JP6300430B2 - Film thickness measuring method and film thickness measuring apparatus - Google Patents

Film thickness measuring method and film thickness measuring apparatus Download PDF

Info

Publication number
JP6300430B2
JP6300430B2 JP2012075116A JP2012075116A JP6300430B2 JP 6300430 B2 JP6300430 B2 JP 6300430B2 JP 2012075116 A JP2012075116 A JP 2012075116A JP 2012075116 A JP2012075116 A JP 2012075116A JP 6300430 B2 JP6300430 B2 JP 6300430B2
Authority
JP
Japan
Prior art keywords
light
air layer
optical distance
coating film
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012075116A
Other languages
Japanese (ja)
Other versions
JP2013205253A (en
Inventor
達雄 椎名
達雄 椎名
森 健二
健二 森
豊人 中岡
豊人 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Chiba University NUC
Original Assignee
Kansai Paint Co Ltd
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Chiba University NUC filed Critical Kansai Paint Co Ltd
Priority to JP2012075116A priority Critical patent/JP6300430B2/en
Publication of JP2013205253A publication Critical patent/JP2013205253A/en
Application granted granted Critical
Publication of JP6300430B2 publication Critical patent/JP6300430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、膜厚測定方法および膜厚測定装置に関し、より詳細には、測定の基準となる空気層を導入することにより、塗膜の硬化前後の屈折率を事前に測定すること無く、塗膜の膜厚および膜厚変化を測定する方法および装置に関する。   The present invention relates to a film thickness measuring method and a film thickness measuring apparatus, and more specifically, by introducing an air layer that serves as a reference for measurement, without applying a refractive index before and after curing of the coating film in advance. The present invention relates to a method and apparatus for measuring film thickness and film thickness change.

自動車等の工業製品や、建築物の内装材、外装材の表面には、素材の保護および美粧性を付与することを目的として、各種の塗料が塗装され、塗膜が形成されている。近年では、特定の波長を有する光の照射(例えば、紫外線照射)によって反応硬化する塗料(光硬化樹脂)を使用して、塗料を数秒で硬化させる塗装方法が導入されている。   Various paints are applied to the surfaces of industrial products such as automobiles, and interior materials and exterior materials of buildings for the purpose of protecting the materials and providing cosmetics, thereby forming coating films. In recent years, a coating method has been introduced in which a paint (photo-curing resin) that is reactively cured by irradiation with light having a specific wavelength (for example, ultraviolet irradiation) is used to cure the paint in a few seconds.

特定波長の光の照射により光硬化樹脂が反応硬化すると、その膜厚は減少する。塗膜の機能を維持するためには、塗装後の塗膜の状態を管理する必要があり、塗膜の膜厚を知る必要がある。光照射後の硬化後の塗膜の膜厚を測定する方法としては、例えば、塗膜表面の位置をレーザ変位計で測定する方法や、近年研究されているテラヘルツ波を用いた光干渉断層法(特許文献1)がある。また、光硬化樹脂の収縮率を計測する方法としては、例えば、光照射前の塗料の液体比重と硬化後の固体比重とを比較する方法がある。   When the photocurable resin is reactively cured by irradiation with light of a specific wavelength, the film thickness decreases. In order to maintain the function of the coating film, it is necessary to manage the state of the coating film after coating, and it is necessary to know the film thickness of the coating film. Examples of methods for measuring the film thickness of the coating film after light irradiation include a method of measuring the position of the coating film surface with a laser displacement meter, and an optical coherence tomography method using a terahertz wave that has been studied recently. (Patent Document 1). In addition, as a method for measuring the shrinkage rate of the photocurable resin, for example, there is a method of comparing the liquid specific gravity of the paint before light irradiation with the solid specific gravity after curing.

特開2004−028618号公報JP 2004-028618 A

しかしながら、従来から公知の膜厚測定方法にも問題がある。例えば、膜厚を直接的に測定する方法として、塗膜表面の位置をレーザ変位計で測定する方法では、レーザ照射部を基点として膜厚を測定するので、レーザ照射部と塗膜との間の距離を厳密に管理する必要があった。またこれにより、測定システムが複雑化するという欠点があった。さらに、特許文献1に記載のテラヘルツ波を用いた光干渉断層法では、膜の深さ方向(厚さ方向)の分解能が不十分な上に、光源にフェムト秒レーザを用いたり多数の光学素子を用いるなど、測定システムが複雑化かつ大型化するという欠点があった。また、光硬化樹脂の収縮率は、用いる光硬化樹脂の種類によって異なるので、収縮率が低い場合、塗装後(硬化後)の塗膜の膜厚を高精度かつ短時間で測定することができなかった。また、塗膜の硬化前後の屈折率を事前に測定しておく必要があり、別途の工程を必要としていた。   However, there are problems with the conventionally known film thickness measurement methods. For example, as a method of directly measuring the film thickness, the method of measuring the position of the coating film surface with a laser displacement meter measures the film thickness from the laser irradiation part as the base point. It was necessary to strictly manage the distance. This also has the disadvantage that the measurement system becomes complicated. Furthermore, in the optical coherence tomography method using the terahertz wave described in Patent Document 1, the resolution in the depth direction (thickness direction) of the film is insufficient, and a femtosecond laser is used as the light source, or many optical elements are used. There is a disadvantage that the measurement system becomes complicated and large. In addition, since the shrinkage of the photo-curing resin varies depending on the type of photo-curing resin used, when the shrinkage is low, the film thickness of the coating film after coating (after curing) can be measured with high accuracy and in a short time. There wasn't. In addition, the refractive index before and after curing of the coating film needs to be measured in advance, which requires a separate process.

本発明は、上記説明した従来技術の問題を解決するために成されたものであり、その目的は、塗膜の硬化前後の屈折率を事前に測定すること無く、塗膜の膜厚を高精度かつ短時間で測定することができる膜厚測定方法および装置を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and its purpose is to increase the coating film thickness without measuring the refractive index before and after curing of the coating film in advance. An object of the present invention is to provide a film thickness measuring method and apparatus capable of measuring with accuracy and in a short time.

また、本発明の別の目的は、塗膜の硬化前後の屈折率を事前に測定すること無く、塗膜の膜厚変化を高精度かつ短時間で測定することができる膜厚測定方法および装置を提供することにある。   Another object of the present invention is to provide a film thickness measuring method and apparatus capable of measuring a change in film thickness of a coating film with high accuracy and in a short time without measuring the refractive index before and after curing of the coating film in advance. Is to provide.

上記目的の達成のために、本発明に係る膜厚測定方法は、所定の厚さを有する基準空気層内に載置された塗膜に光源からの測定光を照射し、前記塗膜からの反射光を含む干渉光の強度を検出することにより、前記塗膜の膜厚を測定する方法であって、光源からの測定光を、参照光と前記基準空気層への入射光とに分岐する分岐ステップと、前記参照光の光学距離を調整して、前記基準空気層からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第1の強度信号(B,D)を検出する第1の検出ステップと、検出した複数の前記第1の強度信号の隣接するピーク間の間隔から、前記基準空気層の厚さに対応する光学距離(BD)を決定する第1の光学距離決定ステップと、前記基準空気層内に前記塗膜を載置し、前記塗膜の前記測定光の照射側に隣接する第1の空気層を画定する塗膜載置ステップと、前記参照光の光学距離を調整して、前記第1の空気層からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第2の強度信号(B,C’)を検出する第2の検出ステップと、検出した複数の前記第2の強度信号の隣接するピーク間の間隔から、前記第1の空気層の厚さに対応する光学距離(BC’)を決定する第2の光学距離決定ステップと、前記基準空気層の光学距離(BD)と、前記第1の空気層の光学距離(BC’)とから、前記塗膜の厚さ(c’d)を計算する第1の膜厚計算ステップとを含む。   In order to achieve the above object, a film thickness measuring method according to the present invention irradiates a coating film placed in a reference air layer having a predetermined thickness with measurement light from a light source, A method of measuring the film thickness of the coating film by detecting the intensity of interference light including reflected light, wherein the measurement light from a light source is branched into reference light and incident light to the reference air layer A branching step and an optical distance of the reference light are adjusted so that the reflected light from the reference air layer interferes with the reference light, and a plurality of first intensity signals (B, D) due to the interference are detected. A first optical distance determination that determines an optical distance (BD) corresponding to the thickness of the reference air layer from a first detection step and an interval between adjacent peaks of the detected plurality of first intensity signals. Step, placing the coating film in the reference air layer, and measuring the coating film A coating-film placing step for defining a first air layer adjacent to the irradiation side of the light source, and adjusting an optical distance of the reference light so that the reflected light from the first air layer interferes with the reference light. From the second detection step of detecting a plurality of second intensity signals (B, C ′) due to the interference and the interval between adjacent peaks of the detected plurality of second intensity signals, the first A second optical distance determining step for determining an optical distance (BC ′) corresponding to a thickness of the air layer; an optical distance (BD) of the reference air layer; and an optical distance (BC ′) of the first air layer. And a first film thickness calculating step for calculating the thickness (c′d) of the coating film.

また、本発明に係る膜厚測定装置は、所定の厚さを有する基準空気層内に載置された塗膜に光源からの測定光を照射し、前記塗膜からの反射光を含む干渉光の強度を検出することにより、前記塗膜の膜厚を測定する装置であって、光源と、前記光源からの測定光を、参照光と、前記基準空気層または前記塗膜への入射光とに分岐する分岐手段と、前記参照光の光学距離を調整する参照光光学系と、前記入射光を前記基準空気層または前記塗膜へ入射させ、さらに、前記基準空気層または前記塗膜からの反射光を取り出す反射光光学系と、前記反射光光学系からの反射光と前記参照光光学系からの参照光とを干渉せしめる干渉手段と、前記干渉手段からの、前記反射光を含む干渉光を検出して前記干渉光の強度信号を出力する検出手段と、前記強度信号を解析する解析手段とを備え、前記塗膜が基準空気層内に載置されていない第1の状態の測定対象に対して、前記検出手段が、前記基準空気層からの反射光と前記参照光との干渉による複数の第1の強度信号(B,D)を検出して出力し、前記解析手段が、検出した複数の前記第1の強度信号の隣接するピーク間の間隔から、前記基準空気層の厚さに対応する光学距離(BD)を決定し、前記塗膜が基準空気層内に載置されている第2の状態の、前記塗膜の前記測定光の照射側に隣接する第1の空気層が画定されている測定対象に対して、前記検出手段が、前記第1の空気層からの反射光と前記参照光との干渉による複数の第2の強度信号(B,C’)を検出して出力し、前記解析手段が、検出した複数の前記第2の強度信号の隣接するピーク間の間隔から、前記第1の空気層の厚さに対応する光学距離(BC’)を決定し、前記検出手段が、前記基準空気層の光学距離(BD)と、前記第1の空気層の光学距離(BC’)とから、前記塗膜の厚さ(c’d)を計算する。   In addition, the film thickness measuring apparatus according to the present invention irradiates the coating film placed in a reference air layer having a predetermined thickness with measurement light from a light source, and includes interference light including reflected light from the coating film. Is a device that measures the film thickness of the coating film by detecting the intensity of the light source, the measurement light from the light source, the reference light, and the incident light on the reference air layer or the coating film. Branching means for branching into the reference light, a reference light optical system for adjusting the optical distance of the reference light, the incident light incident on the reference air layer or the coating film, and further from the reference air layer or the coating film Reflected light optical system for extracting reflected light, interference means for causing reflected light from the reflected light optical system to interfere with reference light from the reference light optical system, and interference light including the reflected light from the interference means Detecting means for detecting the interference light and outputting an intensity signal of the interference light, and An analysis means for analyzing the degree signal, and for the measurement object in the first state where the coating film is not placed in the reference air layer, the detection means includes reflected light from the reference air layer and A plurality of first intensity signals (B, D) due to interference with the reference light are detected and output, and the analysis means determines the interval between adjacent peaks of the detected plurality of first intensity signals. An optical distance (BD) corresponding to the thickness of the reference air layer is determined, and the coating film is placed in the reference air layer in a second state on the measurement light irradiation side of the coating film. For the measurement object in which the adjacent first air layer is defined, the detection means has a plurality of second intensity signals (B) due to interference between the reflected light from the first air layer and the reference light. , C ′) are detected and output, and the analysis means is adjacent to the detected plurality of second intensity signals. The optical distance (BC ′) corresponding to the thickness of the first air layer is determined from the interval between the peaks, and the detecting means determines the optical distance (BD) of the reference air layer and the first air layer. From the optical distance (BC ′) of the air layer, the thickness (c′d) of the coating film is calculated.

本発明に係る膜厚測定方法および膜厚測定装置によれば、塗膜の硬化前後の屈折率を事前に測定すること無く、光照射後の硬化後の塗膜の膜厚を、高精度かつ短時間で測定することができる。測定光に近赤外光を使用することにより、顔料を含む可視光の透過率が小さい塗膜についても膜厚の測定が可能である。   According to the film thickness measuring method and film thickness measuring apparatus according to the present invention, the film thickness of the coated film after light irradiation can be measured with high accuracy without measuring the refractive index before and after curing of the coated film in advance. It can be measured in a short time. By using near-infrared light as measurement light, the film thickness can be measured even for a coating film containing a pigment and having a low visible light transmittance.

また、本発明に係る膜厚測定方法および膜厚測定装置によれば、光干渉断層法を採用しているので、従来と比較して測定に必要な光学素子の数を減少させることができ、装置自体を小型化して、ポータブルなサイズで製作することが可能である。光干渉断層法では測定対象の層に測定光を照射し、測定対象の層に直接的に接触することがないので、塗膜が硬化する前のウェット膜に対しても、膜厚の測定が可能となる。硬化前のウェット膜に対しても膜厚の測定が可能であるので、硬化用の光照射後の硬化後の塗膜に対しても膜厚の測定を行うことにより、膜厚の減少率や膜厚の収縮率といった、光照射後の膜厚変化を測定することが可能となる。さらに、屈折率が未知の物質に関して、測定対象の層に直接的に接触することがなく、屈折率を測定することが可能となる。   Further, according to the film thickness measuring method and the film thickness measuring apparatus according to the present invention, since the optical coherence tomography method is adopted, the number of optical elements necessary for measurement can be reduced as compared with the prior art, The device itself can be miniaturized and manufactured in a portable size. The optical coherence tomography method irradiates the measurement target layer with measurement light and does not directly contact the measurement target layer, so the film thickness can be measured even on a wet film before the coating film is cured. It becomes possible. Since the film thickness can be measured even for the wet film before curing, the film thickness reduction rate and the film thickness can also be measured by measuring the film thickness for the cured coating film after light irradiation for curing. It is possible to measure a change in film thickness after light irradiation, such as the shrinkage rate of the film thickness. Furthermore, it is possible to measure the refractive index of a substance with an unknown refractive index without directly contacting the measurement target layer.

本発明の実施の形態に係る光硬化樹脂の膜厚測定装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the film thickness measuring apparatus of the photocurable resin which concerns on embodiment of this invention. 本発明の実施の形態に係る膜厚測定装置を用いて光硬化樹脂の塗膜からなるサンプルに対して干渉光強度の測定を行う例を説明する模式図である。It is a schematic diagram explaining the example which measures an interference light intensity | strength with respect to the sample which consists of a coating film of photocuring resin using the film thickness measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る膜厚測定装置を用いて、測定の基準として空気層を使用するサンプルに対して干渉光強度の測定を行う例を説明する模式図であり、石英ガラスとの間に空気層が設けられたサンプルを示す模式図である。It is a schematic diagram explaining the example which measures an interference light intensity with respect to the sample which uses an air layer as a standard of measurement using the film thickness measuring device concerning an embodiment of the invention, and between quartz glass It is a schematic diagram which shows the sample in which the air layer was provided. 本発明の実施の形態に係る膜厚測定装置を用いて、測定の基準として空気層を使用するサンプルに対して干渉光強度の測定を行う例を説明する模式図であり、干渉光強度と光学距離との関係を表すプロファイルを示す模式図である。It is a schematic diagram explaining the example which measures an interference light intensity with respect to the sample which uses an air layer as a standard of measurement using the film thickness measuring device concerning an embodiment of the invention, interference light intensity and optics It is a schematic diagram which shows the profile showing the relationship with distance.

以下、本発明の実施の形態を、添付の図面を参照して詳細に説明する。なお、以下の説明及び図面において、同じ符号は同じ又は類似の構成要素を示すこととし、よって、同じ又は類似の構成要素に関する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that, in the following description and drawings, the same reference numerals indicate the same or similar components, and thus descriptions of the same or similar components are omitted.

本発明では、位置分解能が高く、塗膜に対する透過性が高い近赤外線を測定光の好ましい光源とし、光源から2つに分岐された一方の測定系光路の光線を塗膜に照射し、他方の参照系光路の光線を参照光とし、少なくとも参照系光路の光学距離を制御しながら、2つの光路の光学距離が一致したときに生じる、塗膜からの反射光と参照光との重ね合わせによる干渉光を測定することにより、塗膜の膜厚を測定する。特に、本発明では、測定の基準となる空気層を導入することにより、塗膜の硬化前後の屈折率を事前に測定すること無く、塗膜の膜厚および膜厚変化を測定する。以下では、本発明の一実施の形態として、光硬化樹脂を使用して塗膜を形成した場合について説明する。   In the present invention, near infrared light having high position resolution and high transparency to the coating film is used as a preferred light source for the measurement light, the coating film is irradiated with the light beam of one measurement system optical path branched into two from the light source, and the other Interference caused by superposition of the reflected light from the coating and the reference light that occurs when the optical distance between the two optical paths coincides while controlling the optical distance of at least the reference system optical path with the light beam in the reference system optical path as the reference light The film thickness of the coating film is measured by measuring light. In particular, in the present invention, by introducing an air layer serving as a measurement reference, the film thickness and film thickness change of the coating film are measured without measuring the refractive index before and after curing of the coating film in advance. Below, the case where a coating film is formed using photocuring resin is demonstrated as one embodiment of this invention.

本発明では光の干渉現象を利用するので、光が通過する距離を波長単位で評価することが必要である。本発明では、光は異なる媒質中(空気、塗膜中の各層)を通過するので波長が変化する。従って、本明細書において「距離」とは、特別な記載が無い限り、媒質の屈折率を考慮した「光学距離」を意味することとする。
(1)装置構成
図1は、本発明の実施の形態に係る塗膜の膜厚測定装置の概略構成を示すブロック図である。
In the present invention, since the light interference phenomenon is used, it is necessary to evaluate the distance that the light passes in wavelength units. In the present invention, since the light passes through different media (air, each layer in the coating film), the wavelength changes. Accordingly, in this specification, “distance” means “optical distance” in consideration of the refractive index of the medium unless otherwise specified.
(1) Apparatus Configuration FIG. 1 is a block diagram showing a schematic configuration of a coating film thickness measuring apparatus according to an embodiment of the present invention.

本実施の形態に係る塗膜の膜厚測定装置は、マイケルソン干渉計の原理を用いるOCT(Optical Coherence Tomography:光干渉断層法)を採用し、光源部と、光源部からの光を用いて干渉を生じさせる第1光学部と、塗膜のサンプルに光を照射し、サンプルからの反射光を第1光学部に入射させる第2光学部と、参照光を制御する第3光学部と、干渉光を受光して増幅する受光増幅部と、増幅の結果を記録して解析する解析部とを備えて構成される。   The coating thickness measuring apparatus according to the present embodiment employs OCT (Optical Coherence Tomography) using the principle of a Michelson interferometer, and uses a light source unit and light from the light source unit. A first optical unit that causes interference, a second optical unit that irradiates light to the sample of the coating film and makes reflected light from the sample enter the first optical unit, and a third optical unit that controls the reference light, A light receiving amplification unit that receives and amplifies the interference light and an analysis unit that records and analyzes the result of amplification are configured.

より具体的には、膜厚測定装置は、光源1と、ビームスプリッタ2と、集束レンズ3と、位置可変機構付き交差ミラー5と、固定ミラー6と、受光センサ7と、増幅器8と、コンピュータ9とを備える。ビームスプリッタ2は、光源1で発生させた光を入射光と参照光とに分岐し、後述の反射光と参照光とを重ね合わせ、干渉を生じさせる。集束レンズ3は、入射光を集束させてサンプル4に照射し、サンプル4からの反射光をビームスプリッタ2に戻させる。サンプル4は石英ガラス10の層で挟まれており、サンプル4と石英ガラス10との間に空気層11が設けられる。位置可変機構付き交差ミラー5は、参照光の光学距離を変化させ、且つ、参照光をビームスプリッタ2に戻させる。位置可変機構付き交差ミラー5の移動距離(物理距離)は、公知のインタフェースを介してコンピュータ9に送信される。固定ミラー6は、位置可変機構付き交差ミラー5に固定されているミラーである。受光センサ7は干渉光を受光する。増幅器8は受光センサ7の出力信号を増幅する。コンピュータ9は増幅した信号を解析する。   More specifically, the film thickness measuring apparatus includes a light source 1, a beam splitter 2, a focusing lens 3, a cross mirror 5 with a position variable mechanism, a fixed mirror 6, a light receiving sensor 7, an amplifier 8, and a computer. 9. The beam splitter 2 branches the light generated by the light source 1 into incident light and reference light, and superimposes reflected light and reference light described later to cause interference. The focusing lens 3 focuses the incident light and irradiates the sample 4, and returns the reflected light from the sample 4 to the beam splitter 2. The sample 4 is sandwiched between layers of quartz glass 10, and an air layer 11 is provided between the sample 4 and the quartz glass 10. The cross mirror 5 with a position variable mechanism changes the optical distance of the reference light and returns the reference light to the beam splitter 2. The moving distance (physical distance) of the crossing mirror 5 with a position variable mechanism is transmitted to the computer 9 via a known interface. The fixed mirror 6 is a mirror fixed to the intersecting mirror 5 with a position variable mechanism. The light receiving sensor 7 receives the interference light. The amplifier 8 amplifies the output signal of the light receiving sensor 7. The computer 9 analyzes the amplified signal.

本実施の形態では、ビームスプリッタ2が第1光学部に相当し、集束レンズ3が第2光学部に相当し、位置可変機構付き交差ミラー5および固定ミラー6が第3光学部に相当し、受光センサ7および増幅器8が受光増幅部に相当し、コンピュータ9が解析部に相当する。
(2)装置の動作
次に、本実施の形態に係る塗膜の膜厚測定装置の動作を、図1に示す膜厚測定装置の一例を用いて説明する。
In the present embodiment, the beam splitter 2 corresponds to the first optical unit, the focusing lens 3 corresponds to the second optical unit, the intersecting mirror 5 with a position variable mechanism and the fixed mirror 6 correspond to the third optical unit, The light receiving sensor 7 and the amplifier 8 correspond to a light receiving amplification unit, and the computer 9 corresponds to an analysis unit.
(2) Operation of Apparatus Next, the operation of the coating film thickness measuring apparatus according to the present embodiment will be described using an example of the film thickness measuring apparatus shown in FIG.

サンプル4は、例えばガラス基板上に光硬化樹脂が塗布された塗膜であり、所定の台(図示せず)に載置される。光源1であるSLD(Super Luminescent Diode)から発せられた光は、ビームスプリッタ2によって、直進する参照光と進行方向が変更された入射光とに分岐される。入射光は、集束レンズ3によってサンプル4に入射し、サンプルからの反射光はまた、集束レンズ3を介してビームスプリッタ2に入射する。一方、位置可変機構付き交差ミラー5は、図1に矢印Xで示す方向に例えば左から右へ移動させられながら、すなわち、参照光の光学距離を変化させながら、参照光の方向を変更して参照光をビームスプリッタ2に入射させる。このとき、ビームスプリッタ2において、サンプル4からの反射光と位置可変機構付き交差ミラー5からの参照光とが重なり合い、干渉が生じる。このように形成された干渉光は、受光センサ7によって受光される。増幅器8は受光センサ9の出力を増幅し、コンピュータ9は、増幅器8の出力を解析して、塗膜の膜厚を後述する方法で算出する。   The sample 4 is a coating film in which a photocurable resin is applied on a glass substrate, for example, and is placed on a predetermined table (not shown). Light emitted from an SLD (Super Luminescent Diode) that is the light source 1 is branched by the beam splitter 2 into reference light that travels straight and incident light whose traveling direction has been changed. Incident light is incident on the sample 4 by the focusing lens 3, and reflected light from the sample is also incident on the beam splitter 2 via the focusing lens 3. On the other hand, the crossing mirror 5 with a variable position mechanism changes the direction of the reference light while being moved, for example, from the left to the right in the direction indicated by the arrow X in FIG. 1, that is, while changing the optical distance of the reference light. Reference light is incident on the beam splitter 2. At this time, in the beam splitter 2, the reflected light from the sample 4 and the reference light from the intersecting mirror 5 with a position variable mechanism overlap each other, causing interference. The interference light thus formed is received by the light receiving sensor 7. The amplifier 8 amplifies the output of the light receiving sensor 9, and the computer 9 analyzes the output of the amplifier 8 and calculates the film thickness of the coating film by a method described later.

上記した位置可変機構付き交差ミラー5を移動する理由、すなわち位置可変機構付き交差ミラー5の位置を走査する理由は、参照光の光学距離を変化させるためである。ビームスプリッタ2においてサンプル4からの反射光と重ね合う際に、参照光は、その光学距離に応じたサンプル4の深さ方向の、所定の距離からの反射光と干渉を生じる。すなわち、参照光の光学距離と入射光および反射光の光学距離とが等しいときに、干渉光の強度が増大する。   The reason for moving the cross mirror 5 with the position variable mechanism, that is, the reason for scanning the position of the cross mirror 5 with the position variable mechanism is to change the optical distance of the reference light. When the beam splitter 2 overlaps the reflected light from the sample 4, the reference light interferes with the reflected light from a predetermined distance in the depth direction of the sample 4 according to the optical distance. That is, the intensity of the interference light increases when the optical distance of the reference light is equal to the optical distances of the incident light and the reflected light.

例えば、まず、図1に示す配置において、ビームスプリッタ2から位置可変機構付き交差ミラー5を介した固定ミラー6までの距離を、ビームスプリッタ2からサンプル4の表面までの距離と同じ距離に設定する。次に、この状態から、位置可変機構付き交差ミラー5を右へ、光硬化樹脂層の厚さほど移動させると、例えば光硬化樹脂の屈折率が空気の屈折率と同じである場合、参照光は、光硬化樹脂の底面の界面で生じた反射光と干渉を生じる。   For example, first, in the arrangement shown in FIG. 1, the distance from the beam splitter 2 to the fixed mirror 6 via the crossing mirror 5 with a position variable mechanism is set to the same distance as the distance from the beam splitter 2 to the surface of the sample 4. . Next, from this state, when the cross mirror 5 with a position variable mechanism is moved to the right by the thickness of the photocurable resin layer, for example, when the refractive index of the photocurable resin is the same as the refractive index of air, the reference light is , Interference occurs with the reflected light generated at the interface of the bottom surface of the photocurable resin.

従って、光硬化樹脂層の膜厚を計測するには、位置可変機構付き交差ミラー5の位置を最小でも、光硬化樹脂層の全体の厚さほど走査(スキャン)する必要がある。
(3)干渉光の測定から得られる情報
屈折率が不連続に変化する部分において光の反射が生じる。すなわち、サンプルからの反射光はサンプル中の屈折率の変化を反映する情報である。塗膜において屈折率変化の大きな要因となるのは「塗膜と塗膜との間の(層間の)屈折率差」、「光源波長λに対してλ/2に相当するサイズの塗膜含有物(主に顔料)、相分離構造」などである。
Therefore, in order to measure the film thickness of the photo-curing resin layer, it is necessary to scan the entire thickness of the photo-curing resin layer even if the position of the intersecting mirror 5 with the position variable mechanism is the minimum.
(3) Information obtained from measurement of interference light Light reflection occurs in a portion where the refractive index changes discontinuously. That is, the reflected light from the sample is information reflecting a change in the refractive index in the sample. The major causes of refractive index change in the coating film are “difference in refractive index between coating films (between layers)” and “including coating film with a size corresponding to λ / 2 with respect to light source wavelength λ” Products (mainly pigments), phase separation structures, etc.

このうち、層間の屈折率差による屈折率変化は、塗膜の各層の厚さがほぼ一定であると考えられるので、塗膜の深さ方向の位置はほぼ一定である。この特徴により、屈折率変化が層間の屈折率差に起因するものか、あるいは、含有物の存在に起因するものかを区別することが可能となる。   Among these, the refractive index change due to the refractive index difference between the layers is considered that the thickness of each layer of the coating film is substantially constant, so the position in the depth direction of the coating film is substantially constant. This feature makes it possible to distinguish whether the change in refractive index is due to the difference in refractive index between layers or due to the presence of inclusions.

図2は、本発明の実施の形態に係る膜厚測定装置を用いて光硬化樹脂の塗膜からなるサンプルに対して測定を行い、検出信号を解析する例を説明する模式図である。図2(A)は、ガラス板と表層の光硬化樹脂層とからなる塗膜のサンプルを示している。図2(B)は、干渉光強度と光学距離との関係を表すプロファイルを示している。例えば、一例として図2(B)のプロファイルが示すピークパターンには以下のような関係が存在し、塗膜の膜厚や屈折率の算出に利用することができる。
・ピークの数
干渉光強度のピーク、すなわち、最も強い干渉光を生じさせた場所は、屈折率の変化が最も大きい場所であり、塗膜の屈折率が変化する界面、および塗膜と周囲との界面を意味する。例えば、自然環境(空気中)に置かれるサンプルが、素材と、素材上のN層の複層塗膜とを備える場合、空気と複層塗膜の表層との屈折率の相違、および、素材と複層塗膜の最下層との屈折率の相違を考慮すると、複層塗膜を取り巻く屈折率が変化する界面の数はN+1である。すなわち、屈折率が変化する界面の数は、屈折率が異なる複層塗膜の層の数より1つ多くなる。これにより、界面に対応するピークの数から、複層塗膜が何層の塗膜から構成されているのかが分かる。
・ピーク間の距離
ピーク間の距離は、すなわち光学距離であり、膜の厚さおよび屈折率により決まる。従って、ピーク間の距離により各層の膜厚を求めることができる。後述する実施形態において詳細に説明するように、本発明では、測定の基準となる空気層を導入することにより、塗膜の硬化前後の屈折率を事前に測定すること無く、ピーク間の光学距離により、塗膜の膜厚を測定することが可能である。塗膜の硬化前後の両方において、ピーク間の光学距離から空気層の光学距離を求めることにより、塗膜の硬化前後の膜厚および屈折率の両方を測定することが可能である。
・ピークの高さおよびピークパターン
ピークの高さの比率から、それぞれの界面や層内の状態を知ることができ、ピークのパターンから、塗膜の内部構造を知ることができる。
(4)膜厚測定方法
次に、本実施の形態に係る膜厚測定装置を使用して得られた典型的な測定結果に基づいた、光硬化樹脂の膜厚測定方法を説明する。まず、ピーク間の距離から光硬化樹脂の相対的な光学距離を求める方法を説明する。次に、測定の基準となる空気層を導入することにより、光硬化樹脂の硬化前後の屈折率を事前に測定すること無く、膜厚を測定する方法を説明する。
FIG. 2 is a schematic diagram for explaining an example in which measurement is performed on a sample made of a coating film of a photo-curing resin by using the film thickness measurement device according to the embodiment of the present invention, and a detection signal is analyzed. FIG. 2 (A) shows a sample of a coating film composed of a glass plate and a surface photocurable resin layer. FIG. 2B shows a profile representing the relationship between the interference light intensity and the optical distance. For example, the following relationship exists in the peak pattern shown by the profile in FIG. 2B as an example, and can be used for calculation of the film thickness and refractive index of the coating film.
Number of peaks The peak of the interference light intensity, that is, the place where the strongest interference light is generated is the place where the change in the refractive index is the largest, the interface where the refractive index of the coating film changes, and the coating film and the surroundings. Means the interface. For example, when a sample placed in a natural environment (in the air) includes a material and a multilayer coating film of N layers on the material, the difference in refractive index between the air and the surface layer of the multilayer coating film, and the material In consideration of the difference in refractive index between the lowermost layer and the lowermost layer of the multilayer coating film, the number of interfaces surrounding the multilayer coating film where the refractive index changes is N + 1. That is, the number of interfaces where the refractive index changes is one more than the number of layers of the multilayer coating film having different refractive indexes. Thereby, it can be seen from the number of peaks corresponding to the interface how many layers the multilayer coating film is composed of.
-Distance between peaks The distance between peaks is the optical distance, and is determined by the thickness and refractive index of the film. Therefore, the film thickness of each layer can be obtained from the distance between the peaks. As will be described in detail in the embodiments to be described later, in the present invention, by introducing an air layer as a measurement reference, the optical distance between peaks without measuring the refractive index before and after curing of the coating film in advance. Thus, the film thickness of the coating film can be measured. By obtaining the optical distance of the air layer from the optical distance between the peaks both before and after curing of the coating film, it is possible to measure both the film thickness and the refractive index before and after curing of the coating film.
-Peak height and peak pattern From the ratio of peak height, the state of each interface and layer can be known, and the internal structure of the coating film can be known from the peak pattern.
(4) Film thickness measuring method Next, the film thickness measuring method of photocuring resin based on the typical measurement result obtained using the film thickness measuring apparatus which concerns on this Embodiment is demonstrated. First, a method for obtaining the relative optical distance of the photocurable resin from the distance between peaks will be described. Next, a method for measuring the film thickness by introducing an air layer as a measurement reference without measuring the refractive index before and after the curing of the photocurable resin in advance will be described.

図2(A)は、ガラス板と表層の光硬化樹脂層とからなる塗膜のサンプルを示している。サンプル中の隣接する各層間の屈折率が異なるため、図1に示す光源1からサンプルに測定用の光(測定光)を照射すると、測定光はサンプルの各層の上面で反射されて、反射光α、β、γを生じる。   FIG. 2 (A) shows a sample of a coating film composed of a glass plate and a surface photocurable resin layer. Since the refractive index between adjacent layers in the sample is different, when the sample is irradiated with measurement light (measurement light) from the light source 1 shown in FIG. 1, the measurement light is reflected on the upper surface of each layer of the sample, and reflected light is reflected. produces α, β, γ.

これらの反射光のそれぞれは、干渉が生じるように調整された光学距離を持つ参照光と干渉し強め合い、受光センサ7によって受光されて、図2(B)に示す3つのピーク信号が得られる。ここで、図2(B)の横軸は、得られた干渉光間の光学距離を表し、縦軸は、受光した干渉光の強度を表している。図2(B)においてピーク信号に付した参照符号α〜γは、図2(A)における反射光α〜γに対応する。図2(B)に示すように、3つのピーク信号α〜γで規定される2つのピーク間の間隔のうち、ピーク信号α〜β間の間隔が、反射光α、βを生じた膜の膜厚(すなわち光硬化樹脂の膜厚)に相当し、ピーク信号β〜γ間の間隔が、反射光β、γを生じた膜の膜厚(すなわちガラス板の厚さ)に相当する。   Each of these reflected lights interferes with and strengthens the reference light having an optical distance adjusted so that interference occurs, and is received by the light receiving sensor 7 to obtain the three peak signals shown in FIG. . Here, the horizontal axis of FIG. 2B represents the optical distance between the obtained interference lights, and the vertical axis represents the intensity of the received interference light. Reference numerals α to γ attached to the peak signal in FIG. 2B correspond to the reflected lights α to γ in FIG. As shown in FIG. 2B, among the intervals between the two peaks defined by the three peak signals α to γ, the interval between the peak signals α to β is that of the film that generates the reflected light α and β. This corresponds to the film thickness (that is, the film thickness of the photo-curing resin), and the interval between the peak signals β to γ corresponds to the film thickness (that is, the thickness of the glass plate) of the film that generates the reflected light β and γ.

ピーク間の間隔を求める具体的な手順を説明すると、まず、光源1から、膜厚測定用の測定光をサンプル4に照射し、光硬化樹脂の表層の界面から反射する反射光αに対応する干渉光の強度がピーク(極大)となる位置に、位置可変機構付き交差ミラー5の位置を調整する。この際の位置可変機構付き交差ミラー5の位置をPαとする。次に、位置可変機構付き交差ミラー5の位置を移動させ、光硬化樹脂の底面の界面から反射する反射光βに対応する干渉光の強度がピークとなる位置に、位置可変機構付き交差ミラー5の位置を調整する。この際の位置可変機構付き交差ミラー5の位置をPβとする。位置PαおよびPβの情報は、図2(B)に示すプロファイルのピーク信号α,βの位置にそれぞれ対応する。 A specific procedure for obtaining the interval between the peaks will be described. First, the sample 4 is irradiated with the measurement light for measuring the film thickness from the light source 1 and corresponds to the reflected light α reflected from the interface of the surface layer of the photocurable resin. The position of the cross mirror 5 with a position variable mechanism is adjusted to a position where the intensity of the interference light reaches a peak (maximum). The position of the position changing mechanism with crossing mirror 5 at this time the P alpha. Next, the position of the cross mirror 5 with a position variable mechanism is moved, and the cross mirror 5 with a position variable mechanism is at a position where the intensity of the interference light corresponding to the reflected light β reflected from the interface of the bottom surface of the photocurable resin reaches a peak. Adjust the position. The position of the intersecting mirror 5 with the position variable mechanism at this time is P β . The information on the positions P α and P β corresponds to the positions of the peak signals α and β in the profile shown in FIG.

このようにして得られた干渉光の強度と光学距離との関係図(プロファイル)を参照して、ピーク間の間隔からそれらの層の相対的な厚さ(光学距離)が分かる。 図3および図4は、本発明の実施の形態に係る膜厚測定装置を用いて、測定の基準として空気層を使用するサンプルに対して干渉光強度の測定を行う例を説明する模式図である。図3は、石英ガラス10との間に空気層11が設けられたサンプル4を示し、図4は、干渉光強度と光学距離との関係を表すプロファイルを示している。以下の説明では、層の厚さを表現する際に、アルファベットの小文字が物理距離を意味し、アルファベットの大文字が光学距離を意味することとする。   With reference to the relationship diagram (profile) between the intensity of interference light and the optical distance obtained in this way, the relative thickness (optical distance) of these layers can be found from the interval between peaks. 3 and 4 are schematic diagrams illustrating an example in which the interference light intensity is measured for a sample using an air layer as a measurement reference, using the film thickness measurement device according to the embodiment of the present invention. is there. FIG. 3 shows the sample 4 in which the air layer 11 is provided between the quartz glass 10 and FIG. 4 shows a profile representing the relationship between the interference light intensity and the optical distance. In the following description, when expressing the thickness of a layer, the lower case letter of the alphabet means the physical distance, and the upper case letter of the alphabet means the optical distance.

まず、図3(i)に示すように、塗膜サンプル4を抜いた状態で、2枚の石英ガラス10を重ねることにより、空気層11を形成する。空気層11の表層側の界面をb、底面側の界面をdとすると、空気層11の厚さは、物理距離ではbdと表され、光学距離ではBDと表される。この空気層11に対して、光源1から膜厚測定用の測定光を照射し、空気層11の光学距離BDを測定する。図4(i)のプロファイルに示すように、ピークAが界面aでの干渉光強度のピークに相当し、ピークBが界面bでの干渉光強度のピークに相当する。同様にピークDが界面dに相当し、ピークEが界面eに相当する。すなわち測定値BDは、図4(i)に示すピークB〜ピークD間の光学距離に相当する。   First, as shown in FIG. 3I, the air layer 11 is formed by stacking two quartz glasses 10 in a state where the coating film sample 4 is removed. When the interface on the surface layer side of the air layer 11 is b and the interface on the bottom surface side is d, the thickness of the air layer 11 is expressed as bd in the physical distance and BD in the optical distance. The air layer 11 is irradiated with measurement light for film thickness measurement from the light source 1 to measure the optical distance BD of the air layer 11. As shown in the profile of FIG. 4I, the peak A corresponds to the peak of the interference light intensity at the interface a, and the peak B corresponds to the peak of the interference light intensity at the interface b. Similarly, the peak D corresponds to the interface d, and the peak E corresponds to the interface e. That is, the measured value BD corresponds to the optical distance between peak B and peak D shown in FIG.

次に、図3(ii)に示すように、空気層11内に、膜厚の測定対象である光硬化樹脂のサンプル4を挿入する。サンプル4の表層側の界面をc’とすると、この状態での空気層11’の厚さは、光学距離ではBC’と表される。この空気層11’に対して、光源1から膜厚測定用の測定光を照射し、空気層11’の光学距離BC’を測定する。この測定値BC’は、図4(ii)に示すピークB〜ピークC’間の光学距離に相当する。   Next, as shown in FIG. 3 (ii), a photocuring resin sample 4 to be measured for film thickness is inserted into the air layer 11. When the interface on the surface layer side of the sample 4 is c ′, the thickness of the air layer 11 ′ in this state is represented as BC ′ in the optical distance. The air layer 11 ′ is irradiated with measurement light for measuring the film thickness from the light source 1 to measure the optical distance BC ′ of the air layer 11 ′. This measured value BC ′ corresponds to the optical distance between peak B and peak C ′ shown in FIG.

次に、図3(iii)に示すように、硬化用の光(例えば、紫外線)を照射する硬化用光源(図示せず)から、ウェット状態のサンプル4に硬化用の光を所定の時間照射し、光硬化樹脂を硬化させる。硬化により光照射後のサンプル4’は膜厚が減少する。硬化後のサンプル4’の表層側の界面をc’’とすると、この状態での空気層11’’の厚さは、光学距離ではBC’’と表される。この空気層11’’に対して、光源1から膜厚測定用の測定光を照射し、空気層11’’の光学距離BC’’を測定する。この測定値BC’’は、図4(iii)に示すピークB〜ピークC’’間の光学距離に相当する。   Next, as shown in FIG. 3 (iii), a curing light source (not shown) that irradiates light for curing (for example, ultraviolet rays) is irradiated on the sample 4 in a wet state for a predetermined time. Then, the photo-curing resin is cured. The film thickness of the sample 4 ′ after light irradiation is reduced by curing. When the interface on the surface layer side of the sample 4 ′ after curing is c ″, the thickness of the air layer 11 ″ in this state is represented by BC ″ in terms of optical distance. The air layer 11 ″ is irradiated with measurement light for film thickness measurement from the light source 1 to measure the optical distance BC ″ of the air layer 11 ″. The measured value BC ″ corresponds to the optical distance between the peak B and the peak C ″ shown in FIG. 4 (iii).

以上の測定により、空気層11の光学距離BDと、空気層11’の光学距離BC’と、空気層11’’の光学距離BC’’とを得ることができた。これら空気層の光学距離に関する3つの測定値を用いると、測定対象である光硬化樹脂のサンプルに関して、硬化前のウェット膜厚、硬化後のCURE膜厚、硬化収縮率、ウェット膜の屈折率、およびCURE膜の屈折率の全てを計算により得ることができる。   From the above measurement, the optical distance BD of the air layer 11, the optical distance BC ′ of the air layer 11 ′, and the optical distance BC ″ of the air layer 11 ″ were obtained. Using these three measured values for the optical distance of the air layer, for the photocured resin sample to be measured, the wet film thickness before curing, the CURE film thickness after curing, the curing shrinkage rate, the refractive index of the wet film, And all of the refractive index of the CURE film can be obtained by calculation.

まず、測定の基準とした空気層11の厚さbd(物理距離)を求めておく。空気の屈折率をnとすると、n=1であるので、 First, the thickness bd (physical distance) of the air layer 11 as a measurement reference is obtained. If the refractive index of air is n * , then n * = 1.

となり、光学距離がそのまま物理距離となる。図3(ii)に示すウェット膜厚c’dは、 Thus, the optical distance becomes the physical distance as it is. The wet film thickness c′d shown in FIG.

と表され、屈折率の値を用いることなく、光学距離の測定値BD,BC’により表すことができる。図3(iii)に示すCURE膜厚c’’dは、 And can be represented by measured values BD and BC ′ of the optical distance without using the value of the refractive index. The CURE film thickness c ″ d shown in FIG.

と表され、屈折率の値を用いることなく、光学距離の測定値BD,BC’’により表すことができる。光硬化樹脂の硬化前後の膜厚の収縮率は、 And can be represented by the measured values BD and BC ″ of the optical distance without using the refractive index value. The shrinkage ratio of the film thickness before and after curing of the photo-curing resin is

と表され、屈折率の値を用いることなく、光学距離の測定値BD,BC’’により表すことができる。 And can be represented by the measured values BD and BC ″ of the optical distance without using the refractive index value.

ウェット膜およびCURE膜の屈折率自体も、光学距離の測定値BD,BC’’により表すことができる。ウェット膜の屈折率nは、 The refractive indices of the wet film and the CURE film themselves can also be expressed by measured values BD and BC ″ of the optical distance. Refractive index n w of the wet film,

と表すことができ、CURE膜の屈折率nは、 Can be expressed as, the refractive index n c of the CURE film,

と表すことができる。ここで、光学距離C’D’は、図4(ii)に示すピークC’〜ピークD’間の光学距離に相当するので、図3(ii)に示す界面c’における干渉光強度のピークと界面dにおける干渉光強度のピークとを測定して、これらピーク間の光学距離を求める。同様に、光学距離C’’D’’は、図4(iii)に示すピークC’’〜ピークD’’間の光学距離に相当するので、図3(iii)に示す界面c’’における干渉光強度のピークと界面dにおける干渉光強度のピークとを測定して、これらピーク間の光学距離を求める。 It can be expressed as. Here, since the optical distance C′D ′ corresponds to the optical distance between the peak C ′ and the peak D ′ shown in FIG. 4 (ii), the peak of the interference light intensity at the interface c ′ shown in FIG. 3 (ii). And the peak of the interference light intensity at the interface d, and the optical distance between these peaks is obtained. Similarly, the optical distance C ″ D ″ corresponds to the optical distance between the peak C ″ and the peak D ″ shown in FIG. 4 (iii), and therefore at the interface c ″ shown in FIG. 3 (iii). The peak of the interference light intensity and the peak of the interference light intensity at the interface d are measured, and the optical distance between these peaks is obtained.

以上説明したように、空気層の光学距離に関する3つの測定値を用いると、測定対象である光硬化樹脂のサンプルに関して、硬化前のウェット膜厚、硬化後のCURE膜厚、硬化収縮率、ウェット膜の屈折率、およびCURE膜の屈折率の全てを計算により得ることができる。本発明の方法によると、これら膜厚の測定にWET膜およびCURE膜の屈折率は必要としないため、屈折率測定による誤差を考慮せずに済むこととなり、作業工程の面でも簡略化することができる。   As described above, when three measured values relating to the optical distance of the air layer are used, the wet film thickness before curing, the CURE film thickness after curing, the curing shrinkage rate, and the wet are measured for the photocured resin sample to be measured. All of the refractive index of the film and the refractive index of the CURE film can be obtained by calculation. According to the method of the present invention, since the refractive indexes of the WET film and the CURE film are not required for the measurement of the film thickness, it is not necessary to consider the error due to the refractive index measurement, and the work process can be simplified. Can do.

本膜厚測定装置により得られる膜の深さ方向(厚さ方向)の空間分解能ΔTは、入射光の性質によって決められ、光源の波長幅Δλが広いほど、光源の波長λが短いほど向上する。空間分解能ΔTは、下記の式1により求めることができる。 The spatial resolution ΔT in the depth direction (thickness direction) of the film obtained by this film thickness measuring device is determined by the nature of the incident light, and increases as the wavelength width Δλ of the light source is wider and the wavelength λ 0 of the light source is shorter. To do. The spatial resolution ΔT can be obtained by the following equation 1.

ΔT=2ln(2/π×(λ /Δλ) ) (式1)
ここで、λは入射光の中心波長であり、Δλは入射光のスペクトル幅である。lnは自然対数を意味する。
ΔT = 2ln (2 / π × (λ 0 2 / Δλ)) (Formula 1)
Here, λ 0 is the center wavelength of the incident light, and Δλ is the spectral width of the incident light. ln means a natural logarithm.

従って、例えば、中心波長が1310nmで、スペクトル幅が約90nmの赤外LEDを本実施の形態に係る膜厚装置の光源として使用する場合、分解能ΔTは8.4μmである。短波長で高帯域なほど分解能ΔTが向上する。自動車外板用途の複層塗膜を想定する場合、通常、各層の膜厚は約10〜15μm以上である。従って、波長が1310nmでスペクトル幅が約90nmの赤外LEDは、自動車外板用途の塗膜の測定に関しては十分な分解能を提供できることが分かる。なお、自動車製造において省工程化を図るため、将来、各層の塗膜を薄膜化かつ高機能化する必要があれば、分解能の不足を解消するためには、式1に示す関係に基づいて光源を選択して、測定装置の分解能をさらに高くすればよい。   Therefore, for example, when an infrared LED having a center wavelength of 1310 nm and a spectral width of about 90 nm is used as the light source of the film thickness device according to the present embodiment, the resolution ΔT is 8.4 μm. The resolution ΔT improves as the wavelength increases with a shorter wavelength. In the case of assuming a multilayer coating film for an automobile outer plate, the thickness of each layer is usually about 10 to 15 μm or more. Thus, it can be seen that an infrared LED with a wavelength of 1310 nm and a spectral width of about 90 nm can provide sufficient resolution for measuring coatings for automotive skin applications. If it is necessary to make the coating film of each layer thin and highly functional in the future in order to save the process in automobile manufacturing, in order to resolve the lack of resolution, the light source is based on the relationship shown in Equation 1. And the resolution of the measuring device may be further increased.

また逆に、波長を特定することもできる。例えば、分解能ΔTが15μm程度で、スペクトル幅が90nmの赤外LEDを使うとき、必要な観察波長は、上記の式1により約1.7μmであることが分かる。同じ分解能ΔTが15μm程度で、スペクトル幅が120nmの赤外LEDを使うときは、必要な観察波長は、上記の式1により約2.0μmであることが分かる。   Conversely, the wavelength can be specified. For example, when an infrared LED having a resolution ΔT of about 15 μm and a spectral width of 90 nm is used, it can be seen that the necessary observation wavelength is about 1.7 μm according to Equation 1 above. When an infrared LED having the same resolution ΔT of about 15 μm and a spectral width of 120 nm is used, it can be seen that the necessary observation wavelength is about 2.0 μm according to Equation 1 above.

また、膜厚の測定に使用する光源として、780nm以下の波長(可視光)では、水分等の不純物による吸収や散乱の影響を受ける場合があるので好ましくない。一方、3000nm以上の波長では、膜厚測定装置の空間分解能が、塗膜の層間を分離して検出するために必要な距離よりも大きくなってしまうので、複層塗膜を正確に解析できない。このような空間分解能および透過率の配慮から、本願発明において光源として使用するのは、波長が780nm〜3000nmの範囲内、好ましくは1300nm〜2000nmの範囲内の近赤外線である。   Further, as a light source used for measuring the film thickness, a wavelength of 780 nm or less (visible light) is not preferable because it may be affected by absorption and scattering due to impurities such as moisture. On the other hand, at a wavelength of 3000 nm or more, the spatial resolution of the film thickness measuring device becomes larger than the distance necessary for separating and detecting the layers of the coating film, so that the multilayer coating film cannot be analyzed accurately. In consideration of such spatial resolution and transmittance, near infrared rays having a wavelength in the range of 780 nm to 3000 nm, preferably in the range of 1300 nm to 2000 nm are used as the light source in the present invention.

以上、本発明を特定の実施の形態によって説明したが、本発明は上記した実施の形態に限定されるものではない。図1に示す膜厚測定装置並びに上記説明した実施の形態は、あくまでも例示に過ぎず、当業者であれば、本発明の技術的思想の範囲内で様々な変更や置換をすることができる。   As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to above-described embodiment. The film thickness measuring apparatus shown in FIG. 1 and the above-described embodiment are merely examples, and those skilled in the art can make various changes and substitutions within the scope of the technical idea of the present invention.

例えば、上記した図2〜図4を用いた説明では、サンプルの一箇所を測定する場合を説明したが、本膜厚測定装置は、複数箇所からの反射光を測定して塗膜の2次元又は3次元の情報を得ることもできる。塗膜の複数箇所を線状にまたは平面的に測定する場合、本装置を持ち運び可能なポータブル測定器にしたり、その他の移動可能な載置台に固定することにより、さらには、被塗物を移動することにより、種々の態様の測定が実現できる。   For example, in the description using FIGS. 2 to 4 described above, the case of measuring one place of the sample has been described. However, the film thickness measuring apparatus measures the reflected light from a plurality of places to measure the two-dimensional coating film. Alternatively, three-dimensional information can be obtained. When measuring multiple points of a coating film linearly or planarly, the device can be moved to a portable measuring instrument, or fixed to another movable mounting table, and the workpiece can be moved. By doing so, various aspects of measurement can be realized.

干渉光を得るには測定系の光学距離と参照系の光学距離とが一致すれば十分であるので、図1に示す装置におけるビームスプリッタ2、集束レンズ3や、交差ミラー5および固定ミラー6の配置は、相対的に自由に配置することができる。すなわち、それらの構成要件の配置は、2つの光学系の光路長を一致させる任意の配置であればよい。また、光学系自体も、例えば、ハーフミラーを配置したり、全反射ミラーを配置したりする種々のシステムとして実現してもよい。   Since it is sufficient for the optical distance of the measurement system and the optical distance of the reference system to coincide with each other in order to obtain interference light, the beam splitter 2, the focusing lens 3, the crossing mirror 5, and the fixed mirror 6 in the apparatus shown in FIG. The arrangement can be relatively freely arranged. That is, the arrangement of these constituent elements may be any arrangement that matches the optical path lengths of the two optical systems. Further, the optical system itself may be realized as various systems in which, for example, a half mirror or a total reflection mirror is arranged.

また、上記の実施形態では、参照光の光学距離を制御する構成を、線形の往復運動が可能な位置可変機構付き交差ミラー5としている。すなわち、交差ミラー5の移動機構は線形運動の機構である。しかしながら、例えば、交差ミラーを回転ディスク上に固定し、回転ディスクとモータ・シャフトとを接続し、モータを定速で回転させることで、安定な位置走査が可能な回転機構を実現して、参照光の光学距離を制御してもよい。位置可変機構付き交差ミラー5は、例えばステッピングモータで位置の制御が可能であり、高精度の位置制御が可能である。ステッピングモータに代えてサーボモータを使用してもよく、この場合、ステッピングモータを使用する場合と比較して、より高精度の位置制御が可能となる。   Moreover, in said embodiment, the structure which controls the optical distance of a reference beam is made into the crossing mirror 5 with a position variable mechanism in which a linear reciprocation is possible. That is, the moving mechanism of the crossing mirror 5 is a linear motion mechanism. However, for example, a rotating mechanism capable of stable position scanning is realized by fixing the crossing mirror on the rotating disk, connecting the rotating disk and the motor shaft, and rotating the motor at a constant speed. The optical distance of light may be controlled. The position of the crossing mirror 5 with a position variable mechanism can be controlled by, for example, a stepping motor, and highly accurate position control is possible. A servo motor may be used in place of the stepping motor. In this case, position control with higher accuracy is possible compared to the case of using the stepping motor.

また、上記の実施形態では、測定用の光源にSLD(Super Luminescent Diode)を使用したが、SLD以外にも、LED(Light Emitting Diode)などコヒーレンシを必要としない種々の光を使用することができる。   In the above-described embodiment, an SLD (Super Luminescent Diode) is used as a measurement light source. However, in addition to the SLD, various lights that do not require coherency such as an LED (Light Emitting Diode) can be used. .

受光センサとしては、光電子増倍管、フォトダイオード等を用いることができる。受光センサの出力を増幅する増幅方法についても特に規定しないが、精度を高めるためにロックインアンプを用いることができる。   As the light receiving sensor, a photomultiplier tube, a photodiode, or the like can be used. An amplification method for amplifying the output of the light receiving sensor is not particularly defined, but a lock-in amplifier can be used to increase accuracy.

さらに、本膜厚測定装置は、TD(Time Domain)法と組み合わせて、安価で簡便なポータブルな装置として実現することができる。TD法の場合、参照ミラーである交差ミラー5を一定速度で移動し、参照系光路の光学距離と測定系光路の光学距離とが一致した位置で起こる干渉を観察し、干渉光すなわち反射光の時間軸の情報を得る。反射光は時間軸に沿って並ぶ(図2(B)の横軸が時間軸になる)ので、得られた反射光の数から塗膜の枚数情報を得る。さらに、時間軸の情報から距離情報を得る。すなわち、時間軸の情報を、参照ミラーの移動した物理距離に変換し、さらに光学距離に変換し、さらに膜の物理距離に変換することで、複層膜間の物理距離(膜厚)を得ることができる。例えば、最表面との干渉を測定した時間をt0として、走査速度を一定のvとすると、時間t1で測定した次の界面までの参照ミラーの移動距離Zは、Z=(t1−t0)/vで求めることができる。   Furthermore, this film thickness measuring apparatus can be realized as an inexpensive and simple portable apparatus in combination with a TD (Time Domain) method. In the case of the TD method, the crossing mirror 5 which is a reference mirror is moved at a constant speed, and interference occurring at a position where the optical distance of the reference system optical path coincides with the optical distance of the measurement system optical path is observed. Get time-axis information. Since the reflected light is arranged along the time axis (the horizontal axis in FIG. 2B is the time axis), information on the number of coating films is obtained from the number of reflected lights obtained. Further, distance information is obtained from time-axis information. That is, the information on the time axis is converted into the physical distance moved by the reference mirror, further converted into the optical distance, and further converted into the physical distance of the film, thereby obtaining the physical distance (film thickness) between the multilayer films. be able to. For example, if the time when the interference with the outermost surface is measured is t0 and the scanning speed is constant v, the moving distance Z of the reference mirror to the next interface measured at time t1 is Z = (t1−t0) / It can be obtained by v.

また、上記実施の形態では、干渉光の強度がピークとなる位置に位置可変機構付き交差ミラー5の位置を調整した際に、位置可変機構付き交差ミラー5の位置を取得しコンピュータ9に送信しているが、位置可変機構付き交差ミラー5の位置を、測定対象の光硬化樹脂層の厚さ方向に向けて連続的に走査(スキャン)して、干渉光の強度と、位置可変機構付き交差ミラー5の移動距離(物理距離)とをセットにしたデータをコンピュータ9に随時送信し、走査終了後に、このセットにされたデータをコンピュータ9が解析して、干渉光の強度がピークとなるときの位置可変機構付き交差ミラー5の位置を決定してもよい。   In the above embodiment, when the position of the cross mirror 5 with a position variable mechanism is adjusted to a position where the intensity of the interference light reaches a peak, the position of the cross mirror 5 with a position variable mechanism is acquired and transmitted to the computer 9. However, the position of the intersecting mirror 5 with the position variable mechanism is continuously scanned in the thickness direction of the photo-curing resin layer to be measured, and the intensity of the interference light and the intersection with the position variable mechanism are When the set of the moving distance (physical distance) of the mirror 5 is transmitted to the computer 9 as needed, and after the scan is completed, the computer 9 analyzes the set data and the intensity of the interference light reaches a peak. The position of the crossing mirror 5 with the position variable mechanism may be determined.

また、上記実施の形態では、測定対象である塗膜が光硬化樹脂で形成されている場合について説明したが、塗膜の原料は光硬化樹脂に限定されず、塗料の通常の乾燥工程により硬化される塗料であってもよい。また、硬化用の光は紫外線(UV)に限らず、光硬化樹脂を硬化させることが可能な、特定の波長を有する光であればよい。また、光硬化樹脂に代えて、電子線により硬化する樹脂を使用してもよく、この場合、硬化用の電子線として、特定のエネルギーを有する電子線を放出する電子線源を使用すればよい。   Moreover, although the said embodiment demonstrated the case where the coating film which is a measuring object was formed with the photocurable resin, the raw material of a coating film is not limited to a photocurable resin, It hardens | cures by the normal drying process of a coating material. It may be a paint. The light for curing is not limited to ultraviolet light (UV), but may be light having a specific wavelength that can cure the photo-curing resin. Further, instead of the photo-curing resin, a resin that is cured by an electron beam may be used. In this case, an electron beam source that emits an electron beam having a specific energy may be used as the curing electron beam. .

また、上記実施の形態では基板にガラス板を使用し、図3に示すように、硬化用の光をサンプル4の下方からガラス板を介して光硬化樹脂に照射していたが、硬化用の光の入射の態様についてはこれに限定されない。ガラス板に代えて、自動車用外板を構成する塗膜であってもよく、この場合、表層に位置する光硬化樹脂には、光硬化樹脂の表層の側から(すなわち、図3に示すサンプル4の上方から)硬化用の光を照射すればよい。   Moreover, in the said embodiment, although the glass plate was used for the board | substrate and the light for hardening was irradiated to the photocurable resin through the glass plate from the downward direction of the sample 4 as shown in FIG. The mode of incident light is not limited to this. Instead of the glass plate, it may be a coating film constituting an outer plate for automobiles. In this case, the photo-curing resin located on the surface layer is from the surface layer side of the photo-curing resin (that is, the sample shown in FIG. 3). The light for curing may be irradiated from above (4).

また、上記の実施形態では、測定の基準として空気層を使用したが、基準となる層としては、測定光が透過可能であり、屈折率が既知の層であればよい。例えば空気層に限らず、屈折率が既知の他のガス層であってもよく、測定対象である光硬化樹脂が水溶性でなければ、屈折率が既知の液体層であってもよい。   In the above embodiment, an air layer is used as a measurement reference. However, the reference layer may be a layer that can transmit measurement light and has a known refractive index. For example, the gas layer is not limited to an air layer, and may be another gas layer having a known refractive index, or may be a liquid layer having a known refractive index as long as the photocured resin to be measured is not water-soluble.

以下に実施例を挙げて、本発明をより具体的に説明する。
<1>空気層の光学距離の測定
石英ガラス板を準備し、その両端に2枚のガラス板を載せて支柱とした。さらにその上に石英ガラス板を重ねて配置し、厚さが均一な空気層を作製した。次に、図1に示す本発明の膜厚測定装置を用いて、この空気層の光学距離BDを測定した。
<2>WET膜の準備
次に、石英ガラス板の蓋を開け、最下層の石英ガラス上にUV硬化材料を塗布した後蓋を閉じ、上下が石英ガラス板で挟まれた、WET膜の層と空気層とを作製した。UV硬化材料としては、BASF社製のアルキルフェノン系光重合開始剤を含む塗料を準備した。具体的には、トリメチロールプロパントリアクリレート(TMPTA)に、DAROCUR(登録商標)1173を3質量%添加した塗料を準備して使用した。
<3>各層の光学距離の測定
次に、図1に示す本発明の膜厚測定装置を用いて、上方から測定光を入射し、各層の光学距離BC’,C’D’を測定した。
<4>WET膜の膜厚の算出
<1>で測定した空気層の光学距離BDと、<3>で測定した空気層の光学距離BC’とから、c’d=BD−BC’より、WET膜の膜厚(物理距離)c’d=139.4μmを得た。また、WET膜に関するこの物理距離と、<3>で測定しておいたWET膜の光学距離C’D’とから、C’D’/c’dより、WET膜の屈折率n=1.432を得た。
<5>WET塗膜の硬化処理
次に、WET塗膜に硬化用の光を照射し、塗膜を硬化させた。塗膜の硬化には、硬化用の光源として200W水銀キセノンランプを備える(株)三永電機製作所製のSUPERCURE−203Sを使用した。硬化用光の照射条件は、サンプルと水銀キセノンランプとの間の距離を20mmとし、約180mWの照射出力で、硬化用光を10秒間照射した。
<6>各層の光学距離の測定およびCURE膜の膜厚の算出
硬化後のCURE膜に対して、図1に示す本発明の膜厚測定装置を用いて、上方から測定光を入射し、各層の光学距離BC’’,C’’D’’を測定した。測定した空気層の光学距離BC’’と、<1>で測定した空気層の光学距離とから、c’’d=BD−BC’’より、CURE膜の膜厚(物理距離)c’’d=119.2μmを得た。また、CURE膜に関するこの物理距離と、<6>で測定しておいたCURE膜の光学距離C’’D’’とから、C’’D’’/c’’dより、CURE膜の屈折率n=1.487を得た。
<7>収縮量および収縮率の計算
<4>および<6>で算出した値c’d=139.4μm、c’’d=119.2μmから、c’d−c’’dより塗膜の収縮量=20.2μmを得た。また、(c’d−c’’d)/c’dより塗膜の収縮率=14.5%を得た。
The present invention will be described more specifically with reference to the following examples.
<1> Measurement of optical distance of air layer A quartz glass plate was prepared, and two glass plates were placed on both ends to form a support column. Further, a quartz glass plate was placed thereon so as to produce an air layer having a uniform thickness. Next, the optical distance BD of this air layer was measured using the film thickness measuring apparatus of the present invention shown in FIG.
<2> Preparation of WET film Next, the lid of the quartz glass plate is opened, the UV curable material is applied onto the lowermost quartz glass, the lid is closed, and the upper and lower layers of the WET film are sandwiched between the quartz glass plates. And an air layer. As a UV curable material, a paint containing an alkylphenone photopolymerization initiator manufactured by BASF was prepared. Specifically, a paint prepared by adding 3% by mass of DAROCUR (registered trademark) 1173 to trimethylolpropane triacrylate (TMPTA) was prepared and used.
<3> Measurement of Optical Distance of Each Layer Next, using the film thickness measuring apparatus of the present invention shown in FIG. 1, measurement light was incident from above and the optical distances BC ′ and C′D ′ of each layer were measured.
<4> Calculation of film thickness of WET film From the optical distance BD of the air layer measured in <1> and the optical distance BC ′ of the air layer measured in <3>, c′d = BD−BC ′, The film thickness (physical distance) c′d = 139.4 μm of the WET film was obtained. Further, from this physical distance with respect to the WET film and the optical distance C′D ′ of the WET film measured in <3>, the refractive index n W = 1 of the WET film from C′D ′ / c′d. .432 was obtained.
<5> Curing treatment of WET coating film Next, the WET coating film was irradiated with light for curing to cure the coating film. For curing the coating film, SUPERCURE-203S manufactured by Mitsunaga Electric Co., Ltd. equipped with a 200 W mercury xenon lamp as a light source for curing was used. The curing light irradiation conditions were such that the distance between the sample and the mercury xenon lamp was 20 mm, and the curing light was irradiated for 10 seconds at an irradiation output of about 180 mW.
<6> Measurement of optical distance of each layer and calculation of film thickness of CURE film Using the film thickness measuring apparatus of the present invention shown in FIG. The optical distances BC ″ and C ″ D ″ were measured. From the measured optical distance BC ″ of the air layer and the optical distance of the air layer measured in <1>, the film thickness (physical distance) c ″ of the CURE film from c ″ d = BD−BC ″. d = 119.2 μm was obtained. Further, from this physical distance with respect to the CURE film and the optical distance C ″ D ″ of the CURE film measured in <6>, the refraction of the CURE film is obtained from C ″ D ″ / c ″ d. The rate n C = 1.487 was obtained.
<7> Calculation of Shrinkage and Shrinkage Ratio From c′d = 139.4 μm and c ″ d = 119.2 μm calculated in <4> and <6>, coating film from c′d−c ″ d A shrinkage amount of 20.2 μm was obtained. Moreover, the contraction rate of the coating film = 14.5% was obtained from (c′d−c ″ d) / c′d.

1 光源
2 ビームスプリッタ
3 集束レンズ
4 塗膜サンプル
5 位置可変機構付き交差ミラー
6 固定ミラー
7 受光センサ
8 増幅器
9 コンピュータ
10 石英ガラス
11 空気層
DESCRIPTION OF SYMBOLS 1 Light source 2 Beam splitter 3 Focusing lens 4 Coating film sample 5 Crossing mirror with a position variable mechanism 6 Fixed mirror 7 Light receiving sensor 8 Amplifier 9 Computer 10 Quartz glass 11 Air layer

Claims (13)

所定の厚さを有する基準空気層内に載置された、顔料を含む塗膜に光源からの測定光を照射し、前記塗膜からの反射光を含む干渉光の強度を検出することにより、前記塗膜の膜厚を測定する方法であって、
光源からの測定光を、参照光と前記基準空気層への入射光とに分岐する分岐ステップと、
前記参照光の光学距離を調整して、前記基準空気層からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第1の強度信号を検出する第1の検出ステップと、
検出した複数の前記第1の強度信号の隣接するピーク間の間隔から、前記基準空気層の厚さに対応する光学距離を決定する第1の光学距離決定ステップと、
前記基準空気層内に前記塗膜を載置し、前記塗膜の前記測定光の照射側に隣接する第1の空気層を画定する塗膜載置ステップと、
前記参照光の光学距離を調整して、前記第1の空気層からの反射光と前記参照光とを干せしめ、該干渉による複数の第2の強度信号を検出する第2の検出ステップと、
検出した複数の前記第2の強度信号の隣接するピーク間の間隔から、前記第1の空気層の厚さに対応する光学距離を決定する第2の光学距離決定ステップと、
前記基準空気層の光学距離と、前記第1の空気層の光学距離とから、前記塗膜の厚さを計算する第1の膜厚計算ステップとを含み、
前記塗膜が、紫外線硬化樹脂または電子線硬化樹脂であり、前記光源からの前記光が、波長1300nm〜2000nmの範囲内の近赤外光である、膜厚測定方法。
By irradiating measurement light from a light source on a coating film containing a pigment placed in a reference air layer having a predetermined thickness, and detecting the intensity of interference light including reflection light from the coating film, A method for measuring the film thickness of the coating film,
A branching step for branching measurement light from a light source into reference light and incident light to the reference air layer;
A first detection step of adjusting the optical distance of the reference light, causing the reflected light from the reference air layer to interfere with the reference light, and detecting a plurality of first intensity signals due to the interference;
A first optical distance determining step for determining an optical distance corresponding to a thickness of the reference air layer from an interval between adjacent peaks of the detected plurality of first intensity signals;
A coating film placing step for placing the coating film in the reference air layer, and defining a first air layer adjacent to the measurement light irradiation side of the coating film;
A second detection step of adjusting the optical distance of the reference light to dry the reflected light from the first air layer and the reference light, and detecting a plurality of second intensity signals due to the interference;
A second optical distance determining step for determining an optical distance corresponding to a thickness of the first air layer from an interval between adjacent peaks of the plurality of detected second intensity signals;
A first film thickness calculating step for calculating the thickness of the coating film from the optical distance of the reference air layer and the optical distance of the first air layer;
The film thickness measuring method, wherein the coating film is an ultraviolet curable resin or an electron beam curable resin, and the light from the light source is near infrared light within a wavelength range of 1300 nm to 2000 nm.
前記参照光の光学距離を調整して、前記塗膜からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第3の強度信号を検出する第3の検出ステップと、
検出した複数の前記第3の強度信号の隣接するピーク間の間隔から、前記塗膜の厚さに対応する光学距離を決定する第3の光学距離決定ステップと、
前記基準空気層の光学距離と、前記第1の空気層の光学距離と、前記塗膜の光学距離とから、前記塗膜の屈折率を計算する第1の屈折率計算ステップとをさらに含む、請求項1に記載の膜厚測定方法。
Adjusting the optical distance of the reference light, causing the reflected light from the coating film to interfere with the reference light, and detecting a plurality of third intensity signals due to the interference;
A third optical distance determining step for determining an optical distance corresponding to the thickness of the coating film from an interval between adjacent peaks of the detected plurality of third intensity signals;
A first refractive index calculation step of calculating a refractive index of the coating film from the optical distance of the reference air layer, the optical distance of the first air layer, and the optical distance of the coating film; The film thickness measuring method according to claim 1.
前記塗膜を硬化させ、硬化後の前記塗膜の前記測定光の照射側に隣接する第2の空気層を画定する硬化ステップと、
前記参照光の光学距離を調整して、前記第2の空気層からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第4の強度信号を検出する第4の検出ステップと、
検出した複数の前記第4の強度信号の隣接するピーク間の間隔から、前記第2の空気層の厚さに対応する光学距離を決定する第4の光学距離決定ステップと、
前記基準空気層の光学距離と、前記第2の空気層の光学距離とから、硬化後の前記塗膜の厚さを計算する第2の膜厚計算ステップとをさらに含む、請求項1または2に記載の膜厚測定方法。
Curing step of curing the coating film and defining a second air layer adjacent to the measurement light irradiation side of the coating film after curing;
A fourth detection step of adjusting the optical distance of the reference light to cause the reflected light from the second air layer to interfere with the reference light, and detecting a plurality of fourth intensity signals due to the interference;
A fourth optical distance determining step for determining an optical distance corresponding to a thickness of the second air layer from an interval between adjacent peaks of the detected plurality of fourth intensity signals;
3. A second film thickness calculating step of calculating a thickness of the coating film after curing from the optical distance of the reference air layer and the optical distance of the second air layer. The film thickness measuring method described in 1.
前記参照光の光学距離を調整して、硬化後の前記塗膜からの反射光と前記参照光とを干渉せしめ、該干渉による複数の第5の強度信号を検出する第5の検出ステップと、
検出した複数の前記第5の強度信号の隣接するピーク間の間隔から、硬化後の前記塗膜の厚さに対応する光学距離を決定する第5の光学距離決定ステップと、
前記基準空気層の光学距離と、前記第2の空気層の光学距離と、硬化後の前記塗膜の光学距離とから、硬化後の前記塗膜の屈折率を計算する第2の屈折率計算ステップとをさらに含む、請求項3に記載の膜厚測定方法。
A fifth detection step of adjusting the optical distance of the reference light, causing the reflected light from the cured coating film to interfere with the reference light, and detecting a plurality of fifth intensity signals due to the interference;
A fifth optical distance determining step for determining an optical distance corresponding to the thickness of the coating film after curing from an interval between adjacent peaks of the plurality of detected fifth intensity signals;
Second refractive index calculation for calculating the refractive index of the coating film after curing from the optical distance of the reference air layer, the optical distance of the second air layer, and the optical distance of the coating film after curing. The film thickness measuring method according to claim 3, further comprising a step.
前記基準空気層の光学距離と、前記第1の空気層の光学距離と、前記第2の空気層の光学距離とから、前記塗膜の硬化前後の収縮率を計算する硬化収縮率計算ステップをさらに含む、請求項3に記載の膜厚測定方法。   A curing shrinkage rate calculating step for calculating a shrinkage rate before and after curing of the coating film from the optical distance of the reference air layer, the optical distance of the first air layer, and the optical distance of the second air layer. The film thickness measuring method according to claim 3, further comprising: 前記第1の検出ステップが、
前記基準空気層の表層側の第1の界面から反射する第1の反射光と前記参照光との干渉による第1の干渉光の強度信号と、
前記基準空気層の底面側の第2の界面から反射する第2の反射光と前記参照光との干渉による第2の干渉光の強度信号とを検出するステップであり、
前記第1の光学距離決定ステップが、
前記第1の干渉光の強度信号が極大となるときの前記参照光の光学距離と、前記第2の干渉光の強度信号が極大となるときの前記参照光の光学距離との差分から、前記基準空気層の厚さに対応する前記光学距離を決定するステップである、請求項1に記載の膜厚測定方法。
The first detection step comprises:
An intensity signal of the first interference light due to the interference between the first reflected light reflected from the first interface on the surface layer side of the reference air layer and the reference light;
Detecting a second reflected light reflected from the second interface on the bottom side of the reference air layer and an intensity signal of the second interference light due to interference between the reference light and
Said first optical distance determining step comprises:
From the difference between the optical distance of the reference light when the intensity signal of the first interference light is a maximum and the optical distance of the reference light when the intensity signal of the second interference light is a maximum, The film thickness measurement method according to claim 1, which is a step of determining the optical distance corresponding to a thickness of a reference air layer.
前記光源が、LEDまたはSLDの何れかである、請求項1に記載の膜厚測定方法。   The film thickness measuring method according to claim 1, wherein the light source is either an LED or an SLD. 所定の厚さを有する基準空気層内に載置された、顔料を含む塗膜に光源からの測定光を照射し、前記塗膜からの反射光を含む干渉光の強度を検出することにより、前記塗膜の膜厚を測定する装置であって、
光源と、
前記光源からの測定光を、参照光と、前記基準空気層または前記塗膜への入射光とに分岐する分岐手段と、
前記参照光の光学距離を調整する参照光光学系と、
前記入射光を前記基準空気層または前記塗膜へ入射させ、さらに、前記基準空気層または前記塗膜からの反射光を取り出す反射光光学系と、
前記反射光光学系からの反射光と前記参照光光学系からの参照光とを干渉せしめる干渉段と、
前記干渉手段からの、前記反射光を含む干渉光を検出して前記干渉光の強度信号を出力する検出手段と、
前記強度信号を解析する解析手段とを備え、
前記塗膜が基準空気層内に載置されていない第1の状態の測定対象に対して、
前記検出手段が、前記基準空気層からの反射光と前記参照光との干渉による複数の第1の強度信号を検出して出力し、前記解析手段が、検出した複数の前記第1の強度信号の隣接するピーク間の間隔から、前記基準空気層の厚さに対応する光学距離を決定し、
前記塗膜が基準空気層内に載置されている第2の状態の、前記塗膜の前記測定光の照射側に隣接する第1の空気層が画定されている測定対象に対して、
前記検出手段が、前記第1の空気層からの反射光と前記参照光との干渉による複数の第2の強度信号を検出して出力し、前記解析手段が、検出した複数の前記第2の強度信号の隣接するピーク間の間隔から、前記第1の空気層の厚さに対応する光学距離を決定し、
前記検出手段が、前記基準空気層の光学距離と、前記第1の空気層の光学距離とから、前記塗膜の厚さを計算し、
前記塗膜が、紫外線硬化樹脂または電子線硬化樹脂であり、前記光源からの前記光が、波長1300nm〜2000nmの範囲内の近赤外光である、膜厚測定装置。
By irradiating measurement light from a light source on a coating film containing a pigment placed in a reference air layer having a predetermined thickness, and detecting the intensity of interference light including reflection light from the coating film, An apparatus for measuring the film thickness of the coating film,
A light source;
Branching means for branching the measurement light from the light source into reference light and light incident on the reference air layer or the coating film;
A reference light optical system for adjusting an optical distance of the reference light;
A reflected light optical system for causing the incident light to enter the reference air layer or the coating film, and for extracting reflected light from the reference air layer or the coating film;
An interference stage for causing the reflected light from the reflected light optical system to interfere with the reference light from the reference light optical system;
Detecting means for detecting interference light including the reflected light from the interference means and outputting an intensity signal of the interference light;
Analyzing means for analyzing the intensity signal,
For the measurement object in the first state where the coating film is not placed in the reference air layer,
The detection means detects and outputs a plurality of first intensity signals due to interference between reflected light from the reference air layer and the reference light, and the analysis means detects the plurality of first intensity signals detected. Determining the optical distance corresponding to the thickness of the reference air layer from the spacing between adjacent peaks of
For the measurement object in which the first air layer adjacent to the measurement light irradiation side of the coating film in the second state where the coating film is placed in a reference air layer is defined,
The detecting means detects and outputs a plurality of second intensity signals due to interference between the reflected light from the first air layer and the reference light, and the analyzing means detects the plurality of detected second second signals. Determining the optical distance corresponding to the thickness of the first air layer from the spacing between adjacent peaks of the intensity signal;
The detection means calculates the thickness of the coating film from the optical distance of the reference air layer and the optical distance of the first air layer,
The film thickness measuring device, wherein the coating film is an ultraviolet curable resin or an electron beam curable resin, and the light from the light source is near infrared light within a wavelength range of 1300 nm to 2000 nm.
前記第2の状態の測定対象に対して、さらに、
前記検出手段が、前記塗膜からの反射光と前記参照光との干渉による複数の第3の強度信号を検出して出力し、前記解析手段が、検出した複数の前記第3の強度信号の隣接するピーク間の間隔から、前記塗膜の厚さに対応する光学距離を決定し、
前記検出手段が、前記基準空気層の光学距離と、前記第1の空気層の光学距離と、前記塗膜の光学距離とから、前記塗膜の屈折率を計算する、請求項に記載の膜厚測定装置。
For the measurement object in the second state,
The detection means detects and outputs a plurality of third intensity signals due to interference between reflected light from the coating film and the reference light, and the analysis means detects the plurality of detected third intensity signals. From the interval between adjacent peaks, determine the optical distance corresponding to the thickness of the coating film,
The detection means, and the optical length of the reference air layer, and the optical distance of the first air layer, and an optical distance of the coating film to calculate the refractive index of the coating film, according to claim 8 Film thickness measuring device.
さらに、前記塗膜を硬化させる硬化手段をさらに備え、該硬化手段により前記塗膜が硬化された第3の状態の、硬化後の前記塗膜の前記測定光の照射側に隣接する第2の空気層が画定されている測定対象に対して、
前記検出手段が、前記第2の空気層からの反射光と前記参照光との干渉による複数の第4の強度信号を検出して出力し、前記解析手段が、検出した複数の前記第4の強度信号の隣接するピーク間の間隔から、前記第2の空気層の厚さに対応する光学距離を決定し、
前記検出手段が、前記基準空気層の光学距離と、前記第2の空気層の光学距離とから、硬化後の前記塗膜の厚さを計算する、請求項またはに記載の膜厚測定装置。
Furthermore, it further comprises a curing means for curing the coating film, and is in a third state where the coating film is cured by the curing means, a second state adjacent to the measurement light irradiation side of the cured coating film. For a measurement object with a defined air layer,
The detection means detects and outputs a plurality of fourth intensity signals due to interference between the reflected light from the second air layer and the reference light, and the analysis means detects the plurality of the fourth intensity signals detected. Determining the optical distance corresponding to the thickness of the second air layer from the spacing between adjacent peaks of the intensity signal;
The film thickness measurement according to claim 8 or 9 , wherein the detection means calculates a thickness of the coating film after curing from an optical distance of the reference air layer and an optical distance of the second air layer. apparatus.
前記第3の状態の測定対象に対して、さらに、
前記検出手段が、硬化後の前記塗膜からの反射光と前記参照光との干渉による複数の第5の強度信号を検出して出力し、前記解析手段が、検出した複数の前記第5の強度信号の隣接するピーク間の間隔から、硬化後の前記塗膜の厚さに対応する光学距離を決定し、
前記検出手段が、前記基準空気層の光学距離と、前記第2の空気層の光学距離と、硬化後の前記塗膜の光学距離とから、硬化後の前記塗膜の屈折率を計算する、請求項10に記載の膜厚測定装置。
For the measurement object in the third state,
The detection means detects and outputs a plurality of fifth intensity signals due to interference between the reflected light from the coating film after curing and the reference light, and the analysis means detects the plurality of fifth lights detected. From the distance between adjacent peaks of the intensity signal, determine the optical distance corresponding to the thickness of the coating after curing,
The detection means calculates the refractive index of the coating film after curing from the optical distance of the reference air layer, the optical distance of the second air layer, and the optical distance of the coating film after curing. The film thickness measuring apparatus according to claim 10 .
前記検出手段が、前記基準空気層の光学距離と、前記第1の空気層の光学距離と、前記第2の空気層の光学距離とから、前記塗膜の硬化前後の収縮率を計算する、請求項10に記載の膜厚測定装置。 The detection means calculates the shrinkage rate before and after curing of the coating film from the optical distance of the reference air layer, the optical distance of the first air layer, and the optical distance of the second air layer. The film thickness measuring apparatus according to claim 10 . 前記光源が、LEDまたはSLDの何れかである、請求項に記載の膜厚測定装置。 The film thickness measuring apparatus according to claim 8 , wherein the light source is either an LED or an SLD.
JP2012075116A 2012-03-28 2012-03-28 Film thickness measuring method and film thickness measuring apparatus Active JP6300430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075116A JP6300430B2 (en) 2012-03-28 2012-03-28 Film thickness measuring method and film thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075116A JP6300430B2 (en) 2012-03-28 2012-03-28 Film thickness measuring method and film thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2013205253A JP2013205253A (en) 2013-10-07
JP6300430B2 true JP6300430B2 (en) 2018-03-28

Family

ID=49524472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075116A Active JP6300430B2 (en) 2012-03-28 2012-03-28 Film thickness measuring method and film thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP6300430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982418A (en) * 2018-07-02 2018-12-11 北京无线电计量测试研究所 Measuring device of refraction index of air and method based on microcavity laser dispersion interferometry
KR20210103652A (en) * 2020-02-14 2021-08-24 한국과학기술원 Method for measuring thickness of sample using terahertz signal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157585B (en) * 2015-09-22 2017-10-13 中国科学院上海技术物理研究所 It is a kind of while obtaining the standard interference piece fitting process of film thickness and refractive index
CN105572072A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Transparent optical material group refractive index measuring device and method
US10859371B2 (en) 2017-11-28 2020-12-08 Koh Young Technology Inc. Apparatus for inspecting substrate and method thereof
US10852125B2 (en) 2017-11-28 2020-12-01 Koh Young Technology Inc. Apparatus for inspecting film on substrate by using optical interference and method thereof
KR102138622B1 (en) * 2017-11-28 2020-07-28 주식회사 고영테크놀러지 Apparatus for inspecting substrate and method thereof
KR102025649B1 (en) * 2017-12-04 2019-09-26 한국생산기술연구원 Apparatus and method for analyzing properties of matter in real-time in reaction process of polymer material
JP6851301B2 (en) * 2017-12-20 2021-03-31 浜松ホトニクス株式会社 Observing object cover, interference observation container, interference observation device and interference observation method
KR102180113B1 (en) * 2019-04-30 2020-11-18 한양대학교 산학협력단 Thickness measuring device
KR102175532B1 (en) * 2019-06-04 2020-11-06 한국과학기술원 Method for measuring thickness and refractive index of sample using terahertz time-domain spectroscopy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297008A (en) * 1989-05-12 1990-12-07 Kurabo Ind Ltd Optical measuring method for thickness of opaque thin film
JP3104161B2 (en) * 1995-11-16 2000-10-30 グンゼ株式会社 Multi-layer sheet thickness measuring device
JP3582311B2 (en) * 1996-08-04 2004-10-27 松下電器産業株式会社 Medium measuring method and measuring device
JP3704952B2 (en) * 1998-06-03 2005-10-12 松下電器産業株式会社 Medium measuring apparatus and measuring method
JP4225251B2 (en) * 2004-07-23 2009-02-18 株式会社豊田中央研究所 Method and apparatus for evaluating paint concealment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982418A (en) * 2018-07-02 2018-12-11 北京无线电计量测试研究所 Measuring device of refraction index of air and method based on microcavity laser dispersion interferometry
KR20210103652A (en) * 2020-02-14 2021-08-24 한국과학기술원 Method for measuring thickness of sample using terahertz signal
KR102314842B1 (en) 2020-02-14 2021-10-19 한국과학기술원 Method for measuring thickness of sample using terahertz signal

Also Published As

Publication number Publication date
JP2013205253A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP6300430B2 (en) Film thickness measuring method and film thickness measuring apparatus
TWI521195B (en) Mothod for measuring refractive index, refractive index measuring device, and method for producing optical element
JP4999707B2 (en) Method for surface plasmon spectroscopy in a surface plasmon resonance sensor and element for its use
Grunwald et al. Fibre optic refractive index microsensor based on white-light SPR excitation
JP2010169496A (en) Refractive index measuring instrument
US20150198526A1 (en) Differential detection for surface plasmon resonance sensor and method
JP2006017648A (en) Measuring instrument
JP6207333B2 (en) Film thickness measuring method and film thickness measuring apparatus
CN103439294B (en) Angle modulation and wavelength modulation surface plasmon resonance (SPR) sharing system
JP2013205252A (en) Film thickness measurement method, measurement device, film thickness change measurement method and measurement device
CN116481444A (en) Plastic film thickness measurement system and measurement method based on transmission spectrum
EP2718666A1 (en) Coupled multi-wavelength confocal systems for distance measurements
TWI524062B (en) Method and apparatus for measuring refractive index and method for manufacturing optical element
Díaz-Herrera et al. Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement
KR100978397B1 (en) System for analyzing plasma density
RU2479833C2 (en) Localisation method of non-homogeneities of metal surface in infrared radiation
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
RU2419779C2 (en) Method of determining refractivity of ir-range surface electromagnetic wave
RU2415378C2 (en) Method of measuring thickness and refractivity index of thin transparent substrate coats
CN107436293A (en) A kind of contactless refractive index detection device based on transient state Mach Zehnder interference technology
Korol’kov et al. Spectrophotometric method for measuring the groove depth of calibration reflection gratings
Lan et al. Measurement of chromatic dispersion of liquid in a wide spectral range based on liquid-prism surface plasmon resonance sensor
JP3787332B2 (en) Thermal lens absorption analyzer
KR102631633B1 (en) System for measuring thickness of thin film
JP2015232526A (en) Signal amplifier for raman spectroscopic analysis, raman spectroscopic analyzer, and raman spectroscopic analytical method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250