わせが必要になる。また、2つの樹脂の屈折率差(n2−n1)が大きいほど格子高さhを低くできるので、格子の加工が容易になる。   According to Formula (1), it turns out that the refractive index difference (n2-n1) of resin and a wavelength have a proportional relationship. In order for the difference in refractive index between the two resins to increase as the wavelength increases, the first resin (refractive index n1) has a low refractive index and high dispersion resin, and the second resin (refractive index n2) has a high refractive index. It is necessary to be composed of a low dispersion resin. In other words, a combination of resins in which the difference between the dispersion values of the two resins (Abbe number or average dispersion (nF-nC)) becomes large is necessary. Moreover, since the grating height h can be lowered as the refractive index difference (n2-n1) between the two resins is larger, the processing of the grating becomes easier.

しかし、一般の樹脂は屈折率が大きくなるにつれ分散値が大きくなり、屈折率が小さくなるにつれ分散値が小さくなるという傾向を持つ。この為、高屈折率低分散と低屈折率高分散の樹脂を組み合わせ、かつ屈折率差も大きくなる様にする事は容易ではなく、優れた光学性能を有する密着複層型回折光学素子を作製する為には、新たな樹脂の開発が必要とされてきた。   However, general resins have a tendency that the dispersion value increases as the refractive index increases, and the dispersion value decreases as the refractive index decreases. For this reason, it is not easy to combine high refractive index low dispersion and low refractive index high dispersion resin and to increase the refractive index difference, and to produce a close contact multilayer diffractive optical element with excellent optical performance In order to do so, it has been necessary to develop new resins.

更に、密着複層型回折光学素子には、その用途応じて満たさなければならない条件が存在する。例えば、生物系顕微鏡など蛍光を用いた観察や測定を行う光学系に密着複層型回折光学素子を適用する為には、前述の屈折率分散の条件に加え、蛍光の励起波長(通常は紫外線を含む)において必要な透過率を有している事と密着複層型回折光学素子自体からの自家蛍光の発生を極めて少ない量に抑える事の両方が必要とされる。カメラ用交換レンズに密着複層型回折光学素子を適用する為には、回折光学素子に入射する光線の向きが変化しても回折光により発生するフレアの変化が許容量以下に抑えられる事が重要とされる。   Furthermore, the contact multilayered diffractive optical element has conditions that must be satisfied according to its application. For example, in order to apply a contact multilayer diffractive optical element to an optical system that performs observation or measurement using fluorescence, such as a biological microscope, in addition to the above-described refractive index dispersion conditions, the excitation wavelength of fluorescence (usually ultraviolet light) In addition, it is necessary to suppress the generation of autofluorescence from the contact multilayer diffractive optical element itself to an extremely small amount. In order to apply a contact multilayer diffractive optical element to an interchangeable lens for a camera, even if the direction of light incident on the diffractive optical element changes, the change in flare caused by the diffracted light can be suppressed to an allowable level or less. It is considered important.

本発明は、このような事情に鑑み、従来の樹脂に比べ、より高屈折率低分散である樹脂およびその樹脂前駆体組成物を得るとともにこれを用いた光学要素を得ること、さらに、その用途に応じた条件を満たす為に、この樹脂と低屈折率高分散樹脂との組合せによる密着複層型回折光学素子を得ることを目的とする。   In view of such circumstances, the present invention obtains a resin having a higher refractive index and a lower dispersion than that of a conventional resin and a resin precursor composition thereof, and an optical element using the resin, and further uses thereof. In order to satisfy the conditions according to the above, an object is to obtain a close-contact multilayer diffractive optical element by a combination of this resin and a low-refractive index high-dispersion resin.

このような目的達成のため、本発明に係る光学材料用樹脂前駆体組成物は、下記化学式1で表されるチオール(A成分)と(メタ)アクリレートとを含む組成物の付加反応物を含む。

Figure 0006303923
In order to achieve such an object, the resin precursor composition for an optical material according to the present invention includes an addition reaction product of a composition containing a thiol (component A) represented by the following chemical formula 1 and (meth) acrylate. .
Figure 0006303923

本発明に係る光学材料用樹脂前駆体組成物は、上述の付加反応物が上記化学式1で表されるチオール(A成分)と、(メタ)アクリレートとを、1:2〜1:10の範囲内のモル比で含む組成物を付加反応させて得られる。   In the resin precursor composition for an optical material according to the present invention, the addition reaction product is a thiol (component A) represented by the above chemical formula 1 and (meth) acrylate in a range of 1: 2 to 1:10. It is obtained by subjecting a composition containing the above in a molar ratio to an addition reaction.

さらに好ましくは上述の付加反応物が上記化学式1で表されるチオール(A成分)と、(メタ)アクリレートとを、1:2〜1:3.5の範囲内のモル比で含む組成物を付加反応させて得られる。 More preferably, the above-mentioned addition reaction product contains a thiol (component A) represented by the above chemical formula 1 and (meth) acrylate in a molar ratio in the range of 1: 2 to 1: 3.5. Obtained by addition reaction.

本発明に係る光学材料用樹脂前駆体組成物において、好ましくは、前記(メタ)アクリレートが下記化学式2で表されるアクリレート(B成分)である。

Figure 0006303923
In the resin precursor composition for an optical material according to the present invention, preferably, the (meth) acrylate is an acrylate (B component) represented by the following chemical formula 2.
Figure 0006303923

本発明に係る光学材料用樹脂前駆体組成物は、好ましくは、上述の付加反応物が下記化学式1で表されるチオール(A成分)と(メタ)アクリレートと下記化学式3で表されるチオール(C成分)とを含む組成物を付加反応させて得られる。

Figure 0006303923
In the resin precursor composition for an optical material according to the present invention, preferably, the above-described addition reaction product is a thiol (component A) represented by the following chemical formula 1, a (meth) acrylate, and a thiol represented by the following chemical formula 3 ( It is obtained by subjecting a composition containing C component) to an addition reaction.
Figure 0006303923

もう一つの本発明に係る光学要素は、上述した光学材料用樹脂前駆体組成物を硬化させて得られる。   Another optical element according to the present invention is obtained by curing the resin precursor composition for optical materials described above.

本発明に係る回折光学素子は、上述した光学要素とその光学要素より低屈折率高分散の光学要素とを積層し、界面に回折格子を設けた回折格子から構成される。 A diffractive optical element according to the present invention includes a diffraction grating in which the above-described optical element and an optical element having a lower refractive index and higher dispersion than the optical element are stacked and a diffraction grating is provided at the interface.

本発明に係る回折光学素子は、前記低屈折率高分散の光学要素が、下記化学式4で表されるビスフェノールAF エチレンオキサイド変性ジ(メタ)アクリレートを含む樹脂前駆体組成物を硬化させて得られる。

Figure 0006303923
The diffractive optical element according to the present invention is obtained by curing a resin precursor composition in which the optical element having a low refractive index and high dispersion contains bisphenol AF ethylene oxide-modified di (meth) acrylate represented by the following chemical formula 4. .
Figure 0006303923

また、この回折光学素子から構成される本発明に係る光学素子において、前記低屈折率高分散の光学要素が、下記化学式5で表されるビスフェノールA エチレンオキサイド変性ジ(メタ)アクリレートと下記化学式6で表されるフッ素化ジ(メタ)アクリレートとを含む樹脂前駆体組成物を硬化させて得られる。

Figure 0006303923
Figure 0006303923
In the optical element according to the present invention including the diffractive optical element, the low refractive index and high dispersion optical element includes bisphenol A ethylene oxide-modified di (meth) acrylate represented by the following chemical formula 5 and the following chemical formula 6: It is obtained by curing a resin precursor composition containing a fluorinated di (meth) acrylate represented by:
Figure 0006303923
Figure 0006303923

上述した本発明に係る樹脂前駆体組成物は高屈折率低分散の材料であり、密着複層型の回折光学素子の用途に適し、本発明に係る光学要素は、この高屈折率低分散の樹脂に低屈折率高分散の樹脂との組合せから構成される。   The above-described resin precursor composition according to the present invention is a material having a high refractive index and low dispersion, and is suitable for use in a contact multilayer diffractive optical element. The optical element according to the present invention has a high refractive index and low dispersion. The resin is composed of a combination of a resin having a low refractive index and a high dispersion.

本実施形態に係る高屈折率低分散の樹脂の屈折率(nd)および分散(nF−nC)を示すグラフである。It is a graph which shows the refractive index (nd) and dispersion | distribution (nF-nC) of high refractive index low dispersion resin which concern on this embodiment. 上記本実施形態に係る高屈折率低分散の樹脂について耐光性テスト後における蛍光測定結果を示すグラフである。It is a graph which shows the fluorescence measurement result after a light resistance test about resin of the high refractive index low dispersion | distribution which concerns on the said this embodiment. 上記本実施形態に係る高屈折率低分散の樹脂について耐光性テスト後における光透過率測定結果を示すグラフであるIt is a graph which shows the light-transmittance measurement result after a light resistance test about the high refractive index low dispersion resin which concerns on the said embodiment. 上記本実施形態に係る高屈折率低分散の樹脂を用いて構成される密着複層型の回折光学素子の構成を示す断面図である。It is sectional drawing which shows the structure of the contact | glue multilayer type | mold diffractive optical element comprised using the high refractive index low dispersion resin which concerns on the said embodiment. 上記本実施形態に係る高屈折率低分散の樹脂を用いて構成される密着複層型の回折光学素子を備えて構成されるレンズの断面図である。It is sectional drawing of the lens comprised including the contact | adherence multilayer type | mold diffractive optical element comprised using the resin of the high refractive index low dispersion | distribution which concerns on the said embodiment. 上記本実施形態に係る高屈折率低分散の樹脂および低屈折率高分散の樹脂を用いて構成される密着型の回折光学素子の回折効率を示すグラフである。It is a graph which shows the diffraction efficiency of the contact | adherence type | mold diffractive optical element comprised using the high refractive index low dispersion resin and low refractive index high dispersion resin which concern on the said this embodiment.

まず、本願の好ましい実施形態として高屈折率低分散の樹脂前駆体について説明する。この樹脂前駆体は、下記化学式1により表されるチオールと(メタ)アクリレートとを含む組成物の付加反応物を含む。   First, a high refractive index and low dispersion resin precursor will be described as a preferred embodiment of the present application. This resin precursor contains an addition reaction product of a composition containing a thiol represented by the following chemical formula 1 and (meth) acrylate.

Figure 0006303923
化学式1のチオールは、「トリシクロデカンジメタンチオール(tricyclodecanedimethanethiol)」で、通称TDDTである。トリシクロデカンジメタンチオール(TDDT)は低分散特性を示すトリシクロデカン骨格を備えるとともに、高屈折率特性を示す硫黄元素を有する。
Figure 0006303923
The thiol of Formula 1 is “tricyclodecanedimethanethiol”, commonly known as TDDT. Tricyclodecane dimethanethiol (TDDT) has a tricyclodecane skeleton exhibiting low dispersion characteristics and has a sulfur element exhibiting high refractive index characteristics.

上記化学式1で表されるチオールは常温で液体であり、このままでは光学要素を構成することはできない。このため、まず、上記チオール(TDDT)に、下記化学式2で表されるトリシクロデカン構造を有するアクリレートを所定の組成比(モル比)で付加反応しオリゴマー化させた。なお、付加反応としてはエンチオール反応やマイケル付加反応等が考えられる。しかし、エンチオール反応はアクリルとチオールの反応が制御できず、オリゴマーで止まらない欠点がある。一方、マイケル付加反応はオリゴマーで反応が止まるため、その後の紫外線照射時の硬化収縮が小さい利点がある。今回はマイケル付加反応を用いた。   The thiol represented by the chemical formula 1 is a liquid at normal temperature, and an optical element cannot be formed as it is. Therefore, first, an acrylate having a tricyclodecane structure represented by the following chemical formula 2 was added to the thiol (TDDT) at a predetermined composition ratio (molar ratio) to be oligomerized. The addition reaction may be an enethiol reaction, a Michael addition reaction, or the like. However, the enthiol reaction has a drawback that the reaction between acrylic and thiol cannot be controlled, and cannot be stopped by an oligomer. On the other hand, since the reaction of Michael addition stops with an oligomer, there is an advantage that curing shrinkage during subsequent ultraviolet irradiation is small. This time, Michael addition reaction was used.

Figure 0006303923
化学式2のアクリレートBは、正式名称が「トリシクロデカンジメタノールジ(メタ)アクリレート(tricyclodecanedimethanoldi(meth)acrylate)」で、通称TCDAである。
Figure 0006303923
Acrylate B of Chemical Formula 2 has the official name “tricyclodecanedimethanoldi (meth) acrylate” and is commonly known as TCDA.

チオールは硫黄元素に由来する高屈折率特性とトリシクロデカン骨格に由来する低分散性とを備えるため、これに(メタ)アクリレートモノマーを付加反応させると高屈折率低分散特性を示す樹脂の前駆体組成物が得られる。ここで、高屈折率特性と低分散特性とのバランスを考慮し、(メタ)アクリレートとして低分散特性を有する(メタ)アクリレートモノマーを選択する。分散値特性を有する(メタ)アクリレートの指標として、(メタ)アクリレート単体を硬化させた樹脂のアッベ数νdが51以上であること、さらには屈折率ndが1.52以上であることが好ましい。   Since thiol has high refractive index characteristics derived from sulfur element and low dispersibility derived from tricyclodecane skeleton, addition of (meth) acrylate monomer to this causes a precursor of resin that exhibits high refractive index and low dispersion characteristics. A body composition is obtained. Here, in consideration of the balance between the high refractive index characteristics and the low dispersion characteristics, a (meth) acrylate monomer having low dispersion characteristics is selected as the (meth) acrylate. As an index of (meth) acrylate having dispersion value characteristics, it is preferable that the Abbe number νd of a resin obtained by curing a (meth) acrylate simple substance is 51 or more, and the refractive index nd is 1.52 or more.

たとえば、低分散性を有する構造としてノルボルネン構造、シクロヘキサン構造、アダマンタン構造、トリシクロデカン構造等があり、これらの構造を有する(メタ)アクリレートを用いることができる。その中でも、上記化学式2で表されるようなトリシクロデカン構造を有する(メタ)アクリレートは特に好ましい。   For example, there are a norbornene structure, a cyclohexane structure, an adamantane structure, a tricyclodecane structure, etc. as structures having low dispersibility, and (meth) acrylates having these structures can be used. Among them, (meth) acrylate having a tricyclodecane structure as represented by the above chemical formula 2 is particularly preferable.

このオリゴマー化させた樹脂前駆体組成物に光(または熱)重合開始剤を加え、これに紫外光を照射して(または熱をかけて)硬化させた。なお、このように紫外光照射(または熱)により硬化する過程において、もしくは硬化後にこれを所望の形状に成形もしくは加工することにより、レンズ、回折光学素子等に用いられる光学要素が作られる。   A light (or heat) polymerization initiator was added to the oligomerized resin precursor composition, and this was cured by irradiation with ultraviolet light (or application of heat). In this way, in the process of curing by irradiation with ultraviolet light (or heat), or by molding or processing this into a desired shape after curing, an optical element used for a lens, a diffractive optical element or the like is produced.

なお、高屈折率低分散特性を有し複層型の回折光学素子に用いるのに適した樹脂前駆体組成物を得るために、上記化学式1で表されるチオールの高屈折性に対し、低分散性を示す(メタ)アクリレートの配合割合は重要な因子である。本発明においては、高屈折性と低分散性とのバランスを考慮し、上記化学式1で表されるチオールと低分散構造を有する(メタ)アクリレートとの配合比(モル比)が1:2〜1:10の範囲であることが好ましい。(メタ)アクリレートの配合割合の下限を下回ると、樹脂前駆体組成物を硬化させて得られる樹脂の分散値が高くなり、回折光学素子に用いるのに適した高屈折率低分散特性を示さなくなる。   In order to obtain a resin precursor composition having high refractive index and low dispersion characteristics and suitable for use in a multilayer diffractive optical element, the low refractive index of the thiol represented by the above chemical formula 1 is low. The blending ratio of (meth) acrylate showing dispersibility is an important factor. In the present invention, considering the balance between high refractive index and low dispersibility, the blending ratio (molar ratio) of the thiol represented by the above chemical formula 1 and the (meth) acrylate having a low dispersion structure is 1: 2 to 2. A range of 1:10 is preferred. When the blending ratio of the (meth) acrylate is below the lower limit, the dispersion value of the resin obtained by curing the resin precursor composition increases, and the high refractive index and low dispersion characteristics suitable for use in the diffractive optical element are not exhibited. .

(メタ)アクリレートの配合割合の上限値は、高屈折率性を示す化学式1で表されるチオールに加え、例えば1つの分子に3以上の硫黄元素を有するような化合物(たとえば下記化学式3)やその他の高い屈折率性を示す物質をさらに添加することを考慮した値である。この上限値を上回ると、樹脂前駆体組成物を硬化させて得られる樹脂の高屈折率性と低分散性のバランスが壊れ、複層型の回折光学素子に用いるのに適さなくなる。
また、上記化学式1で表されるチオールの高屈折性に対する(メタ)アクリレート低分散性とのバランスを考慮し、前記チオールと(メタ)アクリレートとのモル比が、1:2〜1:3.5であることがさらに好ましい。
The upper limit of the blending ratio of (meth) acrylate is, for example, a compound having three or more sulfur elements in one molecule (for example, the following chemical formula 3), in addition to the thiol represented by the chemical formula 1 showing high refractive index properties, It is a value that takes into account the addition of another substance exhibiting a high refractive index. If this upper limit is exceeded, the balance between the high refractive index and low dispersibility of the resin obtained by curing the resin precursor composition is broken, making it unsuitable for use in a multilayer diffractive optical element.
In consideration of the balance between the high refractive index of thiol represented by Chemical Formula 1 and the low dispersibility of (meth) acrylate, the molar ratio of thiol to (meth) acrylate is 1: 2 to 1: 3. More preferably, it is 5.

上記組成について、下記3種のもの(実施例1〜3)を作製した。
実施例1: 組成比 TCDA:TDDT=2.5:1
実施例2: 組成比 TCDA:TDDT=3:1
実施例3: 組成比 TCDA:TDDT=3.5:1
なお、実施例1〜3において、チオールとして、上記化学式1のうちm=1,n=1の構造式を有するTDDTを用いている。また、(メタ)アクリレートとしてR=H、m=1,n=1の構造を有するTCDAを用いている。
About the said composition, the following 3 types (Examples 1-3) were produced.
Example 1: Composition ratio TCDA: TDDT = 2.5: 1
Example 2: Composition ratio TCDA: TDDT = 3: 1
Example 3: Composition ratio TCDA: TDDT = 3.5: 1
In Examples 1 to 3, TDDT having a structural formula of m = 1 and n = 1 in the above chemical formula 1 is used as the thiol. Further, TCDA having a structure of R = H, m = 1, n = 1 is used as (meth) acrylate.

上記混合組成とは別に、上記チオールに、以下の化学式3で示されるチオールと、低分散成分としての上記アクリレートを所定の組成比(モル比)でマイケル付加反応してオリゴマー化した。   Separately from the mixed composition, the thiol represented by the following chemical formula 3 and the acrylate as a low dispersion component were oligomerized by Michael addition reaction to the thiol at a predetermined composition ratio (molar ratio).

Figure 0006303923
化学式3のチオールは、「2,5−ジメルカプトメトル−1,4−ジチアン(2,5-dimercaptomethyl-1,4-dithiane)」で、通称DMMDであり、常温で液体の化合物である。
Figure 0006303923
The thiol of Formula 3 is “2,5-dimercaptomethyl-1,4-dithiane”, commonly called DMMD, and is a liquid compound at room temperature.

化学式1のチオールと、化学式2のTCDAと化学式3のDMMDとを下記組成比でオリゴマー化させた。なお、実施例4において、上記化学式1のチオールとして、m=1,n=1の構造式を有するTDDTを用いている。また、上記化学式2の(メタ)アクリレートとしてR=H、m=1,n=1の構造を有するTCDAを用いている。
実施例4: 組成比 TCDA:DMMD:TDDT=22:5:3
化学式3で示されるような硫黄元素が多く含まれるチオールを添加することによりさらなる高屈折率が図ることができる。樹脂の屈折率を高くすることにより、格子高さが低減でき、すなわち成形が容易になる。
The thiol of Formula 1, TCDA of Formula 2, and DMMD of Formula 3 were oligomerized at the following composition ratio. In Example 4, TDDT having a structural formula of m = 1 and n = 1 is used as the thiol of Chemical Formula 1. Further, TCDA having a structure of R = H, m = 1, n = 1 is used as the (meth) acrylate of the above chemical formula 2.
Example 4: Composition ratio TCDA: DMMD: TDDT = 22: 5: 3
By adding a thiol containing a large amount of elemental sulfur as represented by Chemical Formula 3, an even higher refractive index can be achieved. By increasing the refractive index of the resin, the lattice height can be reduced, that is, molding becomes easy.

まず、実施例1〜4のマイケル付加反応物にそれぞれ、光重合開始剤であるイルガキュア184(BASFジャパン株式会社製)を0.1wt%添加して樹脂前駆体組成物Fを作った。この樹脂前駆体組成物Fを、シランカップリング処理した2枚の石英基板の間に入れ、この状態で紫外光を照射して樹脂硬化物G(これを樹脂Gと称する)を作製した。このとき、樹脂前駆体組成物Gの厚さは100μmとなるように2枚の石英基板の間隔を調整設定した。また、紫外光照射は、365nmの紫外光を発生するLEDを備えた紫外光照射機(ユービックス株式会社製)を使用して行った。このとき、すりガラス越しに、仮硬化として25mW/cm2で60秒の照射を行い、次いで本硬化として40mW/cm2で250秒の照射を行った。光源は365nmを含むものならメタルハライドランプ,高圧水銀ランプ,およびLEDなどが使用可能である。なかでも特に自家蛍光を抑えたい場合にはLEDが望ましいので、本実施では、LEDを用いた。 First, 0.1% by weight of Irgacure 184 (manufactured by BASF Japan Ltd.), which is a photopolymerization initiator, was added to each of the Michael addition reactants of Examples 1 to 4 to prepare a resin precursor composition F. This resin precursor composition F was put between two quartz substrates subjected to silane coupling treatment, and ultraviolet light was irradiated in this state to produce a cured resin product G (referred to as resin G). At this time, the interval between the two quartz substrates was adjusted and set so that the thickness of the resin precursor composition G would be 100 μm. Moreover, ultraviolet light irradiation was performed using the ultraviolet light irradiation machine (made by Ubix Corporation) provided with LED which generate | occur | produces 365 nm ultraviolet light. At this time, the ground glass over performs irradiation at 25 mW / cm 2 60 seconds as the temporary curing, and then subjected to irradiation of 250 seconds at 40 mW / cm 2 as a main curing. If the light source includes 365 nm, a metal halide lamp, a high-pressure mercury lamp, and an LED can be used. In particular, when self-fluorescence is desired to be suppressed, an LED is desirable. Therefore, in this embodiment, an LED is used.

このようにして作製した100μmの厚さの樹脂に、365nmの紫外光を発生するLEDを備えた紫外光照射機(ユービックス株式会社製)を使用して長時間の紫外光照射を行い、その耐光性をテストした。このときの紫外光照度は350mW/cm2で、216分間の照射を行い、この照射後における蛍光測定と透過率測定を行った。なお、透過率は、(株)日立ハイテクノロジーズ社製U−3900Hにより測定した。蛍光量は、(株)日立ハイテクノロジーズ社製F−7000により測定した。 Using the ultraviolet light irradiator (manufactured by Ubix Co., Ltd.) equipped with the LED that generates ultraviolet light of 365 nm, the resin having a thickness of 100 μm thus produced is irradiated with ultraviolet light for a long time. Light resistance was tested. The ultraviolet light illuminance at this time was 350 mW / cm 2 , and irradiation was performed for 216 minutes, and fluorescence measurement and transmittance measurement were performed after this irradiation. The transmittance was measured with U-3900H manufactured by Hitachi High-Technologies Corporation. The amount of fluorescence was measured by F-7000 manufactured by Hitachi High-Technologies Corporation.

これら実施例1〜4の組成で調製した樹脂の屈折率および分散値を図1に示す。図1よりTDDTと(メタ)アクリレートを含む樹脂前駆体を硬化させた樹脂は屈折率が高くかつ分散が低い特性を示すことがわかる。   The refractive index and dispersion value of the resins prepared with the compositions of Examples 1 to 4 are shown in FIG. FIG. 1 shows that a resin obtained by curing a resin precursor containing TDDT and (meth) acrylate has a high refractive index and low dispersion.

次に、これら実施例1〜4の組成で調製した樹脂の一つについて、長時間の紫外光照射による耐光性テストを行って蛍光および透過率を測定した。その結果を図2および図3に示す。なお、この耐光性テストは、365nmの紫外光を発生するLEDを備えた紫外光 照射機(ユービックス株式会社製)を使用して行った。このときの紫外光照度は350mW/cm2で、216分間の照射を行い、この照射後における蛍光測定と透過率測定を行った。なお、透過率は、(株)日立ハイテクノロジーズ社製U−3900Hにより測定した。蛍光量は、(株)日立ハイテクノロジーズ社製F−7000により測定した。図2に実施例1、実施例4の樹脂の紫外線照射後の蛍光特性および比較用として顕微鏡用対物レンズに用いられている接着剤の紫外線照射後の蛍光特性を示す。同図において横軸は光の波長、縦軸は任意単位[arb.unit]で示される蛍光強度である。図から本願発明の樹脂は紫外線照射後において蛍光強度が非常に小さく抑えられていることがわかる。 Next, one of the resins prepared with the compositions of Examples 1 to 4 was subjected to a light resistance test by irradiation with ultraviolet light for a long time to measure fluorescence and transmittance. The results are shown in FIG. 2 and FIG. This light resistance test was performed using an ultraviolet light irradiator (manufactured by Ubix Corporation) equipped with an LED that generates ultraviolet light of 365 nm. The ultraviolet light illuminance at this time was 350 mW / cm 2 , and irradiation was performed for 216 minutes, and fluorescence measurement and transmittance measurement were performed after this irradiation. The transmittance was measured with U-3900H manufactured by Hitachi High-Technologies Corporation. The amount of fluorescence was measured by F-7000 manufactured by Hitachi High-Technologies Corporation. FIG. 2 shows the fluorescence characteristics after ultraviolet irradiation of the resins of Examples 1 and 4 and the fluorescence characteristics after ultraviolet irradiation of the adhesive used in the microscope objective lens for comparison. In the figure, the horizontal axis represents the wavelength of light, and the vertical axis represents the fluorescence intensity in arbitrary units [arb.unit]. From the figure, it can be seen that the fluorescence intensity of the resin of the present invention is very small after ultraviolet irradiation.

また、図3には実施例1〜4の透過率特性および比較用として顕微鏡用対物レンズに用いられている接着剤の透過率特性を示した。図3に示されるように、実施例1〜4の樹脂は紫外光線透過率が高く(365nmで90%以上)紫外域から可視域にわたり良好な透過性能を有しており、蛍光観察を行う生物系の顕微鏡対物レンズ用途に十分耐え得るものであることがわかる。   FIG. 3 shows the transmittance characteristics of Examples 1 to 4 and the transmittance characteristics of the adhesive used for the microscope objective lens for comparison. As shown in FIG. 3, the resins of Examples 1 to 4 have high ultraviolet light transmittance (90% or more at 365 nm), have good transmission performance from the ultraviolet region to the visible region, and are organisms that perform fluorescence observation. It can be seen that the system can sufficiently withstand the use of a microscope objective lens.

さらに、実施例1〜4の組成で調製した樹脂は上記耐光性テストの後において黄変は見られず、この点においても耐光性を有することが分かった。   Furthermore, it was found that the resins prepared with the compositions of Examples 1 to 4 did not show yellowing after the light resistance test, and also have light resistance in this respect.

樹脂前駆体組成物を作り紫外光照射により効果させるために用いられる重合開始剤についても、その種類および添加量は適宜選ぶことができる。添加量については、0.05〜3wt%の範囲内で選ぶことができ、好ましくは、0.07〜0.7wt%の範囲内で選ばれる。前駆体組成物に好適な重合開始剤としては、例えば、ベンゾフェノン、メタンスルホン酸ヒドロキシベンゾフェノン、安息香酸o−ベンゾイルメチル、p−クロロベンゾフェノン、p−ジメチルアミノベンゾフェノン、ベンゾイン、ベンゾインアリルエーテル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、アセトフェノン、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2−ヒドロキシ−2−メチルプロピオフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロピオフェノン、1−フェニル−1、2−プロパンジオン−2−o−ベンゾイルオキシムなどの光重合開始剤や、アゾ化合物(アゾビスイソブチロニトリル、ジメチル−2、2’−アゾビスイソブチレートなど)、過酸化物(過酸化ベンゾイル、ジ(t−ブチル)パーオキシドなど)といった熱重合開始剤が挙げられる。   The type and addition amount of the polymerization initiator used for making the resin precursor composition and making it effective by irradiation with ultraviolet light can be appropriately selected. The addition amount can be selected within the range of 0.05 to 3 wt%, and preferably selected within the range of 0.07 to 0.7 wt%. Suitable polymerization initiators for the precursor composition include, for example, benzophenone, hydroxybenzophenone methanesulfonate, o-benzoylmethyl benzoate, p-chlorobenzophenone, p-dimethylaminobenzophenone, benzoin, benzoin allyl ether, benzoin methyl ether. , Benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, acetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methylpropiophenone, 1- (4-isopropylphenyl)- Photopolymerization initiators such as 2-hydroxy-2-methylpropiophenone, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, Thermal polymerization initiators such as azo compounds (azobisisobutyronitrile, dimethyl-2, 2′-azobisisobutyrate, etc.), peroxides (benzoyl peroxide, di (t-butyl) peroxide, etc.) can be mentioned. .

図4に、密着複層型の回折光学素子の構造(断面形状)を示している。この回折光学素子は、高屈折率低分散の樹脂からなる第1回折光学要素1と、低屈折率高分散の樹脂からなる第2回折光学要素2とから構成され、第1および第2回折光学要素1,2の間に鋸歯状のレリーフパターン5(回折格子パターン)が形成されている。上述の実施例1〜4の樹脂前駆体組成物反応物は、高屈折率低分散の樹脂であり、第1回折光学要素1の樹脂として用いられる。   FIG. 4 shows the structure (cross-sectional shape) of a multi-contact diffractive optical element. The diffractive optical element includes a first diffractive optical element 1 made of a resin having a high refractive index and low dispersion, and a second diffractive optical element 2 made of a resin having a low refractive index and high dispersion, and the first and second diffractive optical elements. A serrated relief pattern 5 (diffraction grating pattern) is formed between the elements 1 and 2. The resin precursor composition reactants of Examples 1 to 4 described above are high refractive index and low dispersion resins, and are used as the resin of the first diffractive optical element 1.

上述の密着複層型の光学要素のもう一方である低屈折率高分散第2回折光学要素2に用いられる樹脂について以下に説明する。
第2回折光学要素2を構成する低屈折率高分散の樹脂として複数種類の樹脂組成を用いることができるが、例えば、以下の化学式4で示されるビスフェノールAF エチレンオキサイド変性ジ(メタ)アクリレートを樹脂前駆体組成物として用いることが好ましい。
The resin used for the low refractive index and high dispersion second diffractive optical element 2 which is the other of the above-mentioned contact multilayer optical element will be described below.
A plurality of types of resin compositions can be used as the low refractive index and high dispersion resin constituting the second diffractive optical element 2. For example, bisphenol AF ethylene oxide modified di (meth) acrylate represented by the following chemical formula 4 is used as the resin. It is preferable to use it as a precursor composition.

Figure 0006303923
Figure 0006303923

上記化学式4により表される一般名称はビスフェノールAF エチレンオキサイド変性ジ(メタ)アクリレートと称され、常温で液体の樹脂前駆体である。
さらには、上記化学式4において R=H、m=1,n=1である 2,2−ビス(4−(2−アクリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパンまたは、R=CH3、m=1,n=1である2,2−ビス(4−(2−メタクリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパンを樹脂前駆体組成物として用いることが好ましい。
The general name represented by the chemical formula 4 is called bisphenol AF ethylene oxide-modified di (meth) acrylate, and is a resin precursor that is liquid at room temperature.
Furthermore, in the above chemical formula 4, R = H, m = 1, and n = 1 2,2-bis (4- (2-acryloyloxy) ethoxy) phenyl-1,1,1,3,3,3- Hexafluoropropane or 2,2-bis (4- (2-methacryloyloxy) ethoxy) phenyl-1,1,1,3,3,3-hexa in which R = CH 3 , m = 1, and n = 1 It is preferable to use fluoropropane as the resin precursor composition.

あるいは、以下の化学式5で表されるビスフェノールA エチレンオキサイド変性ジ(メタ)アクリレートと、フッ素モノマーであり以下の化学式6で表されるフッ素化ジ(メタ)アクリレートの70:30(w/w)の混合物を樹脂前駆体組成物として用いてもよい。   Alternatively, 70:30 (w / w) of bisphenol A ethylene oxide-modified di (meth) acrylate represented by the following chemical formula 5 and a fluorinated di (meth) acrylate represented by the following chemical formula 6 which is a fluorine monomer A mixture of the above may be used as the resin precursor composition.

Figure 0006303923
Figure 0006303923

Figure 0006303923
Figure 0006303923

さらには、上記化学式5においてR=CH3、m+n=2.3であるビスフェノールA エチレンオキサイド変性ジ(メタ)アクリレートと、下記化学式6においてR=H、m=4である化合物の70:30(w/w)混合物等を用いることが好ましい。 Furthermore, bisphenol A ethylene oxide-modified di (meth) acrylate in which R = CH 3 and m + n = 2.3 in the above chemical formula 5 and a compound in which R = H and m = 4 in the following chemical formula 6 are 70:30 ( It is preferable to use a w / w) mixture or the like.

次に本願発明のこの密着複層型回折光学素子の具体的な製造方法およびその特性について以下実施例5、6に説明する。   Next, specific manufacturing methods and characteristics of the multi-contact diffractive optical element of the present invention will be described in Examples 5 and 6 below.

(実施例5)
本実施形態では、図4に示す回折光学素子において、第1回折光学要素1として上述した高屈折率低分散の樹脂である実施例1の配合比の樹脂前駆体組成物を光硬化させた樹脂を用い、第2回折光学要素2として上述した低屈折率高分散の第2回折光学要素2として樹脂前駆体 2,2−ビス(4−(2−アクリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパン(上記化学式4において R=H、m=1,n=1)を光硬化させた樹脂を用いた。
(Example 5)
In this embodiment, in the diffractive optical element shown in FIG. 4, a resin obtained by photocuring the resin precursor composition having the blending ratio of Example 1 which is the above-described high refractive index and low dispersion resin as the first diffractive optical element 1. And the resin precursor 2,2-bis (4- (2-acryloyloxy) ethoxy) phenyl-1,1, as the second diffractive optical element 2 with a low refractive index and high dispersion described above as the second diffractive optical element 2 A resin obtained by photocuring 1,3,3,3-hexafluoropropane (R = H, m = 1, n = 1 in the above chemical formula 4) was used.

まず、低屈折率高分散樹脂として、2,2−ビス(4−(2−アクリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパンに光重合開始剤であるイルガキュア184(BASFジャパン株式会社製)を0.1wt%添加して樹脂前駆体組成物を作った。これを回折光学要素を成形するための所定の金型に塗布後、基板で押圧して紫外線を照射する。紫外光照射は、365nmの紫外光を発生するLEDを備えた紫外光照射機(ユービックス株式会社製)を使用して行った。このとき、すりガラス越しに、仮硬化として25mW/cm2で60秒の照射を行った。
光源は365nmを含むものならメタルハライドランプ,高圧水銀ランプ,やLEDなどが使用可能である。なかでも特に自家蛍光を抑えたい場合にはLEDが望ましいので、本実施では、LEDを用いた。仮硬化後、金型から外し回折光学要素2が完成する。
First, as a low refractive index high dispersion resin, 2,2-bis (4- (2-acryloyloxy) ethoxy) phenyl-1,1,1,3,3,3-hexafluoropropane is a photopolymerization initiator. A resin precursor composition was prepared by adding 0.1 wt% of Irgacure 184 (manufactured by BASF Japan Ltd.). After applying this to a predetermined mold for forming the diffractive optical element, it is pressed with a substrate and irradiated with ultraviolet rays. The ultraviolet light irradiation was performed using an ultraviolet light irradiation machine (manufactured by Ubix Co., Ltd.) equipped with an LED that generates ultraviolet light of 365 nm. At this time, irradiation for 60 seconds was performed at 25 mW / cm 2 as temporary curing through the ground glass.
If the light source includes 365 nm, a metal halide lamp, a high-pressure mercury lamp, an LED, or the like can be used. In particular, when self-fluorescence is desired to be suppressed, an LED is desirable. Therefore, in this embodiment, an LED is used. After temporary curing, the diffractive optical element 2 is completed by removing it from the mold.

次に、上記化学式1で表されるチオール(m=n=1)と、上記化学式2で表されるアクリレート(R=H、m=1、n=1)との組成物(モル比 TCDA:TDDT=2.5:1)のマイケル付加反応物に光重合開始剤であるイルガキュア184(BASFジャパン株式会社製)を0.1wt%添加して樹脂前駆体組成物を作った。これを成形した回折光学要素2の上に塗布し、基板を押圧して紫外線を照射する。
紫外光照射は、365nmの紫外光を発生するLEDを備えた紫外光照射機(ユービックス株式会社製)を使用して行った。このとき、すりガラス越しに、仮硬化として25mW/cm2で60秒の照射を行い、次いで本硬化として40mW/cm2で250秒の照射を行った。
Next, a composition (molar ratio TCDA) of the thiol (m = n = 1) represented by the chemical formula 1 and the acrylate (R = H, m = 1, n = 1) represented by the chemical formula 2 A resin precursor composition was prepared by adding 0.1 wt% of Irgacure 184 (manufactured by BASF Japan Ltd.) as a photopolymerization initiator to the Michael addition reaction product of TDDT = 2.5: 1). This is applied onto the molded diffractive optical element 2, and the substrate is pressed and irradiated with ultraviolet rays.
The ultraviolet light irradiation was performed using an ultraviolet light irradiation machine (manufactured by Ubix Co., Ltd.) equipped with an LED that generates ultraviolet light of 365 nm. At this time, the ground glass over performs irradiation at 25 mW / cm 2 60 seconds as the temporary curing, and then subjected to irradiation of 250 seconds at 40 mW / cm 2 as a main curing.

(実施例6)
高屈折率低分散回折光学要素として第1回折光学要素1として上述した高屈折率低分散の樹脂である実施例2(モル比 TCDA:TDDT=3:1)のマイケル付加反応物に光重合開始剤であるイルガキュア184(BASFジャパン株式会社製)を0.1wt%添加した樹脂前駆体組成物について、実施例5と同様に回折光学要素1を成形した。本実施例では低屈折率低分散光学要素として2,2−ビス(4−(2−(メタ)クリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパン(BMHF)にイルガキュア184(BASFジャパン株式会社製)を0.1wt%添加した樹脂前駆体組成物を用い、実施例5と同様に回折光学要素1を成形した。
(Example 6)
Photopolymerization started on the Michael addition reaction product of Example 2 (molar ratio TCDA: TDDT = 3: 1), which is the high refractive index low dispersion resin described above as the first diffractive optical element 1 as the high refractive index low dispersion diffractive optical element The diffractive optical element 1 was molded in the same manner as in Example 5 with respect to the resin precursor composition to which 0.1 wt% of Irgacure 184 (manufactured by BASF Japan Ltd.) as an agent was added. In this example, 2,2-bis (4- (2- (meth) acryloyloxy) ethoxy) phenyl-1,1,1,3,3,3-hexafluoropropane (low refractive index and low dispersion optical element ( The diffractive optical element 1 was molded in the same manner as in Example 5 using a resin precursor composition in which 0.1 wt% of Irgacure 184 (manufactured by BASF Japan Ltd.) was added to (BMHF).

実施例5:
(高屈折率低分散光学要素) TCDA:TDDT=2.5:1の付加反応物、イルガキュア184 0.1wt%
(低屈折率高分散光学要素) 2,2−ビス(4−(2−アクリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパン、イルガキュア184 0.1wt%
Example 5:
(High refractive index low dispersion optical element) TCDA: TDDT = 2.5: 1 addition reaction product, Irgacure 184 0.1 wt%
(Low refractive index and high dispersion optical element) 2,2-bis (4- (2-acryloyloxy) ethoxy) phenyl-1,1,1,3,3,3-hexafluoropropane, Irgacure 184 0.1 wt%

実施例6:
(高屈折率低分散光学要素) TCDA:TDDT=3:1の付加反応物、イルガキュア184 0.1wt%
(低屈折率高分散光学要素) 2,2−ビス(4−(2−(メタ)クリロイルオキシ)エトキシ)フェニル−1,1,1,3,3,3−ヘキサフルオロプロパン、イルガキュア184 0.1wt%
Example 6:
(High refractive index and low dispersion optical element) TCDA: TDDT = 3: 1 addition reaction product, Irgacure 184 0.1 wt%
(Low Refractive Index High Dispersion Optical Element) 2,2-bis (4- (2- (meth) acryloyloxy) ethoxy) phenyl-1,1,1,3,3,3-hexafluoropropane, Irgacure 184 0 .1wt%

実施例5,6について図4の第1および第2回折光学要素1,2の間に形成される鋸歯状のレリーフパターン5(回折格子パターン)の格子高さを表1に示す。表1に示すように、実施例5においては、第1および第2回折光学要素1,2の間に形成される鋸歯状のレリーフパターン5の高さを25.6μm、実施例6においては25.5μmに設定することができた。   Table 1 shows the grating height of the serrated relief pattern 5 (diffraction grating pattern) formed between the first and second diffractive optical elements 1 and 2 in FIGS. As shown in Table 1, in Example 5, the height of the serrated relief pattern 5 formed between the first and second diffractive optical elements 1 and 2 is 25.6 μm, and in Example 6, it is 25. It was possible to set it to 5 μm.

Figure 0006303923
このように、レリーフパターン5の格子高さはどちらの実施例においても非常に小さい値に抑えることができた。
Figure 0006303923
As described above, the grating height of the relief pattern 5 was able to be suppressed to a very small value in both examples.

この構成の光学レンズ10における不要回折次数の回折光強度を図6に示す。
縦軸は(0次光回折光強度+2次光回折光強度)/1次光回折光強度であり、この値が小さいほど、回折性能が優れていることを示す。本願実施例で形成した回折光学素子は従来の樹脂で構成される回折光学要素を用いた場合に比べて不要次数の回折光強度が小さく、高い回折性能を示す。また、斜入射光に対する回折効率も高く、生物系の顕微鏡対物レンズ、交換レンズ、双眼鏡、望遠鏡、防犯カメラ、プロジェクタなどの広い用途に用いることができる。
FIG. 6 shows the diffracted light intensity of the unnecessary diffraction orders in the optical lens 10 having this configuration.
The vertical axis represents (0th-order light diffracted light intensity + second-order light diffracted light intensity) / first-order light diffracted light intensity, and the smaller this value, the better the diffraction performance. The diffractive optical element formed in the embodiment of the present application has a lower diffracted light intensity of the unnecessary order than the case where a diffractive optical element made of a conventional resin is used, and exhibits high diffraction performance. Further, it has a high diffraction efficiency for obliquely incident light, and can be used for a wide range of applications such as biological microscope objective lenses, interchangeable lenses, binoculars, telescopes, security cameras, and projectors.

図5に、本願の光学要素を用いた回折光学素子10の例を示す。本願発明の高屈折率低分散の樹脂11とその樹脂より低屈折率高分散の樹脂12とを積層し、界面に回折格子13を設けた回折格子から構成されるいわゆる密着複層型の回折光学素子10である。密着複層型の回折光学素子10は、図5(a)−(b)に示すように1枚の基板15(もしくはレンズ)上に形成されてもよく、また図5(c)−(g)に示すように2枚の基板15(もしくはレンズ)に挟まれる構成であってもよい。高屈折率低分散樹脂、低屈折率高分散樹脂のどちらを1層目に形成してもよい。   FIG. 5 shows an example of the diffractive optical element 10 using the optical element of the present application. A so-called multi-layered diffractive optical element composed of a diffraction grating in which a high-refractive index low-dispersion resin 11 of the present invention and a low-refractive index high-dispersion resin 12 are laminated and a diffraction grating 13 is provided at the interface. Element 10. The contact multilayer type diffractive optical element 10 may be formed on one substrate 15 (or lens) as shown in FIGS. 5A to 5B, and FIGS. As shown in FIG. 4B, a configuration in which the substrate is sandwiched between two substrates 15 (or lenses) may be used. Either high refractive index low dispersion resin or low refractive index high dispersion resin may be formed in the first layer.

基板15は平行平板であってもよく、平凹形状、平凸形状あるいはメニスカス形状、両凸形状であってもよい。密着複層型の光学素子は平面上に形成されてもよいし、凸面上または凹面上に形成されてもよい。本願発明の光学要素・光学素子は撮影光学系、顕微鏡用光学系、観察光学系用光学系等に幅広く用いられ、その用途や光学系の形態により適宜最適な構成を選択できる。   The substrate 15 may be a parallel plate, and may have a plano-concave shape, a plano-convex shape, a meniscus shape, or a biconvex shape. The contact multilayer optical element may be formed on a flat surface, or may be formed on a convex surface or a concave surface. The optical elements and optical elements of the present invention are widely used in photographing optical systems, optical systems for microscopes, optical systems for observation optical systems, and the like, and an optimal configuration can be selected as appropriate depending on the application and form of the optical system.

以上、本発明に係る高屈折率低分散の樹脂Gを例に説明したが、本発明に用いる高屈折率低分散の光学材料は、上記樹脂Gに限定されるものではない。上述した化学式1により表されるチオールと(メタ)アクリレートとを含む樹脂前駆体組成物からなる樹脂は、同様の特性を有する。   The high refractive index and low dispersion resin G according to the present invention has been described above as an example. However, the high refractive index and low dispersion optical material used in the present invention is not limited to the resin G. The resin made of the resin precursor composition containing the thiol represented by the above-described chemical formula 1 and (meth) acrylate has similar characteristics.

DOE 回折光学素子
1 第1光学要素 2 第2光学要素
5 レリーフパターン(回折格子パターン)
10 回折光学素子 11 高屈折率低分散の樹脂
12 低屈折率高分散の樹脂 13 回折格子
15 基板(もしくはレンズ)
DOE diffractive optical element 1 first optical element 2 second optical element 5 relief pattern (diffraction grating pattern)
DESCRIPTION OF SYMBOLS 10 Diffractive optical element 11 High refractive index low dispersion resin 12 Low refractive index high dispersion resin 13 Diffraction grating 15 Substrate (or lens)

Claims (6)

下記化学式1で表されるチオールと(メタ)アクリレートとを含む組成物の付加反応物を含む光学材料用樹脂前駆体組成物が硬化してなる第1の光学要素と、
下記化学式4で表されるビスフェノールAF エチレンオキサイド変性ジ(メタ)アクリレートを含む樹脂前駆体組成物が硬化してなる第2の光学要素と、
前記第1の光学要素と前記第2の光学要素との界面に設けられた回折格子と、
を有する回折光学素子。
Figure 0006303923

Figure 0006303923
A first optical element formed by curing a resin precursor composition for an optical material containing an addition reaction product of a composition containing a thiol represented by the following chemical formula 1 and (meth) acrylate ;
A second optical element formed by curing a resin precursor composition containing bisphenol AF ethylene oxide-modified di (meth) acrylate represented by the following chemical formula 4:
A diffraction grating provided at an interface between the first optical element and the second optical element;
A diffractive optical element.
Figure 0006303923

Figure 0006303923
下記化学式1で表されるチオールと(メタ)アクリレートとを含む組成物の付加反応物を含む光学材料用樹脂前駆体組成物が硬化してなる第1の光学要素と、A first optical element formed by curing a resin precursor composition for an optical material containing an addition reaction product of a composition containing a thiol represented by the following chemical formula 1 and (meth) acrylate;
下記化学式5で表されるビスフェノールA エチレンオキサイド変性ジ(メタ)アクリレートと、下記化学式6で表されるフッ素化ジ(メタ)アクリレートとを含む樹脂前駆体組成物が硬化してなる第2の光学要素と、A second optical material obtained by curing a resin precursor composition containing bisphenol A ethylene oxide-modified di (meth) acrylate represented by the following chemical formula 5 and a fluorinated di (meth) acrylate represented by the following chemical formula 6. Elements and
前記第1の光学要素と前記第2の光学要素との界面に設けられた回折格子と、A diffraction grating provided at an interface between the first optical element and the second optical element;
を有する回折光学素子。A diffractive optical element.
Figure 0006303923
Figure 0006303923

Figure 0006303923
Figure 0006303923

Figure 0006303923
Figure 0006303923
前記付加反応物は前記化学式1で表されるチオールと、前記(メタ)アクリレートとを、1:2〜1:10の範囲内のモル比で含む組成物を付加反応させて得られる請求項1または2に記載の回折光学素子2. The addition reaction product is obtained by addition reaction of a composition containing the thiol represented by Formula 1 and the (meth) acrylate in a molar ratio within a range of 1: 2 to 1:10. Or the diffractive optical element according to 2 ; 前記付加反応物は前記化学式1で表されるチオールと、前記(メタ)アクリレートとを、1:2〜1:3.5の範囲内のモル比で含む組成物を付加反応させて得られる請求項1または2に記載の回折光学素子The addition reaction product is obtained by addition reaction of a composition containing the thiol represented by Formula 1 and the (meth) acrylate at a molar ratio in the range of 1: 2 to 1: 3.5. Item 3. The diffractive optical element according to Item 1 or 2 . 前記(メタ)アクリレートが下記化学式2で表すトリシクロデカンジメタノールジ(メタ)アクリレートである請求項1〜のいずれか1項に記載の回折光学素子
Figure 0006303923
The (meth) acrylate is a diffractive optical element according to any one of claims 1 to 4, which is a tricyclodecane dimethanol di (meth) acrylate represented by the following chemical formula 2.
Figure 0006303923
前記付加反応物は前記化学式1で表されるチオールと(メタ)アクリレートと下記化学式3で表されるチオール「2,5−ジメルカプトメチル−1,4−ジチアン」を含む組成物を付加反応させて得られる請求項1〜のいずれか1項に記載の回折光学素子
Figure 0006303923
The addition reaction product is an addition reaction of a composition containing the thiol represented by Formula 1 and (meth) acrylate and the thiol “2,5-dimercaptomethyl-1,4-dithiane” represented by Formula 3 below. the diffractive optical element according to any one of claims 1 to 5, obtained Te.
Figure 0006303923
JP2014171666A 2014-08-26 2014-08-26 Diffractive optical element Active JP6303923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171666A JP6303923B2 (en) 2014-08-26 2014-08-26 Diffractive optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171666A JP6303923B2 (en) 2014-08-26 2014-08-26 Diffractive optical element

Publications (2)

Publication Number Publication Date
JP2016044285A JP2016044285A (en) 2016-04-04
JP6303923B2 true JP6303923B2 (en) 2018-04-04

Family

ID=55635148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171666A Active JP6303923B2 (en) 2014-08-26 2014-08-26 Diffractive optical element

Country Status (1)

Country Link
JP (1) JP6303923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531762B2 (en) 2014-08-26 2019-06-19 株式会社ニコン Diffractive optical element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366115A (en) * 1991-06-12 1992-12-18 Nikon Corp Optical plastic having low refractive index and enhanced dispersion
JPH08151360A (en) * 1994-11-29 1996-06-11 Mitsubishi Chem Corp Production of polymerizable isomer mixture
JP2005035968A (en) * 2003-06-24 2005-02-10 Idemitsu Kosan Co Ltd Alicyclic dithiol
JP4872671B2 (en) * 2004-12-20 2012-02-08 株式会社ニコン Adhesive multilayer diffractive optical element
CN101802652B (en) * 2007-09-19 2012-02-29 株式会社尼康 Resin composite-type optical element and process for producing the resin composite-type optical element
JP6020030B2 (en) * 2012-10-19 2016-11-02 三菱瓦斯化学株式会社 Heat and weather resistant resin composition

Also Published As

Publication number Publication date
JP2016044285A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP5424623B2 (en) Resin composition and optical element, diffractive optical element and laminated diffractive optical element molded thereby
JP4760714B2 (en) Adhesive multilayer diffractive optical element, optical material used therefor, resin precursor and resin precursor composition
KR101267101B1 (en) Optical material and optical element
JP2008203821A (en) Laminated diffraction optical element
JP2005338798A (en) Diffraction optical element and optical system having same
JPWO2003046615A1 (en) Optical resin precursor composition, optical resin, optical element and optical article
TW200933186A (en) Resin composite-type optical element and process for rpoducing the resin composite-type optical element
EP2565227A1 (en) Organic-inorganic composite material, optical element, and multilayer diffractive optical element
KR100500092B1 (en) Light-resistant microlens array and resin composition for use therein
KR20100033930A (en) Optical material and optical element
JPWO2012176388A1 (en) Diffractive optical element
JP5773668B2 (en) Multilayer diffractive optical element
JP6531762B2 (en) Diffractive optical element
JP6303923B2 (en) Diffractive optical element
WO2018134871A1 (en) (meth)acrylate compound, additive for optical resin, optical element, and optical device
JP7151726B2 (en) Optical resin material for chromatic aberration correction
WO2011010633A1 (en) Resin precursor composition and resin obtained by photocuring same
JP2020530873A (en) Photocurable composition for 3D stereolithography and 3D model
US20140226216A1 (en) Composite optical element
WO2010140341A1 (en) Diffractive optical element
JP2006232907A (en) Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element
JP7325305B2 (en) Precursor resin composition and optical element
US20230110024A1 (en) Optical element, optical equipment, and imaging apparatus
JP2020002275A (en) Lens, cured product, optical element, optical instrument and method for manufacturing optical element
JP2020170050A (en) Diffraction optical element, optical equipment, imaging apparatus, and manufacturing method of diffraction optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250