JP6296399B2 - Methods for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells - Google Patents

Methods for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells Download PDF

Info

Publication number
JP6296399B2
JP6296399B2 JP2015502917A JP2015502917A JP6296399B2 JP 6296399 B2 JP6296399 B2 JP 6296399B2 JP 2015502917 A JP2015502917 A JP 2015502917A JP 2015502917 A JP2015502917 A JP 2015502917A JP 6296399 B2 JP6296399 B2 JP 6296399B2
Authority
JP
Japan
Prior art keywords
cells
cell
inhibitor
intestinal epithelial
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015502917A
Other languages
Japanese (ja)
Other versions
JPWO2014132933A1 (en
Inventor
岳洋 岩尾
岳洋 岩尾
民秀 松永
民秀 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya City University
Original Assignee
Nagoya City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya City University filed Critical Nagoya City University
Publication of JPWO2014132933A1 publication Critical patent/JPWO2014132933A1/en
Application granted granted Critical
Publication of JP6296399B2 publication Critical patent/JP6296399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は人工多能性幹細胞(induced pluripotent stem:iPS)を腸管上皮細胞へ分化誘導する方法及びその用途に関する。本出願は、2013年2月26日に出願された日本国特許出願第2013−36434号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。   The present invention relates to a method for inducing differentiation of induced pluripotent stem (iPS) into intestinal epithelial cells and use thereof. This application claims the priority based on the Japan patent application 2013-36434 for which it applied on February 26, 2013, The whole content of the said patent application is used by reference.

小腸には多くの薬物代謝酵素や薬物トランスポーターが存在することから、肝臓と同様、薬物の初回通過効果に関わる臓器として非常に重要である。そのため、医薬品開発早期の段階から小腸における医薬品の膜透過性や代謝を評価することが、薬物動態特性に優れた医薬品の開発に必要である。現在、小腸のモデル系としてはヒト結腸癌由来のCaco-2細胞が多用されている。しかし、Caco-2細胞における薬物トランスポーターの発現パターンはヒト小腸とは異なる。また、Caco-2細胞には薬物代謝酵素の発現及び酵素誘導はほとんど認められないことから、正確に小腸での薬物動態を評価することは難しい。したがって、小腸における薬物代謝及び膜透過性を総合的に評価するためには初代小腸上皮細胞の利用が望ましいが、初代小腸上皮細胞の入手は困難である。   Since there are many drug metabolizing enzymes and drug transporters in the small intestine, like the liver, it is very important as an organ involved in the first-pass effect of drugs. Therefore, evaluating membrane permeability and metabolism of pharmaceuticals in the small intestine from the early stage of pharmaceutical development is necessary for the development of pharmaceuticals with excellent pharmacokinetic properties. At present, human colon cancer-derived Caco-2 cells are frequently used as a model system for the small intestine. However, the expression pattern of drug transporters in Caco-2 cells is different from that in the human small intestine. In addition, since Caco-2 cells show almost no drug-metabolizing enzyme expression or enzyme induction, it is difficult to accurately evaluate the pharmacokinetics in the small intestine. Therefore, in order to comprehensively evaluate drug metabolism and membrane permeability in the small intestine, it is desirable to use primary small intestinal epithelial cells, but it is difficult to obtain primary small intestinal epithelial cells.

ところで、ヒト人工多能性幹(induced pluripotent stem:iPS)細胞は2007年に山中らによって樹立された。このヒトiPS細胞は、1998年にThomsonらによって樹立されたヒト胚性幹(embryonic stem:ES)細胞と同様な、多分化能とほぼ無限の増殖能をもつ細胞である。ヒトiPS細胞はヒトES細胞に比べ倫理的な問題が少なく、医薬品開発のための安定した細胞供給源として期待される。   By the way, human induced pluripotent stem (iPS) cells were established in 2007 by Yamanaka et al. This human iPS cell is a cell having pluripotency and almost unlimited proliferation ability similar to the human embryonic stem (ES) cell established by Thomson et al. In 1998. Human iPS cells have fewer ethical problems than human ES cells and are expected to be a stable cell source for drug development.

尚、薬剤の吸収試験などに利用される腸管上皮細胞を提供するために、腸管由来の細胞から腸管の幹/前駆細胞を選択的に取得する方法が報告されている(特許文献1)。また、ALK5阻害因子を用いた多能性細胞の作製ないし維持方法が提案されている(特許文献2)。   In addition, in order to provide intestinal epithelial cells used for drug absorption tests and the like, a method for selectively obtaining intestinal stem / progenitor cells from intestinal cells has been reported (Patent Document 1). In addition, a method for producing or maintaining pluripotent cells using an ALK5 inhibitor has been proposed (Patent Document 2).

特開2008−206510号公報JP 2008-206510 A 特表2012−511935号公報Special table 2012-511935 gazette

Ueda T et al., Biochem Biophys Res Commun. 2010 Jan 1;391(1):38-42.Ueda T et al., Biochem Biophys Res Commun. 2010 Jan 1; 391 (1): 38-42. McCracken KW et al., Nat Protoc. 2011 Nov 10;6(12):1920-8McCracken KW et al., Nat Protoc. 2011 Nov 10; 6 (12): 1920-8 Spence JR, Nature. 2011 Feb 3;470(7332):105-109.Spence JR, Nature. 2011 Feb 3; 470 (7332): 105-109.

現在、iPS細胞から腸管への分化に関する報告はほとんどない。本願発明者らが知る限り、マウスiPS細胞から胚様体を形成し腸管様の組織を作製したという報告(非特許文献1)と、ヒトiPS細胞から三次元培養により腸管様の組織を作製したという報告(非特許文献2、3)があるにすぎない。また、これらの報告での分化誘導法は煩雑であり、しかも分化効率が十分でなく、薬物動態学的な解析は詳細に行われていない。さらに、当該分化誘導法は極めて高価な増殖因子やサイトカイン類を大量に用いて分化を誘導しており、実用化に適さない。   Currently, there are few reports on the differentiation of iPS cells into the intestinal tract. As far as the present inventors know, a report (Non-patent Document 1) that an embryoid body was formed from mouse iPS cells and an intestine-like tissue was prepared, and an intestine-like tissue was prepared from human iPS cells by three-dimensional culture. There are only reports (Non-Patent Documents 2 and 3). Further, the differentiation induction methods in these reports are complicated, and the differentiation efficiency is not sufficient, and pharmacokinetic analysis has not been performed in detail. Furthermore, the differentiation induction method induces differentiation using a large amount of extremely expensive growth factors and cytokines and is not suitable for practical use.

実用化を目指せば、安価で取り扱いの容易な低分子化合物を分化誘導因子として用いることが望まれる。本発明は、このような要望に応えるべく、iPS細胞を腸管上皮細胞へ効率的に分化誘導するための新規な方法及びその用途を提供することを目的とする。   For practical application, it is desired to use a low-molecular compound that is inexpensive and easy to handle as a differentiation-inducing factor. In order to meet such a demand, an object of the present invention is to provide a novel method and its use for efficiently inducing differentiation of iPS cells into intestinal epithelial cells.

上記の課題に鑑み本発明者らは、ヒトES細胞と同様の多分化能とほぼ無限の増殖能を有し、創薬研究への利用も期待されているヒトiPS細胞から腸管上皮細胞様細胞の作製を試みることにした。その際、分化誘導因子としての低分子化合物の可能性に注目し、薬物動態試験の評価系に利用可能な細胞をより簡便な方法で作製することを目指した。詳細な検討の結果、内胚葉様細胞を経て得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化誘導する際の誘導因子として、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤が有効であることが明らかとなった。また、腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化誘導する際の初期段階においてGSK阻害剤、BMP阻害剤の存在下で培養すると分化誘導効率が上昇した。更には、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤を併用すると、腸管上皮への分化誘導が一層促進された。一方、内胚葉様細胞を腸管幹細胞様細胞へと分化誘導する際の誘導因子としてFGF2が特に好ましいことが判明した。   In view of the above problems, the present inventors have the same multipotency and almost unlimited proliferation ability as human ES cells, and are expected to be used for drug discovery research from human iPS cells to intestinal epithelial cell-like cells. I decided to try to make. At that time, we focused on the possibility of low molecular weight compounds as differentiation-inducing factors, and aimed to create cells that can be used in evaluation systems for pharmacokinetic tests by a simpler method. As a result of detailed investigation, MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibition were used as inducers when inducing intestinal stem cell-like cells obtained through endoderm-like cells into intestinal epithelial cell-like cells The agent was found to be effective. Furthermore, differentiation induction efficiency increased when cultured in the presence of GSK inhibitor and BMP inhibitor at the initial stage of inducing differentiation of intestinal stem cell-like cells into intestinal epithelial cell-like cells. Furthermore, when a MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibitor were used in combination, differentiation induction into the intestinal epithelium was further promoted. On the other hand, it has been found that FGF2 is particularly preferable as an inducing factor in inducing differentiation of endoderm-like cells into intestinal stem cell-like cells.

作製に成功した腸管上皮細胞様細胞は、腸管上皮特異的な各種マーカー分子を発現しており、ペプチドの輸送機能も備えていた。また、ビタミンD受容体を介した薬物代謝酵素(CYP3A4)の発現誘導も認められた。このように、腸管上皮細胞に極めて類似した特性を示す細胞の取得に成功したことが確認された。   Intestinal epithelial cell-like cells that were successfully produced expressed various marker molecules specific to the intestinal epithelium and had a peptide transport function. In addition, induction of drug metabolizing enzyme (CYP3A4) expression via vitamin D receptor was also observed. Thus, it was confirmed that the cell which showed the characteristic very similar to an intestinal epithelial cell was acquired successfully.

検討を進めた結果、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤の誘導因子としての有効性、及び本法の有用性が更に裏づけられた。   As a result of further investigation, the effectiveness of MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibitor as inducers and the usefulness of this method were further supported.

以下に示す本願発明は、主として、本発明者らによる上記成果及び考察に基づく。
[1]以下の工程(1)〜(3)を含む、人工多能性幹細胞を腸管上皮細胞へ分化誘導する方法:
(1)人工多能性幹細胞を内胚葉様細胞へと分化させる工程;
(2)工程(1)で得られた内胚葉様細胞を腸管幹細胞様細胞へと分化させる工程;
(3)工程(2)で得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程であって、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物とEGFの存在下での培養を含む工程。
[2]工程(3)の前記培養を、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下で行う、[1]に記載の方法。
[3]工程(3)の前記培養の期間が7日間〜30日間である、[1]又は[2]に記載の方法。
[4]MEK1阻害剤がPD98059であり、DNAメチル化阻害剤が5-アザ-2’-デオキシシチジンであり、TGFβ受容体阻害剤がA-83-01である、[1]〜[3]のいずれか一項に記載の方法。
[5]工程(1)における分化誘導因子としてアクチビンAを用いる、[1]〜[4]のいずれか一項に記載の方法。
[6]工程(2)における分化誘導因子としてFGF2を用いる、[1]〜[5]のいずれか一項に記載の方法。
[7]工程(3)が、以下の工程(3−1)及び(3−2)からなる、[1]〜[6]のいずれか一項に記載の方法:
(3−1)工程(2)で得られた腸管幹細胞様細胞をGSK阻害剤及び/又はBMP阻害剤とEGFの存在下で培養する工程;
(3−2)工程(3−1)に続いて、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物とEGFの存在下で培養する工程。
[8]工程(3−1)の培養期間は3日間〜14日間であり、工程(3−2)の培養期間は3日間〜21日間である、[7]に記載の方法。
[9]GSK阻害剤がGSK3iXVであり、BMP阻害剤がドルソモルフィンである、[7]又は[8]に記載の方法。
[10]人工多能性幹細胞がヒト人工多能性幹細胞である、[1]〜[9]のいずれか一項に記載の方法。
[11][1]〜[10]のいずれか一項に記載の方法で得られた腸管上皮細胞様細胞。
[12][11]に記載の腸管上皮細胞様細胞を用いた、被検物質の体内動態を評価する方法。
[13]以下の工程(i)〜(iii)を含む、[12]に記載の方法:
(i)[11]に記載の腸管上皮細胞様細胞で構成された細胞層を用意する工程;
(ii)前記細胞層に被検物質を接触させる工程;
(iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性を評価する工程。
[14]以下の工程(I)及び(II)を含む、[12]に記載の方法:
(I)[11]に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
(II)被検物質の代謝又は吸収を測定・評価する工程。
[15][11]に記載の腸管上皮細胞様細胞を含む、細胞製剤。
The present invention shown below is mainly based on the above results and considerations by the present inventors.
[1] A method for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells, comprising the following steps (1) to (3):
(1) a step of differentiating induced pluripotent stem cells into endoderm-like cells;
(2) a step of differentiating the endoderm-like cells obtained in step (1) into intestinal stem cell-like cells;
(3) Differentiating intestinal stem cell-like cells obtained in step (2) into intestinal epithelial cell-like cells, selected from the group consisting of MEK1 inhibitors, DNA methylation inhibitors and TGFβ receptor inhibitors Comprising culturing in the presence of one or more compounds and EGF.
[2] The method according to [1], wherein the culture in the step (3) is performed in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGFβ receptor inhibitor, and EGF.
[3] The method according to [1] or [2], wherein the culture period in step (3) is 7 to 30 days.
[4] The MEK1 inhibitor is PD98059, the DNA methylation inhibitor is 5-aza-2′-deoxycytidine, and the TGFβ receptor inhibitor is A-83-01. [1] to [3] The method as described in any one of.
[5] The method according to any one of [1] to [4], wherein activin A is used as the differentiation-inducing factor in the step (1).
[6] The method according to any one of [1] to [5], wherein FGF2 is used as a differentiation inducing factor in the step (2).
[7] The method according to any one of [1] to [6], wherein step (3) comprises the following steps (3-1) and (3-2):
(3-1) A step of culturing the intestinal stem cell-like cell obtained in step (2) in the presence of a GSK inhibitor and / or a BMP inhibitor and EGF;
(3-2) A step of culturing in the presence of EGF and one or more compounds selected from the group consisting of MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibitor, following step (3-1) .
[8] The method according to [7], wherein the culture period of step (3-1) is 3 days to 14 days, and the culture period of step (3-2) is 3 days to 21 days.
[9] The method according to [7] or [8], wherein the GSK inhibitor is GSK3iXV and the BMP inhibitor is dorsomorphin.
[10] The method according to any one of [1] to [9], wherein the induced pluripotent stem cell is a human induced pluripotent stem cell.
[11] An intestinal epithelial cell-like cell obtained by the method according to any one of [1] to [10].
[12] A method for evaluating the pharmacokinetics of a test substance using the intestinal epithelial cell-like cells according to [11].
[13] The method according to [12], comprising the following steps (i) to (iii):
(I) A step of preparing a cell layer composed of the intestinal epithelial cell-like cells according to [11];
(Ii) contacting the test substance with the cell layer;
(Iii) A step of quantifying the test substance that has permeated through the cell layer and evaluating the absorbability or membrane permeability of the test substance.
[14] The method according to [12], comprising the following steps (I) and (II):
(I) A step of bringing a test substance into contact with the intestinal epithelial cell-like cell according to [11];
(II) A step of measuring / evaluating the metabolism or absorption of the test substance.
[15] A cell preparation comprising the intestinal epithelial cell-like cell according to [11].

ヒトiPS細胞から腸管幹細胞への分化に対するFGF2、FGF4及びWnt3aの効果。各データは平均値±S.D.(n = 3)で表した。FGF2とFGF4の添加量は250 ng/mL、Wnt3aの添加量は50 ng/mL。Effect of FGF2, FGF4 and Wnt3a on differentiation from human iPS cells to intestinal stem cells. Each data was expressed as mean ± S.D. (N = 3). The addition amount of FGF2 and FGF4 is 250 ng / mL, and the addition amount of Wnt3a is 50 ng / mL. ヒトiPS細胞から腸管上皮細胞への分化に対する血清濃度の効果。各データは平均値±S.D.(n = 3)で表した。N.D.:検出できず。Effect of serum concentration on differentiation of human iPS cells into intestinal epithelial cells. Each data was expressed as mean ± S.D. (N = 3). N.D .: Cannot be detected. 分化させた腸管上皮細胞様細胞におけるCDX2、DPP4、SLC46A1/PCFTの発現。各データは平均値±S.D.(n = 3)で表した。Expression of CDX2, DPP4, SLC46A1 / PCFT in differentiated intestinal epithelial cell-like cells. Each data was expressed as mean ± S.D. (N = 3). ヒトiPS細胞から腸管上皮細胞への分化スケジュール及び分化過程における細胞の形態学的変化。Differentiation schedule from human iPS cells to intestinal epithelial cells and morphological changes of the cells during the differentiation process. 分化させた腸管上皮細胞様細胞におけるスクラーゼ−イソマルターゼの免疫蛍光染色。(A)スクラーゼ−イソマルターゼの免疫蛍光染色(赤)。(B)DAPIによる核染色(青)。(C)(A)と(B)を合成した画像。スケールバーは50μm。Immunofluorescence staining of sucrase-isomaltase in differentiated intestinal epithelial cell-like cells. (A) Immunofluorescence staining of sucrase-isomaltase (red). (B) Nuclear staining with DAPI (blue). (C) An image that combines (A) and (B). Scale bar is 50 μm. 分化させた腸管上皮細胞様細胞におけるβ-Ala-Lys-AMCAの取り込み。(A)β-Ala-Lys-AMCAの細胞内取り込み(青)。(B)スクラーゼ−イソマルターゼの免疫蛍光染色(赤)。(C)(A)と(B)を合成した画像。スケールバーは50μm。Uptake of β-Ala-Lys-AMCA in differentiated intestinal epithelial cell-like cells. (A) Intracellular uptake of β-Ala-Lys-AMCA (blue). (B) Immunofluorescence staining of sucrase-isomaltase (red). (C) An image that combines (A) and (B). Scale bar is 50 μm. 腸管上皮細胞への分化に対するGSK3及びBMP阻害剤の効果。各データは平均値±S.D.(n = 3)で表した。GSK3iはGSK3iXV、BMPiはドルソモルフィンである。Effect of GSK3 and BMP inhibitors on differentiation into intestinal epithelial cells. Each data was expressed as mean ± S.D. (N = 3). GSK3i is GSK3iXV and BMPi is Dorsomorphin. 腸管上皮細胞への分化に対するPD98059及び5-アザ-2’-デオキシシチジンの効果。各データは平均値±S.D.(n = 3)で表した。N.D.:検出できず。5-aza-2’-dCは 5-アザ-2’-デオキシシチジンである。Effect of PD98059 and 5-aza-2'-deoxycytidine on differentiation into intestinal epithelial cells. Each data was expressed as mean ± S.D. (N = 3). N.D .: Cannot be detected. 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 腸管上皮細胞への分化に対するA-83-01の効果。各データは平均値±S.D.(n = 3)で表した。Effect of A-83-01 on differentiation into intestinal epithelial cells. Each data was expressed as mean ± S.D. (N = 3). A-83-01を用いて分化させた腸管上皮細胞様細胞におけるCYP3A4発現に対する1α,25-ジヒドロキシビタミンD3の誘導効果。各データは平均値±S.D.(n = 3)で表した。VD3は1α,25-ジヒドロキシビタミンD3である。Induction effect of 1α, 25-dihydroxyvitamin D 3 on CYP3A4 expression in intestinal epithelial cell-like cells differentiated with A-83-01. Each data was expressed as mean ± SD (n = 3). VD3 is l [alpha], a 25-dihydroxyvitamin D 3. 腸管上皮細胞への分化に対する低分子化合物併用の効果。各データは平均値±S.D.(n = 3)で表した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジン、VD3は1α,25-ジヒドロキシビタミンD3、RIFはリファンピシンである。Effect of low molecular weight compounds on differentiation into intestinal epithelial cells. Each data was expressed as mean ± SD (n = 3). GSK3i is GSK3iXV, BMPi is dorsomorphin, 5-aza-2′-dC is 5-aza-2′-deoxycytidine, VD3 is 1α, 25-dihydroxyvitamin D 3 , and RIF is rifampicin. 腸管上皮細胞への分化に対する各化合物の効果。腸特異的ホメオボックス(ISX)(上)及びビリン1(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. Intestinal specific homeobox (ISX) (top) and villin 1 (bottom) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 腸管上皮細胞への分化に対する各化合物の効果。スクラーゼ−イソマルターゼ(上)及びSLC15A1/PEPT1(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. Sucrase-isomaltase (upper) and SLC15A1 / PEPT1 (lower) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 腸管上皮細胞への分化に対する各化合物の効果。ABCB1/MDR1(上)及びABCG2/BCRP(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. ABCB1 / MDR1 (top) and ABCG2 / BCRP (bottom) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 低分子化合物を用いて分化させた腸管上皮細胞様細胞におけるスクラーゼ−イソマルターゼの免疫蛍光染色。5-aza-2’-dCは 5-アザ-2’-デオキシシチジンである。スケールバーは500μm。Immunofluorescence staining of sucrase-isomaltase in intestinal epithelial cell-like cells differentiated with low molecular weight compounds. 5-aza-2'-dC is 5-aza-2'-deoxycytidine. Scale bar is 500μm. 腸管上皮細胞への分化に対する各化合物の効果。CYP1A1/2(上)及びCYP2C9(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. CYP1A1 / 2 (top) and CYP2C9 (bottom) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 腸管上皮細胞への分化に対する各化合物の効果。CYP2C19(上)及びCYP2D6(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. CYP2C19 (top) and CYP2D6 (bottom) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 腸管上皮細胞への分化に対する各化合物の効果。ウリジン2リン酸−グルクロン酸転移酵素(上)及び硫酸転移酵素(下)をマーカー遺伝子とした。各データは平均値±S.D.(n = 3)で表した。長期間添加の場合には、化合物を分化開始後8日目〜26日目まで(18日間)添加した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Effect of each compound on differentiation into intestinal epithelial cells. Uridine diphosphate-glucuronyltransferase (upper) and sulfotransferase (lower) were used as marker genes. Each data was expressed as mean ± S.D. (N = 3). In the case of long-term addition, the compound was added from day 8 to day 26 (18 days) after the start of differentiation. GSK3i is GSK3iXV, BMPi is dorsomorphin, and 5-aza-2'-dC is 5-aza-2'-deoxycytidine. 各条件で分化させた腸管上皮細胞様細胞におけるCYP3A4発現に対する1α,25-ジヒドロキシビタミンD3の誘導効果。各データは平均値±S.D.(n = 3)で表した。GSK3iはGSK3iXV、BMPiはドルソモルフィン、5-aza-2’-dCは5-アザ-2’-デオキシシチジン、VD3は1α,25-ジヒドロキシビタミンD3である。Inducing effect of 1α, 25-dihydroxyvitamin D 3 on CYP3A4 expression in intestinal epithelial cell-like cells differentiated under each condition. Each data was expressed as mean ± SD (n = 3). GSK3i is GSK3iXV, BMPi is dorsomorphin, 5-aza-2'-dC is 5-aza-2'-deoxycytidine, VD3 is l [alpha], a 25-dihydroxyvitamin D 3. 低分子化合物を用いて分化させた腸管上皮細胞様細胞におけるβ-Ala-Lys-AMCAの取り込み。コントロール(取り込みの際の温度条件を37℃にした場合)(左)、阻害剤(イブプロフェン)を添加した場合(中央)、取り込みの際の温度条件を4℃にした場合(右)の間で、β-Ala-Lys-AMCAの細胞内取り込み(青)を比較した。スケールバーは500μm。Uptake of β-Ala-Lys-AMCA in intestinal epithelial cell-like cells differentiated with low molecular weight compounds. Between control (when the temperature condition during uptake is 37 ° C) (left), when an inhibitor (ibuprofen) is added (center), and when the temperature condition during uptake is 4 ° C (right) , Β-Ala-Lys-AMCA intracellular uptake (blue) was compared. Scale bar is 500μm. 各種化合物による分化誘導。腸管上皮細胞への分化に対するTGF-β阻害剤及びMEK阻害剤の効果を様々な化合物を使用して検証した。平均値±S.D.(n = 3)で表した。Differentiation induction by various compounds. The effects of TGF-β inhibitors and MEK inhibitors on differentiation into intestinal epithelial cells were verified using various compounds. The average value was expressed as ± S.D. (N = 3). 各種化合物による分化誘導。腸管上皮細胞への分化に対するDNAメチル化阻害剤の効果を様々な化合物を使用して検証した。平均値±S.D.(n = 3)で表した。5-aza-2’-dCは5-アザ-2’-デオキシシチジン、5-azaCは5-アザシシチジンである。Differentiation induction by various compounds. The effects of DNA methylation inhibitors on differentiation into intestinal epithelial cells were verified using various compounds. The average value was expressed as ± S.D. (N = 3). 5-aza-2'-dC is 5-aza-2'-deoxycytidine and 5-azaC is 5-azacytidine. より効果的な化合物の組合せで分化させた腸管上皮細胞様細胞におけるLGR5及びスクラーゼ−イソマルターゼの発現。各データは平均値±S.D.(n = 3)で表した。5-aza-2’-dCは5-アザ-2’-デオキシシチジンである。Expression of LGR5 and sucrase-isomaltase in intestinal epithelial cell-like cells differentiated with a more effective compound combination. Each data was expressed as mean ± S.D. (N = 3). 5-aza-2'-dC is 5-aza-2'-deoxycytidine. より効果的な化合物の組合せで分化させた腸管上皮細胞様細胞におけるSLC15A1/PEPT1の発現(上)と、CYP3A4発現に対する1α,25-ジヒドロキシビタミンD3の誘導効果。各データは平均値±S.D.(n = 3)で表した。5-aza-2’-dCは5-アザ-2’-デオキシシチジンであり、VD3は1α,25-ジヒドロキシビタミンD3である。SLC15A1 / PEPT1 expression (upper) in intestinal epithelial cell-like cells differentiated by a more effective combination of compounds, and the induction effect of 1α, 25-dihydroxyvitamin D 3 on CYP3A4 expression. Each data was expressed as mean ± SD (n = 3). 5-aza-2'-dC is 5-aza-2'-deoxycytidine and VD3 is 1α, 25-dihydroxyvitamin D3.

本発明は人工多能性幹細胞(iPS細胞)を腸管上皮細胞系譜へ分化誘導する方法(以下、「本発明の分化誘導方法」とも呼ぶ。)に関する。本発明によれば、生体の腸管組織を構成する腸管上皮細胞と類似の特性を示す細胞、即ち腸管上皮細胞様細胞が得られる。   The present invention relates to a method for inducing differentiation of an induced pluripotent stem cell (iPS cell) into an intestinal epithelial cell lineage (hereinafter also referred to as “differentiation induction method of the present invention”). According to the present invention, cells exhibiting characteristics similar to those of intestinal epithelial cells constituting intestinal tissue of a living body, that is, intestinal epithelial cell-like cells can be obtained.

「人工多能性幹細胞(iPS細胞)」とは、初期化因子の導入などにより体細胞をリプログラミングすることによって作製される、多能性(多分化能)と増殖能を有する細胞である。人工多能性幹細胞はES細胞に近い性質を示す。iPS細胞の作製に使用する体細胞は特に限定されず、分化した体細胞でもよいし、未分化の幹細胞でもよい。また、その由来も特に限定されないが、好ましくは哺乳動物(例えば、ヒトやチンパンジーなどの霊長類、マウスやラットなどのげっ歯類)の体細胞、特に好ましくはヒトの体細胞を用いる。iPS細胞は、これまでに報告された各種方法によって作製することができる。また、今後開発されるiPS細胞作製法を適用することも当然に想定される。   “Artificial pluripotent stem cells (iPS cells)” are cells having pluripotency (multipotency) and proliferative ability, which are produced by reprogramming somatic cells by introduction of reprogramming factors. Artificial pluripotent stem cells exhibit properties similar to ES cells. Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. Although the origin thereof is not particularly limited, preferably, somatic cells of mammals (eg, primates such as humans and chimpanzees, rodents such as mice and rats), particularly preferably human somatic cells are used. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.

iPS細胞作製法の最も基本的な手法は、転写因子であるOct3/4、Sox2、Klf4及びc-Mycの4因子を、ウイルスを利用して細胞へ導入する方法である(Takahashi K, Yamanaka S: Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007)。ヒトiPS細胞についてはOct4、Sox2、Lin28及びNonogの4因子の導入による樹立の報告がある(Yu J, et al: Science 318(5858), 1917-1920, 2007)。c-Mycを除く3因子(Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008)、Oct3/4及びKlf4の2因子(Kim J B, et al: Nature 454 (7204), 646-650, 2008)、或いはOct3/4のみ(Kim J B, et al: Cell 136 (3), 411-419, 2009)の導入によるiPS細胞の樹立も報告されている。また、遺伝子の発現産物であるタンパク質を細胞に導入する手法(Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al: Cell Stem Cell 4, 472-476, 2009)も報告されている。一方、ヒストンメチル基転移酵素G9aに対する阻害剤BIX-01294やヒストン脱アセチル化酵素阻害剤バルプロ酸(VPA)或いはBayK8644等を使用することによって作製効率の向上や導入する因子の低減などが可能であるとの報告もある(Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J, et al: PLoS. Biol. 6 (10), e 253, 2008)。遺伝子導入法についても検討が進められ、レトロウイルスの他、レンチウイルス(Yu J, et al: Science 318(5858), 1917-1920, 2007)、アデノウイルス(Stadtfeld M, et al: Science 322 (5903), 945-949, 2008)、プラスミド(Okita K, et al: Science 322 (5903), 949-953, 2008)、トランスポゾンベクター(Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766-770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009)、或いはエピソーマルベクター(Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009)を遺伝子導入に利用した技術が開発されている。   The most basic method for producing iPS cells is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007). Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007). 3 factors except c-Myc (Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008), Oct3 / 4 and Klf4 (Kim JB, et al: Nature 454 (7204) , 646-650, 2008), or the establishment of iPS cells by introducing only Oct3 / 4 (Kim JB, et al: Cell 136 (3), 411-419, 2009) has been reported. In addition, a method for introducing a protein, which is an expression product of a gene, into a cell (Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al : Cell Stem Cell 4, 472-476, 2009). On the other hand, by using the inhibitor BIX-01294 for histone methyltransferase G9a, the histone deacetylase inhibitor valproic acid (VPA) or BayK8644, production efficiency can be improved and factors to be introduced can be reduced. (Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J , et al: PLoS. Biol. 6 (10), e 253, 2008). Studies on gene transfer methods are also underway, and in addition to retroviruses, lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vector (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or A technique using an episomal vector (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) has been developed.

iPS細胞への形質転換、即ち初期化(リプログラミング)が生じた細胞はFbxo15、Nanog、Oct/4、Fgf-4、Esg-1及びCript等の多能性幹細胞マーカー(未分化マーカー)の発現などを指標として選択することができる。選択された細胞をiPS細胞として回収する。   Cells that have undergone transformation (reprogramming) into iPS cells are expressed pluripotent stem cell markers (undifferentiation markers) such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index. The selected cells are collected as iPS cells.

iPS細胞は、例えば、国立大学法人京都大学又は独立行政法人理化学研究所バイオリソースセンターから提供を受けることもできる。   iPS cells can also be provided from, for example, Kyoto University or the RIKEN BioResource Center.

本明細書において「分化誘導する」とは、特定の細胞系譜に沿って分化するように働きかけることをいう。本発明ではiPS細胞を腸管上皮細胞へと分化誘導する。本発明の分化誘導方法は大別して3段階の誘導工程、即ち、iPS細胞を内胚葉様細胞へと分化させる工程(工程(1))と、得られた内胚葉様細胞を腸管幹細胞様細胞へと分化させる工程(工程(2))と、得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程(工程(3))を含む。以下、各工程の詳細を説明する。   As used herein, “inducing differentiation” refers to acting to differentiate along a specific cell lineage. In the present invention, iPS cells are induced to differentiate into intestinal epithelial cells. The differentiation induction method of the present invention is roughly divided into three stages of induction processes, that is, a process of differentiating iPS cells into endoderm-like cells (step (1)), and the obtained endoderm-like cells into intestinal stem cell-like cells. And the step of differentiating (step (2)) and the step of differentiating the obtained intestinal stem cell-like cells into intestinal epithelial cell-like cells (step (3)). Hereinafter, details of each process will be described.

<工程(1) 内胚葉様細胞への分化>
この工程ではiPS細胞を培養し、内胚葉様細胞へと分化させる。換言すれば、内胚葉様細胞への分化を誘導する条件下でiPS細胞を培養する。iPS細胞が内胚葉様細胞に分化する限り、培養条件は特に限定されない。例えば、常法に従い、アクチビンAを添加した培地で培養する。この場合、培地中のアクチビンAの濃度を例えば10 ng/ml〜200 ng/ml、好ましくは20 ng/ml〜150 ng/mlとする。細胞の増殖率や維持等の観点から、培地に血清又は血清代替物(Knockout serum replacement(KSR)など)を添加することが好ましい。血清はウシ胎仔血清に限られるものではなく、ヒト血清や羊血清等を用いることもできる。血清又は血清代替物の添加量は例えば0.1%(v/v)〜10%(v/v)である。
<Process (1) Differentiation into endoderm-like cells>
In this step, iPS cells are cultured and differentiated into endoderm-like cells. In other words, iPS cells are cultured under conditions that induce differentiation into endoderm-like cells. The culture conditions are not particularly limited as long as iPS cells differentiate into endoderm-like cells. For example, the cells are cultured in a medium supplemented with activin A according to a conventional method. In this case, the concentration of activin A in the medium is, for example, 10 ng / ml to 200 ng / ml, preferably 20 ng / ml to 150 ng / ml. From the viewpoint of cell growth rate and maintenance, it is preferable to add serum or serum replacement (Knockout serum replacement (KSR), etc.) to the medium. Serum is not limited to fetal bovine serum, and human serum, sheep serum, and the like can also be used. The amount of serum or serum replacement added is, for example, 0.1% (v / v) to 10% (v / v).

Wnt/β−カテニンシグナル経路の阻害剤(例えば、ヘキサクロロフェン、クエルセチン、WntリガンドであるWnt3a)を培地に添加し、内胚葉様細胞への分化の促進を図ってもよい。   An inhibitor of the Wnt / β-catenin signaling pathway (for example, hexachlorophene, quercetin, Wnt3a which is a Wnt ligand) may be added to the medium to promote differentiation into endoderm-like cells.

好ましい一態様では、工程(1)として2段階の培養を行う。1段階目の培養では比較的低濃度の血清(例えば、0.1%(v/v)〜1%(v/v))を添加した培地で行い、続く2段階目の培養では一段階目の培養よりも血清濃度を高めた培地(血清濃度を例えば1%(v/v)〜10%(v/v)))で行う。このように2段階の培養を採用することは、1段階目の培養により未分化細胞の増殖を抑制し、続く2段階目により分化した細胞を増殖させる点で好ましい。   In a preferred embodiment, two-stage culture is performed as step (1). The first stage culture is performed in a medium supplemented with a relatively low concentration of serum (eg, 0.1% (v / v) to 1% (v / v)), and the second stage culture is the first stage culture. In a medium with a higher serum concentration (for example, the serum concentration is 1% (v / v) to 10% (v / v)). Adopting the two-stage culture in this way is preferable in that the growth of undifferentiated cells is suppressed by the first-stage culture and the differentiated cells are grown in the subsequent second stage.

工程(1)の期間(培養期間)は例えば1日間〜10日間、好ましくは2日間〜7日間である。工程(1)として2段階の培養を採用する場合には1段階目の培養期間を例えば1日間〜7日間、好ましくは2日間〜5日間とし、2段階目の培養期間を例えば1日間〜6日間、好ましくは1日間〜4日間とする。   The period (culture period) of the step (1) is, for example, 1 day to 10 days, preferably 2 days to 7 days. When adopting a two-stage culture as the step (1), the first stage culture period is, for example, 1 day to 7 days, preferably 2 days to 5 days, and the second stage culture period is, for example, 1 day to 6 days. Days, preferably 1 to 4 days.

<工程(2) 腸管幹細胞様細胞への分化>
この工程では、工程(1)で得られた内胚葉様細胞を培養し、腸管幹細胞様細胞へと分化させる。換言すれば、腸管幹細胞様細胞への分化を誘導する条件下で内胚葉細胞を培養する。内胚葉様細胞が腸管幹細胞様細胞へ分化する限り、培養条件は特に限定されない。好ましくは、後述の実施例に示した実験結果を踏まえ、FGF2(線維芽細胞増殖因子2)の存在下で培養を行う。好ましくはヒトFGF2(例えばヒト組換えFGF2)を用いる。
<Step (2) Differentiation into intestinal stem cell-like cells>
In this step, the endoderm-like cells obtained in step (1) are cultured and differentiated into intestinal stem cell-like cells. In other words, the endoderm cells are cultured under conditions that induce differentiation into intestinal stem cell-like cells. The culture conditions are not particularly limited as long as the endoderm-like cells differentiate into intestinal stem cell-like cells. Preferably, the culture is performed in the presence of FGF2 (fibroblast growth factor 2) based on the experimental results shown in the Examples described later. Preferably, human FGF2 (for example, human recombinant FGF2) is used.

典型的には、工程(1)を経て得られた細胞集団又はその一部を、選別することなく工程(2)に供する。一方で、工程(1)を経て得られた細胞集団の中から内胚葉様細胞を選別した上で工程(2)を実施することにしてもよい。内胚葉様細胞の選別は例えば、細胞表面マーカーを指標にしてフローサイトメーター(セルソーター)で行えばよい。   Typically, the cell population obtained through the step (1) or a part thereof is subjected to the step (2) without sorting. On the other hand, after selecting endoderm-like cells from the cell population obtained through step (1), step (2) may be carried out. For example, the endoderm-like cells may be selected with a flow cytometer (cell sorter) using a cell surface marker as an index.

「FGF2の存在下」とは、FGF2が培地中に添加された条件と同義である。従って、FGF2の存在下での培養を行うためには、FGF2が添加された培地を用いればよい。FGF2の添加濃度の例を示すと100ng/mL〜500ng/mLである。   “In the presence of FGF2” is synonymous with the condition in which FGF2 is added to the medium. Therefore, in order to perform culture in the presence of FGF2, a medium supplemented with FGF2 may be used. An example of the concentration of FGF2 added is 100 ng / mL to 500 ng / mL.

工程(2)の期間(培養期間)は例えば2日間〜10日間、好ましくは3日間〜7日間である。当該培養期間が短すぎると、期待される効果(分化効率の上昇、腸管幹細胞としての機能の獲得の促進)が十分に得られない。他方、当該培養期間が長すぎると、分化効率の低下を引き起こす。   The period (culture period) of the step (2) is, for example, 2 days to 10 days, preferably 3 days to 7 days. If the culture period is too short, the expected effects (increased differentiation efficiency, promotion of acquisition of functions as intestinal stem cells) cannot be sufficiently obtained. On the other hand, if the culture period is too long, the differentiation efficiency is lowered.

腸管幹細胞様細胞へ分化したことは、例えば、腸管幹細胞マーカーの発現を指標にして判定ないし評価することができる。腸管幹細胞マーカーの例を挙げると、ロイシンリッチリピートを含むGタンパク質共役受容体5(LGR5)、エフリンB2受容体(EphB2)である。   Differentiation into intestinal stem cell-like cells can be determined or evaluated using, for example, the expression of an intestinal stem cell marker as an index. Examples of intestinal stem cell markers are G protein-coupled receptor 5 (LGR5) and ephrin B2 receptor (EphB2) containing leucine-rich repeats.

<工程(3) 腸管上皮細胞様細胞への分化>
この工程では、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(以下、「第1誘導因子」とも呼ぶ)とEGF(以下、「第2誘導因子」とも呼ぶ)の存在下で培養を行い、工程(2)で得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる。典型的には、工程(2)を経て得られた細胞集団又はその一部を、選別することなく工程(3)に供する。一方で、工程(2)を経て得られた細胞集団の中から腸管幹細胞様細胞を選別した上で工程(3)を実施することにしてもよい。腸管幹細胞様細胞の選別は例えば、細胞表面マーカーを指標にしてフローサイトメーター(セルソーター)で行えばよい。
<Step (3) Differentiation into intestinal epithelial cell-like cells>
In this step, one or more compounds selected from the group consisting of MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibitor (hereinafter also referred to as “first inducer”) and EGF (hereinafter referred to as “second” In the presence of an inducer), the intestinal stem cell-like cells obtained in step (2) are differentiated into intestinal epithelial cell-like cells. Typically, the cell population obtained through the step (2) or a part thereof is subjected to the step (3) without sorting. On the other hand, after intestinal stem cell-like cells are selected from the cell population obtained through the step (2), the step (3) may be performed. Selection of intestinal stem cell-like cells may be performed, for example, with a flow cytometer (cell sorter) using a cell surface marker as an index.

MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(第1誘導因子)とEGF(第2誘導因子)の存在下とは、第1誘導因子と第2誘導因子が培地中に添加された条件と同義である。従って、第1誘導因子と第2誘導因子の存在下での培養を行うためには、第1誘導因子と第2誘導因子が添加された培地を用いればよい。   The presence of one or more compounds selected from the group consisting of MEK1 inhibitor, DNA methylation inhibitor and TGFβ receptor inhibitor (first inducer) and EGF (second inducer) is the first inducer And the second inducing factor are synonymous with the conditions added to the medium. Therefore, in order to perform culture in the presence of the first inducer and the second inducer, a medium to which the first inducer and the second inducer are added may be used.

MEK1阻害剤として、PD98059、PD184352、PD184161、PD0325901、U0126、MEK inhibitor I、MEK inhibitor II、MEK1/2 inhibitor II、SL327を挙げることができる。同様に、DNAメチル化阻害剤として5-アザ-2’-デオキシシチジン、5-アザシチジン、RG108、ゼブラリンを挙げることができる。TGFβ受容体阻害剤については、後述の実施例に使用したA-83-01がTGF-β受容体ALK4、ALK5、ALK7に阻害活性を示すことを考慮すれば、好ましくは、TGF-β受容体ALK4、ALK5、ALK7の一以上に対して阻害活性を示すものを用いるとよい。例えば、A-83-01、SB431542、SB-505124、SB525334、D4476、ALK5 inhibitor、LY2157299、LY364947、GW788388、RepSoxが当該条件を満たす。   Examples of MEK1 inhibitors include PD98059, PD184352, PD184161, PD0325901, U0126, MEK inhibitor I, MEK inhibitor II, MEK1 / 2 inhibitor II, and SL327. Similarly, examples of DNA methylation inhibitors include 5-aza-2'-deoxycytidine, 5-azacytidine, RG108, and zebralin. As for the TGFβ receptor inhibitor, it is preferable to consider that A-83-01 used in the examples described later exhibits inhibitory activity on TGF-β receptors ALK4, ALK5, and ALK7. What shows inhibitory activity with respect to one or more of ALK4, ALK5, and ALK7 may be used. For example, A-83-01, SB431542, SB-505124, SB525334, D4476, ALK5 inhibitor, LY2157299, LY364947, GW788388, and RepSox satisfy the conditions.

MEK1阻害剤の添加濃度の例(PD98059の場合)を示すと4μM〜100μM、好ましくは10〜40μMである。同様にメチル化阻害剤の添加濃度の例(5-アザ-2’-デオキシシチジンの場合)を示すと、1μM〜25μM、好ましくは2.5μM〜10μMであり、TGFβ受容体阻害剤の添加濃度の例(A-83-01の場合)を示すと0.1μM〜2.5μM、好ましくは0.2μM〜1μMである。   An example of the concentration of MEK1 inhibitor added (in the case of PD98059) is 4 μM to 100 μM, preferably 10 to 40 μM. Similarly, an example of the addition concentration of the methylation inhibitor (in the case of 5-aza-2′-deoxycytidine) is 1 μM to 25 μM, preferably 2.5 μM to 10 μM, and the addition concentration of the TGFβ receptor inhibitor An example (in the case of A-83-01) is 0.1 μM to 2.5 μM, preferably 0.2 μM to 1 μM.

好ましい一態様では、第1誘導因子として、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤の中の二以上を併用する。異なる二以上の第1誘導因子を併用することにより、相加的又は相乗的効果が得られ、腸管上皮への分化を促進できる。最も好ましくは、全て(即ち3種類)の第1誘導因子を併用する。後述の実施例に示す通り、3種類の第1誘導因子(実施例では、MEK1阻害剤としてPD98059、DNAメチル化阻害剤として5-アザ-2’-デオキシシチジン、TGFβ受容体阻害剤としてA-83-01をそれぞれ使用)を併用すると、分化が一層促進されることが確認された。   In a preferred embodiment, two or more of MEK1 inhibitor, DNA methylation inhibitor, and TGFβ receptor inhibitor are used in combination as the first inducer. By using two or more different first inducers in combination, an additive or synergistic effect can be obtained, and differentiation into intestinal epithelium can be promoted. Most preferably, all (ie, three types) of first inducers are used in combination. As shown in the examples described later, three types of first inducers (in the examples, PD98059 as a MEK1 inhibitor, 5-aza-2'-deoxycytidine as a DNA methylation inhibitor, and A- as a TGFβ receptor inhibitor) It was confirmed that differentiation was further promoted when 83-01 was used in combination.

工程(3)の期間(培養期間)は例えば7日間〜30日間、好ましくは10日間〜20日間である。当該培養期間が短すぎると、期待される効果(分化効率の上昇、腸管上皮細胞としての機能の獲得の促進)が十分に得られない。他方、当該培養期間が長すぎると、分化効率の低下を引き起こす。   The period (culture period) of the step (3) is, for example, 7 days to 30 days, preferably 10 days to 20 days. If the culture period is too short, the expected effects (increased differentiation efficiency, promotion of acquisition of functions as intestinal epithelial cells) cannot be sufficiently obtained. On the other hand, if the culture period is too long, the differentiation efficiency is lowered.

腸管上皮細胞様細胞へ分化したことは、例えば、腸管上皮細胞マーカーの発現やペプチドの取り込み、或いはビタミンD受容体を介した薬物代謝酵素の発現誘導を指標にして判定ないし評価することができる。腸管上皮細胞マーカーの例を挙げると、ATP結合カセットトランスポーターB1/多剤耐性タンパク1(ABCB1/MDR1)、尾側型ホメオボックス転写因子2(CDX2)、シトクロムP450 3A4(CYP3A4)、ジペプチジルペプチダーゼ4(DPP4)、SLC(solute carrier)ファミリーメンバー15A1/ペプチドトランスポーター1(SLC15A1/PEPT1)、SLC(solute carrier)ファミリーメンバー46A1/プロトン共役葉酸トランスポーター(SLC46A1/PCFT)、スクラーゼ−イソマルターゼである。この中でも、腸管上皮に特異性の高いスクラーゼ−イソマルターゼ、小腸での主要な薬物代謝酵素であるCYP3A4、及び小腸でのペプチドの吸収に関与するSLC15A1/PEPT1は特に有効なマーカーである。   Differentiation into intestinal epithelial cell-like cells can be determined or evaluated using, for example, intestinal epithelial cell marker expression, peptide uptake, or induction of drug metabolizing enzyme expression via vitamin D receptor as an index. Examples of intestinal epithelial cell markers include ATP binding cassette transporter B1 / multidrug resistance protein 1 (ABCB1 / MDR1), caudal homeobox transcription factor 2 (CDX2), cytochrome P450 3A4 (CYP3A4), dipeptidyl peptidase 4 (DPP4), SLC (solute carrier) family member 15A1 / peptide transporter 1 (SLC15A1 / PEPT1), SLC (solute carrier) family member 46A1 / proton conjugated folate transporter (SLC46A1 / PCFT), sucrase-isomaltase . Among them, sucrase-isomaltase having high specificity for the intestinal epithelium, CYP3A4, which is a major drug-metabolizing enzyme in the small intestine, and SLC15A1 / PEPT1 involved in peptide absorption in the small intestine are particularly effective markers.

目的の細胞(腸管上皮細胞様細胞)のみからなる細胞集団又は目的の細胞が高比率(高純度)で含まれた細胞集団を得ようと思えば、目的の細胞に特徴的な細胞表面マーカーを指標にして培養後の細胞集団を選別・分取すればよい。   If you want to obtain a cell population consisting only of the target cells (intestinal epithelial cell-like cells) or a cell population that contains the target cells in a high ratio (high purity), select a cell surface marker that is characteristic for the target cells. The cultured cell population may be selected and sorted as an index.

好ましい一態様では工程(3)として2段階の培養、即ち、工程(2)で得られた腸管幹細胞様細胞をGSK阻害剤及び/又はBMP阻害剤とEGFの存在下で培養する工程(3−1)とそれに続いて、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物(第1誘導因子)とEGF(第2誘導因子)の存在下で培養する工程(3−2)を行う。従って、この態様では、第1誘導因子と第2誘導因子を用いた培養の前に、GSK阻害剤及び/又はBMP阻害剤の存在下での培養を行うことになる。GSK阻害剤及び/又はBMP阻害剤の存在下での培養の主たる目的は、腸管幹細胞の増殖を促進することである。   In a preferred embodiment, the step (3) is a two-stage culture, that is, the step of culturing the intestinal stem cell-like cells obtained in the step (2) in the presence of a GSK inhibitor and / or a BMP inhibitor and EGF (3- 1) followed by the presence of one or more compounds (first inducer) and EGF (second inducer) selected from the group consisting of MEK1 inhibitors, DNA methylation inhibitors and TGFβ receptor inhibitors The step (3-2) of culturing is performed. Therefore, in this embodiment, the culture in the presence of a GSK inhibitor and / or a BMP inhibitor is performed before the culture using the first inducer and the second inducer. The main purpose of culturing in the presence of GSK inhibitors and / or BMP inhibitors is to promote intestinal stem cell proliferation.

工程(3)として工程(3−1)と工程(3−2)を行う場合、工程(3−1)の培養期間は例えば3日間〜14日間、好ましくは4日間〜10日間であり、工程(3−2)の培養期間は例えば3日間〜21日間、好ましくは5日間〜15日間である。   When performing step (3-1) and step (3-2) as step (3), the culture period of step (3-1) is, for example, 3 days to 14 days, preferably 4 days to 10 days. The culture period of (3-2) is, for example, 3 days to 21 days, preferably 5 days to 15 days.

本発明を構成する各工程(工程(1)、(2)、(3)、(3−1)、(3−2))において、途中で継代培養を行ってもよい。例えばコンフルエント又はサブコンフルエントになった際に細胞の一部を採取して別の培養容器に移し、培養を継続する。分化を促進するために細胞密度を低く設定することが好ましい。例えば1×104個/cm2〜1×106個/cm2程度の細胞密度で細胞を播種するとよい。In each step (steps (1), (2), (3), (3-1), (3-2)) constituting the present invention, subculture may be performed midway. For example, when the cells become confluent or subconfluent, a part of the cells is collected and transferred to another culture vessel, and the culture is continued. In order to promote differentiation, it is preferable to set the cell density low. For example, the cells may be seeded at a cell density of about 1 × 10 4 cells / cm 2 to 1 × 10 6 cells / cm 2 .

培地交換や継代培養などに伴う、細胞の回収の際には、細胞死を抑制するためにY-27632等のROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)で予め細胞を処理しておくとよい。   When collecting cells due to medium exchange or subculture, in order to suppress cell death, cells are pre-treated with a ROCK inhibitor (Rho-associated coiled-coil forming kinase / Rho-binding kinase) such as Y-27632. Should be processed.

本発明を構成する各工程(工程(1)、(2)、(3)、(3−1)、(3−2))における、その他の培養条件(培養温度など)は、動物細胞の培養において一般に採用されている条件とすればよい。即ち、例えば37℃、5%CO2の環境下で培養すればよい。また、基本培地として、イスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、Gibco社等)、ダルベッコ変法イーグル培地(D-MEM)(ナカライテスク株式会社、シグマ社、Gibco社等)、グラスゴー基本培地(Gibco社等)、RPMI1640培地等を用いることができる。二種以上の基本培地を併用することにしてもよい。工程(2)、(3)、(3−1)、(3−2)においては、上皮細胞の培養に適した基本培地(例えばD-MEMとハムF12培地の混合培地、D-MEM)を用いることが好ましい。培地に添加可能な成分の例としてウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、PVA、非必須アミノ酸(NEAA)、インスリン、トランスフェリン、セレニウムを挙げることができる。典型的には培養皿などを用いて二次元的に細胞を培養する。本発明の方法によれば、二次元培養によってiPS細胞から腸管上皮細胞様細胞を得ることが可能となる。但し、ゲル状の培養基材あるいは3次元培養プレートなどを用いた3次元培養を実施することにしてもよい。Other culture conditions (culture temperature etc.) in each step (steps (1), (2), (3), (3-1), (3-2)) constituting the present invention are animal cell cultures. In this case, the conditions generally adopted may be used. That is, for example, it may be cultured in an environment of 37 ° C. and 5% CO 2 . In addition, as a basic medium, Iskov modified Dulbecco medium (IMDM) (GIBCO, etc.), Ham F12 medium (HamF12) (SIGMA, Gibco, etc.), Dulbecco modified Eagle medium (D-MEM) (Nacalai Tesque, Sigma, Gibco, etc.), Glasgow basic medium (Gibco, etc.), RPMI1640 medium, etc. can be used. Two or more basic media may be used in combination. In steps (2), (3), (3-1), and (3-2), a basic medium (for example, a mixed medium of D-MEM and Ham F12 medium, D-MEM) suitable for epithelial cell culture is used. It is preferable to use it. Examples of components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium. Typically, cells are cultured two-dimensionally using a culture dish or the like. According to the method of the present invention, intestinal epithelial cell-like cells can be obtained from iPS cells by two-dimensional culture. However, three-dimensional culture using a gel culture substrate or a three-dimensional culture plate may be performed.

本発明の第2の局面は本発明の分化誘導方法で調製した腸管上皮細胞様細胞の用途に関する。第1の用途として各種アッセイが提供される。本発明の腸管上皮細胞様細胞は小腸のモデル系に利用可能であり、小腸での薬物動態(吸収、代謝など)の評価に有用である。換言すれば、本発明の腸管上皮細胞様細胞は、化合物の体内動態の評価にその利用が図られる。   The second aspect of the present invention relates to the use of intestinal epithelial cell-like cells prepared by the differentiation induction method of the present invention. Various assays are provided as a first use. The intestinal epithelial cell-like cell of the present invention can be used in a model system of the small intestine, and is useful for evaluating pharmacokinetics (absorption, metabolism, etc.) in the small intestine. In other words, the intestinal epithelial cell-like cell of the present invention can be used for evaluating the pharmacokinetics of a compound.

具体的には、本発明の腸管上皮細胞様細胞を用いて被検物質の吸収性ないし膜透過性を試験することができる。即ち、本発明は、腸管上皮細胞様細胞の用途の一つとして、被検物質の吸収性ないし膜透過性を評価する方法(第1の態様)を提供する。当該方法では、(i)本発明の分化誘導方法で得られた腸管上皮細胞様細胞で構成された細胞層を用意する工程と、(ii)前記細胞層に被検物質を接触させる工程と、(iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性を評価する工程を行う。尚、被検物質の吸収性については、後述の方法(第2の態様)でも評価することができる。   Specifically, the intestinal epithelial cell-like cell of the present invention can be used to test the absorbability or membrane permeability of a test substance. That is, the present invention provides, as one of the uses of intestinal epithelial cell-like cells, a method (first aspect) for evaluating the absorbability or membrane permeability of a test substance. In the method, (i) a step of preparing a cell layer composed of intestinal epithelial cell-like cells obtained by the differentiation induction method of the present invention, and (ii) a step of bringing a test substance into contact with the cell layer; (Iii) A step of quantifying the test substance that has permeated the cell layer and evaluating the absorbability or membrane permeability of the test substance is performed. The absorbability of the test substance can also be evaluated by the method described later (second aspect).

工程(i)では、典型的には、半透過性膜(多孔性膜)の上で腸管上皮細胞様細胞を培養し、細胞層を形成させる。具体的には、例えば、カルチャーインサートを備えた培養容器(例えば、コーニング社が提供するトランスウェル(登録商標))を使用し、カルチャーインサート内に細胞を播種して培養することにより、腸管上皮細胞様細胞で構成された細胞層を得る。   In step (i), intestinal epithelial cell-like cells are typically cultured on a semipermeable membrane (porous membrane) to form a cell layer. Specifically, for example, by using a culture vessel equipped with a culture insert (for example, Transwell (registered trademark) provided by Corning), seeding and culturing cells in the culture insert, intestinal epithelial cells A cell layer composed of like-like cells is obtained.

工程(ii)での「接触」は、典型的には、培地に被検物質を添加することによって行われる。被検物質の添加のタイミングは特に限定されない。従って、被検物質を含まない培地で培養を開始した後、ある時点で被検物質を添加することにしても、予め被検物質を含む培地で培養を開始することにしてもよい。   “Contact” in step (ii) is typically performed by adding a test substance to the medium. The timing of adding the test substance is not particularly limited. Therefore, after culturing is started in a medium not containing the test substance, the test substance may be added at a certain point in time, or the culture may be started in advance in a medium containing the test substance.

被検物質には様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミン(B1、B2、B3、B5、B6、B7、B9、B12、C、A、D、E等)を例示できる。医薬や栄養食品等の既存成分或いは候補成分も好ましい被検物質の一つである。植物抽出液、細胞抽出液、培養上清などを被検物質として用いてもよい。2種類以上の被検物質を同時に添加することにより、被検物質間の相互作用、相乗作用などを調べることにしてもよい。被検物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なアッセイ系を構築することができる。   As the test substance, organic compounds or inorganic compounds having various molecular sizes can be used. Examples of organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins (B1, B2, B3, B5, B6, B7, B9, B12, C, A, D, E, etc.) Existing components or candidate components such as pharmaceuticals and nutritional foods are also preferable test substances. Extracts, cell extracts, culture supernatants, etc. may be used as test substances, and by adding two or more kinds of test substances at the same time, the interaction between the test substances, synergism, etc. will be investigated. The test substance may be derived from a natural product or may be synthetic, in which case, for example, a combinatorial synthesis technique is used. It is possible to construct a rate assay systems.

被検物質を接触させる期間は任意に設定可能である。接触期間は例えば10分間〜3日間、好ましくは1時間〜1日間である。接触を複数回に分けて行うことにしてもよい。   The period for contacting the test substance can be arbitrarily set. The contact period is, for example, 10 minutes to 3 days, preferably 1 hour to 1 day. The contact may be performed in a plurality of times.

工程(iii)では、細胞層を透過した被検物質を定量する。例えば、トランスウェル(登録商標)のようなカルチャーインサートを備えた培養容器を使用した場合には、カルチャーインサートから漏出した被検物質、即ち、細胞層を介して下部容器内に移動した被検物質を、被検物質に応じて、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等の測定方法で定量する。定量結果(細胞層を透過した被検物質の量)と被検物質の使用量(典型的には培地への添加量)に基づき、被検物質の吸収性ないし膜透過性を判定・評価する。   In the step (iii), the test substance that has permeated the cell layer is quantified. For example, when a culture vessel equipped with a culture insert such as Transwell (registered trademark) is used, a test substance leaked from the culture insert, that is, a test substance moved into the lower container through the cell layer Is quantified by a measuring method such as mass spectrometry, liquid chromatography, immunological technique (for example, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) or the like according to the test substance. Based on the quantification result (the amount of the test substance that has permeated the cell layer) and the amount of the test substance used (typically, the amount added to the medium), the absorbability or membrane permeability of the test substance is judged and evaluated. .

本発明は別の態様(第2の態様)として、被検物質の代謝又は吸収を評価する方法も提供する。当該方法では、(I)本発明の分化誘導方法で得られた腸管上皮細胞様細胞に被検物質を接触させる工程と、(II)被検物質の代謝又は吸収を測定・評価する工程を行う。   As another aspect (second aspect), the present invention also provides a method for evaluating metabolism or absorption of a test substance. In this method, (I) a step of contacting a test substance with the intestinal epithelial cell-like cell obtained by the differentiation induction method of the present invention, and (II) a step of measuring and evaluating the metabolism or absorption of the test substance. .

工程(I)、即ち腸管上皮細胞様細胞と被検物質の接触は、上記工程(ii)と同様に実施することができる。   The step (I), that is, the contact between the intestinal epithelial cell-like cell and the test substance can be carried out in the same manner as in the above step (ii).

工程(I)の後、被検物質の代謝又は吸収を測定・評価する(工程(II))。工程(I)の直後、即ち、被検物質の接触の後、実質的な時間間隔を置かずに代謝又は吸収を測定・評価しても、或いは、一定の時間(例えば10分〜5時間)を経過した後に代謝又は吸収を測定・評価することにしてもよい。代謝の測定は、例えば、代謝産物の検出によって行うことができる。この場合には、通常、工程(I)後の培養液をサンプルとして、予想される代謝産物を定性的又は定量的に測定する。測定方法は代謝産物に応じて適切なものを選択すればよいが、例えば、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等を採用可能である。   After step (I), the metabolism or absorption of the test substance is measured and evaluated (step (II)). Immediately after step (I), that is, after contact with the test substance, metabolism or absorption may be measured and evaluated without a substantial time interval, or for a certain time (for example, 10 minutes to 5 hours). After elapse of time, metabolism or absorption may be measured and evaluated. Metabolism can be measured, for example, by detecting a metabolite. In this case, the expected metabolite is usually measured qualitatively or quantitatively using the culture solution after step (I) as a sample. An appropriate measurement method may be selected according to the metabolite. For example, mass spectrometry, liquid chromatography, immunological method (eg, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) ) Etc. can be adopted.

典型的には、被検物質の代謝産物が検出されたとき、「被検物質が代謝された」と判定ないし評価する。また、代謝産物の量に応じて被検物質の代謝量を評価することができる。代謝産物の検出結果と、被検物質の使用量(典型的には培地への添加量)に基づき、被検物質の代謝効率を算出することにしてもよい。   Typically, when a metabolite of a test substance is detected, it is determined or evaluated that “the test substance has been metabolized”. Further, the metabolic amount of the test substance can be evaluated according to the amount of the metabolite. The metabolic efficiency of the test substance may be calculated based on the detection result of the metabolite and the amount of the test substance used (typically, the amount added to the medium).

腸管上皮細胞様細胞における薬物代謝酵素(シトクロム(特にCYP3A4)、UGT(特にUGT1A8、UGT1A10)、SULT1A3など)の発現を指標として被検物質の代謝を測定することも可能である。薬物代謝酵素の発現はmRNAレベル又はタンパク質レベルで評価することができる。例えば、薬物代謝酵素のmRNAレベルに上昇を認めたとき、「被検物質が代謝された」と判定することができる。同様に、薬物代謝酵素の活性に上昇を認めたとき、「被検物質が代謝された」と判定することができる。代謝産物を指標として判定する場合と同様に、薬物代謝酵素の発現量に基づいて定量的な判定・評価を行うことにしてもよい。   It is also possible to measure the metabolism of a test substance using the expression of drug metabolizing enzymes (cytochrome (particularly CYP3A4), UGT (particularly UGT1A8, UGT1A10), SULT1A3, etc.) in intestinal epithelial cell-like cells as an index. The expression of drug metabolizing enzymes can be assessed at the mRNA level or protein level. For example, when an increase in the mRNA level of the drug-metabolizing enzyme is observed, it can be determined that “the test substance has been metabolized”. Similarly, when an increase in the activity of the drug-metabolizing enzyme is observed, it can be determined that “the test substance has been metabolized”. As in the case of determining a metabolite as an index, quantitative determination / evaluation may be performed based on the expression level of a drug metabolizing enzyme.

被検物質の吸収を評価するためには、例えば、培養液中の被検物質の残存量を測定する。通常、工程(I)後の培養液をサンプルとして被検物質を定量する。測定方法は被検物質に応じて適切なものを選択すればよい。例えば、質量分析、液体クロマトグラフィー、免疫学的手法(例えば蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法))等を採用可能である。典型的には、培養液中の被検物質の含有量の低下を認めたとき、「被検物質が吸収された」と判定・評価する。また、低下の程度に応じて被検物質の吸収量ないし吸収効率を判定・評価することができる。尚、細胞内に取り込まれた被検物質の量を測定することによっても、吸収の評価は可能である。   In order to evaluate the absorption of the test substance, for example, the remaining amount of the test substance in the culture solution is measured. Usually, the test substance is quantified using the culture solution after step (I) as a sample. An appropriate measuring method may be selected according to the test substance. For example, mass spectrometry, liquid chromatography, immunological techniques (for example, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method)) and the like can be employed. Typically, when a decrease in the content of the test substance in the culture medium is observed, it is determined and evaluated that “the test substance has been absorbed”. Further, the amount of absorption or absorption efficiency of the test substance can be determined and evaluated according to the degree of decrease. The absorption can also be evaluated by measuring the amount of the test substance taken up into the cells.

尚、代謝の測定・評価と吸収の測定・評価を同時に又は並行して行うことにしてもよい。   Metabolism measurement / evaluation and absorption measurement / evaluation may be performed simultaneously or in parallel.

本発明の分化誘導方法で調製した腸管上皮細胞様細胞の第2の用途として腸管上皮細胞様細胞を含有する細胞製剤が提供される。本発明の細胞製剤は各種腸疾患の治療に適用可能である。特に、障害された(機能不全を含む)腸管上皮組織の再生・再建用の材料としての利用が想定される。即ち、再生医療への貢献を期待できる。本発明の細胞製剤は、例えば、本発明の方法によって得られた腸管上皮細胞様細胞を生理食塩水や緩衝液(例えばリン酸系緩衝液)等に懸濁することによって調製することができる。治療上有効量の細胞を投与できるように、一回投与分の量として例えば1×105個〜1×1010個の細胞を含有させるとよい。細胞の含有量は、使用目的、対象疾患、適用対象(レシピエント)の性別、年齢、体重、患部の状態、細胞の状態などを考慮して適宜調整することができる。A cell preparation containing intestinal epithelial cell-like cells is provided as a second use of the intestinal epithelial cell-like cells prepared by the differentiation induction method of the present invention. The cell preparation of the present invention can be applied to the treatment of various intestinal diseases. In particular, it is expected to be used as a material for regeneration / reconstruction of intestinal epithelial tissue that has been impaired (including dysfunction). That is, contribution to regenerative medicine can be expected. The cell preparation of the present invention can be prepared, for example, by suspending intestinal epithelial cell-like cells obtained by the method of the present invention in a physiological saline, a buffer solution (for example, a phosphate buffer solution) or the like. For example, 1 × 10 5 to 1 × 10 10 cells may be contained as a single dose so that a therapeutically effective amount of cells can be administered. The content of the cells can be appropriately adjusted in consideration of the purpose of use, the target disease, the sex of the application target (recipient), age, weight, the state of the affected area, the state of the cells, and the like.

細胞の保護を目的としてジメチルスルホキシド(DMSO)や血清アルブミン等を、細菌の混入を阻止することを目的として抗生物質等を、細胞の活性化、増殖又は分化誘導などを目的として各種の成分(ビタミン類、サイトカイン、成長因子、ステロイド等)を本発明の細胞製剤に含有させてもよい。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を本発明の細胞製剤に含有させてもよい。   Dimethyl sulfoxide (DMSO) and serum albumin for the purpose of cell protection, antibiotics for the purpose of blocking bacterial contamination, and various components (vitamins for the purpose of cell activation, proliferation or differentiation induction, etc. , Cytokines, growth factors, steroids, etc.) may be included in the cell preparation of the present invention. In addition, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.) You may make it contain in the cell formulation of this invention.

<腸管上皮細胞を分化誘導する条件の検討1>
薬物動態試験に有用な小腸のモデル系の構築を目指し、ヒトiPS細胞から腸管上皮細胞を分化誘導する条件を検討した。以下の検討では、分化誘導因子としての低分子化合物の可能性に注目し、薬物動態試験の評価系に利用可能な細胞をより簡便な方法で作製することを目的とした。
<Examination of conditions for inducing differentiation of intestinal epithelial cells 1>
Aiming at the construction of a model system of the small intestine useful for pharmacokinetic studies, conditions for inducing differentiation of intestinal epithelial cells from human iPS cells were examined. In the following study, we focused on the possibility of low molecular weight compounds as differentiation-inducing factors, and aimed to produce cells that can be used in evaluation systems for pharmacokinetic tests by a simpler method.

1.方法
(1)細胞
ヒトiPS細胞(iPS-51:Windy)は、ヒト胎児肺線維芽細胞MRC-5にoctamer binding protein 3/4(OCT3/4)、sex determining region Y-box 2(SOX2)、kruppel-like factor 4(KLF4)、v-myc myelocytomatosis viral oncogene homolog(avian)(c-MYC)を、パントロピックレトロウイルスベクターを用いて導入後、ヒトES細胞様コロニーをクローン化したものであり、国立成育医療研究センター梅澤明弘博士よりご供与いただいた。フィーダー細胞はマウス胎仔線維芽細胞(MEF)を使用した。
1. Method (1) Cells Human iPS cells (iPS-51: Windy) are expressed in human fetal lung fibroblasts MRC-5, octamer binding protein 3/4 (OCT3 / 4), sex determining region Y-box 2 (SOX2), After introducing kruppel-like factor 4 (KLF4), v-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC) using a pantropic retrovirus vector, human ES cell-like colonies are cloned, Granted by Dr. Akihiro Umezawa, National Center for Child Health and Development. Mouse fetal fibroblasts (MEF) were used as feeder cells.

(2)培地
MEFの培養には10%ウシ胎仔血清(FBS)、2 mmol/L L-グルタミン(L-Glu)、1%非必須アミノ酸(NEAA)、100 ユニット/mLペニシリンG、100μg/mLストレプトマイシンを含むダルベッコ改変イーグル培地(DMEM)を用いた。MEFの剥離液には0.05%トリプシン-エチレンジアミン四酢酸(EDTA)を、MEFの保存液にはセルバンカー1を用いた。ヒトiPS細胞の維持培養には20%ノックアウト血清代替物(KSR)、0.8% NEAA、2 mmol/L L-Glu、0.1 mmol/L 2-メルカプトエタノール(2-MeE)、5 ng/mL線維芽細胞増殖因子(FGF)2を含むDMEM Ham’s F-12(DMEM/F12)を用いた。ヒトiPS細胞の剥離液には1 mg/mLコラゲナーゼIV、0.25%トリプシン、20% KSR、1 mmol/L塩化カルシウムを含むダルベッコリン酸緩衝生理食塩水(PBS)を用いた。ヒトiPS細胞の保存液には霊長類ES/iPS細胞用凍結保存液を用いた。
(2) Medium
For the culture of MEF, Dulbecco containing 10% fetal bovine serum (FBS), 2 mmol / L L-glutamine (L-Glu), 1% non-essential amino acid (NEAA), 100 units / mL penicillin G, 100 μg / mL streptomycin Modified Eagle medium (DMEM) was used. 0.05% trypsin-ethylenediaminetetraacetic acid (EDTA) was used as the MEF stripping solution, and Cell Banker 1 was used as the MEF stock solution. 20% knockout serum replacement (KSR), 0.8% NEAA, 2 mmol / L L-Glu, 0.1 mmol / L 2-mercaptoethanol (2-MeE), 5 ng / mL fibroblasts for maintenance culture of human iPS cells DMEM Ham's F-12 (DMEM / F12) containing cell growth factor (FGF) 2 was used. Dulbecco's phosphate buffered saline (PBS) containing 1 mg / mL collagenase IV, 0.25% trypsin, 20% KSR, 1 mmol / L calcium chloride was used as the human iPS cell detachment solution. As a preservation solution for human iPS cells, a cryopreservation solution for primate ES / iPS cells was used.

(3)ヒトiPS細胞の培養
ヒトiPS細胞はマイトマイシンC処理を施したMEF(6×105 cells/100 mmディッシュ)上に播種し、5% CO2/95% air条件下CO2インキュベーター中37℃にて培養した。ヒトiPS細胞の継代は、3〜5日培養後、1:2〜1:3のスプリット比で行った。ヒトiPS細胞は解凍48時間後に培地を交換し、それ以降は毎日交換した。
(3) Culture of human iPS cells Human iPS cells were seeded on MEF (6 × 10 5 cells / 100 mm dish) treated with mitomycin C and cultured in a CO 2 incubator under 5% CO 2 /95% air conditions. Incubated at 0 ° C. Human iPS cells were subcultured at a split ratio of 1: 2 to 1: 3 after 3-5 days of culture. For human iPS cells, the medium was changed 48 hours after thawing and thereafter daily.

(4)ヒトiPS細胞の腸管上皮細胞への分化
ヒトiPS細胞の腸管上皮細胞への分化は、ヒトiPS細胞が培養ディッシュに対し、未分化コロニーの占める割合が約70%になった状態で開始した。0.5% FBS、100 ng/mLアクチビンA、100ユニット/mLペニシリンG、100μg/mLストレプトマイシンを含むロズウェルパーク記念研究所(RPMI)+グルタマックス培地で2日間、2% FBS、100 ng/mLアクチビンA、100ユニット/mLペニシリンG、100μg/mLストレプトマイシンを含むRPMI+グルタマックス培地で1日間培養することで内胚葉に分化させた。その後、2% FBS、1%グルタマックス、250 ng/mL FGF2を含むDMEM/F12で4日間培養することで腸管幹細胞へ分化させた。この処理後、Y-27632(Rho結合キナーゼ阻害剤)を10 μmol/Lとなるように添加し、5% CO2/95% air条件下CO2インキュベーター中37℃にて60分間処理した細胞をアクターゼにて剥離し、あらかじめヒトiPS細胞用培地にて30倍に希釈した、成長因子を除去したマトリゲルにてコートした細胞培養用24ウェルプレートに播種した。その後、2% FBS、2 mmol/L L-Glu、1% NEAA、2% B27 supplement、1% N2 supplement、100ユニット/mLペニシリンG、100μg/mLストレプトマイシン、20 ng/mL上皮細胞増殖因子(EGF)、10 μmol/L Y-27632を含むDMEM/F12で1日間、2% FBS、2 mmol/L L-Glu、1% NEAA、2% B27 supplement、1% N2 supplement、100ユニット/mLペニシリンG、100μg/mLストレプトマイシン、20 ng/mL上皮細胞増殖因子(EGF)を含むDMEM/F12で18日間培養することで腸管上皮細胞へ分化させた。薬物代謝酵素の誘導剤処理は、2% FBS、2 mmol/L L-Glu、1% NEAA、2% B27 supplement、1% N2 supplement、100ユニット/mLペニシリンG、100μg/mLストレプトマイシン、20 ng/mL 上皮細胞増殖因子(EGF)を含むDMEM/F12に1α,25-ジヒドロキシビタミンD3(VD3)を10 nmol/Lもしくはリファンピシンを40 μmol/Lとなるよう添加し、回収前48時間培養することで行った。
(4) Differentiation of human iPS cells into intestinal epithelial cells Differentiation of human iPS cells into intestinal epithelial cells started when human iPS cells accounted for approximately 70% of the undifferentiated colony in the culture dish. did. 2% FBS, 100 ng / mL activin A for 2 days in Roswell Park Memorial Institute (RPMI) + glutamax medium containing 0.5% FBS, 100 ng / mL activin A, 100 units / mL penicillin G, 100 μg / mL streptomycin It was differentiated into endoderm by culturing in RPMI + glutamax medium containing 100 units / mL penicillin G and 100 μg / mL streptomycin for 1 day. Thereafter, the cells were cultured in DMEM / F12 containing 2% FBS, 1% glutamax and 250 ng / mL FGF2 for 4 days to differentiate into intestinal stem cells. After this treatment, Y-27632 (Rho binding kinase inhibitor) was added to 10 μmol / L, and cells treated at 37 ° C in a CO 2 incubator for 60 minutes under 5% CO 2 /95% air conditions The cells were peeled off with actase and seeded in a 24-well plate for cell culture coated with Matrigel from which growth factors had been removed, which had been diluted 30-fold with a medium for human iPS cells. Then 2% FBS, 2 mmol / L L-Glu, 1% NEAA, 2% B27 supplement, 1% N2 supplement, 100 units / mL penicillin G, 100 μg / mL streptomycin, 20 ng / mL epidermal growth factor (EGF ), 1 day in DMEM / F12 containing 10 μmol / L Y-27632, 2% FBS, 2 mmol / L L-Glu, 1% NEAA, 2% B27 supplement, 1% N2 supplement, 100 units / mL penicillin G It was differentiated into intestinal epithelial cells by culturing in DMEM / F12 containing 100 μg / mL streptomycin and 20 ng / mL epidermal growth factor (EGF) for 18 days. Drug inducer treatment of drug metabolizing enzymes is 2% FBS, 2 mmol / L L-Glu, 1% NEAA, 2% B27 supplement, 1% N2 supplement, 100 units / mL penicillin G, 100 μg / mL streptomycin, 20 ng / Add 1α, 25-dihydroxyvitamin D 3 (VD3) to 10 nmol / L or rifampicin 40 μmol / L to DMEM / F12 containing mL epidermal growth factor (EGF) and incubate for 48 hours before recovery. I went there.

分化誘導に対する低分子化合物の効果を評価するため、以下の(a)〜(c)の条件での培養も行った。
(a)GSK3iXV(125 nM)、ドルソモルフィン(1μM)を分化開始後8日目から6日間培養液に添加した(その他の培養条件は上記の通り)。
(b)PD98059(20μM)、5-アザ-2’-デオキシシチジン(5μM)、A-83-01(0.5μM)を分化開始後8日目から18日間培養液に添加した(その他の培養条件は上記の通り)。
(c)GSK3iXV(125 nM)、ドルソモルフィン(1μM)を分化開始後8日目から6日間培養液に添加し、PD98059(20μM)、5-アザ-2’-デオキシシチジン(5μM)、A-83-01(0.5μM)を分化開始後14日目から12日間添加した(その他の培養条件は上記の通り)。
In order to evaluate the effect of low molecular weight compounds on differentiation induction, culture was also performed under the following conditions (a) to (c).
(A) GSK3iXV (125 nM) and dorsomorphin (1 μM) were added to the culture solution for 6 days from the 8th day after the start of differentiation (other culture conditions are as described above).
(B) PD98059 (20 μM), 5-aza-2′-deoxycytidine (5 μM), and A-83-01 (0.5 μM) were added to the culture for 18 days from the start of differentiation (other culture conditions) Is as above).
(C) GSK3iXV (125 nM) and dorsomorphin (1 μM) were added to the culture solution for 6 days from the 8th day after the start of differentiation, and PD98059 (20 μM), 5-aza-2′-deoxycytidine (5 μM), A- 83-01 (0.5 μM) was added for 12 days from the 14th day after the start of differentiation (other culture conditions were as described above).

(5)総リボ核酸(RNA)抽出
総RNAはヒトiPS細胞の分化誘導終了後、RNeasy(登録商標) Mini Kit(Qiagen)の添付マニュアルに従い抽出した。
(5) Total ribonucleic acid (RNA) extraction Total RNA was extracted according to the attached manual of RNeasy (registered trademark) Mini Kit (Qiagen) after completion of induction of differentiation of human iPS cells.

(6)逆転写反応
相補的DNA(cDNA)の合成は、PrimeScript(登録商標) RT reagent Kit (Perfect Real Time)(タカラバイオ株式会社)を使用した。操作は添付マニュアルに従った。
(6) Reverse Transcription Reaction For the synthesis of complementary DNA (cDNA), PrimeScript (registered trademark) RT reagent Kit (Perfect Real Time) (Takara Bio Inc.) was used. The operation followed the attached manual.

(7)リアルタイム逆転写ポリメラーゼ連鎖反応(Real-Time RT-PCR)
SYBR(登録商標) Premix Ex Taq II(Perfect Real Time)(タカラバイオ株式会社)を用い、cDNAを鋳型にしてReal-Time RT-PCRを行った。操作は添付マニュアルに従った。内在性コントロールとしてグリセルアルデヒド3リン酸脱水素酵素(GAPDH)を用い、測定結果を補正した。
(7) Real-time reverse transcription polymerase chain reaction (Real-Time RT-PCR)
Real-Time RT-PCR was performed using cDNA as a template using SYBR (registered trademark) Premix Ex Taq II (Perfect Real Time) (Takara Bio Inc.). The operation followed the attached manual. The measurement result was corrected using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an endogenous control.

(8)スクラーゼ−イソマルターゼ免疫蛍光染色
免疫染色に用いる細胞はカバーガラス上で培養した。培養後、細胞は4%パラホルムアルデヒドを用いて室温にて30分間固定処理し、0.1%Triton Xを用いて室温にて5分間膜透過処理を行い、2%スキムミルクを用いて室温にて20分間ブロッキング処理を行った。その後、一次抗体はウサギ抗ヒトスクラーゼ−イソマルターゼ抗体(Sigma;1:200)を用いて室温にて60分間、二次抗体はAlexa Fluor(登録商標)568ヤギ抗ウサギIgG抗体(Invitrogen;1:500)を用いて遮光下室温にて60分間反応させた。核染色は1μg/mL 4’,6-ジアミジノ-2-フェニルインドール(DAPI)を遮光下室温にて5分間処理することで行った。
(8) Sucrase-isomaltase immunofluorescent staining Cells used for immunostaining were cultured on a cover glass. After culturing, the cells were fixed with 4% paraformaldehyde for 30 minutes at room temperature, 0.1% Triton X was used for membrane permeation for 5 minutes at room temperature, and 2% skim milk was used for 20 minutes at room temperature. Blocking treatment was performed. Thereafter, the primary antibody was a rabbit anti-human sucrase-isomaltase antibody (Sigma; 1: 200) for 60 minutes at room temperature, and the secondary antibody was an Alexa Fluor (registered trademark) 568 goat anti-rabbit IgG antibody (Invitrogen; 1: 500) for 60 minutes at room temperature in the dark. Nuclear staining was performed by treating 1 μg / mL 4 ′, 6-diamidino-2-phenylindole (DAPI) for 5 minutes at room temperature in the dark.

(9)β-Ala-Lys-AMCAの取り込み実験
取り込み実験に用いる細胞はカバーガラス上で培養した。培養後、25μM β-Ala-Lys-AMCAを含むDMEM/F12で5% CO2/95% air条件下CO2インキュベーター中37℃にて4時間インキュベーションした。インキュベーション後、氷冷したPBSで細胞を洗浄することにより取り込みを停止させた。その後、ただちに4%パラホルムアルデヒドを用いて室温にて30分間固定処理した。これ以降、免疫染色を行う場合は0.1% Triton Xを用いて室温にて5分間膜透過処理を行い、2%スキムミルクを用いて室温にて20分間ブロッキング処理を行った。さらに、一次抗体はウサギ抗ヒトスクラーゼ−イソマルターゼ抗体(Sigma;1:200)を用いて室温にて60分間、二次抗体はAlexa Fluor(登録商標)568ヤギ抗ウサギIgG抗体(Invitrogen;1:500)を用いて遮光下室温にて60分間反応させた。
(9) β-Ala-Lys-AMCA uptake experiment Cells used in the uptake experiment were cultured on a cover glass. After culturing, the cells were incubated with DMEM / F12 containing 25 μM β-Ala-Lys-AMCA for 4 hours at 37 ° C. in a CO 2 incubator under 5% CO 2 /95% air. After incubation, uptake was stopped by washing the cells with ice-cold PBS. Immediately thereafter, fixation was performed using 4% paraformaldehyde at room temperature for 30 minutes. Thereafter, when immunostaining was performed, membrane permeation treatment was performed for 5 minutes at room temperature using 0.1% Triton X, and blocking treatment was performed for 20 minutes at room temperature using 2% skim milk. Furthermore, the primary antibody was a rabbit anti-human sucrase-isomaltase antibody (Sigma; 1: 200) for 60 minutes at room temperature, and the secondary antibody was an Alexa Fluor (registered trademark) 568 goat anti-rabbit IgG antibody (Invitrogen; 1: 500) for 60 minutes at room temperature in the dark.

本検討で使用したマーカー遺伝子の特徴を以下に示す。
ABCB1/MDR1(ATP結合カセットトランスポーターB1/多剤耐性タンパク1):P糖タンパク質であり、排出トランスポーターとして機能する。
CDX2(尾側型ホメオボックス転写因子2):腸管への分化に関わる転写因子である。
CYP3A4(シトクロムP450 3A4):小腸において主要な薬物代謝酵素である。
DPP4(ジペプチジルペプチダーゼ4):セリンプロテアーゼであり、腸管上皮にも多く発現している。
LGR5(ロイシンリッチリピートを含むGタンパク質共役型受容体):腸管幹細胞のマーカーである。
SLC15A1/PEPT1(SLC(solute carrier)ファミリーメンバー15A1/ペプチドトランスポーター1):小腸の頂側膜側に発現している。
SLC46A1/PCFT(SLC(solute carrier)ファミリーメンバー46A1/プロトン共役葉酸トランスポーター):小腸に発現している。
Sucrase-isomaltase(スクラーゼ−イソマルターゼ):腸管上皮に存在する二糖分解酵素であり、腸管上皮特異的マーカーである。
The characteristics of the marker gene used in this study are shown below.
ABCB1 / MDR1 (ATP-binding cassette transporter B1 / multidrug resistance protein 1): P glycoprotein that functions as an efflux transporter.
CDX2 (caudal homeobox transcription factor 2): A transcription factor involved in intestinal differentiation.
CYP3A4 (cytochrome P450 3A4): a major drug-metabolizing enzyme in the small intestine.
DPP4 (dipeptidyl peptidase 4): A serine protease that is also expressed in the intestinal epithelium.
LGR5 (G protein-coupled receptor including leucine-rich repeat): a marker for intestinal stem cells.
SLC15A1 / PEPT1 (SLC (solute carrier) family member 15A1 / peptide transporter 1): expressed on the apical membrane side of the small intestine.
SLC46A1 / PCFT (SLC (solute carrier) family member 46A1 / proton conjugated folate transporter): expressed in the small intestine.
Sucrase-isomaltase: A disaccharide-degrading enzyme present in the intestinal epithelium and a marker specific to the intestinal epithelium.

2.結果
(1)腸管上皮細胞への分化条件の検討
ヒトiPS細胞を腸管上皮細胞へ分化誘導するにあたって、各種条件(分化誘導因子など)を検討した。まず、FGF2、FGF4、Wnt3aの腸管幹細胞への分化に対する効果を検討したところ、FGF4処理群に比べてFGF2処理群で腸管幹細胞のマーカーであるLGRの発現が高かった。また、その発現はWnt3a処理によって変化しなかった(図1)。
2. Results (1) Examination of differentiation conditions into intestinal epithelial cells Various conditions (differentiation-inducing factors, etc.) were examined in inducing differentiation of human iPS cells into intestinal epithelial cells. First, when the effect of FGF2, FGF4, and Wnt3a on differentiation into intestinal stem cells was examined, LGR, which is a marker for intestinal stem cells, was higher in the FGF2-treated group than in the FGF4-treated group. Moreover, the expression was not changed by Wnt3a treatment (FIG. 1).

次に腸管上皮細胞への分化に対する血清濃度の検討を行った。その結果、培地中のFBS濃度を2%とすることで腸管上皮特異的なマーカーであるスクラーゼ−イソマルターゼや、腸管上皮に発現しているペプチドトランスポーターであるSLC15A1/PEPT1、腸管の主要な代謝酵素であるCYP3A4の発現の上昇が認められた(図2)。   Next, the serum concentration for differentiation into intestinal epithelial cells was examined. As a result, by setting the FBS concentration in the medium to 2%, the intestinal epithelium-specific marker sucrase-isomaltase, the peptide transporter expressed in the intestinal epithelium, SLC15A1 / PEPT1, and the main intestinal metabolism Increased expression of the enzyme CYP3A4 was observed (FIG. 2).

また、腸管上皮細胞へ分化させた細胞(即ち腸管上皮細胞様細胞)では、腸管への分化に関わる転写因子であるCDX2や腸管上皮に豊富に存在するDPP4、SLC46A1について、ヒト小腸とほぼ同等またはそれ以上の発現が認められた(図3)。分化が進んだ細胞ではドーム状の構造も認められた(図4)。さらに、スクラーゼ−イソマルターゼのタンパク発現を免疫蛍光染色により確認したところ、十分な発現が認められた(図5)。このように、FGF2による処理と2%のFBS濃度を採用した二次元培養によって、ヒトiPS細胞を腸管上皮細胞へと分化誘導することに成功した。   In cells differentiated into intestinal epithelial cells (ie, intestinal epithelial cell-like cells), CDX2, which is a transcription factor involved in intestinal differentiation, and DPP4 and SLC46A1, which are abundant in intestinal epithelium, are almost the same as human small intestine or Further expression was observed (FIG. 3). A dome-like structure was also observed in the differentiated cells (FIG. 4). Furthermore, when the protein expression of sucrase-isomaltase was confirmed by immunofluorescence staining, sufficient expression was observed (FIG. 5). In this way, human iPS cells were successfully induced to differentiate into intestinal epithelial cells by treatment with FGF2 and two-dimensional culture employing 2% FBS concentration.

(2)分化させた腸管上皮細胞様細胞におけるβ-Ala-Lys-AMCAの取り込み
腸管上皮にはペプチドトランスポーターが発現しており、これが腸管からのペプチドの吸収に関与している。ヒトiPS細胞の分化によって得られた腸管上皮細胞様細胞はペプチドトランスポーターであるSLC15A1/PEPT1を発現していたことから、その機能についても確認することにした。その結果、腸管上皮細胞様細胞ではペプチドトランスポーターの基質であるβ-Ala-Lys-AMCAの取り込みが認められた(図6(A))。さらに、β-Ala-Lys-AMCAの取り込みが認められた細胞では腸管上皮細胞特異的なマーカーであるスクラーゼ−イソマルターゼの発現も認められた(図6(B)(C))。このように、ペプチドの輸送機能を有する腸管上皮細胞様細胞へとヒトiPS細胞を分化誘導できたことが示された。
(2) Uptake of β-Ala-Lys-AMCA in differentiated intestinal epithelial cell-like cells A peptide transporter is expressed in the intestinal epithelium, which is involved in absorption of the peptide from the intestinal tract. Since intestinal epithelial cell-like cells obtained by differentiation of human iPS cells expressed the peptide transporter SLC15A1 / PEPT1, we decided to confirm its function. As a result, uptake of β-Ala-Lys-AMCA, a peptide transporter substrate, was observed in intestinal epithelial cell-like cells (FIG. 6A). Furthermore, expression of sucrase-isomaltase, a marker specific to intestinal epithelial cells, was also observed in cells in which β-Ala-Lys-AMCA was taken up (FIGS. 6B and 6C). Thus, it was shown that human iPS cells could be induced to differentiate into intestinal epithelial cell-like cells having a peptide transport function.

(3)腸管上皮細胞への分化に対する低分子化合物の効果
腸管幹細胞の増殖にはWntシグナルの活性化やBMPシグナルの抑制が関与することが知られている。そこで、GSKを阻害することでWntシグナルを活性化させるGSK3iXVとBMP阻害剤あるドルソモルフィンを用い、腸管幹細胞への分化に対するGSK阻害剤とBMP阻害剤の効果を検討した。その結果、これら2つの低分子化合物で分化開始後8日目から14日目まで処理することによって、腸管幹細胞のマーカーであるLGR5やEphB2の発現が上昇した(図7)。このことから、腸管の分化に関わるシグナルを制御することで効率よく腸管幹細胞へ分化できることが示唆された。
(3) Effect of low molecular weight compounds on differentiation into intestinal epithelial cells It is known that activation of Wnt signals and suppression of BMP signals are involved in the proliferation of intestinal stem cells. Therefore, we investigated the effects of GSK inhibitors and BMP inhibitors on differentiation into intestinal stem cells using GSK3iXV, which activates Wnt signals by inhibiting GSK, and dorsomorphin, a BMP inhibitor. As a result, the expression of LGR5 and EphB2, which are markers of intestinal stem cells, was increased by treatment with these two low molecular compounds from day 8 to day 14 after the start of differentiation (FIG. 7). From this, it was suggested that it can differentiate efficiently into an intestinal stem cell by controlling a signal related to differentiation of the intestinal tract.

次に、腸管幹細胞から腸管上皮細胞への分化に関して、低分子化合物を用いた検討を行った。MEK経路が活性化されると腸管上皮細胞への分化が阻害されることや、CYPの発現にはDNAのメチル化が関わっていることが報告されている(Lemleux E, et al: Am. J. Physiol. Gastrointest. Liver Phsiol. 301 (4), G719-G730, 2011; Habano W, et al: BMC Cancer 11, 81, 2011)。そこで、腸管幹細胞から腸管上皮細胞へと分化誘導する際、MEK1阻害剤であるPD98059とDNAメチル化阻害剤である5-アザ-2’-デオキシシチジンで処理したところ、スクラーゼ−イソマルターゼ、LGR5、SLC15A1/PEPT1、CYP3A4の発現レベルの上昇が認められた(図8)。   Next, regarding the differentiation from intestinal stem cells into intestinal epithelial cells, studies using low molecular weight compounds were performed. Activation of the MEK pathway inhibits differentiation into intestinal epithelial cells, and it has been reported that DNA methylation is involved in CYP expression (Lemleux E, et al: Am. J Physiol. Gastrointest. Liver Phsiol. 301 (4), G719-G730, 2011; Habano W, et al: BMC Cancer 11, 81, 2011). Therefore, when inducing differentiation from intestinal stem cells to intestinal epithelial cells, treatment with PD98059, a MEK1 inhibitor, and 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, sucrase-isomaltase, LGR5, Increased expression levels of SLC15A1 / PEPT1 and CYP3A4 were observed (FIG. 8).

また、TGF-β受容体ALK4、ALK5、ALK7の阻害剤であるA-83-01で処理すると、スクラーゼ−イソマルターゼ、SLC15A1/PEPT1、ABCB1/MDR1の発現レベルの飛躍的な上昇が認められた(図9)。一方でLGR5の発現レベルは低下した(図9)。また、CYP3A4に関しては、A-83-01で処理することで発現レベルの上昇が認められた(図10)。さらに、ビタミンDレセプターのリガンドである1α,25-ジヒドロキシビタミンD3で48時間処理するとCYP3A4の発現が約30倍上昇し、酵素誘導も認められた(図10)。A-83-01はTGF-βが誘導する上皮間葉転換の阻害作用を有する。上記の結果は、この阻害作用が腸管上皮細胞への分化に効果的であることを示唆する。In addition, when treated with A-83-01, an inhibitor of TGF-β receptors ALK4, ALK5, and ALK7, a dramatic increase in the expression levels of sucrase-isomaltase, SLC15A1 / PEPT1, and ABCB1 / MDR1 was observed. (FIG. 9). On the other hand, the expression level of LGR5 decreased (FIG. 9). Moreover, regarding CYP3A4, an increase in the expression level was observed by treatment with A-83-01 (FIG. 10). Furthermore, when treated with 1α, 25-dihydroxyvitamin D 3 which is a ligand of vitamin D receptor for 48 hours, the expression of CYP3A4 increased about 30-fold and enzyme induction was also observed (FIG. 10). A-83-01 has an inhibitory effect on TGF-β-induced epithelial-mesenchymal transition. The above results suggest that this inhibitory action is effective for differentiation into intestinal epithelial cells.

以上の通り、GSK3iXVとドルソモルフィンに腸管幹細胞への分化誘導促進効果が認められた。一方、PD98059、5-アザ-2’-デオキシシチジン及びA-83-01には腸管上皮細胞への分化誘導促進効果が認められた。そこで、iPS細胞を腸管上皮細胞へとより効率的に分化誘導する条件を見出すべく、これら化合物の併用効果を検討した。その結果、GSK3iXV及びドルソモルフィンで処理した後、PD98059、5-アザ-2’-デオキシシチジン及びA-83-01で処理した場合にスクラーゼ−イソマルターゼの強い発現を認めた(図11上)。また、これら化合物の併用によってCYP3A4の発現が約20倍増大し、1α,25-ジヒドロキシビタミンD3で処理することで更に10倍程度の発現誘導を認めた(図11下)。一方、リファンピシンでは発現誘導が認められなかった。この結果は、腸管上皮細胞に特徴的な機能を腸管上皮細胞様細胞が備えていることを示す。As described above, GSK3iXV and dorsomorphin were found to have an effect of promoting differentiation into intestinal stem cells. On the other hand, PD98059, 5-aza-2′-deoxycytidine and A-83-01 were found to have an effect of promoting differentiation into intestinal epithelial cells. Therefore, in order to find conditions for inducing differentiation of iPS cells into intestinal epithelial cells more efficiently, the combined effect of these compounds was examined. As a result, after treatment with GSK3iXV and dorsomorphin, strong expression of sucrase-isomaltase was observed when treated with PD98059, 5-aza-2'-deoxycytidine and A-83-01 (upper figure 11). In addition, the combined use of these compounds increased the expression of CYP3A4 by about 20 times, and the treatment with 1α, 25-dihydroxyvitamin D 3 further induced the expression by about 10 times (lower part of FIG. 11). On the other hand, no induction of expression was observed with rifampicin. This result shows that intestinal epithelial cell-like cells have functions characteristic of intestinal epithelial cells.

以上の結果より、これらの低分子化合物はヒトiPS細胞から腸管上皮細胞への分化に有用であることと、併用することで一層効果的に分化を促進できることが明らかとなった。尚、PD98059、5-アザ-2’-デオキシシチジン及びA-83-01を併用した場合、それぞれ単独で使用した場合に比較してスクラーゼ−イソマルターゼ及びCYP3A4の発現レベルが高いことから(図11)、GSK3iXVとドルソモルフィンの使用の有無に関わらず、これら3種類の低分子化合物を組み合わせることが有効であるといえる。   From the above results, it was revealed that these low molecular weight compounds are useful for differentiation from human iPS cells to intestinal epithelial cells and can promote differentiation more effectively when used in combination. When PD98059, 5-aza-2′-deoxycytidine and A-83-01 were used in combination, the expression levels of sucrase-isomaltase and CYP3A4 were higher than when they were used alone (FIG. 11). ) Regardless of the use of GSK3iXV and dorsomorphin, it can be said that combining these three low molecular weight compounds is effective.

3.まとめ
以上の通り、ヒトiPS細胞から機能的腸管上皮細胞様細胞(ペプチドの輸送機能や薬物代謝酵素の誘導能を有する)を簡便な方法で作製することに成功するとともに、MEK1阻害剤、DNAメチル化阻害剤、TGF-β受容体阻害剤、GSK阻害剤及びBMP阻害剤(特に、MEK1阻害剤、DNAメチル化阻害剤及びTGF-β受容体阻害剤の併用、或いはMEK1阻害剤、DNAメチル化阻害剤、TGF-β受容体阻害剤、GSK阻害剤及びBMP阻害剤の併用)が、ヒトiPS細胞を腸管上皮細胞へと分化誘導するための誘導因子として有用であることが明らかとなった。低分子化合物を用いた簡便で安価な分化誘導方法の確立は、大きな成果であると考えられる。
3. Summary As described above, we succeeded in producing functional intestinal epithelial cell-like cells (with peptide transport function and drug-metabolizing enzyme-inducing ability) from human iPS cells by a simple method, MEK1 inhibitor, DNA methyl Inhibitor, TGF-β receptor inhibitor, GSK inhibitor and BMP inhibitor (especially MEK1 inhibitor, DNA methylation inhibitor and TGF-β receptor inhibitor in combination, MEK1 inhibitor, DNA methylation) Inhibitors, TGF-β receptor inhibitors, combined use of GSK inhibitors and BMP inhibitors) were found to be useful as inducers for inducing differentiation of human iPS cells into intestinal epithelial cells. Establishment of a simple and inexpensive differentiation induction method using low molecular weight compounds is considered to be a great achievement.

<腸管上皮細胞を分化誘導する条件の検討2>
MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤の誘導因子として有効性に関し、更なる検討を加えた。具体的には、これらの化合物の添加時期及び組合せについて詳細な検討を行うとともに、同様の作用を有する化合物群を用い、化合物の作用と誘導効果の関係を調べた。
<Examination of conditions for inducing differentiation of intestinal epithelial cells 2>
Further studies were conducted regarding the effectiveness of MEK1 inhibitors, DNA methylation inhibitors and TGFβ receptor inhibitors as inducers. Specifically, the addition timing and combination of these compounds were examined in detail, and a group of compounds having the same action was used to examine the relationship between the action of the compound and the induction effect.

1.方法
実験方法及び実験条件は、以下の(A)〜(C)の点を除き、上記<腸管上皮細胞を分化誘導する条件の検討1>に記載したものに準じた。
(A)ヒトiPS細胞を腸管上皮細胞へ分化させる際の培養条件(<腸管上皮細胞を分化誘導する条件の検討1>の1.(4)が対応する)として、次の(d)〜(i)を設定し、比較検討した。
(d)GSK3iXV(125 nM)、ドルソモルフィン(1μM)を分化開始後8日目から6日間、その後PD98059(20μM)、5-アザ-2’-デオキシシチジン(5μM)、及びA-83-01(0.5μM)若しくはSB431542(10μM)を分化開始後14日目から12日間培養液に添加した。
(e)PD98059(20μM)、5-アザ-2’-デオキシシチジン(5μM)、及びA-83-01(0.5μM)若しくはSB431542(10μM)を分化開始後14日目から12日間培養液に添加した。
(f)PD98059(20μM)、5-アザ-2’-デオキシシチジン(5μM)、及びA-83-01(0.5μM)若しくはSB431542(10μM)を分化開始後8日目から18日間培養液に添加した。
(g)PD98059の代わりに、同様の作用を示す化合物としてMEK阻害剤II(10μM)、PD0325901(0.1μM)、PD184161(1μM)、PD184352(0.1μM)、SL327(1μM)又はU0126(10μM)を使用した。その他の条件は(f)と同一とした。
(h)5-アザ-2’-デオキシシチジン(5μM)の代わりに、同様の作用を示す化合物として5-アザシチジン(10μM)、RG108(10μM)又はゼブラリン(10μM)を使用した。その他の条件は(f)と同一とした。
(i)A-83-01(0.5μM)の代わりに、同様の作用を示す化合物としてD4476(10μM)、GW788388(10μM)、LY364947(5μM)、RepSox(10μM)又はSB431542(10μM)を使用した。その他の条件は(f)と同一とした。
1. Method The experimental method and the experimental conditions were the same as those described in <Examination of conditions for inducing differentiation of intestinal epithelial cells 1> except for the following points (A) to (C).
(A) As the culture conditions for differentiating human iPS cells into intestinal epithelial cells (corresponding to 1. (4) of <Study 1 for inducing differentiation of intestinal epithelial cells> corresponds), the following (d) to ( i) was set and compared.
(D) GSK3iXV (125 nM), dorsomorphin (1 μM) for 6 days from the 8th day after initiation of differentiation, then PD98059 (20 μM), 5-aza-2′-deoxycytidine (5 μM), and A-83-01 (0.5 μM) or SB431542 (10 μM) was added to the culture for 12 days from the 14th day after the start of differentiation.
(E) PD98059 (20 μM), 5-aza-2′-deoxycytidine (5 μM), and A-83-01 (0.5 μM) or SB431542 (10 μM) are added to the culture for 12 days from the 14th day after the start of differentiation. did.
(F) PD98059 (20 μM), 5-aza-2′-deoxycytidine (5 μM), and A-83-01 (0.5 μM) or SB431542 (10 μM) were added to the culture for 18 days from the 8th day after the start of differentiation. did.
(G) Instead of PD98059, MEK inhibitor II (10 μM), PD0325901 (0.1 μM), PD184161 (1 μM), PD184352 (0.1 μM), SL327 (1 μM) or U0126 (10 μM) is used as a compound having the same action. used. The other conditions were the same as (f).
(H) Instead of 5-aza-2′-deoxycytidine (5 μM), 5-azacytidine (10 μM), RG108 (10 μM) or zebraline (10 μM) was used as a compound having the same action. The other conditions were the same as (f).
(I) Instead of A-83-01 (0.5 μM), D4476 (10 μM), GW788388 (10 μM), LY364947 (5 μM), RepSox (10 μM) or SB431542 (10 μM) was used as a compound exhibiting the same action. . The other conditions were the same as (f).

(B)腸管上皮細胞への分化誘導の指標として、上掲のものに加え、以下のマーカー遺伝子も使用した。
腸特異的ホメオボックス(ISX):腸管上皮に発現している転写因子である。
ビリン1:小腸上皮細胞の微絨毛の構成成分であり、吸収上皮細胞の刷子縁に発現している。
ABCG2/BCRP:ATP結合カセットトランスポーターG2/乳がん耐性タンパク、排出トランスポーターである。
CYP1A1/2、CYP2C9、CYP2C19、CYP2D6:これらは薬物の代謝(第一相反応)に関わる酵素である。
ウリジン2リン酸−グルクロン酸転移酵素:グルクロン酸抱合反応を行う薬物代謝酵素である。
硫酸転移酵素:硫酸抱合反応を行う薬物代謝酵素である。
(B) In addition to those listed above, the following marker genes were also used as indicators for inducing differentiation into intestinal epithelial cells.
Intestinal specific homeobox (ISX): A transcription factor expressed in the intestinal epithelium.
Villin 1: a component of microvilli of small intestinal epithelial cells, expressed on the brush border of absorbing epithelial cells.
ABCG2 / BCRP: ATP binding cassette transporter G2 / breast cancer resistance protein, efflux transporter.
CYP1A1 / 2, CYP2C9, CYP2C19, CYP2D6: These are enzymes involved in drug metabolism (phase 1 reaction).
Uridine diphosphate-glucuronyltransferase: A drug metabolizing enzyme that performs glucuronidation reaction.
Sulfyltransferase: A drug-metabolizing enzyme that performs a sulfate conjugation reaction.

(C)β-Ala-Lys-AMCAの取り込み実験は以下の通り実施した。まず、取り込み実験に用いる細胞はカバーガラス上で培養した。培養後、25μM β-Ala-Lys-AMCAを含むDMEM/F12で5% CO2/95% air条件下CO2インキュベーター中37℃もしくは4℃にて4時間インキュベーションした。阻害実験ではイブプロフェンを10 mMの濃度になるよう取り込み溶液中に添加した。インキュベーション後、氷冷したPBSで細胞を洗浄することにより取り込みを停止させた。その後、ただちに4%パラホルムアルデヒドを用いて室温にて30分間固定処理した。これ以降、免疫染色を行う場合は、0.1% Triton Xを用いて室温にて5分間膜透過処理を行い、2%スキムミルクを用いて室温にて20分間ブロッキング処理を行った。さらに、一次抗体はウサギ抗ヒトスクラーゼ−イソマルターゼ抗体(Sigma;1:200)を用いて室温にて60分間、二次抗体はAlexa Fluor(登録商標)568ヤギ抗マウスIgG抗体(Invitrogen;1:500)を用いて遮光下室温にて60分間反応させた。(C) β-Ala-Lys-AMCA uptake experiment was performed as follows. First, the cells used for the uptake experiment were cultured on a cover glass. After the culture, the cells were incubated with DMEM / F12 containing 25 μM β-Ala-Lys-AMCA for 4 hours at 37 ° C. or 4 ° C. in a CO 2 incubator under 5% CO 2 /95% air. For inhibition experiments, ibuprofen was added to the uptake solution to a concentration of 10 mM. After incubation, uptake was stopped by washing the cells with ice-cold PBS. Immediately thereafter, fixation was performed using 4% paraformaldehyde at room temperature for 30 minutes. Thereafter, when immunostaining was performed, membrane permeation treatment was performed for 5 minutes at room temperature using 0.1% Triton X, and blocking treatment was performed for 20 minutes at room temperature using 2% skim milk. Furthermore, the primary antibody was a rabbit anti-human sucrase-isomaltase antibody (Sigma; 1: 200) for 60 minutes at room temperature, and the secondary antibody was an Alexa Fluor® 568 goat anti-mouse IgG antibody (Invitrogen; 1: 500) for 60 minutes at room temperature in the dark.

2.結果
ヒトiPS細胞から腸管上皮細胞への分化の際に、GSK3i XV、ドルソモルフィン、PD98059、5-アザ2’-デオキシシチジン、A-83-01もしくはSB431542を用いることで、腸管のマーカー遺伝子である腸特異的ホメオボックス(ISX)、ビリン1、スクラーゼ−イソマルターゼ及び腸管に発現する薬物トランスポーターであるSLC15A1、ABCB1/MDR1、ABCG2/BCRPの発現が増加した(図12〜14)。腸管特異的なマーカーであるスクラーゼ−イソマルターゼに関しては、PD98059、5-アザ2’-デオキシシチジン、A-83-01を用いて分化させることで、遺伝子発現の増加だけでなく免疫蛍光染色陽性細胞の割合も増加した(図15)。
2. Result It is an intestinal marker gene by using GSK3i XV, Dorsomorphin, PD98059, 5-aza2'-deoxycytidine, A-83-01 or SB431542 during differentiation from human iPS cells to intestinal epithelial cells Expression of SLC15A1, ABCB1 / MDR1, and ABCG2 / BCRP, which are drug transporters expressed in the intestinal specific homeobox (ISX), villin 1, sucrase-isomaltase, and intestinal tract, increased (FIGS. 12 to 14). With respect to sucrase-isomaltase, an intestinal specific marker, differentiation with PD98059, 5-aza-2'-deoxycytidine, A-83-01, not only increased gene expression but also immunofluorescent staining positive cells The ratio of increased also (FIG. 15).

また、低分子化合物を用いて分化させた腸管上皮細胞様細胞は薬物代謝酵素活性(シトクロムP450(CYP)、ウリジン2リン酸−グルクロン酸転移酵素及び硫酸転移酵素活性)が認められ、腸管上皮細胞としての機能を有することも示された(図16〜18)。   Intestinal epithelial cell-like cells differentiated with low molecular weight compounds show drug-metabolizing enzyme activities (cytochrome P450 (CYP), uridine diphosphate-glucuronosyltransferase and sulphate transferase activities), and intestinal epithelial cells It was also shown to have a function as (FIGS. 16 to 18).

腸管において主要な代謝酵素であるCYP3A4については、これら低分子化合物を用いることで遺伝子発現が顕著に増加した(図19)。腸管のCYP3A4はビタミンD受容体を介して誘導されることが知られている。そこで、分化させた腸管上皮細胞様細胞を1α,25-ジヒドロキシビタミンD3で処理すると、コントロールと比較してCYP3A4の発現が強く誘導された。また、遺伝子発現だけでなく代謝活性も低分子化合物を用いて分化させることでその上昇が認められた。低分子化合物を用いて分化させた腸管上皮細胞様細胞では1α,25-ジヒドロキシビタミンD3による活性の誘導も認められたことから、薬物代謝に関して腸管に特徴的な機能を有することか示唆された。更に、分化させた腸管上皮様細胞においてジペプチドの取り込みも認められた。この取り込みはペプチドトランスポーター(SLC15A1/PEPT1)の阻害剤であるイブプロフェンの添加及び取り込み温度を4℃にすることによって抑制された(図20)。このことから、ペプチドトランスポーターを介した輸送機能を有することが示唆された。   For CYP3A4, which is a major metabolic enzyme in the intestinal tract, gene expression was remarkably increased by using these low molecular compounds (FIG. 19). Intestinal CYP3A4 is known to be induced through vitamin D receptors. Thus, when differentiated intestinal epithelial cell-like cells were treated with 1α, 25-dihydroxyvitamin D3, the expression of CYP3A4 was strongly induced compared to the control. In addition to gene expression, metabolic activity was increased by differentiation using low molecular weight compounds. Induction of activity by 1α, 25-dihydroxyvitamin D3 was also observed in intestinal epithelial cell-like cells differentiated with low molecular weight compounds, suggesting that it has a characteristic function in the intestine regarding drug metabolism. Furthermore, dipeptide uptake was also observed in differentiated intestinal epithelial-like cells. This uptake was suppressed by adding ibuprofen, an inhibitor of the peptide transporter (SLC15A1 / PEPT1), and setting the uptake temperature to 4 ° C. (FIG. 20). This suggested that it has a transport function via a peptide transporter.

以上の分化誘導効果が用いた各低分子化合物固有のものなのか、或いはこれらの低分子化合物がもつ作用によるものかを調べるために、PD98059、5-アザ2’-デオキシシチジン、A-83-01と同様の作用を有する化合物群(TGF-β阻害剤、MEK阻害剤、DNAメチル化阻害剤)の効果について検討を行った。その結果、程度に違いはあるもののTGF-β阻害剤、MEK阻害剤及びDNAメチル化阻害剤を用いることで腸管上皮細胞への分化が促進する傾向が認められた(図21、22)。また、これらの化合物の中でより効果的であると考えられたGW788388、MEK阻害剤II及びゼブラリンを組み合わることで、スクラーゼ−イソマルターゼやCYP3A4遺伝子発現の上昇、1α,25-ジヒドロキシビタミンD3によるCYP3A4の発現誘導など、PD98059、5-アザ2’-デオキシシチジン及びA-83-01を用いて分化を行ったときと同様の効果がみとめられた(図23、24)。   In order to investigate whether the above-mentioned differentiation-inducing effect is unique to each low molecular weight compound used or due to the action of these low molecular weight compounds, PD98059, 5-aza 2'-deoxycytidine, A-83- The effect of a compound group (TGF-β inhibitor, MEK inhibitor, DNA methylation inhibitor) having the same action as 01 was examined. As a result, there was a tendency that differentiation into intestinal epithelial cells was promoted by using a TGF-β inhibitor, a MEK inhibitor, and a DNA methylation inhibitor (FIGS. 21 and 22). In addition, by combining GW788388, MEK inhibitor II and zebralin, which are considered to be more effective among these compounds, increased expression of sucrase-isomaltase and CYP3A4 genes, and 1α, 25-dihydroxyvitamin D3 The same effects as when differentiation was performed using PD98059, 5-aza-2′-deoxycytidine and A-83-01, such as induction of CYP3A4 expression, were observed (FIGS. 23 and 24).

以上の結果から、GSK3β阻害剤、BMP阻害剤、TGF-β阻害剤、MEK阻害剤及びDNAメチル化阻害剤がヒトiPS細胞から腸管上皮細胞への分化を促進させることが裏づけられた。得られた細胞は腸管上皮細胞に特徴的な薬物動態学的機能を有する細胞であることが確認された。   The above results confirmed that GSK3β inhibitor, BMP inhibitor, TGF-β inhibitor, MEK inhibitor and DNA methylation inhibitor promote the differentiation of human iPS cells into intestinal epithelial cells. The obtained cells were confirmed to be cells having a pharmacokinetic function characteristic of intestinal epithelial cells.

3.まとめ
以上の通り、ペプチドの輸送機能や薬物代謝酵素活性及び誘導能を有する腸管上皮細胞様細胞を簡便な方法にてヒトiPS細胞から作製することに成功した。また、誘導因子に要求される条件の詳細が明らかになった。
3. Summary As described above, intestinal epithelial cell-like cells having a peptide transport function, drug metabolizing enzyme activity and induction ability were successfully produced from human iPS cells by a simple method. The details of the conditions required for the inducer were also clarified.

本願発明によれば、iPS細胞から機能的腸管上皮細胞様細胞を簡便且つ効率的に調製できる。腸管上皮細胞様細胞は小腸のモデル系として有用であり、吸収・代謝・膜透過性の評価等に利用できる。また、各種腸疾患治療用の細胞製剤の有効成分として、或いは再生医療の材料としての利用も期待される。   According to the present invention, functional intestinal epithelial cell-like cells can be easily and efficiently prepared from iPS cells. Intestinal epithelial cell-like cells are useful as a model system for the small intestine, and can be used for evaluation of absorption, metabolism, and membrane permeability. In addition, it is expected to be used as an active ingredient of cell preparations for treating various intestinal diseases or as a material for regenerative medicine.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (14)

以下の工程(1)〜(3)を含む、人工多能性幹細胞を腸管上皮細胞へ分化誘導する方法:
(1)人工多能性幹細胞を内胚葉様細胞へと分化させる工程;
(2)工程(1)で得られた内胚葉様細胞を腸管幹細胞様細胞へと分化させる工程;
(3)工程(2)で得られた腸管幹細胞様細胞を腸管上皮細胞様細胞へと分化させる工程であって、MEK1阻害剤、DNAメチル化阻害剤、TGFβ受容体阻害剤及びEGFの存在下での培養を含む工程。
A method for inducing differentiation of an induced pluripotent stem cell into an intestinal epithelial cell, comprising the following steps (1) to (3):
(1) a step of differentiating induced pluripotent stem cells into endoderm-like cells;
(2) a step of differentiating the endoderm-like cells obtained in step (1) into intestinal stem cell-like cells;
(3) A step of differentiating the intestinal stem cell-like cells obtained in step (2) into intestinal epithelial cell-like cells in the presence of a MEK1 inhibitor, a DNA methylation inhibitor, a TGFβ receptor inhibitor, and EGF Including culturing in
工程(3)の前記培養の期間が7日間〜30日間である、請求項1に記載の方法。  The method according to claim 1, wherein the culture period in step (3) is 7 days to 30 days. MEK1阻害剤がPD98059であり、DNAメチル化阻害剤が5−アザ−2’−デオキシシチジンであり、TGFβ受容体阻害剤がA−83−01である、請求項1又は3に記載の方法。  The method according to claim 1 or 3, wherein the MEK1 inhibitor is PD98059, the DNA methylation inhibitor is 5-aza-2'-deoxycytidine, and the TGFβ receptor inhibitor is A-83-01. 工程(1)における分化誘導因子としてアクチビンAを用いる、請求項1、3、4のいずれか一項に記載の方法。  The method according to any one of claims 1, 3, and 4, wherein activin A is used as a differentiation-inducing factor in the step (1). 工程(2)における分化誘導因子としてFGF2を用いる、請求項1、3〜5のいずれか一項に記載の方法。  The method according to any one of claims 1 and 3 to 5, wherein FGF2 is used as a differentiation inducing factor in the step (2). 工程(3)が、以下の工程(3−1)及び(3−2)からなる、請求項1、3〜6のいずれか一項に記載の方法:
(3−1)工程(2)で得られた腸管幹細胞様細胞をGSK阻害剤及び/又はBMP阻害剤とEGFの存在下で培養する工程;
(3−2)工程(3−1)に続いて、MEK1阻害剤、DNAメチル化阻害剤及びTGFβ受容体阻害剤からなる群より選択される一以上の化合物とEGFの存在下で培養する工程。
The method according to any one of claims 1 and 3 to 6, wherein step (3) comprises the following steps (3-1) and (3-2):
(3-1) A step of culturing the intestinal stem cell-like cell obtained in step (2) in the presence of a GSK inhibitor and / or a BMP inhibitor and EGF;
(3-2) A step of culturing in the presence of EGF and one or more compounds selected from the group consisting of a MEK1 inhibitor, a DNA methylation inhibitor and a TGFβ receptor inhibitor following the step (3-1). .
工程(3−1)の培養期間は3日間〜14日間であり、工程(3−2)の培養期間は3日間〜21日間である、請求項7に記載の方法。  The method according to claim 7, wherein the culture period in the step (3-1) is 3 days to 14 days, and the culture period in the step (3-2) is 3 days to 21 days. GSK阻害剤がGSK3iXVであり、BMP阻害剤がドルソモルフィンである、請求項7又は8に記載の方法。  The method according to claim 7 or 8, wherein the GSK inhibitor is GSK3iXV and the BMP inhibitor is dorsomorphin. 人工多能性幹細胞がヒト人工多能性幹細胞である、請求項1、3〜9のいずれか一項に記載の方法。  The method according to any one of claims 1 and 3 to 9, wherein the induced pluripotent stem cell is a human induced pluripotent stem cell. 請求項1、3〜10のいずれか一項に記載の方法で得られた腸管上皮細胞様細胞。  Intestinal epithelial cell-like cells obtained by the method according to any one of claims 1, 3 to 10. 請求項11に記載の腸管上皮細胞様細胞を用いた、被検物質の体内動態を評価する方法。  A method for evaluating the pharmacokinetics of a test substance using the intestinal epithelial cell-like cell according to claim 11. 以下の工程(i)〜(iii)を含む、請求項12に記載の方法:
(i)請求項11に記載の腸管上皮細胞様細胞で構成された細胞層を用意する工程;
(ii)前記細胞層に被検物質を接触させる工程;
(iii)前記細胞層を透過した被検物質を定量し、被検物質の吸収性ないし膜透過性を評価する工程。
The method according to claim 12, comprising the following steps (i) to (iii):
(I) a step of preparing a cell layer composed of intestinal epithelial cell-like cells according to claim 11;
(Ii) contacting the test substance with the cell layer;
(Iii) A step of quantifying the test substance that has permeated through the cell layer and evaluating the absorbability or membrane permeability of the test substance.
以下の工程(I)及び(II)を含む、請求項12に記載の方法:
(I)請求項11に記載の腸管上皮細胞様細胞に被検物質を接触させる工程;
(II)被検物質の代謝又は吸収を測定・評価する工程。
The method of claim 12, comprising the following steps (I) and (II):
(I) a step of bringing a test substance into contact with the intestinal epithelial cell-like cell according to claim 11;
(II) A step of measuring / evaluating the metabolism or absorption of the test substance.
請求項11に記載の腸管上皮細胞様細胞を含む、細胞製剤。  A cell preparation comprising the intestinal epithelial cell-like cell according to claim 11.
JP2015502917A 2013-02-26 2014-02-24 Methods for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells Active JP6296399B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013036434 2013-02-26
JP2013036434 2013-02-26
PCT/JP2014/054379 WO2014132933A1 (en) 2013-02-26 2014-02-24 Method for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells

Publications (2)

Publication Number Publication Date
JPWO2014132933A1 JPWO2014132933A1 (en) 2017-02-02
JP6296399B2 true JP6296399B2 (en) 2018-03-20

Family

ID=51428197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502917A Active JP6296399B2 (en) 2013-02-26 2014-02-24 Methods for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells

Country Status (2)

Country Link
JP (1) JP6296399B2 (en)
WO (1) WO2014132933A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098052A1 (en) * 2020-11-03 2022-05-12 Korea Research Institute Of Bioscience And Biotechnology Human intestinal epithelium model and method for preparing same
US11499963B2 (en) 2016-03-08 2022-11-15 Public University Corporation Nagoya City University Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells
US11859212B2 (en) 2017-05-09 2024-01-02 Public University Corporation Nagoya City University Method for producing intestinal organoid derived from pluripotent stem cells

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889805B2 (en) 2015-03-13 2021-01-12 National Institutes Of Biomedical Innovation, Health And Nutrition Intestinal epithelioid cells
WO2018038042A1 (en) * 2016-08-24 2018-03-01 学校法人慶應義塾 2d organoid for infection and culture of human diarrhea virus, and use of said 2d organoid
WO2018151307A1 (en) 2017-02-20 2018-08-23 公立大学法人名古屋市立大学 Maintenance culture of intestinal stem cells derived from induced pluripotent stem cells
CA3090473C (en) * 2018-02-09 2024-04-02 Public University Corporation Nagoya City University Method for inducing differentiation of pluripotent stem cells into intestinal epithelial cells
EP3831933A4 (en) * 2018-07-27 2021-06-16 FUJIFILM Corporation Method for producing intestinal epithelial cells and intestinal epithelial cells
EP3901250A4 (en) 2018-11-02 2022-08-10 Public University Corporation Nagoya City University Method for producing pluripotent stem cell-derived intestinal organoid
JP6876287B2 (en) * 2019-01-30 2021-05-26 大日本印刷株式会社 Cellular structures containing small intestinal epithelial cells, methods for their production, and substrates that hold them
EP4174170A4 (en) * 2020-06-25 2023-12-06 FUJIFILM Corporation Production method for intestinal epithelial cells and use therefor
WO2023153737A1 (en) * 2022-02-09 2023-08-17 한국생명공학연구원 Two-dimensional culture method having clear chemical composition for culturing three-dimensional intestinal organoid-derived intestinal stem cell aggregate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898086B2 (en) * 2009-11-04 2016-04-06 セルラー ダイナミクス インターナショナル, インコーポレイテッド Episome reprogramming using chemicals
EP2563908B1 (en) * 2010-04-25 2019-01-09 Icahn School of Medicine at Mount Sinai Generation of anterior foregut endoderm from pluripotent cells
WO2011140441A2 (en) * 2010-05-06 2011-11-10 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499963B2 (en) 2016-03-08 2022-11-15 Public University Corporation Nagoya City University Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells
US11859212B2 (en) 2017-05-09 2024-01-02 Public University Corporation Nagoya City University Method for producing intestinal organoid derived from pluripotent stem cells
WO2022098052A1 (en) * 2020-11-03 2022-05-12 Korea Research Institute Of Bioscience And Biotechnology Human intestinal epithelium model and method for preparing same

Also Published As

Publication number Publication date
WO2014132933A1 (en) 2014-09-04
JPWO2014132933A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6296399B2 (en) Methods for inducing differentiation of induced pluripotent stem cells into intestinal epithelial cells
JP5938726B2 (en) Method and medium for improving differentiation induction efficiency of pluripotent stem cells
JP6937036B2 (en) Induction of differentiation of induced pluripotent stem cells into intestinal epithelial cells
JP6949336B2 (en) Maintenance culture of induced pluripotent stem cell-derived intestinal stem cells
JP7317323B2 (en) Method for inducing differentiation from pluripotent stem cells to intestinal epithelial cells
WO2013183571A1 (en) Method for inducing differentiation of artificial pluripotent stem cell into hepatocyte
WO2021261540A1 (en) Production method for intestinal epithelial cells and use therefor
JP2022019411A (en) Method for producing endoderm cells derived from induced pluripotent stem cells, and uses thereof
JP7058330B2 (en) Method for producing intestinal epithelial cells and intestinal epithelial cells
WO2020095879A1 (en) Induction/differentiation of pluripotent stem cell into intestinal tract epithelial cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6296399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250