JP6290555B2 - Ocean current power generation facility and mooring method of ocean current power generation facility - Google Patents

Ocean current power generation facility and mooring method of ocean current power generation facility Download PDF

Info

Publication number
JP6290555B2
JP6290555B2 JP2013161292A JP2013161292A JP6290555B2 JP 6290555 B2 JP6290555 B2 JP 6290555B2 JP 2013161292 A JP2013161292 A JP 2013161292A JP 2013161292 A JP2013161292 A JP 2013161292A JP 6290555 B2 JP6290555 B2 JP 6290555B2
Authority
JP
Japan
Prior art keywords
ocean current
power generation
current power
mooring
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013161292A
Other languages
Japanese (ja)
Other versions
JP2015031204A (en
Inventor
飯嶋 正樹
正樹 飯嶋
浩己 中谷
浩己 中谷
達雄 加幡
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013161292A priority Critical patent/JP6290555B2/en
Priority to PCT/JP2014/070479 priority patent/WO2015016378A1/en
Publication of JP2015031204A publication Critical patent/JP2015031204A/en
Application granted granted Critical
Publication of JP6290555B2 publication Critical patent/JP6290555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • F05B2240/9176Wing, kites or buoyant bodies with a turbine attached without flying pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、海流のエネルギーを利用して発電を行う海流発電設備及び海流発電設備の係留方法に関するものである。   The present invention relates to a ocean current power generation facility that generates power using ocean current energy and a mooring method for the ocean current power generation facility.

海流発電設備は、同じ位置でほぼ一定の速さ、一定の向きで流れる海流のエネルギーを利用して発電を行う。海流発電設備に設けられる海流発電装置は、翼を有するタービンの回転力を用いて、発電機によって電力を発生させる。発電量は、翼の回転半径の2乗に比例し、海流の流速の3乗に比例する。流速が毎秒1m〜1.5mの場所に海流発電設備を設置する場合、翼長が25mほどであれば、0.3MWから1MWの発電量が得られる。   The ocean current power generation facility uses the energy of the ocean current flowing at a constant speed and in a constant direction at the same position to generate power. An ocean current power generation apparatus provided in an ocean current power generation facility generates electric power by a generator using the rotational force of a turbine having blades. The amount of power generation is proportional to the square of the rotation radius of the wing and proportional to the cube of the current velocity of the ocean current. When the ocean current power generation facility is installed in a place where the flow velocity is 1 m to 1.5 m per second, a power generation amount of 0.3 MW to 1 MW can be obtained if the blade length is about 25 m.

なお、特許文献1では、潮汐を利用して発電する潮流発電設備の発明であって、海底に固定された係留アンカーに対して潮流発電装置を係留する技術が開示されている。特許文献2では、液化ガス貯蔵システムの発明であって、アンカーによって係留された浮体構造物が、再液化装置に電力を供給する海流発電又は潮流発電等の再生可能エネルギー供給手段を搭載することが開示されている。   Patent Document 1 discloses an invention of a tidal power generation facility that generates power using tidal power, and discloses a technique for mooring a tidal current power generation device to a mooring anchor fixed to the seabed. In patent document 2, it is invention of a liquefied gas storage system, Comprising: The floating body structure moored by the anchor may mount renewable energy supply means, such as ocean current power generation or tidal current power generation, which supplies electric power to a reliquefaction device. It is disclosed.

特開2005−351201号公報(段落[0013]〜[0015])JP 2005-351001 (paragraphs [0013] to [0015]) 特開2010−265938号公報(段落[0019],[0027])JP 2010-265938 (paragraphs [0019], [0027])

タービン1台当たり1MW等の高発電量を得るためには、流速が毎秒1m〜1.5mといった海流が速い場所に上述したサイズの海流発電装置を設置する必要がある。そのため、海流発電装置を係留するためのアンカー等の係留設備が大規模になり、そのコストも高いという問題がある。また、流速が毎秒1m〜1.5mの海流が流れている場所は、通常、陸から離れているため、海流発電装置で発生した電力を陸まで送電するための送電設備が必要になり、かつ、送電距離が長いため電力損失が大きくなる。
一方、海流によるエネルギー量は膨大であり、海流のエネルギーを有効利用できる海流発電が期待されている。
In order to obtain a high power generation amount such as 1 MW per turbine, it is necessary to install a current generator of the above-described size in a place where the ocean current is fast, such as a flow rate of 1 m to 1.5 m per second. For this reason, there is a problem that mooring facilities such as anchors for mooring the ocean current power generation device become large-scale and the cost thereof is high. Moreover, since the place where the ocean current with a flow velocity of 1 m to 1.5 m flows is usually away from the land, a power transmission facility for transmitting the power generated by the ocean current power generation device to the land is necessary Because of the long transmission distance, power loss increases.
On the other hand, the amount of energy generated by ocean currents is enormous, and ocean current power generation that can effectively use the energy of ocean currents is expected.

本発明は、このような事情に鑑みてなされたものであって、海流の速い場所で高発電量を得ることができ、海流発電装置を係留するために新設する係留設備の規模や、海流発電装置で発生した電力の送電設備の規模を低減することが可能な海流発電設備及び海流発電設備の係留方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of obtaining a high power generation amount at a place where the ocean current is fast, and the scale of a mooring facility newly installed for mooring the ocean current power generator, ocean current power generation, and the like. An object of the present invention is to provide an ocean current power generation facility and a method for mooring an ocean current power generation facility capable of reducing the scale of a power transmission facility for power generated by the apparatus.

そこで、発明者らは、沖合に設置されている石油や天然ガス生産用プラットフォームが海底に対して安定的に固定又は係留されていることや、プラットフォームに生産設備等の電力負荷が存在することに着目し、上記課題を解決することが可能となった。   Therefore, the inventors have confirmed that the offshore oil and natural gas production platform is stably fixed or moored to the seabed, and that the platform has a power load such as production equipment. It has become possible to solve the above problems with attention.

上記課題を解決するために、本発明の海流発電設備及び海流発電設備の係留方法は以下の手段を採用する。
すなわち、本発明に係る海流発電設備は、海流によって回転する翼と、前記翼の回転力によって発電する発電機とを有し、海中に浮遊して設置される海流発電部と、一端が前記海流発電部に接続され、他端が海底に対して固定又は係留された石油又は天然ガス生産用プラットフォームに接続される係留ワイヤとを備え、前記係留ワイヤの他端は、複数の前記プラットフォームに接続されている。
In order to solve the above problems, the ocean current power generation facility and the ocean current power generation facility mooring method of the present invention employ the following means.
That is, the ocean current power generation facility according to the present invention has a wing that rotates by ocean current and a generator that generates electricity by the rotational force of the wing, the ocean current power generation unit that is installed floating in the sea, and one end of the ocean current generator. A mooring wire connected to an oil or natural gas production platform, the other end of which is fixed or moored to the seabed, and the other end of the mooring wire is connected to the plurality of platforms. Tei Ru.

この構成によれば、海流発電部は、海中に設置されて、翼が海流によって回転することで、発電機が翼の回転力によって発電する。海流発電部は、係留ワイヤに接続されており、かつ、係留ワイヤが、海底に対して固定又は係留された石油又は天然ガス生産用プラットフォームに接続されていることから、海流発電部は、プラットフォームに対して固定される。したがって、海流発電部を係留するためのアンカー等を別途設置することなく、海流発電部を海底に対して固定できる。また、掘削が完了した既設のプラットフォームは撤去が求められているところ、海流発電部の係留に転用することで、プラットフォームを撤去せずに将来にわたって有効利用でき、撤去に伴う費用負担や海洋環境への影響を低減できる。さらに、プラットフォームに電力負荷がある場合、海流発電部で発電した電力をプラットフォームで消費できるため、送電距離を短くでき、設置費用や電力損失を減らすことが可能となる。   According to this configuration, the ocean current power generation unit is installed in the sea, and the power is generated by the rotating force of the wings when the wings are rotated by the ocean currents. The ocean current power generation unit is connected to the mooring wire, and the mooring wire is connected to a platform for oil or natural gas production that is fixed or moored to the seabed, so the ocean current power generation unit is connected to the platform. It is fixed against. Therefore, the ocean current power generation unit can be fixed to the sea floor without separately installing an anchor or the like for mooring the ocean current power generation unit. In addition, the existing platform that has been excavated is required to be removed. By diverting it to the ocean current power generation unit, it can be used effectively in the future without removing the platform. Can reduce the effects of Furthermore, when the platform has a power load, the power generated by the ocean current power generation unit can be consumed by the platform, so the transmission distance can be shortened, and the installation cost and power loss can be reduced.

上記発明において、前記係留ワイヤに沿って、前記海流発電部と前記プラットフォームとの間に配線される送電ケーブルを更に備えてもよい。   The said invention WHEREIN: You may further provide the power transmission cable wired between the said ocean current electric power generation part and the said platform along the said mooring wire.

この構成によれば、送電ケーブルを効率良く配線でき、かつ、海流発電部で発電した電力を海流発電部からプラットフォームに送電できる。   According to this configuration, the power transmission cable can be efficiently wired, and the power generated by the ocean current power generation unit can be transmitted from the ocean current power generation unit to the platform.

また、本発明に係る海流発電設備の係留方法は、海流によって回転する翼と、前記翼の回転力によって発電する発電機とを有する海流発電部を海中に設置するステップと、係留ワイヤの一端を前記海流発電部に接続し、前記係留ワイヤの他端を海底に対して固定又は係留された石油又は天然ガス生産用プラットフォームに接続するステップとを有し、前記接続するステップにおいて、前記係留ワイヤの他端を、複数の前記プラットフォームに接続する。 In addition, the mooring method of the ocean current power generation facility according to the present invention includes a step of installing an ocean current power generation unit having a wing rotating by the ocean current and a generator generating electric power by the rotational force of the wing, and one end of the mooring wire. connected to the marine current power unit, the other end of the mooring wires possess and connecting to the fixed or moored oil or natural gas production platform with respect to the seabed, in the step of connecting, the anchoring wire The other end is connected to a plurality of the platforms .

本発明によれば、海流発電装置が係留ワイヤによって石油又は天然ガス生産用プラットフォームに対して固定されることから、海流発電装置を係留するために新設する係留設備の規模や、海流発電装置で発生した電力の送電設備の規模を低減することができる。そして、海流の速い場所でもプラットフォームを用いて確実に海流発電装置を係留できることから、海流の速い場所で高発電量を得ることができる。   According to the present invention, since the ocean current power generation device is fixed to the oil or natural gas production platform by the mooring wire, the scale of the mooring facility newly installed for mooring the ocean current power generation device or the ocean current power generation device The scale of the power transmission facility can be reduced. And since the ocean current power generation device can be securely moored using the platform even in a place where the ocean current is fast, a high power generation amount can be obtained in a place where the ocean current is fast.

本発明の一実施形態に係る海流発電設備の側面図である。It is a side view of the ocean current power generation equipment concerning one embodiment of the present invention. 本発明の一実施形態に係る海流発電設備の平面図である。It is a top view of ocean current power generation equipment concerning one embodiment of the present invention. 本発明の一実施形態の変形例に係る海流発電設備の平面図である。It is a top view of the ocean current power generation equipment which concerns on the modification of one Embodiment of this invention.

以下に、本発明の一実施形態に係る海流発電設備について、図面を参照して説明する。
本発明の一実施形態に係る海流発電設備1は、図1及び図2に示すように、海流発電装置2と、係留ワイヤ3などを備える。海流発電装置2は、海中の所定の位置に浮遊して設置され、海流のエネルギーを利用して電力を発生させる。海流は、通常、同じ位置でほぼ一定の速さ、一定の向きで流れており、例えば、日本近海では黒潮が知られている。
Hereinafter, an ocean current power generation facility according to an embodiment of the present invention will be described with reference to the drawings.
An ocean current power generation facility 1 according to an embodiment of the present invention includes an ocean current power generation device 2, a mooring wire 3, and the like as shown in FIGS. The ocean current power generation device 2 is installed floating at a predetermined position in the sea, and generates electric power using the energy of the ocean current. The ocean current usually flows at the same position at a substantially constant speed and in a certain direction. For example, the Kuroshio Current is known in the sea near Japan.

海流発電装置2は、例えば図1に示すように、係留ワイヤ3の一端に接続されて、かつ、係留ワイヤ3の他端が、海底20に対して固定された石油又は天然ガス生産用のプラットフォーム10に接続されている。したがって、海流発電装置2は、海底20に対して固定されたプラットフォーム10に対して係留される。   For example, as shown in FIG. 1, the ocean current power generation apparatus 2 is connected to one end of a mooring wire 3, and the other end of the mooring wire 3 is fixed to the seabed 20. 10 is connected. Therefore, the ocean current power generation apparatus 2 is moored with respect to the platform 10 fixed to the seabed 20.

ここで、プラットフォーム10は、海底から石油又は天然ガスを掘削し、採油・生産するために設置される設備である。プラットフォーム10の上部には生産設備11が設けられ、生産設備11と海底20との間に油井管12が設置される。   Here, the platform 10 is a facility that is installed for excavating oil or natural gas from the seabed to extract and produce oil. A production facility 11 is provided above the platform 10, and an oil well pipe 12 is installed between the production facility 11 and the seabed 20.

プラットフォーム10は、海底20に対してコンクリート製又は鋼製の脚型構造物によって固定される場合(固定式プラットフォーム)や、脚型構造物も海中に浮遊しており海底20に対してワイヤによって固定される場合(半潜水式プラットフォーム)などがある。本実施形態の係留ワイヤ3は、固定式プラットフォームの脚型構造物及び半潜水式プラットフォームの脚型構造物のいずれの場合にも接続可能である。本実施形態に使用されるプラットフォーム10は、新設されるものでもよいし、既設されたものでもよい。   When the platform 10 is fixed to the seabed 20 by a concrete or steel leg-type structure (fixed platform), the leg-type structure is also floating in the sea and is fixed to the seabed 20 by a wire. (Semi-submersible platform). The mooring wire 3 of the present embodiment can be connected to either the legged structure of the fixed platform or the legged structure of the semi-submersible platform. The platform 10 used in the present embodiment may be newly established or may be existing.

海流発電装置2は、図2に示すように、1台の海流発電装置2において一対のタービンを備える。海流発電装置2のタービンは、複数枚の翼4と、ナセル5などを有する。複数のタービン間に設けられた接続部6は、例えば平板状であって、複数のタービンのナセル5を互いに接続する。   As illustrated in FIG. 2, the ocean current power generation device 2 includes a pair of turbines in one ocean current power generation device 2. The turbine of the ocean current power generation apparatus 2 includes a plurality of blades 4 and a nacelle 5. The connecting portion 6 provided between the plurality of turbines is, for example, a flat plate shape, and connects the nacelles 5 of the plurality of turbines to each other.

翼4は、ナセル5に対して海流の下流側に位置し、ハブに複数枚(例えば2枚又は3枚)設置される。ナセル5は、ハブと接続されたロータ軸、及びロータ軸と接続された発電機を収容する。翼4が海流を受けてロータ軸が回転することによって、発電機が発電する。発電機で発生した電力は、送電ケーブル7によって海流発電装置2から外部に送電される。   The wings 4 are located on the downstream side of the ocean current with respect to the nacelle 5, and a plurality of blades (for example, two or three) are installed on the hub. The nacelle 5 accommodates a rotor shaft connected to the hub and a generator connected to the rotor shaft. The generator generates electric power when the blades 4 receive the ocean current and the rotor shaft rotates. The electric power generated by the generator is transmitted from the ocean current power generation device 2 to the outside through the power transmission cable 7.

1台の海流発電装置2における両側のタービンは、回転方向が互いに反対である。これにより、翼4が回転することによって、海中に浮遊している海流発電装置2が回転することを防止できる。したがって、海流発電装置2には、偶数個のタービンが中心軸に対して対称に設置されればよく、海流発電装置2は、2対以上のタービンを備えてもよい。   The turbines on both sides of one ocean current power generation device 2 are opposite in rotation direction. Thereby, when the wing | blade 4 rotates, it can prevent that the ocean current electric power generating apparatus 2 which is floating in the sea rotates. Therefore, the ocean current power generation apparatus 2 may be provided with an even number of turbines symmetrically with respect to the central axis, and the ocean current power generation apparatus 2 may include two or more pairs of turbines.

海流発電装置2の発電量は、翼4の回転半径の2乗に比例し、海流の流速の3乗に比例する。海流の流速が毎秒1m〜1.5mの場所に海流発電設備2を設置する場合、翼4の翼長が25mほどであれば、0.3MWから1MWの発電量が得られる場合がある。この場合、1対のタービンを備える1台の海流発電装置2は、0.6MWから2MWの発電量が得られる。   The amount of power generated by the ocean current power generation device 2 is proportional to the square of the rotational radius of the blade 4 and proportional to the cube of the current velocity of the ocean current. When the ocean current power generation facility 2 is installed at a location where the flow velocity of the ocean current is 1 m to 1.5 m per second, a power generation amount of 0.3 MW to 1 MW may be obtained if the blade length of the blade 4 is about 25 m. In this case, one ocean current power generation device 2 including a pair of turbines can generate a power generation amount of 0.6 MW to 2 MW.

海流発電装置2は、例えば深さ50〜数百mの位置に浮遊して係留される。
海流発電装置2は、1基のプラットフォーム10につき、係留ワイヤ3によって1台のみ設置されてもよいし、図1及び図2に示すように、複数台が直列に設置されてもよい。隣り合う海流発電装置2の間隔は、例えば数百mから約1kmである。このとき、各海流発電装置2とプラットフォーム10との間に接続される係留ワイヤ3は、1台の海流発電装置2につき1本ずつ設けられる。または、下流側の海流発電装置2の係留ワイヤ3は、プラットフォーム10と接続されるのではなく、上流側の海流発電装置2との間に接続されてもよい。
The ocean current power generation device 2 is suspended and moored, for example, at a depth of 50 to several hundred meters.
Only one ocean current power generation device 2 may be installed per mooring wire 3 per platform 10, or a plurality of ocean current power generation devices 2 may be installed in series as shown in FIGS. 1 and 2. The interval between the adjacent ocean current power generation devices 2 is, for example, several hundred meters to about 1 km. At this time, one mooring wire 3 connected between each ocean current power generation device 2 and the platform 10 is provided for each ocean current power generation device 2. Alternatively, the mooring wire 3 of the downstream current generator 2 may be connected to the upstream current generator 2 instead of being connected to the platform 10.

また、1又は複数台の海流発電装置2が、図3に示すように、複数のプラットフォーム10間に接続された係留ワイヤ3によって設置されてもよい。複数の海流発電装置2を配置するとき、直列方向に配置するだけでなく、図3に示すように、並列して配置してもよい。隣り合う海流発電装置2の間隔は、例えば数百mから約1kmである。実際、プラットフォーム10が数百mから数km間隔で設置されている海域も存在している。さらに、図示しないが、複数の海流発電装置2は、深さ方向に並列して2段以上に配置してもよい。   One or a plurality of ocean current power generation devices 2 may be installed by mooring wires 3 connected between a plurality of platforms 10 as shown in FIG. When arranging a plurality of ocean current power generation devices 2, they may be arranged in parallel as shown in FIG. The interval between the adjacent ocean current power generation devices 2 is, for example, several hundred meters to about 1 km. In fact, there are sea areas where the platforms 10 are installed at intervals of several hundred meters to several kilometers. Further, although not shown, the plurality of ocean current power generation devices 2 may be arranged in two or more stages in parallel in the depth direction.

係留ワイヤ3は、例えば鋼製ワイヤであり、必要とされる強度は、接続される海流発電装置2の大きさや数、海流の速さなどによって決定される。   The mooring wire 3 is, for example, a steel wire, and the required strength is determined by the size and number of the ocean current power generation devices 2 to be connected, the speed of the ocean current, and the like.

送電ケーブル7は、海流発電装置2とプラットフォーム10の生産設備11との間に配線される。送電ケーブル7は、係留ワイヤ3とプラットフォーム10の脚型構造物に沿って配線される。これにより、送電ケーブル7を効率良く配線でき、かつ、海流発電装置2で発電した電力を海流発電装置2からプラットフォーム10の生産設備11等に送電できる。   The power transmission cable 7 is wired between the ocean current power generation device 2 and the production facility 11 of the platform 10. The power transmission cable 7 is routed along the mooring wire 3 and the leg structure of the platform 10. Thereby, the power transmission cable 7 can be efficiently wired, and the power generated by the ocean current power generation device 2 can be transmitted from the ocean current power generation device 2 to the production facility 11 of the platform 10.

本実施形態に係る海流発電設備1は、以下の方法によって、設置される。
まず、係留ワイヤ3の一端を海流発電装置2に接続し、係留ワイヤ3の他端をプラットフォーム10に接続する。そして、係留ワイヤ3によってプラットフォーム10に固定されている海流発電装置2を海上から海中に設置する。その後、海流発電装置2の翼4が海流を受けて回転を開始することによって、海流発電装置2は海中で安定して浮遊状態を保ちながら発電可能となる。
The ocean current power generation facility 1 according to the present embodiment is installed by the following method.
First, one end of the mooring wire 3 is connected to the ocean current power generation device 2, and the other end of the mooring wire 3 is connected to the platform 10. Then, the ocean current power generation device 2 fixed to the platform 10 by the mooring wire 3 is installed from the sea to the sea. Thereafter, the wing 4 of the ocean current power generation device 2 receives the ocean current and starts rotating, so that the ocean current power generation device 2 can generate power while maintaining a stable floating state in the sea.

以上、本実施形態によれば、海流発電装置2を係留するためのアンカー等を別途設置することなく、海流発電装置2を海底に対して固定できる。既設のプラットフォーム10を用いる場合、係留する海流発電装置2の大きさや数によっては、補強等をせずに、そのままの状態で海流発電装置2を係留できる可能性がある。この場合、アンカーが不要になるだけでなく、海流発電装置2を係留するための補強工事も不要である。   As described above, according to the present embodiment, the ocean current power generation device 2 can be fixed to the seabed without separately installing an anchor or the like for mooring the ocean current power generation device 2. When the existing platform 10 is used, depending on the size and number of the ocean current power generation devices 2 to be moored, there is a possibility that the ocean current power generation device 2 can be moored without any reinforcement. In this case, not only the anchor is unnecessary, but also the reinforcement work for mooring the ocean current power generation device 2 is unnecessary.

また、例えば30年等の歳月を経て採油できなくなった既設のプラットフォームは撤去が求められているところ、本実施形態によって、海流発電装置2の係留にプラットフォーム10を転用することで、プラットフォーム10を撤去せずに将来にわたって有効利用できる。そして、プラットフォーム10の撤去に伴う費用負担や、撤去による海洋環境への汚染等の影響を低減できる。   In addition, for example, an existing platform that has become unusable after 30 years has been required to be removed. However, according to the present embodiment, the platform 10 is diverted to mooring the ocean current power generation device 2 by using the platform 10. It can be used effectively in the future without removal. And the influence of the cost burden accompanying removal of the platform 10, the pollution to the marine environment, etc. by removal can be reduced.

さらに、海流発電装置で発電可能であるとしても、海流発電装置が設置されるような流速が毎秒1m〜1.5mの海流が流れている場所は、陸から離れた沖合が一般的であり、海流発電装置で発生した電力を陸まで送電するための送電設備が必要になったり、送電距離が長いため電力損失が大きくなったりする。一方、本実施形態では、プラットフォーム10の生産設備11において、石油又は天然ガスの採油や輸送、圧縮等による電力負荷がある場合、海流発電装置2で発電した電力をプラットフォーム10で消費できるため、送電距離を短くでき、新たな送電設備の設置にかかる費用や送電による電力損失を減らすことが可能となる。   Furthermore, even if it is possible to generate electricity with the ocean current power generation device, the place where the ocean current flowing at a flow rate of 1 m to 1.5 m per second, where the ocean current power generation device is installed, is generally offshore from the land, A power transmission facility for transmitting the power generated by the ocean current power generation apparatus to the land becomes necessary, and the power loss increases due to the long transmission distance. On the other hand, in the present embodiment, in the production facility 11 of the platform 10, when there is a power load due to oil or natural gas extraction, transportation, compression, etc., the power generated by the ocean current power generation device 2 can be consumed by the platform 10. The distance can be shortened, and the cost for installing a new power transmission facility and the power loss due to power transmission can be reduced.

発明者らは、沖合に設置されている石油や天然ガス生産用プラットフォームが海底に対して安定的に固定又は係留されていることや、プラットフォームに生産設備等の電力負荷が存在することに着目した。そして、海流の速い場所で高発電量を得ることができ、海流発電装置を係留するために新設する係留設備の規模や、海流発電装置で発生した電力の送電設備の規模を低減するという課題を解決したものである。   The inventors focused on the fact that the offshore oil and natural gas production platform is stably fixed or moored to the seabed and that the platform has a power load such as production equipment. . And the problem of reducing the scale of the mooring equipment newly installed to moor the ocean current power generator and the scale of the power transmission equipment generated by the ocean current power generator can be obtained at a place where the ocean current is fast. It has been solved.

石油又は天然ガス生産用のプラットフォームは、世界中で数千基存在し、北海、メキシコ湾、オーストラリア北西部沖、ブラジル沖、西アフリカ沖、ノルウェイ沖などでは特に多数のプラットフォームが存在する。このような領域の中において、海流発電の条件に合う海流が存在すると、本実施形態を利用することによって高発電量を得ることができる。海流によるエネルギー量は膨大であり、海流のエネルギーによる海流発電の有効利用を促進できる。   There are thousands of platforms for oil or natural gas production around the world, with many platforms in particular, especially in the North Sea, Gulf of Mexico, off the northwestern Australia, off Brazil, off West Africa, off Norway. In such a region, if there is an ocean current that meets the conditions of ocean current power generation, a high power generation amount can be obtained by using this embodiment. The amount of energy generated by ocean currents is enormous, and the effective use of ocean current power generation using ocean current energy can be promoted.

なお、プラットフォーム10が海の潮汐によって潮の流れが変化する位置にある場合、一定方向の海流によって発電させる狭義の海流発電装置を係留させるのではなく、潮流(潮汐)発電装置を係留ワイヤ4によって係留させてもよい。なお、本発明の海流発電設備は、一定方向の海流によって発電させる狭義の海流発電装置を用いた設備と、潮流(潮汐)発電装置を用いた設備の両者を含むものとする。   In addition, when the platform 10 is in a position where the tide flow changes due to the ocean tide, the ocean current power generation device in a narrow sense that generates electricity by the current in a certain direction is not moored, but the tidal current (tide) power generation device is connected by the mooring wire 4. May be moored. The ocean current power generation facility of the present invention includes both a facility using a narrowly defined ocean current power generation device that generates power by a current in a certain direction and a facility using a tidal current (tide) power generation device.

また、上記実施形態では、海流発電装置2で発電した電力をプラットフォーム10で消費する例について説明したが、本発明はこの例に限定されない。すなわち、海流発電装置2で発電した電力は、プラットフォーム10で利用されるだけでなく、陸にも送電されて陸上で利用されてもよい。   Moreover, although the said embodiment demonstrated the example which consumes the electric power generated with the ocean current power generator 2 with the platform 10, this invention is not limited to this example. That is, the electric power generated by the ocean current power generation device 2 may be transmitted not only to the platform 10 but also to land and used on land.

1 海流発電設備
2 海流発電装置(海流発電部)
3 係留ワイヤ
4 翼
5 ナセル
6 接続部
7 送電ケーブル
10 プラットフォーム
11 生産設備
12 油井管
20 海底
1 Ocean Current Power Generation Facility 2 Ocean Current Power Generation Equipment (Ocean Current Power Generation Department)
3 Mooring wire 4 Wing 5 Nacelle 6 Connection 7 Transmission cable 10 Platform 11 Production facility 12 Oil well 20 Submarine

Claims (3)

海流によって回転する翼と、前記翼の回転力によって発電する発電機とを有し、海中に浮遊して設置される海流発電部と、
一端が前記海流発電部に接続され、他端が海底に対して固定又は係留された石油又は天然ガス生産用プラットフォームに接続される係留ワイヤと、
を備え
前記係留ワイヤの他端は、複数の前記プラットフォームに接続されている海流発電設備。
An ocean current power generation unit that has a wing that is rotated by an ocean current and a generator that generates electric power by the rotational force of the wing, and is installed floating in the sea;
A mooring wire having one end connected to the ocean current generator and the other end connected to an oil or natural gas production platform fixed or moored to the seabed;
Equipped with a,
The other end of the anchoring wire, ocean current power generation equipment that is connected to a plurality of said platforms.
前記係留ワイヤに沿って、前記海流発電部と前記プラットフォームとの間に配線される送電ケーブルを更に備える請求項1に記載の海流発電設備。   The ocean current power generation facility according to claim 1, further comprising a power transmission cable wired between the ocean current power generation unit and the platform along the mooring wire. 海流によって回転する翼と、前記翼の回転力によって発電する発電機とを有する海流発電部を海中に設置するステップと、
係留ワイヤの一端を前記海流発電部に接続し、前記係留ワイヤの他端を海底に対して固定又は係留された石油又は天然ガス生産用プラットフォームに接続するステップと、
を有し、
前記接続するステップにおいて、前記係留ワイヤの他端を、複数の前記プラットフォームに接続する海流発電設備の係留方法。
Installing an ocean current power generation unit in the sea having a wing that is rotated by an ocean current and a generator that generates electric power by the rotational force of the wing;
Connecting one end of a mooring wire to the ocean current power generation unit, and connecting the other end of the mooring wire to an oil or natural gas production platform fixed or moored to the seabed;
I have a,
In the connecting step, the mooring method of the ocean current power generation facility , wherein the other end of the mooring wire is connected to the plurality of platforms .
JP2013161292A 2013-08-02 2013-08-02 Ocean current power generation facility and mooring method of ocean current power generation facility Active JP6290555B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013161292A JP6290555B2 (en) 2013-08-02 2013-08-02 Ocean current power generation facility and mooring method of ocean current power generation facility
PCT/JP2014/070479 WO2015016378A1 (en) 2013-08-02 2014-08-04 Ocean current power generation facility and method for mooring ocean current power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013161292A JP6290555B2 (en) 2013-08-02 2013-08-02 Ocean current power generation facility and mooring method of ocean current power generation facility

Publications (2)

Publication Number Publication Date
JP2015031204A JP2015031204A (en) 2015-02-16
JP6290555B2 true JP6290555B2 (en) 2018-03-07

Family

ID=52431897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013161292A Active JP6290555B2 (en) 2013-08-02 2013-08-02 Ocean current power generation facility and mooring method of ocean current power generation facility

Country Status (2)

Country Link
JP (1) JP6290555B2 (en)
WO (1) WO2015016378A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO342606B1 (en) * 2016-04-26 2018-06-18 Teknoplan As wave power plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323669U (en) * 1989-07-17 1991-03-12
EP2086830B1 (en) * 2006-10-20 2017-05-31 Ocean Renewable Power Company, LLC Submersible turbine-generator unit for ocean and tidal currents
US7728454B1 (en) * 2008-11-20 2010-06-01 Anderson Jr Winfield Scott Tapered helical auger turbine to convert hydrokinetic energy into electrical energy
JP2013019387A (en) * 2011-07-13 2013-01-31 Minoru Yoshida Water current power generation system

Also Published As

Publication number Publication date
JP2015031204A (en) 2015-02-16
WO2015016378A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
EP2469257B1 (en) A hydroelectric turbine testing method
Coiro et al. Development, deployment and experimental test on the novel tethered system GEM for tidal current energy exploitation
AU2011347182A1 (en) A hydroelectric turbine testing method
JP5905984B1 (en) Underwater installation type water current power generation system
US20110254271A1 (en) Tidal Turbine System
Zupone et al. Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison
US20100123316A1 (en) Power generator barge
US9784236B2 (en) Flexible water turbine
KR20150033956A (en) marine structure equipped with electric generation system using natural energy
US11549480B2 (en) Floating drum turbine for electricity generation
JP6290555B2 (en) Ocean current power generation facility and mooring method of ocean current power generation facility
JP2019515193A (en) Tidal generator
KR20110107885A (en) Generator of the water propeller in water flow
US20100001528A1 (en) Underwater generator
EP2896820B1 (en) Submersible power generator
KR101850900B1 (en) Buoyant And Mooring Current Power Generating Device
JP2015200233A (en) power generator
US20120112462A1 (en) Wave Energy Converter
KR100849673B1 (en) Caisson for double-current tidal stream device
KR101302672B1 (en) Wind power generating device using asending flow of cavity formed by buildings
Barbarelli et al. Engineering Design Study on an Innovative Hydrokinetic Turbine with on Shore Foundation
Coiro Development of innovative tidal current energy converters: from research to deployment
Shimizu et al. Development and Demonstration test for Floating Type Ocean Current Turbine System conducted in KUROSHIO CURRENT
Coiro et al. Design, towing tank test and deployment of full scale GEM, a novel tethered system for harnessing tidal energy
JP7159888B2 (en) floating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6290555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350