JP6302163B2 - Method for producing corrosion-resistant metal member for battery - Google Patents

Method for producing corrosion-resistant metal member for battery Download PDF

Info

Publication number
JP6302163B2
JP6302163B2 JP2013037112A JP2013037112A JP6302163B2 JP 6302163 B2 JP6302163 B2 JP 6302163B2 JP 2013037112 A JP2013037112 A JP 2013037112A JP 2013037112 A JP2013037112 A JP 2013037112A JP 6302163 B2 JP6302163 B2 JP 6302163B2
Authority
JP
Japan
Prior art keywords
metal member
corrosion
battery
resistant metal
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013037112A
Other languages
Japanese (ja)
Other versions
JP2014157801A (en
Inventor
俊介 八木
俊介 八木
田中 信一
信一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2013037112A priority Critical patent/JP6302163B2/en
Publication of JP2014157801A publication Critical patent/JP2014157801A/en
Application granted granted Critical
Publication of JP6302163B2 publication Critical patent/JP6302163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、電池用電解液と接触する電池用耐食性金属部材に関し、例えば蓄電池用の集電体などの電極部材や電池用セルケースなどに用いられる耐食性金属部材に関するものである。   The present invention relates to a corrosion-resistant metal member for a battery that contacts a battery electrolyte, and relates to a corrosion-resistant metal member used for, for example, an electrode member such as a current collector for a storage battery or a battery cell case.

一般に、チタン金属は、空気中で不動態化皮膜を形成するため耐食性に優れており、銅、錫、鉄、アルミニウム、バナジウム、クロム、コバルト、ニッケル、モリブデン等と合金を形成するので、汎用されている金属材料である。   In general, titanium metal is excellent in corrosion resistance because it forms a passivating film in air, and is widely used because it forms alloys with copper, tin, iron, aluminum, vanadium, chromium, cobalt, nickel, molybdenum, etc. It is a metal material.

このようなチタン金属は、ボルトやナットなどの締結部品に用いる場合の耐摩耗性や潤滑性の改善のために、その研磨面の表面に薄膜のガラス状カーボンを形成する技術が知られている(特許文献1)。   Such titanium metal is known to form a thin glassy carbon on the surface of its polished surface in order to improve wear resistance and lubricity when used in fastening parts such as bolts and nuts. (Patent Document 1).

また、ネジなどの締結部材に用いる肉厚のチタン金属の浸炭層表面を研磨し、さらに酸化させてチタン酸化物層を形成し、その上にガラス状カーボンを形成することが知られている(特許文献2)。   Further, it is known that the surface of a thick titanium metal carburized layer used for a fastening member such as a screw is polished and further oxidized to form a titanium oxide layer, on which glassy carbon is formed ( Patent Document 2).

特許第3347287号公報Japanese Patent No. 3347287 特開2012−31459号公報JP 2012-31459 A

しかし、上記した特許文献1、2に記載される技術では、ガラス状カーボンは、肉厚の構造材料の表面の耐摩耗性または潤滑性を改良するために使用されているが、厳しい腐食性環境で使用される金属部材の耐食性の改善を想定されたものではない。   However, in the techniques described in Patent Documents 1 and 2 described above, glassy carbon is used to improve the wear resistance or lubricity of the surface of a thick structural material. It is not intended to improve the corrosion resistance of the metal member used in the above.

また、上記した従来技術では、ガラス状カーボンの基材となる肉厚の金属部材は、曲げ変形など容易に成形加工できるものではなかった。   Further, in the above-described prior art, a thick metal member serving as a glassy carbon base material cannot be easily processed by bending deformation or the like.

ところで、蓄電池用の集電体などの電極部材や電池用セルケースの内面等に用いられる耐食性金属部材は、フッ化物イオンや塩化物イオンなどの腐食性の高いハロゲン化物イオンが含まれる電解液に接する状態で使用される場合 、耐腐食性に極めて優れた白金など
の特定の金属材料が用いられる。
By the way, the corrosion-resistant metal member used for the electrode member such as the current collector for the storage battery and the inner surface of the battery cell case is an electrolyte solution containing highly corrosive halide ions such as fluoride ions and chloride ions. When used in contact, a specific metal material such as platinum having extremely excellent corrosion resistance is used.

たとえば、このような腐食性電解液中に存在する塩素イオンの腐食性によって、耐食性に優れた金属チタン表面にも「孔食」と称される多数の小孔状の腐食が起こってしまう問題点がある。   For example, due to the corrosive nature of the chloride ions present in such corrosive electrolytes, many small pores of corrosion called “pitting corrosion” occur on the surface of titanium metal with excellent corrosion resistance. There is.

このように白金のような特定の高価な金属材料のみしか使用できない電池用耐食性金属材では、材料の選択の幅が狭く、製造コストを低く抑制することも困難であり、実用的な蓄電池の製造ができないという問題点がある。   Thus, in a corrosion-resistant metal material for a battery that can use only a specific expensive metal material such as platinum, the selection range of the material is narrow, and it is difficult to suppress the manufacturing cost, and it is difficult to manufacture a practical storage battery. There is a problem that can not be.

また、前述のように、従来知られているガラス状カーボンの形態は、曲げ変形に耐えるように利用するという想定はなく、嵩高いバルク製品の表面を曲げ変形できる部品に転用
できるものではなかった。
In addition, as described above, the known glassy carbon form is not supposed to be used to withstand bending deformation, and cannot be diverted to a part that can bend and deform a bulky bulk product surface. .

そこで、この発明の課題は、上記した問題点を解決し、電池用電解液と接触する電池用耐食性金属部材の選択の幅を広げることができ、かつ耐腐食性および成形性を満足できるものにすると共に、導電性の必要な集電体などの電極部材または電解液に接する電池用セルケースなどに利用可能な耐食性金属部材とすることである。   Accordingly, an object of the present invention is to solve the above-described problems, expand the range of selection of a corrosion-resistant metal member for a battery that comes into contact with the battery electrolyte, and satisfy the corrosion resistance and formability. In addition, it is to be a corrosion-resistant metal member that can be used for an electrode member such as a current collector that requires conductivity or a cell case for a battery that is in contact with an electrolytic solution.

上記の課題を解決するために、この発明では、電池用電解液と接触するシート状金属部材の表面に、ガラス状カーボン薄膜層を一体に設けてなる電池用耐食性金属部材としたのである。   In order to solve the above-described problems, the present invention provides a corrosion-resistant metal member for a battery in which a glassy carbon thin film layer is integrally provided on the surface of a sheet-like metal member that is in contact with the battery electrolyte.

上記したようにガラス状カーボン薄膜層を一体に設けたシート状金属部材は、曲げ変形の可能なシートの曲げ特性に合わせてガラス状カーボン薄膜層も一体となって変形するものであり、電池の形状に合わせて、薄肉のシートを巻いたり重ねたりする態様も可能であり、ガラス状カーボン本来の極めて優れた耐食性も併せて発揮できる。   As described above, the sheet-like metal member integrally provided with the glassy carbon thin film layer deforms together with the glassy carbon thin film layer according to the bending characteristics of the sheet that can be bent and deformed. A mode in which thin sheets are wound or stacked according to the shape is also possible, and the extremely excellent corrosion resistance inherent to glassy carbon can also be exhibited.

そのため、シート状金属部材の表面は、ガラス状カーボン薄膜層によって電池用電解液から保護されて、「孔食」も起こらずまたは抑制されて、従来使用が困難であった様々な金属を基材に用い、集電体などの電極部材または電解液に接する電池用セルケースなどにも利用可能な耐食性金属部材になる。   For this reason, the surface of the sheet-like metal member is protected from the battery electrolyte by the glassy carbon thin film layer, and “pitting corrosion” does not occur or is suppressed. It becomes a corrosion-resistant metal member that can be used for an electrode member such as a current collector or a battery cell case in contact with an electrolytic solution.

このようにガラス状カーボンの薄膜によって、曲げ変形の可能な特性を確保しつつ、電池用電解液などのように強い腐食性の液に接する用途でガラス状カーボンを利用することができる。   As described above, the vitreous carbon can be used in applications where the thin film of vitreous carbon is in contact with a strong corrosive liquid such as an electrolytic solution for a battery while ensuring the property capable of bending deformation.

上記の電池用耐食性金属部材において、シートの曲げ特性に合わせてガラス状カーボン薄膜層も一体となって充分に変形するようにするためには、前記ガラス状カーボン薄膜層が厚さ0.1〜1μmのものであることが好ましい。   In the above corrosion-resistant metal member for a battery, in order for the glassy carbon thin film layer to be integrated and sufficiently deformed in accordance with the bending characteristics of the sheet, the glassy carbon thin film layer has a thickness of 0.1 to 0.1 mm. It is preferably 1 μm.

0.1μm未満の薄い層のガラス状カーボン薄膜層では、例えばフッ化物イオンや塩化物イオンなどのように、腐食性の高いハロゲン化物イオンが含まれる電解液に接する状態で「孔食」などの腐食を完全に防止することが困難であって好ましくなく、また1μmを超える比較的厚いガラス状カーボン薄膜層では、必要以上の耐食性を得る代わりに曲げ変形性が阻害されやすくなって好ましくないからである。   In a thin glassy carbon thin film layer having a thickness of less than 0.1 μm, for example, “pitting corrosion” in contact with an electrolyte containing highly corrosive halide ions such as fluoride ions and chloride ions. It is difficult to completely prevent corrosion, and it is not preferable, and a relatively thick glassy carbon thin film layer exceeding 1 μm is not preferable because bending deformability tends to be hindered instead of obtaining corrosion resistance more than necessary. is there.

このような好ましい電池用耐食性金属部材としての特性が、充分に発揮できる態様として前記シート状金属部材が、集電体である場合が挙げられる。   A case where the sheet-like metal member is a current collector can be cited as an embodiment in which such preferable characteristics as a corrosion-resistant metal member for a battery can be sufficiently exhibited.

集電体は、蓄電池用のセル用のフィルム化された電極部材としてロール状に巻く場合があり、またはできるだけ薄く、金属箔状に形成して樹脂フィルムにラミネートされる場合があり、このような場合にガラス状カーボン薄膜層を一体に設けたシート状金属部材とすれば、優れた耐食性と曲げ変形性を同時に発揮できる。   The current collector may be wound into a roll as a filmed electrode member for a battery cell, or may be formed as thin as a metal foil and laminated to a resin film. In this case, if the sheet-like metal member is integrally provided with the glassy carbon thin film layer, excellent corrosion resistance and bending deformability can be exhibited at the same time.

また、前記シート状金属部材が、チタン金属材料を採用すると、加工性、軽量性、強度、合金としての種類の多様性などのチタン金属本来の特性が発揮されて、極めて有用性の高い電池用耐食性金属部材になる。   In addition, when the sheet metal member is made of a titanium metal material, the inherent properties of titanium metal such as workability, lightness, strength, and variety of types of alloys are exhibited, and the battery is extremely useful. It becomes a corrosion-resistant metal member.

また、前記電池が、マグネシウム蓄電池である場合には、これまで正極側の集電体材料として白金しか選択の余地がなかったという問題を解決でき、集電体材料の選択を大幅に
広げることができる。
In addition, when the battery is a magnesium storage battery, it is possible to solve the problem that only platinum as a positive electrode side current collector material has been selected so far, and the selection of the current collector material can be greatly expanded. it can.

上記したような有利な特性を有する耐食性金属部材の製造方法としては、シート状の難浸炭性の金属材料の表面に、厚さ0.1〜1μmのガラス状カーボン薄膜層をプラズマ浸炭処理によって形成することからなる電池用電解液と接触する耐食性金属部材の製造方法を採用することができる。   As a method for producing a corrosion-resistant metal member having the advantageous characteristics as described above, a glassy carbon thin film layer having a thickness of 0.1 to 1 μm is formed by plasma carburization on the surface of a sheet-like hard carburizing metal material. The manufacturing method of the corrosion-resistant metal member which contacts with the electrolyte solution for batteries which consists of doing can be employ | adopted.

難浸炭性の金属材料の表面にプラズマ浸炭処理することにより、金属材料の表面に極めて薄肉の厚さ0.1〜1μmのガラス状カーボン薄膜層を確実に形成することができる。   By subjecting the surface of the hardly carburizable metal material to plasma carburization, an extremely thin glassy carbon thin film layer having a thickness of 0.1 to 1 μm can be reliably formed on the surface of the metal material.

この発明は、電池用電解液と接触するシート状金属部材の表面に、ガラス状カーボン薄膜層を一体に設けた耐食性金属部材としたので、電池用電解液と接触する耐食性金属部材として、そのような金属材料の選択の幅を広げることができ、かつ耐腐食性および成形性を満足できるものになり、導電性の必要な集電体などの電極部材または電解液に接する電池用ケースなどに利用可能な耐食性金属部材となる利点がある。   Since the present invention is a corrosion-resistant metal member in which a glassy carbon thin film layer is integrally provided on the surface of a sheet-like metal member that is in contact with the battery electrolyte, such a corrosion-resistant metal member that is in contact with the battery electrolyte is It can be used for electrode members such as current collectors that require electrical conductivity or battery cases that come into contact with electrolytes, which can expand the range of selection of metal materials and satisfy corrosion resistance and formability. There is an advantage that it becomes a possible corrosion-resistant metal member.

実施例1の電池用集電体表面及びその断面を示す走査型電子顕微鏡写真Scanning electron micrograph showing the surface of the battery current collector of Example 1 and its cross section 実施例1の電池用集電体表面のラマンスペクトルを示す図表Chart showing the Raman spectrum of the surface of the battery current collector of Example 1 (a)実施例1の電解試験前の表面を示す走査型電子顕微鏡写真、(b)実施例1の電解試験後の表面を示す走査型電子顕微鏡写真(A) Scanning electron micrograph showing the surface of Example 1 before the electrolysis test, (b) Scanning electron micrograph showing the surface of Example 1 after the electrolysis test (a)比較例1の電解試験前の表面を示す走査型電子顕微鏡写真、(b)比較例1の電解試験後の表面を示す走査型電子顕微鏡写真(A) Scanning electron micrograph showing the surface of the comparative example 1 before the electrolytic test, (b) Scanning electron micrograph showing the surface of the comparative example 1 after the electrolytic test 実施例2の電池用集電体表面のラマンスペクトルを示す図表The chart which shows the Raman spectrum of the collector surface for batteries of Example 2 (a)実施例2の電解試験前の表面を示す走査型電子顕微鏡写真、(b)実施例2の電解試験後の表面を示す走査型電子顕微鏡写真(A) Scanning electron micrograph showing the surface of Example 2 before the electrolysis test, (b) Scanning electron micrograph showing the surface of Example 2 after the electrolysis test (a)比較例2の電解試験前の表面を示す走査型電子顕微鏡写真、(b)比較例2の電解試験後の表面を示す走査型電子顕微鏡写真(A) Scanning electron micrograph showing the surface of the comparative example 2 before the electrolytic test, (b) Scanning electron micrograph showing the surface of the comparative example 2 after the electrolytic test. (a)電解試験における実施例1の作用極(ガラス状カーボン薄膜で被覆したTi集電体)の参照極(Mg)に対する電位と電流密度の関係を示すサイクリックボルタモグラム、(b)電解試験における実施例2の作用極(ガラス状カーボン薄膜で被覆したSUS316L集電体)の参照極(Mg)に対する電位と電流密度の関係を示すサイクリックボルタモグラム(A) Cyclic voltammogram showing the relationship between the potential and current density of the working electrode (Ti current collector coated with a glassy carbon thin film) of Example 1 in the electrolytic test with respect to the reference electrode (Mg), and (b) in the electrolytic test. Cyclic voltammogram showing the relationship between the potential and current density of the working electrode (SUS316L current collector coated with a glassy carbon thin film) of Example 2 relative to the reference electrode (Mg). (a)〜(g)は電解試験における各種作用極の参照極(Mg)に対する電位と電流密度の関係を示すサイクリックボルタモグラム(A) to (g) are cyclic voltammograms showing the relationship between potential and current density of various working electrodes with respect to a reference electrode (Mg) in an electrolytic test.

この発明の実施形態を、以下に添付図面を参照して説明する。
図1の走査型電子顕微鏡写真で示す実施形態の電池用耐食性金属部材は、電池用電解液に接触する状態で使用されるものであり、例えばチタン金属箔からなる二次電池用のシート状金属部材1の表面に、プラズマ浸炭処理によってガラス状カーボン薄膜層2を一体に重ねて設けたものである。なお、図中の符号2aは、ガラス状カーボン薄膜層2の表面である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The battery corrosion-resistant metal member of the embodiment shown in the scanning electron micrograph of FIG. 1 is used in contact with the battery electrolyte, and is, for example, a sheet metal for a secondary battery made of a titanium metal foil. A glassy carbon thin film layer 2 is integrally provided on the surface of the member 1 by plasma carburization. In addition, the code | symbol 2a in a figure is the surface of the glassy carbon thin film layer 2. FIG.

この発明でいう電池用電解液は、フッ化物イオン(F)や塩化物イオン(Cl)などの腐食性の高いハロゲン化物イオンなどが含まれる電解液であり、ハロゲン化物イオンとしては、その他にも臭化物イオン(Br)、ヨウ化物イオン(I)、アスタチオン化物イオン(At)などが挙げられる。 The battery electrolyte according to the present invention is an electrolyte containing highly corrosive halide ions such as fluoride ions (F ) and chloride ions (Cl ). In addition, bromide ions (Br ), iodide ions (I ), asterathionide ions (At ), and the like can be given.

具体的な電解液としては、マグネシウム電池用電解液として知られているグリニャール試薬をベースとするテトラヒドロフラン系電解液(0.5M PhMgCl, 0.25M AlCl THF solution)が挙げられる。 Specific examples of the electrolyte include tetrahydrofuran-based electrolytes (0.5M PhMgCl, 0.25M AlCl 3 THF solution) based on Grignard reagents known as magnesium battery electrolytes.

また、このようなハロゲン化物イオンが含まれる電解液ばかりでなく、その他に周知な電解液や溶媒中でも実施形態の電池用耐食性金属部材は使用可能であり、そのような溶媒としては、水、エタノールなどのアルコール類、アセトニトリルやテトラヒドロフラン誘導体などの有機溶媒、イオン液体(アニオンやカチオンのイオンのみから構成される液体状の塩)などが挙げられる。   In addition to the electrolyte solution containing halide ions, the battery corrosion-resistant metal member of the embodiment can be used in other well-known electrolyte solutions and solvents. Examples of such a solvent include water, ethanol. Alcohols such as acetonitrile, organic solvents such as acetonitrile and tetrahydrofuran derivatives, and ionic liquids (liquid salts composed only of anions and cations).

この発明で用いるシート状金属部材は、金属部材が曲げ成形可能である程度に薄肉のシート状に形成されたものであり、金属の材質としては、チタン金属の他、ステンレス鋼その他の鉄鋼、アルミニウム,銅、ニッケルなどの周知の純金属またはそれらと他の金属の合金を挙げることができる。   The sheet-like metal member used in the present invention is formed in a sheet shape that is thin enough that the metal member can be bent. The metal material includes titanium metal, stainless steel, other steels, aluminum, Well-known pure metals such as copper and nickel, or alloys thereof with other metals can be mentioned.

このような金属は、好ましくは比較的低温でのプラズマ浸炭処理が可能であるように、800℃程度以上の融点の金属であることが好ましく、また浸炭処理によって薄膜のガラス状カーボンが形成できるように、炭素吸収能が低く、すなわち難浸炭性の金属またはそのように表面処理された金属であり、低熱膨張係数の金属であることが好ましい。   Such a metal is preferably a metal having a melting point of about 800 ° C. or higher so that plasma carburizing treatment at a relatively low temperature is possible, and a thin glassy carbon can be formed by carburizing treatment. Further, it is preferably a metal having a low carbon absorption capacity, that is, a hardly carburizable metal or a metal surface-treated as such, and a metal having a low coefficient of thermal expansion.

この発明に用いるシート状金属部材の厚さは、薄板状、フィルム状、箔状の各場合に応じて調整すればよく、例えば二次電池の集電体などに用いられ金属箔に形成するには、基材の樹脂製シート基材の表面に圧延した金属をラミネートし、加熱して接着するか、または金属そのものを溶射または鍍金によってシート基材の表面に薄層に密着させて形成することができる。   The thickness of the sheet-like metal member used in the present invention may be adjusted according to each case of a thin plate shape, a film shape, and a foil shape. For example, it is used for a current collector of a secondary battery, etc. Laminate the rolled metal on the surface of the resin sheet substrate of the substrate and heat it to bond it, or form the metal itself in close contact with the surface of the sheet substrate by thermal spraying or plating Can do.

そして、このようなシート状金属部材の表面にガラス状(非晶質性)カーボン層をプラズマ浸炭処理によって形成する工程は、以下のように行なう。   And the process of forming a glassy (amorphous) carbon layer on the surface of such a sheet-like metal member by plasma carburization is performed as follows.

プラズマ浸炭処理の条件における炭化水素系ガスの圧力は、13〜4000Paとすることが好ましい。このような炭化水素系ガスの圧力は、チタン金属表面に主に非晶質性カーボン(ガラス状カーボン)膜を効率よく形成する。13Pa未満の低圧では成膜層の炭
素量が少なく成膜が充分でなくて好ましくない。また、4000Paを越える高圧では、実用性が損なわれる可能性がある。このような傾向から、より好ましい炭化水素系ガスの圧力は100〜2666Paである。
The pressure of the hydrocarbon-based gas under the plasma carburizing treatment condition is preferably 13 to 4000 Pa. Such a pressure of the hydrocarbon gas efficiently forms an amorphous carbon (glassy carbon) film mainly on the titanium metal surface. A low pressure of less than 13 Pa is not preferable because the amount of carbon in the film formation layer is small and film formation is not sufficient. Moreover, practicality may be impaired at a high pressure exceeding 4000 Pa. From such a tendency, the more preferable pressure of the hydrocarbon gas is 100 to 2666 Pa.

この発明におけるガラス状カーボン層を形成するためのプラズマ熱処理の雰囲気温度は、400〜1100℃が好ましく、より好ましくは500〜1100℃、さらに好ましくは530〜890℃である。上記所定範囲未満の低温では、チタン金属表面へのガラス状カーボンの密着性が低くなって好ましくない。また、上記所定範囲を越える高温では、チタンの強度特性を確保するためにもこれ以上の処理温度は実用的でなくなるので好ましくない。   The atmospheric temperature of the plasma heat treatment for forming the glassy carbon layer in the present invention is preferably 400 to 1100 ° C, more preferably 500 to 1100 ° C, and further preferably 530 to 890 ° C. If the temperature is lower than the predetermined range, the adhesion of glassy carbon to the titanium metal surface is unfavorable. Further, at a high temperature exceeding the above-mentioned predetermined range, a treatment temperature higher than this is not preferable in order to ensure the strength characteristics of titanium.

このような条件下でプラズマ浸炭処理によるガラス状カーボン層の形成のためのプラズマ熱処理が施され、その後は、処理室内の浸炭性ガスが排気され、窒素ガスが処理室内に導入
されて、チタン金属素材が常温まで冷却され、処理室から取り出される。
Under such conditions, plasma heat treatment for forming a glassy carbon layer by plasma carburizing treatment is performed, and thereafter, carburizing gas in the processing chamber is exhausted, nitrogen gas is introduced into the processing chamber, and titanium metal is introduced. The material is cooled to room temperature and removed from the processing chamber.

[実施例1]

集電体の基材となるチタン金属シート(厚さ500μm)を真空装置内の500〜700℃の雰囲気ガス温度範囲でプラズマ浸炭処理約1μm厚の非晶質性カーボン層を形成した。
[Example 1]

A titanium metal sheet (thickness: 500 μm) serving as a base material for the current collector was formed into an amorphous carbon layer having a thickness of about 1 μm by plasma carburization in an atmospheric gas temperature range of 500 to 700 ° C. in a vacuum apparatus.

得られた集電体の表面について、顕微ラマンレーザー顕微鏡を用いてラマンスペクトルを測定し、図2に示す結果を得た。なお、測定は、ナノフォトン社製 RAMAN-11を用いて
波長532nmのレーザー照射により行った。
About the surface of the obtained electrical power collector, the Raman spectrum was measured using the micro Raman laser microscope, and the result shown in FIG. 2 was obtained. In addition, the measurement was performed by laser irradiation with a wavelength of 532 nm using Nanophoton RAMAN-11.

図2に示す結果からも明らかなように、ラマンスペクトルには、結晶性炭素のピークを示すGバンドピーク(1594cm−2付近)と共に、非結晶性炭素のピークを示すDバンドピーク(1330cm−2付近)が認められ、ガラス状カーボン層の存在が確認できた。
次に、実施例1の集電体について、以下の電解試験を行ない、その試験前後の表面を走査型電子顕微鏡で撮影し、その結果を図3(a)、(b)に示した。
As is apparent from the results shown in FIG. 2, the Raman spectrum has a G band peak (near 1594 cm −2 ) indicating a crystalline carbon peak and a D band peak (1330 cm −2) indicating an amorphous carbon peak. The presence of a glassy carbon layer was confirmed.
Next, the following electrolysis test was performed on the current collector of Example 1, and the surface before and after the test was photographed with a scanning electron microscope. The results are shown in FIGS. 3 (a) and 3 (b).

[電解試験]
実施例1の集電体を作用極とし、対極と参照極をマグネシウム
(Mg)とし、電解液としてテトラヒドロフラン系電解液(0.5M PhMgCl, 0.2
5M AlCl THF solution)を使用して試験セルにて作用極の参照極に対する電位を0〜+4Vまで10mV/秒で変化させる電位走査を行なった。
[Electrolysis test]
The current collector of Example 1 is used as a working electrode, the counter electrode and the reference electrode are made of magnesium (Mg), and a tetrahydrofuran electrolyte (0.5M PhMgCl, 0.2
5M AlCl 3 THF solution) was used to perform potential scanning in which the potential of the working electrode with respect to the reference electrode was changed from 0 to +4 V at 10 mV / sec in a test cell.

図3の結果からも明らかなように、ガラス状カーボン薄膜被覆を有する実施例1は、電解試験前後で、その走査型電子顕微鏡写真による表面形状に変化が殆ど認められなかった。   As is clear from the results of FIG. 3, Example 1 having a glassy carbon thin film coating showed almost no change in the surface shape according to the scanning electron micrograph before and after the electrolytic test.

[比較例1]
実施例1において、プラズマ浸炭処理を行なわずにガラス状カーボン薄膜層を形成しなかったこと以外は、全く同様にして集電体を作製し、これに対して上記の電解試験を行ない、その試験前後の表面を走査型電子顕微鏡で撮影し、その結果を図4(a)、(b)に示した。
[Comparative Example 1]
In Example 1, a current collector was produced in exactly the same manner except that the glass-like carbon thin film layer was not formed without performing the plasma carburizing treatment, and the above electrolytic test was performed on the current collector. The front and back surfaces were photographed with a scanning electron microscope, and the results are shown in FIGS. 4 (a) and 4 (b).

図4の結果からも明らかなように、ガラス状カーボン薄膜被覆を有しない比較例1は、電解試験後の表面に孔食が認められた。   As is apparent from the results of FIG. 4, pitting corrosion was observed on the surface after the electrolytic test in Comparative Example 1 having no glassy carbon thin film coating.

[実施例2]
実施例1におけるチタン金属に代えてステンレス鋼(SUS316L)を使用したこと以外は、全く同様にして集電体を作製した。得られた集電体の表面について、顕微ラマン分光装置を用いてラマンスペクトルを測定し、図5に示す結果を得た。
[Example 2]
A current collector was produced in exactly the same manner except that stainless steel (SUS316L) was used instead of titanium metal in Example 1. About the surface of the obtained electrical power collector, the Raman spectrum was measured using the micro Raman spectroscopy apparatus, and the result shown in FIG. 5 was obtained.

図5に示す結果からも明らかなように、ラマンスペクトルには、結晶性炭素のピークを示すGバンド(1594cm−2付近)と共に、非結晶性炭素のピークを示すDバンド(1330cm−2付近)が小さいながらも認められ、層厚0.1〜0.5μm程度と考えられる非常に薄膜のガラス状カーボン層 の存在が認められた。 As is apparent from the results shown in FIG. 5, the Raman spectrum has a G band (near 1594 cm −2 ) showing a crystalline carbon peak and a D band (near 1330 cm −2 ) showing an amorphous carbon peak. Was observed even though it was small, and the presence of a very thin glassy carbon layer considered to have a thickness of about 0.1 to 0.5 μm was observed.

次に、実施例2の集電体に対して上記の電解試験を行ない、その試験前後の表面を走査型電子顕微鏡で撮影し、その結果を図6(a)、(b)に示した。
図6の結果からも明らかなように、ガラス状カーボン薄膜被覆を有する実施例2は、電解試験後には若干の小さな孔食が認められたが、集電体として使用に耐える程度の腐食であり、その表面形状にほとんど変化認められなかった。
Next, the above-described electrolytic test was performed on the current collector of Example 2, and the surface before and after the test was photographed with a scanning electron microscope. The results are shown in FIGS. 6 (a) and 6 (b).
As is clear from the results of FIG. 6, Example 2 having a glassy carbon thin film coating showed some small pitting corrosion after the electrolytic test, but it was corrosion enough to withstand use as a current collector. The surface shape hardly changed.

[比較例2]
実施例2において、プラズマ浸炭処理を行なわずにガラス状カーボン薄膜層を形成しなかったこと以外は、全く同様にして集電体を作製し、これに対して上記の電解試験を行ない、その試験前後の表面を走査型電子顕微鏡で撮影し、その結果を図7(a)、(b)に示した。
[Comparative Example 2]
In Example 2, a current collector was prepared in exactly the same manner except that the glass-like carbon thin film layer was not formed without performing the plasma carburizing treatment, and the above-described electrolytic test was performed. The front and back surfaces were photographed with a scanning electron microscope, and the results are shown in FIGS. 7 (a) and 7 (b).

図7の結果からも明らかなように、ガラス状カーボン薄膜被覆を有しない比較例2は、電解試験後の表面に孔食が認められた。   As is apparent from the results of FIG. 7, pitting corrosion was observed on the surface after the electrolytic test in Comparative Example 2 having no glassy carbon thin film coating.

また、上記した実施例1、2の電解試験における電位と電流密度の関係を示すサイクリックボルタモグラムの結果を図8(a)(b)に示した。また、参考のため、各種金属およびガラス状カーボンを作用極に用いて、参照極(Mg)に対する電位を−1〜+4Vまで10mV/秒で変化させる電位走査を行ない、その際の電位と電流密度の関係を示すサイクリックボルタモグラムの結果を図9(a)〜(g)に示した。   Moreover, the result of the cyclic voltammogram which shows the relationship between the electric potential and electric current density in the electrolysis test of above-mentioned Example 1, 2 was shown to Fig.8 (a) (b). For reference, potential scanning is performed by changing the potential with respect to the reference electrode (Mg) from −1 to +4 V at 10 mV / sec using various metals and glassy carbon as a working electrode. The results of cyclic voltammograms showing the relationship are shown in FIGS. 9 (a) to 9 (g).

これらの結果からも明らかなように、ガラス状カーボン薄膜を被覆した集電体材料は、白金(Pt)と同様の安定性を示したが、その他のガラス状カーボン薄膜を被覆しない銅、ニッケル、ステンレス鋼、チタン、アルミニウム金属では、電位の上昇に伴って著しい酸化溶解が認められ、不安定であった。   As is clear from these results, the current collector material coated with the glassy carbon thin film showed the same stability as platinum (Pt), but other copper, nickel, In stainless steel, titanium, and aluminum metal, remarkable oxidative dissolution was observed with increasing potential, and the steel was unstable.

1 シート状金属部材
2 ガラス状カーボン薄膜層
2a 表面
1 sheet-like metal member 2 glassy carbon thin film layer 2a surface

Claims (4)

シート状の難浸炭性の金属材料の表面に、電池用電解液に接する状態で孔食を防止する耐食性のある厚さ0.5〜1μmのガラス状カーボン薄膜層を、炭化水素系ガスの圧力100〜2666Pa、500〜700℃の雰囲気ガス温度範囲でのプラズマ浸炭処理によって形成することからなる電池用電解液と接触する耐食性金属部材の製造方法。 A glassy carbon thin film layer having a thickness of 0.5 to 1 μm that prevents pitting corrosion while being in contact with the battery electrolyte is applied to the surface of a sheet-like hardly carburizable metal material, and the pressure of the hydrocarbon gas. The manufacturing method of the corrosion-resistant metal member which contacts with the electrolyte solution for batteries consisting of forming by the plasma carburizing process in 100-2666Pa and the atmospheric gas temperature range of 500-700 degreeC . 前記電池用電解液と接触する耐食性金属部材が、集電体である請求項1に記載の電池用電解液と接触する耐食性金属部材の製造方法。   The method for producing a corrosion-resistant metal member in contact with the battery electrolyte according to claim 1, wherein the corrosion-resistant metal member in contact with the battery electrolyte is a current collector. 前記電池用電解液と接触する耐食性金属部材が、シート状チタン金属部材である請求項1または2に記載の電池用電解液と接触する耐食性金属部材の製造方法。   The method for producing a corrosion-resistant metal member in contact with the battery electrolyte according to claim 1 or 2, wherein the corrosion-resistant metal member in contact with the battery electrolyte is a sheet-like titanium metal member. 前記電池が、マグネシウム蓄電池である請求項1〜3のいずれかに記載の電池用電解液と接触する耐食性金属部材の製造方法。
The said battery is a magnesium storage battery, The manufacturing method of the corrosion-resistant metal member which contacts the electrolyte solution for batteries in any one of Claims 1-3.
JP2013037112A 2013-01-18 2013-02-27 Method for producing corrosion-resistant metal member for battery Active JP6302163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037112A JP6302163B2 (en) 2013-01-18 2013-02-27 Method for producing corrosion-resistant metal member for battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013007286 2013-01-18
JP2013007286 2013-01-18
JP2013037112A JP6302163B2 (en) 2013-01-18 2013-02-27 Method for producing corrosion-resistant metal member for battery

Publications (2)

Publication Number Publication Date
JP2014157801A JP2014157801A (en) 2014-08-28
JP6302163B2 true JP6302163B2 (en) 2018-03-28

Family

ID=51578548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037112A Active JP6302163B2 (en) 2013-01-18 2013-02-27 Method for producing corrosion-resistant metal member for battery

Country Status (1)

Country Link
JP (1) JP6302163B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502804B2 (en) * 2015-09-10 2019-04-17 トヨタ自動車株式会社 Negative electrode current collector and fluoride ion battery
WO2017216960A1 (en) 2016-06-17 2017-12-21 Tpr株式会社 Electric double layer capacitor
JP6504378B1 (en) * 2017-07-18 2019-04-24 Tpr株式会社 Hybrid capacitor
JP2019132883A (en) * 2018-01-29 2019-08-08 福井県 Metal hinge and spectacle frame including the same
CN111430581A (en) * 2020-03-31 2020-07-17 苏州锂盾储能材料技术有限公司 High-corrosion-resistance type bimetal film composite aluminum plastic film and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135316A (en) * 2008-11-10 2010-06-17 Equos Research Co Ltd Current collector and battery
US8361661B2 (en) * 2011-03-08 2013-01-29 Pellion Technologies Inc. Rechargeable magnesium ion cell components and assembly

Also Published As

Publication number Publication date
JP2014157801A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
Wu et al. A review of modified metal bipolar plates for proton exchange membrane fuel cells
JP6302163B2 (en) Method for producing corrosion-resistant metal member for battery
US8778562B2 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
Dundar et al. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates
CN103380525B (en) Fuel cell separator plate
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
Choe et al. Tantalum nitride coated AISI 316L as bipolar plate for polymer electrolyte membrane fuel cell
Stein et al. Challenges and perspectives of metal‐based proton exchange membrane's bipolar plates: exploring durability and longevity
JP5076601B2 (en) Method for producing conductive corrosion-resistant material
JP5507495B2 (en) Method for producing titanium fuel cell separator
JP5790906B1 (en) Titanium material or titanium alloy material having surface conductivity, fuel cell separator and fuel cell using the same
CN102292288A (en) Substrate for forming carbon nanotubes, carbon nanotube composite, energy device, method for producing same, and device incorporating same
JP5133466B2 (en) Fuel cell separator and method for producing the same
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
Pugal Mani et al. Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell
JP5634604B2 (en) Separator for fuel cell and method for producing the same
Han et al. Inductively coupled plasma nitriding of chromium electroplated AISI 316L stainless steel for PEMFC bipolar plate
CN107078305B (en) Surface-treated electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using same, and lithium ion secondary battery
Yan et al. Investigation of anodized Ta/Ag coating on magnesium bipolar plate for lightweight proton exchange membrane fuel cells
JP6805822B2 (en) Titanium material, separator, cell, and polymer electrolyte fuel cell
TW201832407A (en) Stainless steel plate substrate of steel plate for fuel cell separator, and method for producing same
Fan et al. Solution acidity and temperature induced anodic dissolution and degradation of through-plane electrical conductivity of Au/TiN coated metal bipolar plates used in PEMFC
CA2978236C (en) Titanium product, separator, and proton exchange membrane fuel cell, and method for producing titanium product
JP2004139951A (en) Separator for fuel cell and its manufacturing method
Yin et al. High corrosion resistance of reduced graphene oxide coated 316L stainless steel bipolar plate for proton exchange membrane fuel cell prepared by a facile method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170622

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6302163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250