JP6294786B2 - Degradation factor estimation method and remaining life estimation method - Google Patents

Degradation factor estimation method and remaining life estimation method Download PDF

Info

Publication number
JP6294786B2
JP6294786B2 JP2014161332A JP2014161332A JP6294786B2 JP 6294786 B2 JP6294786 B2 JP 6294786B2 JP 2014161332 A JP2014161332 A JP 2014161332A JP 2014161332 A JP2014161332 A JP 2014161332A JP 6294786 B2 JP6294786 B2 JP 6294786B2
Authority
JP
Japan
Prior art keywords
deterioration
internal resistance
secondary battery
factor
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014161332A
Other languages
Japanese (ja)
Other versions
JP2016038276A (en
Inventor
亜矢子 齋藤
亜矢子 齋藤
荘田 隆博
隆博 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2014161332A priority Critical patent/JP6294786B2/en
Publication of JP2016038276A publication Critical patent/JP2016038276A/en
Application granted granted Critical
Publication of JP6294786B2 publication Critical patent/JP6294786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の支配的な劣化要因を推定する劣化要因推定方法、及び、二次電池の余寿命を推定する余寿命推定方法に関するものである。   The present invention relates to a deterioration factor estimation method for estimating a dominant deterioration factor of a secondary battery, and a remaining life estimation method for estimating a remaining life of a secondary battery.

例えば、電動モータを用いて走行する電気自動車(EV)や、エンジンと電動モータとを併用して走行するハイブリッド自動車(HEV)などの各種車両には、電動モータの動力源として、リチウムイオン充電池やニッケル水素充電池などの二次電池が搭載されている。   For example, in various vehicles such as an electric vehicle (EV) that travels using an electric motor and a hybrid vehicle (HEV) that travels using both an engine and an electric motor, a lithium ion rechargeable battery is used as a power source for the electric motor. And rechargeable batteries such as nickel metal hydride batteries.

このような二次電池は繰り返し使用されたり、高温環境に放置されたりすることによって劣化していき、具体的には、劣化後の充電可能容量を劣化前の充電可能容量で除した容量劣化度SOH(State Of Health)が低下していく。容量劣化度SOHを測定することによって、二次電池の余寿命を推定する方法が知られている。   Such secondary batteries deteriorate due to repeated use or being left in a high temperature environment. Specifically, the degree of capacity deterioration obtained by dividing the chargeable capacity after deterioration by the chargeable capacity before deterioration. SOH (State Of Health) decreases. A method of estimating the remaining life of a secondary battery by measuring the capacity deterioration degree SOH is known.

上述のように劣化した二次電池は、測定により得られた容量劣化度SOHが等しくても、主たる劣化要因が異なると、即ち、繰り返し使用による劣化(サイクル劣化)と、高温環境に放置されることによる劣化(放置劣化)と、のいずれが支配的な劣化要因であるかによって、その後の余寿命が異なることが知られている。   Even if the capacity deterioration degree SOH obtained by measurement is equal, the secondary battery deteriorated as described above is left in a high temperature environment if the main deterioration factors are different, that is, deterioration due to repeated use (cycle deterioration). It is known that the remaining life after that differs depending on which is the dominant deterioration factor (deterioration deterioration) due to the above.

そこで、二次電池の使用履歴を記憶する記憶部を備えた余寿命判定装置が特許文献1に記載されている。このような余寿命判定装置では、家電製品に電力を供給するための定置用の二次電池の使用履歴として、充放電の履歴(サイクル劣化の履歴)と使用温度(放置劣化の履歴)とを記憶部によって記憶するとともに、使用履歴と余寿命との関係を表すマップである余寿命マップを予め作成しておき、当該余寿命マップに記憶した使用履歴を当てはめることによって、二次電池の余寿命を判定している。   Therefore, Patent Document 1 describes a remaining life determination device including a storage unit that stores a use history of a secondary battery. In such a remaining life determination device, as a use history of a stationary secondary battery for supplying power to a home appliance, a charge / discharge history (cycle deterioration history) and a use temperature (neglected deterioration history) are used. The remaining life of the secondary battery is stored by the storage unit, and a remaining life map, which is a map representing the relationship between the use history and the remaining life, is created in advance and the use history stored in the remaining life map is applied. Is judged.

特開2014−20804号公報JP 2014-20804 A

しかしながら、特許文献1に記載の余寿命判定装置では、使用履歴を記憶する記憶部を設ける必要があり、構成が複雑になってしまうという不都合があった。特に、車載用の二次電池の場合、記憶部を車両に設けなければならないとともに、回生エネルギーによって充電されたり加速時や発進時に急に放電したりすることがあり、充放電パターンが定置用の二次電池よりも複雑であるため、膨大なパターンの余寿命マップを用意する必要がある。   However, in the remaining life determination device described in Patent Document 1, it is necessary to provide a storage unit for storing a use history, and there is a disadvantage that the configuration becomes complicated. In particular, in the case of an in-vehicle secondary battery, a storage unit must be provided in the vehicle, and the battery may be charged by regenerative energy or suddenly discharged during acceleration or starting. Since it is more complicated than the secondary battery, it is necessary to prepare a remaining life map with a huge pattern.

本発明の目的は、二次電池の支配的な劣化要因を容易に推定することができる劣化要因推定方法、及び、二次電池の余寿命を推定する余寿命推定方法を提供することにある。   An object of the present invention is to provide a deterioration factor estimation method that can easily estimate a dominant deterioration factor of a secondary battery, and a remaining life estimation method that estimates a remaining life of a secondary battery.

本願発明者らは、支配的な劣化要因が既知の二次電池の充電率を変化させつつ内部抵抗を測定し、鋭意検討した結果、測定した内部抵抗と支配的な劣化要因との関係性を見出し、本発明に至った。   The inventors of the present application have measured the internal resistance while changing the charging rate of a secondary battery with a known dominant deterioration factor, and as a result of intensive studies, the relationship between the measured internal resistance and the dominant deterioration factor was found. The headline, the present invention has been reached.

前記課題を解決し目的を達成するために、請求項1に記載された発明は、二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、前記推定工程において、前記内部抵抗測定工程で測定した充電率が高いときの前記内部抵抗が、充電率が低いときの前記内部抵抗よりも高くなるとき、前記放置劣化が支配的な劣化要因であると推定することを特徴とする劣化要因推定方法である。 In order to solve the above-mentioned problems and achieve the object, the invention described in claim 1 is characterized in that the dominant deterioration factor of the secondary battery is left in a high temperature environment and cycle deterioration which is deterioration due to repeated use. A degradation factor estimation method for estimating whether the degradation is neglected degradation caused by the internal resistance measurement step of measuring the internal resistance of the secondary battery at each of a plurality of different charging rates, and have a, an estimation step of estimating a dominant degradation factor of the secondary battery based on the plurality of the internal resistance measured by the plurality of charging rates in the internal resistance measurement step, in the estimation step, the internal resistance the internal resistance of the measuring step is high measured charging rate is, when the charging rate is higher than the internal resistance at low, be estimated with the neglected deterioration is the dominant degradation factors A deterioration factor estimating method characterized.

請求項に記載された発明は、二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、前記推定工程において、前記内部抵抗測定工程で測定した充電率が高いときの前記内部抵抗が、充電率が低いときの前記内部抵抗よりも高いほど、劣化要因に対する前記放置劣化の支配割合が高いと推定することを特徴とするものである。 In the invention described in claim 2 , the dominant deterioration factor of the secondary battery is either cycle deterioration which is deterioration due to repeated use or neglected deterioration which is deterioration due to being left in a high temperature environment. A deterioration factor estimation method for estimating the internal resistance of the secondary battery at each of a plurality of different charging rates, and measuring at the plurality of charging rates in the internal resistance measuring step. An estimation step for estimating a dominant deterioration factor of the secondary battery based on the plurality of internal resistances, and in the estimation step, when the charging rate measured in the internal resistance measurement step is high It is estimated that as the internal resistance is higher than the internal resistance when the charging rate is low, the dominant ratio of the neglected deterioration to the deterioration factor is high.

請求項に記載された発明は、二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、前記二次電池の劣化要因に対する前記サイクル劣化と前記放置劣化との支配割合を推定することを特徴とするものである。 In the invention described in claim 3 , the dominant deterioration factor of the secondary battery is either cycle deterioration that is deterioration due to repeated use or neglected deterioration that is deterioration due to being left in a high temperature environment. A deterioration factor estimation method for estimating the internal resistance of the secondary battery at each of a plurality of different charging rates, and measuring at the plurality of charging rates in the internal resistance measuring step. An estimation step of estimating a dominant deterioration factor of the secondary battery based on the plurality of internal resistances, and determining a control ratio of the cycle deterioration and the neglected deterioration with respect to the deterioration factor of the secondary battery. It is characterized by estimating.

請求項に記載された発明は、二次電池の支配的な劣化要因と、該二次電池の使用可能電圧範囲内で設定された基準電圧範囲における充電可能容量の劣化度と、に基づいて該二次電池の余寿命を推定する余寿命推定方法であって、前記支配的な劣化要因が、請求項1〜のいずれか1項に記載の劣化要因推定方法によって推定した支配的な劣化要因であることを特徴とする余寿命推定方法である。 The invention described in claim 4 is based on the dominant deterioration factor of the secondary battery and the degree of deterioration of the chargeable capacity in the reference voltage range set within the usable voltage range of the secondary battery. A remaining life estimation method for estimating a remaining life of the secondary battery, wherein the dominant deterioration factor is a dominant deterioration estimated by the deterioration factor estimation method according to any one of claims 1 to 3. This is a remaining life estimation method characterized by being a factor.

請求項1に記載された発明によれば、推定工程において複数の充電率で測定した複数の内部抵抗に基づいて二次電池の支配的な劣化要因を推定することから、二次電池の使用履歴を記憶する必要がなく、余寿命の推定が必要なタイミングで容易に支配的な劣化要因を推定することができる。さらに、例えば車両に二次電池が搭載される場合、車両に記憶手段を設ける必要がないとともに、推定時に二次電池を車両から取り外す必要がない。   According to the first aspect of the present invention, since the dominant deterioration factor of the secondary battery is estimated based on the plurality of internal resistances measured at the plurality of charging rates in the estimation step, the usage history of the secondary battery is determined. Therefore, it is possible to easily estimate the dominant deterioration factor at the timing when the remaining life needs to be estimated. Furthermore, for example, when a secondary battery is mounted on a vehicle, it is not necessary to provide storage means in the vehicle, and it is not necessary to remove the secondary battery from the vehicle at the time of estimation.

また、充電率が高いときの二次電池の内部抵抗が、充電率が低いときの二次電池の内部抵抗よりも高くなるとき放置劣化が支配的な劣化要因であると推定することから、二次電池の支配的な劣化要因を容易に推定することができる。 Further , it is estimated that neglected deterioration is a dominant deterioration factor when the internal resistance of the secondary battery when the charging rate is high is higher than the internal resistance of the secondary battery when the charging rate is low. The dominant deterioration factor of the secondary battery can be easily estimated.

請求項に記載された発明によれば、充電率が高いときの二次電池の内部抵抗が、充電率が低いときの二次電池の内部抵抗よりも高いほど劣化要因に対する放置劣化の支配割合が高いと推定することから、放置劣化の支配割合を容易に推定することができる。 According to the second aspect of the present invention, as the internal resistance of the secondary battery when the charging rate is high is higher than the internal resistance of the secondary battery when the charging rate is low, the control ratio of neglected deterioration with respect to deterioration factors Therefore, it is possible to easily estimate the control ratio of neglected deterioration.

請求項に記載された発明によれば、支配的な劣化要因だけでなく劣化要因に対するサイクル劣化と放置劣化との支配割合を推定することから、支配的な劣化要因のみを推定する構成と比較して、二次電池の劣化要因をより詳細に推定することができ、二次電池の余寿命の推定精度を向上させることができる。 According to the third aspect of the present invention, since the control ratio of cycle deterioration and neglected deterioration to the deterioration factor as well as the dominant deterioration factor is estimated, it is compared with the configuration in which only the dominant deterioration factor is estimated. Thus, the deterioration factor of the secondary battery can be estimated in more detail, and the estimation accuracy of the remaining life of the secondary battery can be improved.

請求項に記載された発明によれば、前述のように推定した二次電池の支配的な劣化要因に基づいて余寿命を推定することから、二次電池の余寿命を容易に推定することができる。 According to the invention described in claim 4 , since the remaining life is estimated based on the dominant deterioration factor of the secondary battery estimated as described above, the remaining life of the secondary battery can be easily estimated. Can do.

本発明の実施形態に係る劣化要因推定方法を実行するための劣化要因推定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the deterioration factor estimation apparatus for performing the deterioration factor estimation method which concerns on embodiment of this invention. 二次電池のサイクル劣化の条件を変えた際の内部抵抗の充電率依存性の一例を示すグラフである。It is a graph which shows an example of the charge rate dependence of internal resistance at the time of changing the conditions of cycle deterioration of a secondary battery. 二次電池の放置劣化の条件を変えた際の内部抵抗の充電率依存性の一例を示すグラフである。It is a graph which shows an example of the charge rate dependence of internal resistance at the time of changing the conditions of neglected deterioration of a secondary battery. 二次電池の劣化の条件を変えた際の内部抵抗の充電率依存性の一例を示すグラフである。It is a graph which shows an example of the charging rate dependence of internal resistance at the time of changing the deterioration conditions of a secondary battery.

以下、本発明の実施形態の劣化要因推定方法及び寿命推定方法について説明する。本実施形態の劣化要因推定方法は、例えば、走行用モータとガソリンエンジンとを備えたハイブリッド自動車に搭載された二次電池における支配的な劣化要因を推定するものであって、例えば図1に示すような劣化要因推定装置1によって実行される。劣化要因推定装置1は、二次電池Bを充放電する充放電手段2と、二次電池Bの内部抵抗を測定する内部抵抗測定手段3と、二次電池Bの充電率を測定する充電率測定手段4と、後述する各種の演算を実施する演算手段5と、内部抵抗測定手段3及び演算手段5を制御する制御手段6と、を有する。余寿命推定方法は、劣化要因推定方法に引き続いて、演算手段5及び制御手段6によって実行される。   Hereinafter, the degradation factor estimation method and the lifetime estimation method of the embodiment of the present invention will be described. The degradation factor estimation method according to the present embodiment estimates, for example, a dominant degradation factor in a secondary battery mounted on a hybrid vehicle equipped with a traveling motor and a gasoline engine. This is executed by the deterioration factor estimating apparatus 1 as described above. The degradation factor estimation device 1 includes a charge / discharge unit 2 that charges and discharges the secondary battery B, an internal resistance measurement unit 3 that measures the internal resistance of the secondary battery B, and a charge rate that measures the charge rate of the secondary battery B. It has a measuring means 4, a calculating means 5 for performing various calculations described later, and a control means 6 for controlling the internal resistance measuring means 3 and the calculating means 5. The remaining life estimation method is executed by the calculation means 5 and the control means 6 subsequent to the deterioration factor estimation method.

充放電手段2は、充電手段及び放電手段を備え、制御手段6や図示しないその他の制御手段によって制御されることにより二次電池Bを充放電する。劣化要因推定装置1が車両に設けられる場合、例えば、充電手段が外部の電力供給手段や回生手段に接続され、放電手段がモータ等の負荷に接続される。   The charging / discharging unit 2 includes a charging unit and a discharging unit, and charges / discharges the secondary battery B by being controlled by the control unit 6 or other control unit (not shown). When the deterioration factor estimation device 1 is provided in a vehicle, for example, a charging unit is connected to an external power supply unit or a regeneration unit, and a discharging unit is connected to a load such as a motor.

内部抵抗測定手段3は、二次電池Bに流れた電流とそのときの両電極間の電圧とを測定することにより内部抵抗を測定可能に構成されるとともに、測定した内部抵抗を示す信号を演算手段5に送信可能に構成されている。例えば車両に設けられた既存の装置が内部抵抗測定手段3として機能してもよいし、新たに内部抵抗測定手段3が設けられてもよい。尚、充放電時に内部抵抗を測定してもよいし、二次電池Bを使用していないときに内部抵抗を測定してもよい。   The internal resistance measuring means 3 is configured to measure the internal resistance by measuring the current flowing through the secondary battery B and the voltage between the electrodes at that time, and calculates a signal indicating the measured internal resistance. Transmission to the means 5 is possible. For example, an existing device provided in the vehicle may function as the internal resistance measuring unit 3 or a new internal resistance measuring unit 3 may be provided. The internal resistance may be measured during charging / discharging, or the internal resistance may be measured when the secondary battery B is not used.

充電率測定手段4は、例えば二次電池Bの両電極間の電圧を測定したり、充放電時の電流量の積算値を記憶したりすることによって充電率を測定し、測定した充電率を示す信号を制御手段6に送信可能に構成されている。尚、内部抵抗測定手段3が、二次電池Bの両電極間の電圧を測定することによって充電率測定手段4としても機能してもよい。本実施形態における充電率は、測定時の残容量(電流と時間との積)を満充電容量で除したものであって、満充電容量は劣化後の値とする。   The charging rate measuring means 4 measures the charging rate by measuring, for example, the voltage between both electrodes of the secondary battery B or storing the integrated value of the current amount at the time of charging / discharging, and calculates the measured charging rate. The signal shown can be transmitted to the control means 6. The internal resistance measuring unit 3 may also function as the charging rate measuring unit 4 by measuring the voltage between both electrodes of the secondary battery B. The charging rate in the present embodiment is obtained by dividing the remaining capacity (product of current and time) at the time of measurement by the full charge capacity, and the full charge capacity is a value after deterioration.

演算手段5は、内部抵抗測定手段3から内部抵抗の測定値を受信するとともに制御手段6に制御されて演算を実行するものであって、例えば車両に搭載されたマイクロコンピュータに設けられる。制御手段6は、例えば車両に搭載されたマイクロコンピュータに設けられる。   The calculation means 5 receives the measurement value of the internal resistance from the internal resistance measurement means 3 and executes the calculation under the control of the control means 6, and is provided in, for example, a microcomputer mounted on the vehicle. The control means 6 is provided, for example, in a microcomputer mounted on the vehicle.

また、二次電池Bを車両から取り外し、車両の外部において当該二次電池Bに適宜な劣化要因推定装置を取り付けてもよい。勿論ハイブリッド自動車に限らず、電気自動車や定置用の装置に搭載された二次電池を推定対象としてもよい。   Further, the secondary battery B may be removed from the vehicle, and an appropriate deterioration factor estimating device may be attached to the secondary battery B outside the vehicle. Of course, not only the hybrid vehicle but also a secondary battery mounted on an electric vehicle or a stationary device may be an estimation target.

このような二次電池は、例えばリチウムイオン電池であって、適宜に設定された充電上限電圧(例えば4.2V)を上限とし、適宜に設定された放電終止電圧(例えば3.0V)を下限として、これらの電圧の範囲内で充放電が繰り返される。   Such a secondary battery is, for example, a lithium ion battery, and has an upper limit of a charge upper limit voltage (for example, 4.2 V) set as appropriate and a lower limit of a discharge end voltage (for example, 3.0 V) set as appropriate. As described above, charging and discharging are repeated within the range of these voltages.

二次電池は、充放電が繰り返されることによって徐々に劣化していき、充電可能容量が低下していく。尚、充電可能容量は、設定された基準電圧範囲の上限から下限まで放電した際の放電電流と経過時間との積であるとともに、当該基準電圧範囲の下限から上限まで充電した際の充電電流と経過時間との積である。また、二次電池は、周囲環境の温度が高く放置時間が長いほど劣化し、充電可能容量が低下する。即ち、二次電池の劣化要因は、繰り返し使用による劣化であるサイクル劣化と、放置されることによる劣化である放置劣化と、が主な要因であって、これらの支配割合は二次電池の使用状況によって異なる。例えば、車両の走行頻度が低い場合や温暖地で使用される場合には放置劣化の支配割合が高くなる。また、二次電池が低温環境かつ高頻度で充放電が繰り返される機器に搭載される場合には、サイクル劣化が支配的となることもある。   The secondary battery gradually deteriorates as charging and discharging are repeated, and the chargeable capacity is lowered. The chargeable capacity is the product of the discharge current and the elapsed time when discharging from the upper limit to the lower limit of the set reference voltage range, and the charging current when charging from the lower limit to the upper limit of the reference voltage range. It is the product of the elapsed time. Further, the secondary battery deteriorates as the temperature of the surrounding environment is high and the standing time is long, and the chargeable capacity is reduced. In other words, the main causes of deterioration of secondary batteries are cycle deterioration, which is deterioration due to repeated use, and neglected deterioration, which is deterioration due to being left untreated. It depends on the situation. For example, the control ratio of neglected deterioration is high when the vehicle is traveling less frequently or used in a warm area. In addition, when the secondary battery is mounted on a device that is repeatedly charged and discharged at a low temperature and frequently, cycle deterioration may become dominant.

二次電池の劣化の指標は、容量劣化度SOHで表される。即ち、基準電圧範囲を設定するとともに、この基準電圧範囲における劣化後の充電可能容量を劣化前の充電可能容量で除し、その百分率を容量劣化度SOHとする。ある基準電圧範囲における容量劣化度SOHが同程度であっても、サイクル劣化が支配的な劣化要因である場合の方が、放置劣化が支配的な劣化要因である場合よりも、余寿命が短くなる傾向がある。   An index of deterioration of the secondary battery is represented by a capacity deterioration degree SOH. That is, while setting a reference voltage range, the chargeable capacity after deterioration in this reference voltage range is divided by the chargeable capacity before deterioration, and the percentage is defined as the capacity deterioration degree SOH. Even if the capacity deterioration degree SOH in a certain reference voltage range is the same, the remaining life is shorter when cycle deterioration is the dominant deterioration factor than when neglected deterioration is the dominant deterioration factor. Tend to be.

以下、劣化要因推定方法の詳細について説明する。本実施形態の劣化要因推定方法は、二次電池の内部抵抗を測定する内部抵抗測定工程と、測定した内部抵抗に基づいて二次電池の支配的な劣化要因を推定する推定工程と、を有する。   Details of the degradation factor estimation method will be described below. The degradation factor estimation method of the present embodiment includes an internal resistance measurement step of measuring the internal resistance of the secondary battery, and an estimation step of estimating a dominant degradation factor of the secondary battery based on the measured internal resistance. .

内部抵抗工程において、制御手段6は、充電率測定手段から受信した充電率SOCが所定値となった場合に、内部抵抗測定手段3を制御し、二次電池の内部抵抗Rを測定する。このとき、互いに異なる複数の充電率SOCのそれぞれにおいて内部抵抗Rを測定する。例えば、充電率SOCが20%、40%、60%、80%のそれぞれにおいて内部抵抗Rを測定する。尚、内部抵抗Rの測定は、互いに異なる少なくとも2つの充電率において実施されればよい。   In the internal resistance step, the control means 6 controls the internal resistance measurement means 3 and measures the internal resistance R of the secondary battery when the charge rate SOC received from the charge rate measurement means reaches a predetermined value. At this time, the internal resistance R is measured at each of a plurality of different charging rates SOC. For example, the internal resistance R is measured when the charging rate SOC is 20%, 40%, 60%, and 80%. The internal resistance R may be measured at at least two different charging rates.

推定工程において、制御手段6が演算手段5を制御し、低い充電率SOC1における内部抵抗R1と、高い充電率SOC2における内部抵抗R2と、を比較し、内部抵抗R1よりも内部抵抗R2が高い場合、放置劣化が支配的な劣化要因であると推定し、内部抵抗R1よりも内部抵抗R2が低いか同程度の場合、サイクル劣化が支配的な劣化要因であると推定する。即ち、内部抵抗Rの差分値ΔR(=R2−R1)を充電率SOCの差分値ΔSOC(=SOC2−SOC1)で除した内部抵抗変化率R’が、例えば2×10-5(Ω/%)を基準値RSとして、基準値RS以上であれば放置劣化が支配的であると推定し、基準値RS未満であればサイクル劣化が支配的であると推定する。支配的な劣化要因を推定した後、推定工程が終了し、劣化要因推定方法は全工程を終了する。 In the estimation step, the control means 6 controls the computing means 5 to compare the internal resistance R1 at the low charging rate SOC1 with the internal resistance R2 at the high charging rate SOC2, and the internal resistance R2 is higher than the internal resistance R1. If the internal resistance R2 is lower than or comparable to the internal resistance R1, the cycle deterioration is estimated to be the dominant deterioration factor. That is, the internal resistance change rate R ′ obtained by dividing the difference value ΔR (= R2−R1) of the internal resistance R by the difference value ΔSOC (= SOC2−SOC1) of the charging rate SOC is, for example, 2 × 10 −5 (Ω /%). ) As a reference value RS, it is estimated that neglected deterioration is dominant if it is greater than or equal to the reference value RS, and if it is less than the reference value RS, cycle deterioration is estimated to be dominant. After estimating the dominant deterioration factor, the estimation process ends, and the deterioration factor estimation method ends all the processes.

尚、2つの充電率SOC1、SOCは、なるべく差が大きい(例えば、30%以上)ことが好ましい。また、3つ以上の充電率SOCにおける内部抵抗を用いて推定してもよく、充電率SOCを横軸として内部抵抗Rを縦軸とする座標系に測定した内部抵抗をプロットするとともに各点を通るような近似直線を求め、当該近似直線の傾きと前記基準値とを比較してもよい。   The two charging rates SOC1, SOC are preferably as large as possible (for example, 30% or more). Alternatively, the internal resistance at three or more charging rates SOC may be estimated, and the measured internal resistance is plotted in a coordinate system with the charging rate SOC as the horizontal axis and the internal resistance R as the vertical axis, and each point is plotted. An approximate straight line that passes may be obtained, and the slope of the approximate straight line may be compared with the reference value.

余寿命推定方法は、制御手段6が演算手段5を制御し、上記のように推定した支配的な劣化要因と、二次電池の劣化前後の充電可能容量に基づいて求めた容量劣化度SOHと、に基づいて推定対象の二次電池の余寿命を推定する。例えば、容量劣化度SOH及び支配的な劣化度を変数として余寿命を示すマップを予め記憶手段に記憶しておき、測定した容量劣化度SOHと推定した支配的な劣化度とを当該マップに当てはめることによって二次電池の余寿命を推定する。尚、充電可能容量は図示しない充電可能容量測定手段によって測定され、劣化後の充電可能容量を劣化前の充電可能容量で除して容量劣化度SOHが算出される。   In the remaining life estimation method, the control means 6 controls the computing means 5 to determine the dominant deterioration factor estimated as described above and the capacity deterioration degree SOH obtained based on the chargeable capacity before and after the deterioration of the secondary battery. Based on the above, the remaining life of the secondary battery to be estimated is estimated. For example, a map indicating the remaining life is stored in advance in the storage unit using the capacity deterioration degree SOH and the dominant deterioration degree as variables, and the measured capacity deterioration degree SOH and the estimated dominant deterioration degree are applied to the map. Thus, the remaining life of the secondary battery is estimated. The chargeable capacity is measured by chargeable capacity measuring means (not shown), and the capacity deterioration degree SOH is calculated by dividing the chargeable capacity after deterioration by the chargeable capacity before deterioration.

ここで、上記のように内部抵抗変化率R’と基準値RSとの比較に基づいて支配的な劣化要因を推定する根拠について、実験結果に基づいて説明する。図2に示すグラフは、サイクル劣化を支配的な劣化要因とする第1〜3サイクル条件のそれぞれで二次電池を劣化させた場合の内部抵抗Rの充電率SOC依存性を示すものである。図3に示すグラフは、放置劣化を支配的な劣化要因とする第1〜第3放置条件のそれぞれで二次電池を劣化させた場合の内部抵抗Rの充電率SOC依存性を示すものである。また、表1に、第1〜3サイクル条件の詳細を示すとともに、各条件で劣化した二次電池の容量劣化度SOHを示す。また、表2に、第1〜3放置条件の詳細を示すとともに、各条件で劣化した二次電池の容量劣化度SOHを示す。尚、ここでの容量劣化度SOHは、その電圧範囲を4.2V〜3.4Vとする。   Here, the basis for estimating the dominant deterioration factor based on the comparison between the internal resistance change rate R ′ and the reference value RS as described above will be described based on experimental results. The graph shown in FIG. 2 shows the charge rate SOC dependency of the internal resistance R when the secondary battery is deteriorated under each of the first to third cycle conditions in which cycle deterioration is a dominant deterioration factor. The graph shown in FIG. 3 shows the charge rate SOC dependency of the internal resistance R when the secondary battery is deteriorated under each of the first to third neglect conditions in which neglected deterioration is a dominant deterioration factor. . Table 1 shows details of the first to third cycle conditions, and also shows the capacity deterioration degree SOH of the secondary battery deteriorated under each condition. Table 2 shows details of the first to third standing conditions, and also shows the capacity deterioration degree SOH of the secondary battery deteriorated under each condition. Here, the capacity deterioration degree SOH here has a voltage range of 4.2V to 3.4V.

Figure 0006294786
Figure 0006294786

Figure 0006294786
Figure 0006294786

図2のグラフに示すように、サイクル劣化を支配的な劣化要因とする場合、劣化が進行するにしたがって内部抵抗Rが大きくなっていき、内部抵抗Rは充電率SOCに依存せず各条件において略一定の値となる(即ち、内部抵抗変化率R’が0に略等しい)。一方、図3のグラフに示すように、放置劣化を支配的な劣化要因とする場合、劣化が進行するにしたがって内部抵抗Rが大きくなっていき、内部抵抗Rは充電率SOCが大きくなるにしたがって高くなっていく(即ち、内部抵抗変化率R’が正となる)とともに、内部抵抗Rと充電率SOCとは略一次の関係を有し、劣化が進行するにしたがって傾き(内部抵抗変化率R’)が大きくなる。このような実験結果により、内部抵抗変化率R’に基づいて支配的な劣化要因を推定することができる。   As shown in the graph of FIG. 2, when cycle deterioration is a dominant deterioration factor, the internal resistance R increases as the deterioration progresses, and the internal resistance R does not depend on the charging rate SOC and in each condition. It becomes a substantially constant value (that is, the internal resistance change rate R ′ is substantially equal to 0). On the other hand, as shown in the graph of FIG. 3, when neglected deterioration is a dominant deterioration factor, the internal resistance R increases as the deterioration progresses, and the internal resistance R increases as the charging rate SOC increases. The internal resistance R and the charging rate SOC have a substantially first-order relationship with increasing (that is, the internal resistance change rate R ′ becomes positive), and the slope (internal resistance change rate R is increased as deterioration progresses). ') Becomes bigger. From such experimental results, it is possible to estimate the dominant deterioration factor based on the internal resistance change rate R ′.

このような本実施形態によれば、以下のような効果がある。即ち、推定工程において低い充電率SOC1における内部抵抗R1と高い充電率SOC2における内部抵抗R2との比較に基づいて二次電池の支配的な劣化要因を推定することから、二次電池の使用履歴を記憶する必要がなく、余寿命の推定が必要なタイミングで容易に支配的な劣化要因を推定することができる。さらに、使用履歴を記憶する記憶手段を車両に設ける必要がないとともに、推定時に二次電池を車両から取り外す必要がない。   According to this embodiment, there are the following effects. That is, in the estimation process, the dominant deterioration factor of the secondary battery is estimated based on the comparison between the internal resistance R1 at the low charging rate SOC1 and the internal resistance R2 at the high charging rate SOC2, and thus the usage history of the secondary battery is calculated. It is not necessary to memorize, and the dominant deterioration factor can be easily estimated at the timing when the remaining life needs to be estimated. Furthermore, it is not necessary to provide storage means for storing the use history in the vehicle, and it is not necessary to remove the secondary battery from the vehicle at the time of estimation.

さらに、上述のように推定した劣化要因に基づいて二次電池の余寿命を推定することから、容易に二次電池の余寿命を推定することができる。   Furthermore, since the remaining life of the secondary battery is estimated based on the deterioration factor estimated as described above, the remaining life of the secondary battery can be easily estimated.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。   In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.

例えば、前記実施形態では、推定工程において低い充電率SOC1における内部抵抗R1と高い充電率SOC2における内部抵抗R2との比較に基づいて支配的な劣化要因を推定するものとしたが、推定工程では、支配的な劣化要因だけでなく劣化要因に対するサイクル劣化と放置劣化との支配割合を推定してもよい。   For example, in the above-described embodiment, the dominant deterioration factor is estimated based on the comparison between the internal resistance R1 at the low charging rate SOC1 and the internal resistance R2 at the high charging rate SOC2 in the estimation step. You may estimate the control ratio of the cycle deterioration and the neglected deterioration with respect to the deterioration factor as well as the dominant deterioration factor.

劣化要因に対するサイクル劣化と放置劣化との支配割合の推定方法の一例を以下に説明する。まず、サイクル劣化と放置劣化との支配割合が所定値の二次電池における内部抵抗と容量劣化度との関係式を予め求めておく。さらに、サイクル劣化の支配割合が略100%の二次電池(第1基準電池)と放置劣化の支配割合が略100%の二次電池(第2基準電池)とについて、互いに異なる複数の容量劣化度において充電率と内部抵抗との関係を予め求めておく。   An example of a method for estimating the control ratio between cycle deterioration and neglected deterioration with respect to deterioration factors will be described below. First, a relational expression between an internal resistance and a capacity deterioration degree in a secondary battery having a predetermined control ratio between cycle deterioration and neglected deterioration is obtained in advance. Further, a plurality of capacity deteriorations differing between a secondary battery (first reference battery) having approximately 100% of cycle deterioration and a secondary battery (second reference battery) having approximately 100% of neglected deterioration. The relationship between the charging rate and the internal resistance is determined in advance.

次に、推定対象の二次電池の内部抵抗を測定し、上記の内部抵抗と容量劣化度との関係式に代入することによって、推定対象の二次電池の仮の容量劣化度を求める。さらに、第1基準電池及び第2基準電池の充電率と内部抵抗との関係を測定した複数の容量劣化度のうち、仮の容量劣化度と最も近いものを選択する。次に、推定対象の二次電池の内部抵抗を互いに異なるn種類(nは2以上の自然数)の充電率において測定し、各内部抵抗を各軸の座標とする第1点をn次元の座標系にプロットする。選択した容量劣化度における第1基準電池についても、n種類の充電率における内部抵抗を各軸の座標とする第2点をn次元空間にプロットし、第2基準電池についても同様に第3点をプロットする。推定対象の二次電池におけるサイクル劣化と放置劣化との支配割合が第1基準電池に近いほど第1点と第2点間の距離が小さくなり、支配割合が第2基準電池に近いほど第1点と第3点間の距離が小さくなることから、各点間の距離の比を求めることで支配割合を推定することができる。   Next, the internal resistance of the secondary battery to be estimated is measured, and the provisional capacity deterioration degree of the secondary battery to be estimated is obtained by substituting it into the relational expression between the internal resistance and the capacity deterioration degree. Furthermore, the closest one to the temporary capacity deterioration degree is selected from the plurality of capacity deterioration degrees obtained by measuring the relationship between the charging rate and the internal resistance of the first reference battery and the second reference battery. Next, the internal resistance of the secondary battery to be estimated is measured at n different charge rates (n is a natural number of 2 or more), and the first point with each internal resistance as the coordinate of each axis is an n-dimensional coordinate. Plot into the system. Also for the first reference battery at the selected capacity deterioration degree, the second point having the internal resistance at n kinds of charging rates as coordinates of each axis is plotted in the n-dimensional space, and the third point is similarly applied to the second reference battery. Plot. The closer the control ratio between cycle deterioration and neglected deterioration in the secondary battery to be estimated is to the first reference battery, the smaller the distance between the first point and the second point is, and the closer the control ratio is to the second reference battery, the first. Since the distance between the point and the third point becomes small, the control ratio can be estimated by calculating the ratio of the distance between the points.

具体的には、例えばn=3として充電率が20%、50%、80%において推定対象の二次電池の内部抵抗を測定し、これらの測定値を順にRx、Ry、Rzとする。さらに、充電率が20%、50%、80%における第1基準電池の内部抵抗を順にR1x、R1y、R1zとし、充電率が20%、50%、80%における第2基準電池の内部抵抗を順にR2x、R2y、R2zとする。XYZ座標系において、第1点(Rx,Ry,Rz)と、第2点(R1x,R1y,R1Z)と、第3点(R2x,R2y,R2z)と、をプロットする。このような第1点と第2点との間の距離をL1とし、第1点と第3点との間の距離をL2とする。距離L1の逆数と距離L2の逆数との比が、サイクル劣化と放置劣化との支配割合の比となる。   Specifically, for example, when n = 3 and the charging rate is 20%, 50%, and 80%, the internal resistance of the secondary battery to be estimated is measured, and these measured values are sequentially set as Rx, Ry, and Rz. Further, the internal resistance of the first reference battery at charging rates of 20%, 50%, and 80% is sequentially R1x, R1y, and R1z, and the internal resistance of the second reference battery at charging rates of 20%, 50%, and 80% is R2x, R2y, and R2z are set in this order. In the XYZ coordinate system, the first point (Rx, Ry, Rz), the second point (R1x, R1y, R1Z), and the third point (R2x, R2y, R2z) are plotted. Such a distance between the first point and the second point is L1, and a distance between the first point and the third point is L2. The ratio of the reciprocal of the distance L1 and the reciprocal of the distance L2 is the ratio of the dominant ratio between cycle deterioration and neglected deterioration.

このような構成によれば、支配的な劣化要因のみを推定する構成と比較して、二次電池の劣化要因をより詳細に推定することができ、二次電池の余寿命の推定精度を向上させることができる。   According to such a configuration, the deterioration factor of the secondary battery can be estimated in more detail and the estimation accuracy of the remaining life of the secondary battery can be improved in comparison with the configuration in which only the dominant deterioration factor is estimated. Can be made.

また、前記実施形態では、図3に示すように、放置劣化を支配的な劣化要因とする場合に内部抵抗変化率R’が常に正となって内部抵抗Rが単調増加するものとしたが、電池の構成や劣化の条件によっては内部抵抗が単調減少したり極値を取ったりすることもある。例えば、図4に示すように、第1劣化条件から第4劣化条件に向かうにしたがって劣化の度合いが大きくなる二次電池において、充電率40%付近で内部抵抗が極小値となることがある。このような二次電池では、例えば充電率20%における内部抵抗と充電率80%における内部抵抗とを用いれば、前記実施形態と同様に支配的な劣化要因を推定することができる。即ち、内部抵抗の充電率依存性に応じて、適宜な充電率で内部抵抗を測定すればよい。   In the above embodiment, as shown in FIG. 3, when the neglected deterioration is a dominant deterioration factor, the internal resistance change rate R ′ is always positive and the internal resistance R increases monotonously. Depending on the battery configuration and deterioration conditions, the internal resistance may monotonously decrease or take an extreme value. For example, as shown in FIG. 4, in a secondary battery in which the degree of deterioration increases from the first deterioration condition toward the fourth deterioration condition, the internal resistance may become a minimum value near a charging rate of 40%. In such a secondary battery, for example, if an internal resistance at a charging rate of 20% and an internal resistance at a charging rate of 80% are used, a dominant deterioration factor can be estimated as in the above embodiment. That is, the internal resistance may be measured at an appropriate charging rate according to the dependency of the internal resistance on the charging rate.

また、前記実施形態では、推定工程において二次電池の異なる充電率における内部抵抗Rに基づいて支配的な劣化要因を推定するものとしたが、容量劣化度SOHを測定するとともに当該容量劣化度SOHと異なる充電率における内部抵抗Rとに基づいて支配的な劣化要因やその支配割合を推定してもよい。即ち、容量劣化度SOHに基づいてサイクル劣化と放置劣化との合計の劣化度合いを推定し、内部抵抗変化率R’の大きさに基づいて放置劣化による劣化度合いを推定することにより、合計の劣化度合いと放置劣化による劣化度合いとの差分からサイクル劣化による劣化度合いを推定することができ、支配的な劣化要因やその支配割合を精度良く推定することができる。   In the above embodiment, the dominant deterioration factor is estimated based on the internal resistance R at different charging rates of the secondary battery in the estimation step. However, the capacity deterioration degree SOH is measured and the capacity deterioration degree SOH is measured. Based on the internal resistance R at a different charging rate, the dominant deterioration factor and its dominant ratio may be estimated. That is, the total deterioration degree of cycle deterioration and neglected deterioration is estimated based on the capacity deterioration degree SOH, and the degree of deterioration due to neglected deterioration is estimated based on the magnitude of the internal resistance change rate R ′. The degree of deterioration due to cycle deterioration can be estimated from the difference between the degree and the degree of deterioration due to neglected deterioration, and the dominant deterioration factor and its dominant ratio can be accurately estimated.

また、前記実施形態では、二次電池としてリチウムイオン電池の劣化要因について推定するものとしたが、劣化の条件によって内部抵抗の充電率依存性が変化するような適宜な二次電池を推定対象とすることができる。   In the embodiment, the deterioration factor of the lithium ion battery is estimated as the secondary battery. However, an appropriate secondary battery in which the charging rate dependency of the internal resistance changes depending on the deterioration condition is the estimation target. can do.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of materials, quantity, and other detailed configurations. Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

B 二次電池
1 劣化要因推定装置
2 充放電手段
3 内部抵抗測定手段
4 充電率測定手段
5 演算手段
6 制御手段
B Secondary battery 1 Deterioration factor estimation device 2 Charging / discharging means 3 Internal resistance measuring means 4 Charging rate measuring means 5 Arithmetic means 6 Control means

Claims (4)

二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、
互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、
前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、
前記推定工程において、前記内部抵抗測定工程で測定した充電率が高いときの前記内部抵抗が、充電率が低いときの前記内部抵抗よりも高くなるとき、前記放置劣化が支配的な劣化要因であると推定することを特徴とする劣化要因推定方法。
This is a degradation factor estimation method that estimates whether the dominant degradation factor of a secondary battery is cycle degradation, which is degradation due to repeated use, or neglected degradation, which is degradation due to being left in a high temperature environment. And
An internal resistance measuring step of measuring the internal resistance of the secondary battery at each of a plurality of different charging rates;
Have a, an estimation step of estimating a dominant degradation factor of the secondary battery based on the plurality of the internal resistance measured by the plurality of charging rates in the internal resistance measurement step,
In the estimation step, when the internal resistance when the charging rate measured in the internal resistance measuring step is higher than the internal resistance when the charging rate is low, the neglected deterioration is a dominant deterioration factor. The degradation factor estimation method characterized by estimating.
二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、
互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、
前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、
前記推定工程において、前記内部抵抗測定工程で測定した充電率が高いときの前記内部抵抗が、充電率が低いときの前記内部抵抗よりも高いほど、劣化要因に対する前記放置劣化の支配割合が高いと推定することを特徴とする劣化要因推定方法。
This is a degradation factor estimation method that estimates whether the dominant degradation factor of a secondary battery is cycle degradation, which is degradation due to repeated use, or neglected degradation, which is degradation due to being left in a high temperature environment. And
An internal resistance measuring step of measuring the internal resistance of the secondary battery at each of a plurality of different charging rates;
An estimation step of estimating a dominant deterioration factor of the secondary battery based on the plurality of internal resistances measured at the plurality of charging rates in the internal resistance measurement step,
In the estimation step, when the internal resistance when the charging rate measured in the internal resistance measuring step is high is higher than the internal resistance when the charging rate is low, the dominant ratio of the neglected deterioration with respect to the deterioration factor is high. degradation factor estimating how to and estimates.
二次電池の支配的な劣化要因が、繰り返し使用による劣化であるサイクル劣化と、高温環境に放置されることによる劣化である放置劣化と、のいずれであるかを推定する劣化要因推定方法であって、
互いに異なる複数の充電率のそれぞれにおいて前記二次電池の内部抵抗を測定する内部抵抗測定工程と、
前記内部抵抗測定工程において前記複数の充電率で測定した複数の前記内部抵抗に基づいて前記二次電池の支配的な劣化要因を推定する推定工程と、を有し、
前記推定工程において、前記二次電池の劣化要因に対する前記サイクル劣化と前記放置劣化との支配割合を推定することを特徴とする劣化要因推定方法。
This is a degradation factor estimation method that estimates whether the dominant degradation factor of a secondary battery is cycle degradation, which is degradation due to repeated use, or neglected degradation, which is degradation due to being left in a high temperature environment. And
An internal resistance measuring step of measuring the internal resistance of the secondary battery at each of a plurality of different charging rates;
An estimation step of estimating a dominant deterioration factor of the secondary battery based on the plurality of internal resistances measured at the plurality of charging rates in the internal resistance measurement step,
In the estimation process, degradation factor estimating how to and estimates governing the ratio between the cycle deterioration and the neglected deterioration to degradation factors of the secondary battery.
二次電池の支配的な劣化要因と、該二次電池の使用可能電圧範囲内で設定された基準電圧範囲における充電可能容量の劣化度と、に基づいて該二次電池の余寿命を推定する余寿命推定方法であって、
前記支配的な劣化要因が、請求項1〜のいずれか1項に記載の劣化要因推定方法によって推定した支配的な劣化要因であることを特徴とする余寿命推定方法。
Estimating the remaining life of the secondary battery based on the dominant deterioration factor of the secondary battery and the degree of deterioration of the chargeable capacity in the reference voltage range set within the usable voltage range of the secondary battery A remaining life estimation method,
The remaining life estimation method, wherein the dominant deterioration factor is a dominant deterioration factor estimated by the deterioration factor estimation method according to any one of claims 1 to 3 .
JP2014161332A 2014-08-07 2014-08-07 Degradation factor estimation method and remaining life estimation method Active JP6294786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161332A JP6294786B2 (en) 2014-08-07 2014-08-07 Degradation factor estimation method and remaining life estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161332A JP6294786B2 (en) 2014-08-07 2014-08-07 Degradation factor estimation method and remaining life estimation method

Publications (2)

Publication Number Publication Date
JP2016038276A JP2016038276A (en) 2016-03-22
JP6294786B2 true JP6294786B2 (en) 2018-03-14

Family

ID=55529463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161332A Active JP6294786B2 (en) 2014-08-07 2014-08-07 Degradation factor estimation method and remaining life estimation method

Country Status (1)

Country Link
JP (1) JP6294786B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791181B (en) * 2016-09-29 2021-12-14 株式会社杰士汤浅国际 SOC estimation device for power storage element, power storage device, and SOC estimation method for power storage element
JP6722808B1 (en) * 2019-07-10 2020-07-15 ゴイク電池株式会社 Storage element management unit
US20220082630A1 (en) * 2019-01-15 2022-03-17 Goiku Battery Co., Ltd. Soh/soc detecting device for power storage element, and power storage element managing unit
JP2022081210A (en) * 2020-11-19 2022-05-31 オムロン株式会社 Storage battery management system and storage battery management method
KR20220072578A (en) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 Apparatus and method for managing battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368038B2 (en) * 2008-09-11 2013-12-18 ミツミ電機株式会社 Battery state detection device and battery pack incorporating the same
US9172118B2 (en) * 2009-06-17 2015-10-27 Gm Global Technology Operations, Llc. Method and system for estimating battery life

Also Published As

Publication number Publication date
JP2016038276A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
KR102009734B1 (en) Estimation of the state of deterioration of an electric battery
KR102468385B1 (en) Method of predicting for battery charging time of green vehicle
JP6317031B2 (en) Battery control device and vehicle system
JP6607255B2 (en) Battery degradation degree estimation apparatus and estimation method
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
JP6022192B2 (en) High voltage battery deterioration judgment method for vehicles
JP6294786B2 (en) Degradation factor estimation method and remaining life estimation method
KR20160130389A (en) Method for assessing a state of charge of a battery comprising a plurality of cells having a variable range of use of state of charge
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US8843333B2 (en) Nonaqueous electrolyte solution type lithium ion secondary battery system, method for determining lithium deposition in that system, and vehicle provided with that system
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
KR102274383B1 (en) Assessing the quantity of energy in a motor vehicle battery
JP6449609B2 (en) Secondary battery charging rate estimation method and charging rate estimation device
JP6382662B2 (en) Battery temperature estimation method and battery temperature estimation device
KR102085856B1 (en) Method and apparatus for estimating state of battery
JP2017129409A (en) Secondary battery control system
JP6214001B2 (en) Degradation factor estimation method and remaining life estimation method
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP2013240236A (en) Battery charge/discharge control device
JP2015118022A (en) Battery temperature estimation system
JP2015137916A (en) Battery charging rate estimation device
JP6500824B2 (en) Battery inspection device
JP2020060489A (en) Device for correcting estimated result of full-charge capacity
CN114868028A (en) Method for identifying onset of state of health degradation acceleration of rechargeable battery pack
JP6095239B2 (en) Capacitor management apparatus and capacitor management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6294786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250