JP6288321B2 - High strength hot rolled steel sheet and method for producing the same - Google Patents

High strength hot rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP6288321B2
JP6288321B2 JP2017009880A JP2017009880A JP6288321B2 JP 6288321 B2 JP6288321 B2 JP 6288321B2 JP 2017009880 A JP2017009880 A JP 2017009880A JP 2017009880 A JP2017009880 A JP 2017009880A JP 6288321 B2 JP6288321 B2 JP 6288321B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
rolled steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017009880A
Other languages
Japanese (ja)
Other versions
JP2017106121A (en
Inventor
田中 孝明
孝明 田中
太郎 木津
太郎 木津
力 上
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017106121A publication Critical patent/JP2017106121A/en
Application granted granted Critical
Publication of JP6288321B2 publication Critical patent/JP6288321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Description

本発明は、自動車をはじめとする輸送機械類の部品、建築用鋼材などの構造用鋼材に適した高強度熱延鋼板であって、引張強さ(TS):590MPa以上の高強度を有し、伸びフランジ性に優れると共に、疲労特性に優れた高強度熱延鋼板およびその製造方法に関する。   The present invention is a high-strength hot-rolled steel sheet suitable for structural steel materials such as parts for transportation machinery such as automobiles and construction steel, and has a high strength of tensile strength (TS): 590 MPa or more. The present invention relates to a high-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and a method for producing the same.

地球環境保全の観点から、CO2排出量を削減する目的で、自動車車体の強度を維持しつつその軽量化を図り自動車の燃費を改善することが、自動車業界において常に重要な課題とされている。自動車車体の強度を維持しつつ車体の軽量化を図るうえでは、自動車部品用素材となる鋼板の高強度化により、鋼板を薄肉化することが有効である。例えば、肉厚の鋼板を使用することの多い自動車の足回り部品用鋼板の薄肉・高強度化は、自動車車体の大幅な軽量化が期待できる。 From the viewpoint of global environmental conservation, for the purpose of reducing CO 2 emissions, maintaining the strength of the car body while reducing the weight and improving the fuel efficiency of the car has always been an important issue in the automobile industry. . In order to reduce the weight of the vehicle body while maintaining the strength of the automobile body, it is effective to reduce the thickness of the steel sheet by increasing the strength of the steel sheet used as a material for automobile parts. For example, the reduction in thickness and strength of steel plates for undercarriage parts of automobiles, which often use thick steel plates, can be expected to significantly reduce the weight of automobile bodies.

一方、鋼板を素材とする自動車部品、例えばロアアームなどの足回り部品は、バーリング加工等によって成型されるため、自動車部品用鋼板には優れた伸びフランジ性が要求される。また、自動車部品には、自動車の走行時の振動により繰り返し曲げ応力が発生し続けるため、その素材となる自動車部品用鋼板は優れた疲労特性を有することも必要とされる。以上の理由により、特にロアアームなどの自動車足回り部品に適用される鋼板としては、伸びフランジ性に優れると共に、疲労特性に優れた高強度鋼板が望まれている。   On the other hand, since automobile parts made of steel plates, for example, suspension parts such as lower arms, are formed by burring or the like, excellent stretch flangeability is required for steel sheets for automobile parts. In addition, since bending stress continues to be generated in automobile parts due to vibration during running of the automobile, the steel sheet for automobile parts used as the material is also required to have excellent fatigue characteristics. For these reasons, high strength steel sheets that are excellent in stretch flangeability and fatigue properties are desired as steel sheets that are particularly applied to automobile underbody parts such as lower arms.

ここで、強度と加工性を兼ね備えた高強度熱延鋼板に関しては、数多くの研究が為され、各種技術が提案されている。中でも、金属組織を実質的にフェライト単相とし、フェライト相の粒内に微細炭化物を析出させることにより鋼板を高強度化する技術は、高強度でありながら優れた伸びフランジ性を両立させるために非常に有用な技術であることが知られている。   Here, many studies have been conducted on high strength hot rolled steel sheets having both strength and workability, and various techniques have been proposed. Above all, the technology to increase the strength of the steel sheet by making the metal structure substantially ferrite single phase and precipitating fine carbides in the ferrite phase grains is to achieve both excellent strength and excellent flange flangeability. It is known to be a very useful technique.

例えば、特許文献1には、高強度熱延鋼板に関し、鋼板組成を質量%でC:0.005%以上0.050%以下、Si:0.2%以下、Mn:0.8%以下、P:0.025%以下、S:0.01%以下、N:0.01%以下、Al:0.06%以下、Ti:0.05%以上0.10%以下を、S、N、およびTiがTi≧0.04+(N/14×48+S/32×48)(S、N、Ti:各元素の含有量(質量%))を満足するように含有し、残部がFeおよび不可避的不純物からなる組成とし、鋼板組織をフェライト相の組織全体に対する面積率が95%以上であるマトリックスと、Tiを含み平均粒子径が10nm未満である微細炭化物が分散析出し、該微細炭化物の組織全体に対する体積比が0.0007以上である組織とする技術が提案されている。そして、特許文献1には、鋼板組織を転位密度が低い加工性に優れたフェライト単相組織とし、更に、微細炭化物を分散析出させて析出強化することにより、伸びフランジ性を維持したまま鋼板を高強度化し、引張強さが590MPa以上であり且つ加工性に優れた高張力熱延鋼板が得られると記載されている。   For example, Patent Document 1 relates to a high-strength hot-rolled steel sheet, and the composition of the steel sheet in mass% is C: 0.005% to 0.050%, Si: 0.2% or less, Mn: 0.8% or less, P: 0.025% or less, S: 0.01% or less, N: 0.01% or less, Al: 0.06% or less, Ti: 0.05% or more and 0.10% or less, S, N, and Ti are Ti ≧ 0.04 + (N / 14 × 48 + S / 32 × 48) (S , N, Ti: The content of each element (mass%) is included so that the balance is composed of Fe and inevitable impurities, and the steel sheet structure has an area ratio of 95% or more with respect to the entire structure of the ferrite phase. And a matrix in which fine carbides containing Ti and having an average particle diameter of less than 10 nm are dispersed and precipitated, and a structure in which the volume ratio of the fine carbides to the whole structure is 0.0007 or more has been proposed. In Patent Document 1, the steel sheet structure is a ferrite single-phase structure with excellent dislocation density and excellent workability. Further, by dispersing and precipitating fine carbides, the steel sheet is maintained while maintaining stretch flangeability. It is described that a high-tensile hot-rolled steel sheet having high strength, tensile strength of 590 MPa or more and excellent workability can be obtained.

特開2012−26034号公報JP 2012-26034 A

しかしながら、特許文献1に提案された技術では、熱延鋼板の疲労特性について検討されていない。それゆえ、特許文献1に提案された技術によると、伸びフランジ性に優れた高強度鋼板は得られるものの、疲労特性をも兼ね備えた高強度鋼板が必ず得られるとは限らない。   However, in the technique proposed in Patent Document 1, the fatigue characteristics of the hot-rolled steel sheet are not studied. Therefore, according to the technique proposed in Patent Document 1, although a high-strength steel sheet excellent in stretch flangeability can be obtained, a high-strength steel sheet having fatigue characteristics is not always obtained.

本発明は、かかる従来技術の問題点を有利に解決し、自動車部品用の素材として好適な、引張強さ(TS):590MPa以上の高強度を有すると共に伸びフランジ性に優れ、更に疲労特性にも優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。   The present invention advantageously solves the problems of the prior art and is suitable as a material for automobile parts. It has a high tensile strength (TS) of 590 MPa or more, has excellent stretch flangeability, and further has fatigue characteristics. Another object of the present invention is to provide an excellent high-strength hot-rolled steel sheet and a method for producing the same.

上記課題を解決すべく、本発明者らは高加工性を維持しつつ鋼板を高強度化し、更に疲労特性を大幅に向上させる手法について鋭意検討した。
まず、本発明者らは、加工性が良好なフェライト相を主相とする熱延鋼板に着目し、優れた加工性、特に伸びフランジ性を保ちつつ、熱延鋼板を高強度化する手法について検討した。フェライト相を主相とする熱延鋼板を高強度化する手法の一つとしては、例えばマルテンサイトなどの変態組織を利用する手法が挙げられる。しかし、フェライト−マルテンサイト複合組織鋼のように鋼板組織に軟質相と硬質相を含む場合、軟質相と硬質相の界面でボイドが発生し易いため、鋼板の伸びフランジ性は大幅に劣化する。高伸びフランジ性を維持しつつ、鋼板を高強度化する手法としては、金属組織内を均一な強度とすることが好ましい。
In order to solve the above-mentioned problems, the present inventors diligently studied a technique for increasing the strength of a steel sheet while maintaining high workability and further greatly improving fatigue characteristics.
First, the inventors focused on hot-rolled steel sheets that have a ferrite phase with good workability as the main phase, and a technique for increasing the strength of hot-rolled steel sheets while maintaining excellent workability, particularly stretch flangeability. investigated. One technique for increasing the strength of a hot-rolled steel sheet having a ferrite phase as a main phase is, for example, a technique using a transformation structure such as martensite. However, when the steel sheet structure includes a soft phase and a hard phase as in the ferrite-martensite composite structure steel, voids are easily generated at the interface between the soft phase and the hard phase, and the stretch flangeability of the steel sheet is greatly deteriorated. As a technique for increasing the strength of a steel sheet while maintaining high stretch flangeability, it is preferable that the metal structure has a uniform strength.

以上の理由により、本発明者らは、熱延鋼板をフェライト単相組織とし、金属組織内を均一に高強度化する手法によって、鋼板の高強度化を図ることとした。金属組織内を均一に高強度化する手法としては、例えば、フェライト単相鋼板をSiおよびMnの固溶強化により高強度化する手法や、金属組織を実質的にフェライト単相とし、フェライト相の粒内に微細炭化物を析出させる手法が有効である。   For the above reasons, the present inventors decided to increase the strength of the steel sheet by a method in which the hot-rolled steel sheet has a ferrite single-phase structure and the metal structure is uniformly strengthened. Examples of a technique for uniformly increasing the strength of the metal structure include, for example, a technique for increasing the strength of a ferrite single-phase steel sheet by solid solution strengthening of Si and Mn, A technique for precipitating fine carbides in the grains is effective.

次に、本発明者らは、鋼板の疲労特性を向上させる手法について検討した。一般に、疲労特性を向上させるためには、鋼板の降伏強さを上昇させることが有効であると云われている。しかしながら、必ずしも降伏強さのみによって鋼板の疲労特性が決定されるわけではない。そこで、本発明者らは、熱延鋼板の疲労特性に影響を及ぼす因子を特定すべく、種々のフェライト単相組織を有する熱延鋼板について平面曲げ疲労試験を実施し、疲労破面を観察した。その結果、熱延鋼板の疲労特性の劣化は、鋼板表面近傍の硬質な内部酸化層によるところが大きいことを突き止めた。そして、フェライト単相組織を有する熱延鋼板の場合には、繰り返し曲げ負荷が与えられた時に、鋼板表面近傍の硬質な内部酸化層と比較的軟質なフェライトの界面に応力集中が起こるために、内部酸化層を起点として亀裂が発生し、疲労破壊が進展していることを知見するに至った。   Next, the present inventors examined a technique for improving the fatigue characteristics of the steel sheet. In general, it is said that increasing the yield strength of a steel sheet is effective for improving fatigue properties. However, the fatigue properties of the steel sheet are not necessarily determined only by the yield strength. Therefore, the present inventors conducted a plane bending fatigue test on hot-rolled steel sheets having various ferrite single-phase structures and observed fatigue fracture surfaces in order to identify factors that affect the fatigue properties of hot-rolled steel sheets. . As a result, it was found that the deterioration of the fatigue characteristics of the hot-rolled steel sheet was largely due to the hard internal oxide layer near the steel sheet surface. And in the case of a hot rolled steel sheet having a ferrite single phase structure, when repeated bending load is applied, stress concentration occurs at the interface between a hard internal oxide layer near the steel sheet surface and a relatively soft ferrite, We have come to know that cracks have occurred starting from the internal oxide layer and fatigue fracture has progressed.

上記の知見から、内部酸化層の形成を抑制しつつ降伏強さを上昇させることで、疲労特性に優れた熱延鋼板が得られるものと推測される。そこで、本発明者らは、フェライト単相組織の熱延鋼板について、金属組織内を均一に高強度化するとともに、内部酸化層の形成を抑制し、更に降伏強さを上昇させる手法について検討した。   From the above findings, it is presumed that a hot-rolled steel sheet having excellent fatigue characteristics can be obtained by increasing the yield strength while suppressing the formation of the internal oxide layer. Therefore, the present inventors examined a method for uniformly increasing the strength of the metal structure of the hot-rolled steel sheet having a single phase ferrite structure, suppressing the formation of an internal oxide layer, and further increasing the yield strength. .

内部酸化層は、主としてSiやMnの酸化物で形成されている。したがって、内部酸化層を抑制するためには、鋼板のSi含有量とMn含有量を減じることが有効となる。しかしながら、SiおよびMnの固溶強化によって鋼板を高強度化する場合には、大量のSiおよびMnを添加する必要があり、厚い内部酸化層が不可避的に発生する。このため、SiおよびMnの固溶強化によって鋼板を高強度化する手法では、疲労特性を向上させることが困難である。   The internal oxide layer is mainly formed of Si or Mn oxide. Therefore, to suppress the internal oxide layer, it is effective to reduce the Si content and the Mn content of the steel sheet. However, when increasing the strength of a steel sheet by solid solution strengthening of Si and Mn, it is necessary to add a large amount of Si and Mn, and a thick internal oxide layer is inevitably generated. For this reason, it is difficult to improve the fatigue characteristics by the technique of increasing the strength of the steel sheet by solid solution strengthening of Si and Mn.

そこで、本発明者らはTiの析出強化を活用すると共に、Si、Mnなどの含有量を制限することで内部酸化層を抑制し、熱延鋼板の高強度化と疲労特性を両立することに思い至った。しかし、熱延鋼板の内部酸化層を抑制する手法について検討を進めた結果、単にSi、Mnなどの含有量を制限しただけでは、内部酸化層を十分に抑制できないことが判明した。   Therefore, the present inventors use Ti precipitation strengthening and limit the content of Si, Mn, etc. to suppress the internal oxide layer, and to achieve both high strength and fatigue properties of the hot-rolled steel sheet. I thought. However, as a result of studying a method for suppressing the internal oxide layer of the hot-rolled steel sheet, it has been found that the internal oxide layer cannot be sufficiently suppressed only by limiting the content of Si, Mn and the like.

このような問題に対し、本発明者らは、Si、Mnなどの含有量を制限することに加えて、熱延鋼板を製造する際の熱間圧延条件について検討し、内部酸化層の発生を更に抑制することを試みた。その結果、Si含有量を0.40%以下とし、Mn含有量を1.20%以下とした場合には、熱間圧延工程において、酸化スケールを適切に除去し、更に酸化スケールの発生を抑制する手段を講じることで、SiおよびMnの酸化物の鋼板表面付近への析出を0.15g/m2以下にまで抑制できるという知見を得た。そして、鋼板表層部の内部酸化量を0.15g/m2以下に抑制することで、フェライト単相組織を有する熱延鋼板の疲労特性が大幅に向上することが明らかになった。 In response to such problems, the present inventors examined the hot rolling conditions when producing hot-rolled steel sheets in addition to limiting the content of Si, Mn, etc., and generated internal oxide layers. I tried to suppress it further. As a result, when the Si content is 0.40% or less and the Mn content is 1.20% or less, measures are taken to appropriately remove the oxide scale and further suppress the generation of oxide scale in the hot rolling process. As a result, it was found that precipitation of Si and Mn oxide near the steel sheet surface can be suppressed to 0.15 g / m 2 or less. And it became clear that the fatigue characteristics of the hot-rolled steel sheet having a ferrite single-phase structure are greatly improved by suppressing the internal oxidation amount of the steel sheet surface layer to 0.15 g / m 2 or less.

また、本発明者らは、上記の如く内部酸化層の抑制を達成しつつ、熱延鋼板の降伏強さを上昇させることで、疲労特性の更なる改善を試みた。その結果、鋼板にTiを含む微細炭化物を析出させると共に、鋼中に所定量の固溶Cを残存させることにより、熱延鋼板の降伏強さが飛躍的に上昇することを見出した。更に、降伏強さが飛躍的に上昇する理由について検討した結果、Tiを含む微細炭化物により移動を制限された転位に対し、固溶Cがコットレル固着することにより、転位運動が更に大きく阻害され、降伏強さが大幅に向上することが明らかになった。   In addition, the inventors tried to further improve the fatigue characteristics by increasing the yield strength of the hot-rolled steel sheet while achieving suppression of the internal oxide layer as described above. As a result, it was found that the yield strength of the hot-rolled steel sheet is dramatically increased by precipitating fine carbides containing Ti on the steel sheet and leaving a predetermined amount of solute C in the steel. Furthermore, as a result of studying the reason why the yield strength increases dramatically, dislocation motion is further greatly inhibited by solid solution C sticking to Cottrel, while dislocation is restricted by the fine carbide containing Ti. It was revealed that the yield strength was greatly improved.

本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] 質量%で、C:0.020%超0.060%以下、Si:0.40%以下、Mn:0.50%超1.20%以下、P:0.030%以下、S:0.030%以下、Al:0.10%以下、N:0.0100%以下、Ti:0.050%以上0.110%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライト相の面積率が95%以上であり、鋼中の固溶C量が0.010%以上であり、前記フェライト相の結晶粒内にTiを含む炭化物が微細析出し、該炭化物の平均粒子径が8nm未満である組織を有し、鋼板表層部の内部酸化量が0.15g/m2以下であり、引張強さが590MPa以上であることを特徴とする高強度熱延鋼板。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: more than 0.020% and less than 0.060%, Si: less than 0.40%, Mn: more than 0.50% and less than 1.20%, P: 0.030% and less, S: 0.030% and less, Al: 0.10% and less, N : Contains 0.0100% or less, Ti: 0.050% or more and 0.110% or less, the balance is composed of Fe and inevitable impurities, the area ratio of ferrite phase is 95% or more, and the amount of solute C in steel 0.010% or more, carbide containing Ti is finely precipitated in the ferrite phase crystal grains, the carbide has an average particle size of less than 8 nm, the internal oxidation amount of the steel sheet surface layer portion is 0.15 g / m 2 or less, high-strength hot-rolled steel sheet tensile strength is equal to or not less than 590 MPa.

[2] 前記[1]において、前記組成に加えて更に、質量%で、REM、Zr、V、Nb、As、Cu、Ni、Sn、Pb、Ta、W、Mo、Cr、Sb、Mg、Ca、Co、Se、Zn、Csのうちから選ばれた1種以上を合計で1.0%以下含有することを特徴とする高強度熱延鋼板。 [2] In the above [1], in addition to the composition, in addition to mass, REM, Zr, V, Nb, As, Cu, Ni, Sn, Pb, Ta, W, Mo, Cr, Sb, Mg, A high-strength hot-rolled steel sheet characterized by containing 1.0% or less in total of one or more selected from Ca, Co, Se, Zn, and Cs.

[3] 前記[1]または[2]において、鋼板表面にめっき層を有することを特徴とする高強度熱延鋼板。 [3] The high-strength hot-rolled steel sheet according to [1] or [2], wherein the steel sheet surface has a plating layer.

[4] 前記[1]または[2]に記載の組成からなる鋼素材を、オーステナイト単相域に加熱し、熱間圧延を施した後、加速冷却し、巻き取り、該巻き取り後の冷却を施し、熱延鋼板とするにあたり、
前記熱間圧延では、
仕上げ圧延前に衝突圧力が0.3MPa以上の高圧水によりデスケーリングし、
該デスケーリング後3s以内に前記仕上げ圧延を開始し、
前記仕上げ圧延のいずれか1つ以上のスタンド間で鋼板表面に冷却水を噴射するスタンド間冷却を施し、
仕上げ圧延温度を850℃以上1100℃以下とし、
前記加速冷却は、
前記スタンド間冷却後5s以内に開始し、
前記加速冷却の830℃から720℃までの温度域の平均冷却速度を30℃/s以上とし、
前記巻き取りでは、巻取り温度を520℃以上720℃以下とし、
前記巻き取り後の冷却では、500℃から200℃までの温度域の平均冷却速度を10℃/h以上とする高強度熱延鋼板の製造方法。
[4] The steel material having the composition described in [1] or [2] is heated to an austenite single-phase region, subjected to hot rolling, accelerated cooling, winding, and cooling after the winding. To make a hot-rolled steel sheet,
In the hot rolling,
Descale with high-pressure water with impact pressure of 0.3 MPa or more before finish rolling,
The finish rolling is started within 3 s after the descaling,
The cooling between the stands which injects cooling water on the steel plate surface between any one or more stands of the finish rolling is performed,
The finish rolling temperature is 850 ° C or higher and 1100 ° C or lower,
The accelerated cooling is
Start within 5s after cooling between the stands,
The average cooling rate in the temperature range from 830 ° C. to 720 ° C. of the accelerated cooling is 30 ° C./s or more,
In the winding, the winding temperature is 520 ° C. or more and 720 ° C. or less,
The cooling after winding is a method for producing a high-strength hot-rolled steel sheet in which the average cooling rate in the temperature range from 500 ° C. to 200 ° C. is 10 ° C./h or more.

本発明によると、自動車をはじめとする輸送機械類の部品、建築用鋼材などの構造用鋼材に適した、引張強さ(TS):590MPa以上の高強度と優れた伸びフランジ性を有し、且つ、疲労特性に優れた高強度熱延鋼板が得られる。また、上記の如く優れた鋼板特性が得られることから、本発明は、高強度熱延鋼板の更なる用途展開を可能とし、産業上格段の効果を奏する。   According to the present invention, tensile strength (TS): suitable for structural steel materials such as automobile and other transportation machinery parts and construction steel materials, has high strength of 590 MPa or more and excellent stretch flangeability, In addition, a high-strength hot-rolled steel sheet having excellent fatigue characteristics can be obtained. Moreover, since the outstanding steel plate characteristic is acquired as mentioned above, this invention enables the further use expansion | deployment of a high intensity | strength hot-rolled steel plate, and has an industrial remarkable effect.

図1は、熱延鋼板の表面近傍における断面を模式的に示す図である。FIG. 1 is a diagram schematically showing a cross section near the surface of a hot-rolled steel sheet. 図2は、熱延鋼板の、内部酸化量および固溶C量と、疲労特性との関係を示す図である。FIG. 2 is a diagram showing the relationship between the amount of internal oxidation and the amount of solute C and the fatigue characteristics of a hot-rolled steel sheet.

以下、本発明について具体的に説明する。
まず、本発明の熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%(mass%)を意味するものとする。
Hereinafter, the present invention will be specifically described.
First, the reason for limiting the component composition of the hot-rolled steel sheet of the present invention will be described. In addition,% showing the following component composition shall mean the mass% (mass%) unless there is particular notice.

C :0.020%超0.060%以下
Cは、鋼板中でTiを含む炭化物を形成し、熱延鋼板を高強度化するうえで必須の元素である。C含有量が0.020%以下であると、鋼板の引張強さを590MPa以上とするに十分な炭化物析出量を得ることができず、590MPa以上の引張強さが得られなくなる。一方、C含有量が0.060%を超えると、Tiを含む炭化物を形成しない余剰Cがセメンタイトとして析出し、鋼板の伸びフランジ性が低下する。したがって、C含有量は0.020%超0.060%以下とする。
C: more than 0.020% and less than 0.060%
C is an essential element for forming a carbide containing Ti in the steel sheet and increasing the strength of the hot-rolled steel sheet. If the C content is 0.020% or less, a carbide precipitation amount sufficient to make the tensile strength of the steel sheet 590 MPa or more cannot be obtained, and a tensile strength of 590 MPa or more cannot be obtained. On the other hand, if the C content exceeds 0.060%, surplus C that does not form Ti-containing carbides precipitates as cementite, and the stretch flangeability of the steel sheet decreases. Therefore, the C content is more than 0.020% and not more than 0.060%.

Si:0.40%以下
Siは、延性(伸び)低下をもたらすことなく鋼板強度を向上させる有効な元素として、通常、高強度鋼板に積極的に含有されている。しかしながら、Siは、熱延鋼板を製造する際、熱間圧延終了後の冷却に続く巻き取り工程の後に、鋼板表面付近に内部酸化層を形成することで、鋼板の疲労特性を劣化させる元素である。したがって、本発明では、巻き取り後にSi酸化物が発生するのを抑制し、上記内部酸化層の形成を抑制する目的で、Si含有量を0.40%以下に限定する。Si含有量は、好ましくは0.30%以下、より好ましくは0.20%以下である。なおSi含有量は不純物レベルまで低減してもよい。
Si: 0.40% or less
Usually, Si is positively contained in a high-strength steel sheet as an effective element for improving the steel sheet strength without reducing ductility (elongation). However, Si is an element that deteriorates the fatigue characteristics of a steel sheet by forming an internal oxide layer near the surface of the steel sheet after the winding process following the cooling after the end of hot rolling when manufacturing a hot-rolled steel sheet. is there. Therefore, in the present invention, the Si content is limited to 0.40% or less for the purpose of suppressing the generation of Si oxide after winding and suppressing the formation of the internal oxide layer. The Si content is preferably 0.30% or less, more preferably 0.20% or less. Note that the Si content may be reduced to the impurity level.

Mn:0.50%超1.20%以下
Mnは、固溶強化元素であり、Siと同様、通常の高強度鋼板には積極的に含有されている。しかしながら、鋼板にMnを積極的に含有させると、Siの場合と同様、巻き取り工程後に、鋼板表面付近に内部酸化層を形成し、鋼板の疲労特性が劣化する。したがって、本発明では、巻き取り後にMn酸化物が発生するのを抑制し、上記内部酸化層の形成を抑制する目的で、Mn含有量を1.20%以下とする。Mn含有量は、好ましくは1.00%以下である。
Mn: more than 0.50% and less than 1.20%
Mn is a solid solution strengthening element and, like Si, is actively contained in ordinary high-strength steel sheets. However, if Mn is actively contained in the steel plate, an internal oxide layer is formed in the vicinity of the steel plate surface after the winding process, as in the case of Si, and the fatigue properties of the steel plate deteriorate. Therefore, in the present invention, the Mn content is 1.20% or less for the purpose of suppressing the generation of Mn oxide after winding and suppressing the formation of the internal oxide layer. The Mn content is preferably 1.00% or less.

一方、Mn含有量が0.50%以下になると、γ→α変態点が高温となり、Tiを含む炭化物の微細化が困難となる。Tiを含む炭化物は熱延鋼板製造工程における仕上げ圧延終了後の冷却、巻き取り過程でγ→α変態と同時に、もしくはフェライト中に時効析出する。ここで、γ→α変態点が高温になると、Tiを含む炭化物が高温域で析出することになるため、炭化物が粗大化してしまう。そして、Tiを含む炭化物を所定のサイズとすることが困難となり、所望の鋼板強度が得られなくなる。したがって、Mn含有量は0.50%超とする。Mn含有量は、好ましくは0.60%以上、より好ましくは0.80%以上である。   On the other hand, when the Mn content is 0.50% or less, the γ → α transformation point becomes high temperature, and it becomes difficult to refine the carbide containing Ti. The carbide containing Ti precipitates at the same time as the γ → α transformation in the cooling and winding process after finish rolling in the hot-rolled steel sheet manufacturing process, or in the ferrite. Here, when the [gamma]-> [alpha] transformation point becomes high temperature, the carbide containing Ti is precipitated in a high temperature region, so that the carbide becomes coarse. And it becomes difficult to make the carbide | carbonized_material containing Ti predetermined size, and desired steel plate intensity | strength will not be obtained. Therefore, the Mn content is more than 0.50%. The Mn content is preferably 0.60% or more, more preferably 0.80% or more.

P :0.030%以下
Pは、粒界に偏析して熱延鋼板の伸びを低下させ、加工時に割れを誘発し、更には耐衝撃性を劣化させる有害な元素である。したがって、P含有量は0.030%以下とする。
P: 0.030% or less
P is a harmful element that segregates at the grain boundary to lower the elongation of the hot-rolled steel sheet, induces cracking during processing, and further degrades the impact resistance. Therefore, the P content is 0.030% or less.

S :0.030%以下
Sは、鋼中にMnSやTiSとして存在する。MnSやTiSは、熱延鋼板の打抜き加工時にボイドの発生を助長し、更には、加工中にもボイドの発生の起点となるため、鋼板の伸びフランジ性を低下させる。したがって、本発明では、S含有量を極力低減することが好ましく、0.030%以下とする。S含有量は、好ましくは0.010%以下である。
S: 0.030% or less
S exists as MnS and TiS in steel. MnS and TiS promote the generation of voids during the punching process of hot-rolled steel sheets, and further serve as a starting point for the generation of voids during processing, thus reducing the stretch flangeability of the steel sheet. Therefore, in the present invention, it is preferable to reduce the S content as much as possible, and it is 0.030% or less. The S content is preferably 0.010% or less.

Al:0.10%以下
Alは、脱酸剤として作用する元素である。このような効果を得るためには、Alを0.01%以上含有することが望ましい。しかし、Al含有量が0.10%を超えると、鋼板中にAl酸化物として残存し、該Al酸化物が凝集粗大化し易くなり、鋼板の伸びフランジ性を劣化させる原因となる。したがって、Al含有量は0.10%以下とする。Al含有量は、好ましくは0.05%以下である。
Al: 0.10% or less
Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is desirable to contain 0.01% or more of Al. However, if the Al content exceeds 0.10%, it remains as an Al oxide in the steel sheet, and the Al oxide tends to agglomerate and become coarse, causing the stretch flangeability of the steel sheet to deteriorate. Therefore, the Al content is 0.10% or less. The Al content is preferably 0.05% or less.

N :0.0100%以下
Nは、鋼中にTiNとして存在するため、N含有量が多量になると、炭化物を形成するTi量がNの存在により低下し、所望の鋼板強度を得ることができなくなる。加えて、TiNは熱延鋼板の打抜き加工時にボイドの発生を助長し、更には、加工中にもボイドの発生の起点となるため、鋼板の伸びフランジ性を低下させる。以上の理由により、本発明ではN含有量を極力低減することが好ましく、0.0100%以下とする。N含有量は、好ましくは0.0060%以下である。
N: 0.0100% or less
Since N exists as TiN in the steel, when the N content becomes large, the Ti content forming carbides decreases due to the presence of N, and the desired steel plate strength cannot be obtained. In addition, TiN promotes the generation of voids during the punching process of hot-rolled steel sheets, and further, since it becomes a starting point for the generation of voids during processing, it reduces the stretch flangeability of the steel sheet. For the above reasons, in the present invention, it is preferable to reduce the N content as much as possible, and it is set to 0.0100% or less. The N content is preferably 0.0060% or less.

Ti:0.050%以上0.110%以下
Tiは、Tiを含む炭化物を形成して鋼板の高強度化を図るうえで必要不可欠な元素である。Ti含有量が0.050%未満では、所望の熱延鋼板強度(引張強さ:590MPa以上)を得ることが困難となる。一方、Ti含有量が0.110%を超えて過剰になると、熱延鋼板を製造する際、巻き取り工程後にTiを含む炭化物が粗大化し易くなり、所望の熱延鋼板強度(引張強さ:590MPa以上)を得ることが困難となる。したがって、Ti含有量は0.050%以上0.110%以下とする。Ti含有量は、好ましくは0.060%以上である。また、Ti含有量は、好ましくは0.100%以下である。
Ti: 0.050% to 0.110%
Ti is an indispensable element for forming a carbide containing Ti to increase the strength of the steel sheet. When the Ti content is less than 0.050%, it is difficult to obtain a desired hot-rolled steel sheet strength (tensile strength: 590 MPa or more). On the other hand, when the Ti content exceeds 0.110% and becomes excessive, when manufacturing a hot-rolled steel sheet, the carbide containing Ti tends to be coarsened after the winding process, and the desired hot-rolled steel sheet strength (tensile strength: 590 MPa or more) ) Is difficult to obtain. Therefore, Ti content shall be 0.050% or more and 0.110% or less. The Ti content is preferably 0.060% or more. Further, the Ti content is preferably 0.100% or less.

なお、上記以外の成分は、Feおよび不可避的不純物である。また、本発明の熱延鋼板は、以上の元素に加えて更に、REM、Zr、V、Nb、As、Cu、Ni、Sn、Pb、Ta、W、Mo、Cr、Sb、Mg、Ca、Co、Se、Zn、Csのうちから選ばれた1種以上を合計で1.0%以下含有してもよい。これらの元素の合計含有量が1.0%以下であれば、熱延鋼板の諸特性に悪影響を及ぼすことはない。   Components other than the above are Fe and inevitable impurities. In addition to the above elements, the hot-rolled steel sheet of the present invention further includes REM, Zr, V, Nb, As, Cu, Ni, Sn, Pb, Ta, W, Mo, Cr, Sb, Mg, Ca, One or more selected from Co, Se, Zn, and Cs may be contained in a total of 1.0% or less. If the total content of these elements is 1.0% or less, the various properties of the hot-rolled steel sheet will not be adversely affected.

次に、本発明の熱延鋼板の組織および内部酸化量の限定理由について説明する。
本発明の熱延鋼板は、上記した組成を有し、更に、フェライト相の面積率が95%以上であり、鋼中の固溶C量が0.010%以上であり、前記フェライト相の結晶粒内にTiを含む炭化物が微細析出し、該炭化物の平均粒子径が8nm未満である組織を有し、鋼板表層部の内部酸化量が0.15g/m2以下である。
Next, the reason for limiting the structure of the hot rolled steel sheet and the amount of internal oxidation of the present invention will be described.
The hot-rolled steel sheet of the present invention has the above-described composition, and further, the area ratio of the ferrite phase is 95% or more, the solid solution C amount in the steel is 0.010% or more, The carbide containing Ti is finely precipitated, the carbide has an average particle diameter of less than 8 nm, and the internal oxidation amount of the steel sheet surface layer portion is 0.15 g / m 2 or less.

フェライト相の面積率:95%以上
本発明においては、熱延鋼板の伸びフランジ性を確保するうえで、フェライト相の形成が必須となる。伸びフランジ性の向上には、熱延鋼板の金属組織をフェライト単相にすることが好ましいが、完全なフェライト単相で無い場合であっても、実質的にフェライト単相、すなわち、金属組織全体に対する面積率で95%以上がフェライト相であれば、上記の効果を十分に発揮する。したがって、本発明においては、熱延鋼板の金属組織を、面積率で95%以上のフェライト相を含有する組織とする。好ましくは97%以上である。
Ferrite phase area ratio: 95% or more In the present invention, the formation of a ferrite phase is essential to ensure stretch flangeability of a hot-rolled steel sheet. In order to improve the stretch flangeability, it is preferable that the metal structure of the hot-rolled steel sheet is a ferrite single phase, but even if it is not a complete ferrite single phase, it is substantially a ferrite single phase, that is, the entire metal structure. If the ferrite phase is 95% or more in terms of the area ratio relative to the above, the above-described effects are sufficiently exhibited. Therefore, in the present invention, the metal structure of the hot-rolled steel sheet is a structure containing a ferrite phase of 95% or more in area ratio. Preferably it is 97% or more.

なお、本発明の熱延鋼板において、金属組織に含有され得るフェライト相以外の組織としては、セメンタイト、パーライト、ベイナイト、マルテンサイト、残留オーステナイト等が挙げられる。これらの組織が金属組織中に存在すると、鋼板の伸びフランジ性が低下する。そのため、これらの組織は極力低減することが好ましいが、金属組織全体に対する合計面積率が5%以下であれば許容される。好ましくは3%以下である。   In the hot-rolled steel sheet of the present invention, examples of the structure other than the ferrite phase that can be contained in the metal structure include cementite, pearlite, bainite, martensite, and retained austenite. When these structures are present in the metal structure, the stretch flangeability of the steel sheet is lowered. Therefore, it is preferable to reduce these structures as much as possible, but it is acceptable if the total area ratio with respect to the entire metal structure is 5% or less. Preferably it is 3% or less.

鋼中の固溶C量:0.010%以上
鋼中に固溶したCは、微細炭化物によって移動を制限された転位に対しコットレル固着し、転位の動きを更に大きく阻害する。これによって、鋼板の降伏強さが大幅に上昇し、疲労特性が向上する。このような効果を十分に発現させるためには、鋼中の固溶C量を、質量%で0.010%以上とする必要がある。鋼中の固溶C量は、好ましくは0.012%以上である。
Solid solution C in steel: 0.010% or more C dissolved in steel adheres to dislocations whose movement is restricted by fine carbides, and further inhibits dislocation movement. This significantly increases the yield strength of the steel sheet and improves the fatigue characteristics. In order to fully exhibit such an effect, it is necessary to make the amount of solute C in steel 0.010% or more by mass%. The amount of solute C in the steel is preferably 0.012% or more.

但し、鋼中の固溶C量が過剰になると、微細炭化物(Tiを含む炭化物)の形成に寄与するC量が減少し、鋼板の引張強さTSが低下するおそれがあるため、上記固溶C量は質量%で0.03%以下にすることが好ましい。
なお、本発明において、固溶C量とは、鋼板に含有させた全C量(質量%)から、Tiを含む炭化物、Fe3Cなどの析出によって消費されるC量(質量%)を減じた値を意味する。
However, if the amount of solute C in the steel is excessive, the amount of C that contributes to the formation of fine carbides (carbides containing Ti) decreases and the tensile strength TS of the steel sheet may decrease. The amount of C is preferably 0.03% or less by mass.
In the present invention, the amount of solute C is obtained by subtracting the amount of C (mass%) consumed by precipitation of carbide containing Ti, Fe 3 C, etc. from the total amount of C (mass%) contained in the steel sheet. Value.

Tiを含む炭化物
本発明において熱延鋼板に微細析出させる炭化物は、Tiを含む炭化物である。熱延鋼板が炭化物構成元素としてTiのみを含有する場合、Tiを含む炭化物はTi炭化物である。また、熱延鋼板がTi以外の炭化物構成元素(V、Nb、Mo等)も含有する場合には、Ti炭化物のほかにTiとV、Nb、Moの1種または2種以上を含有する複合炭化物、或いは更に、Zr、W等の炭化物構成元素を炭化物中に含むものが挙げられる。
Carbide containing Ti In the present invention, the carbide finely precipitated on the hot-rolled steel sheet is a carbide containing Ti. When the hot-rolled steel sheet contains only Ti as a carbide constituent element, the carbide containing Ti is Ti carbide. In addition, when the hot-rolled steel sheet also contains carbide constituent elements (V, Nb, Mo, etc.) other than Ti, in addition to Ti carbide, a composite containing one or more of Ti, V, Nb, and Mo Carbides or those containing carbide constituent elements such as Zr and W in the carbides may be mentioned.

Tiを含む炭化物の平均粒子径:8nm未満
熱延鋼板の強度を、引張強さ:590MPa以上とするために、Tiを含む炭化物の平均粒子径は極めて重要であり、本発明においてはTiを含む炭化物の平均粒子径を8nm未満とする。上記フェライト相の結晶粒内にTiを含む炭化物が微細析出すると、該炭化物が、鋼板に変形が加わった際に生じる転位の移動に対する抵抗として作用することにより熱延鋼板が高強度化される。しかしながら、Tiを含む炭化物の粗大化に伴い該炭化物がまばらに析出することになり、転位を止める間隔が広がるために析出強化能は低下する。そして、Tiを含む炭化物の平均粒子径が8nm以上になると、所望の鋼板強度を得るに十分な鋼板強化能が得られない。したがって、Tiを含む炭化物の平均粒子径は8nm未満とする。Tiを含む炭化物の平均粒子径は、好ましくは6nm以下である。
Average particle size of carbide containing Ti: less than 8nm In order to make the strength of hot rolled steel sheet tensile strength: 590MPa or more, the average particle size of carbide containing Ti is extremely important. In the present invention, Ti is included. The average particle size of the carbide is less than 8 nm. When carbide containing Ti finely precipitates in the ferrite phase crystal grains, the carbide acts as a resistance to dislocation movement that occurs when deformation is applied to the steel sheet, thereby increasing the strength of the hot-rolled steel sheet. However, as the carbides containing Ti are coarsened, the carbides are sparsely deposited, and the interval for stopping the dislocation is widened, so that the precipitation strengthening ability is lowered. And when the average particle diameter of the carbide | carbonized_material containing Ti will be 8 nm or more, sufficient steel plate reinforcement | strengthening capability for obtaining desired steel plate strength will not be acquired. Therefore, the average particle size of the carbide containing Ti is less than 8 nm. The average particle size of the carbide containing Ti is preferably 6 nm or less.

なお、特に発明の効果を限定するものではないが、本発明における微細析出物(Tiを含む炭化物)が、観察する角度によっては列状に並んでいるように観察される場合がある。しかし、この場合でも析出物の列が観察された平面内では、実際には析出物がランダムに分布しており、透過型電子顕微鏡で観察すると、析出物が列状に観察されない場合が多い。   In addition, although the effect of invention is not specifically limited, the fine precipitate (carbide containing Ti) in this invention may be observed so that it may be located in a line depending on the angle to observe. However, even in this case, the precipitates are actually randomly distributed in the plane where the rows of precipitates are observed, and when observed with a transmission electron microscope, the precipitates are often not observed in rows.

鋼板表層部の内部酸化量(片面当たりの内部酸化量):0.15g/m2以下
図1に示すように、SiやMnを含有する熱延鋼板(黒皮材)の表面近傍には、通常、黒皮1と地鉄2との界面3から深さ約10μmまでの領域に、酸化物4が存在し、内部酸化層が形成されている。なお、Tiを含有する本発明の熱延鋼板の場合、酸化物4は、主にSi、Mn、Tiの酸化物或いはこれらの複合酸化物である。内部酸化層は、熱延鋼板に繰り返し曲げ負荷が与えられた時に、母相であるフェライト相との界面で応力集中を生じ、亀裂発生の起点となり、疲労破壊を誘発する。
Internal oxidation amount of steel sheet surface layer (internal oxidation amount per side): 0.15 g / m 2 or less As shown in Fig. 1, the surface of a hot rolled steel sheet (black skin material) containing Si or Mn is usually The oxide 4 is present in the region from the interface 3 between the black skin 1 and the ground iron 2 to a depth of about 10 μm, and an internal oxide layer is formed. In the case of the hot-rolled steel sheet of the present invention containing Ti, the oxide 4 is mainly an oxide of Si, Mn, Ti, or a composite oxide thereof. When a bending load is repeatedly applied to the hot-rolled steel sheet, the internal oxide layer causes stress concentration at the interface with the ferrite phase, which is the parent phase, and becomes a starting point of crack generation, and induces fatigue failure.

しかし、本発明者らによる検討の結果、上記現象(疲労破壊)は、内部酸化量を0.15g/m2以下とすることで抑制可能であることが明らかになった。したがって、本発明では、内部酸化量を0.15g/m2以下とする。内部酸化量は、好ましくは0.10g/m2以下、より好ましくは0.05g/m2以下である。
なお、本発明において、内部酸化量とは、熱延鋼板の片面の単位面積(1m2)当たりに存在している酸化物4の酸素の質量(g)を意味する。また、本発明において、鋼板表層部とは、黒皮材においては黒皮1と地鉄2との界面3から深さ10μmまでの領域(図1の表層部10)、白皮材においては鋼板表面から深さ10μmまでの領域、めっき材においてはめっきと地鉄との界面から深さ10μmまでの領域を意味する。
However, as a result of studies by the present inventors, it has been clarified that the above phenomenon (fatigue fracture) can be suppressed by setting the internal oxidation amount to 0.15 g / m 2 or less. Therefore, in the present invention, the internal oxidation amount is set to 0.15 g / m 2 or less. Internal oxidation amount is preferably 0.10 g / m 2 or less, more preferably 0.05 g / m 2 or less.
In the present invention, the amount of internal oxidation means the mass (g) of oxygen of oxide 4 present per unit area (1 m 2 ) on one side of a hot-rolled steel sheet. In the present invention, the steel sheet surface layer means a region from the interface 3 between the black skin 1 and the ground iron 2 to a depth of 10 μm (surface layer part 10 in FIG. 1) in the black skin material, and a steel plate in the white skin material. It means a region from the surface to a depth of 10 μm, and in the case of a plating material, a region from the interface between the plating and the ground iron to a depth of 10 μm.

以上のように組成、組織および鋼板表層部の内部酸化量を規定することで、所望の強度(引張強さ:590MPa以上)を有し、伸びフランジ性に優れ、且つ、疲労特性に優れた高強度熱延鋼板が得られる。また、鋼板に耐食性を付与する目的で、本発明の熱延鋼板の表面にめっき層を設けても、上記した本発明の効果を損なうことはない。なお、本発明において鋼板表面に設けるめっき層の種類は特に限定されず、電気めっき層、溶融めっき層のいずれも適用可能である。めっき層の合金成分も特に問わず、亜鉛めっき層、合金化亜鉛めっき層などが好適な例として挙げられるが、勿論、これらに限定されない。表面にめっき層を形成することにより、熱延鋼板の耐食性が向上し、厳しい腐食環境下で使用される自動車部品などへの適用が可能になる。   By defining the composition, structure, and internal oxidation amount of the steel sheet surface layer as described above, it has the desired strength (tensile strength: 590 MPa or more), excellent stretch flangeability, and high fatigue characteristics. A strength hot-rolled steel sheet is obtained. Moreover, even if a plated layer is provided on the surface of the hot-rolled steel sheet of the present invention for the purpose of imparting corrosion resistance to the steel sheet, the above-described effects of the present invention are not impaired. In the present invention, the type of the plating layer provided on the surface of the steel sheet is not particularly limited, and any of an electroplating layer and a hot dipping layer can be applied. The alloy component of the plating layer is not particularly limited, and preferred examples include a galvanized layer and an alloyed galvanized layer, but are not limited thereto. By forming a plating layer on the surface, the corrosion resistance of the hot-rolled steel sheet is improved, and it becomes possible to apply it to automobile parts used in severe corrosive environments.

次に、本発明の熱延鋼板の製造方法について説明する。
本発明は、上記した組成の鋼素材を、オーステナイト単相域に加熱し、熱間圧延を施した後、冷却(例えば水冷)し、巻き取り、熱延鋼板とする。この際、前記熱間圧延の仕上げ圧延前に衝突圧力が0.3MPa以上の高圧水によりデスケーリングし、該デスケーリング後3s以内に前記仕上げ圧延を開始し、前記仕上げ圧延のいずれか1つ以上のスタンド間で鋼板表面に冷却水を噴射するスタンド間冷却を施し、仕上げ圧延温度を850℃以上1100℃以下とし、前記冷却を、前記スタンド間冷却後5s以内に開始し、前記冷却の830℃から720℃までの平均冷却速度を30℃/s以上とし、前記巻き取りの巻取り温度を520℃以上720℃以下とし、前記巻き取り後、更に、500℃から200℃までの平均冷却速度を10℃/h以上とする冷却を施すことを特徴とする。
Next, the manufacturing method of the hot rolled steel sheet of the present invention will be described.
In the present invention, a steel material having the above composition is heated to an austenite single-phase region, hot-rolled, then cooled (for example, water-cooled), wound up to obtain a hot-rolled steel sheet. At this time, before the finish rolling of the hot rolling, the impact pressure is descaled with high-pressure water of 0.3 MPa or more, the finish rolling is started within 3 s after the descaling, and any one or more of the finish rolling is performed. The inter-stand cooling is performed by injecting cooling water onto the steel plate surface between the stands, the finish rolling temperature is set to 850 ° C. or more and 1100 ° C. or less, and the cooling is started within 5 s after the cooling between the stands, The average cooling rate to 720 ° C is 30 ° C / s or more, the winding temperature of the winding is 520 ° C to 720 ° C, and after the winding, the average cooling rate from 500 ° C to 200 ° C is 10 It is characterized by being cooled to at least ° C / h.

本発明において、鋼の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、溶鋼からスラブを鋳造するが、生産性等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。但し、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。   In the present invention, the method for melting steel is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, a slab is cast from molten steel, but it is preferable to use a continuous casting method to obtain a slab (steel material) from the viewpoint of productivity. However, the slab may be formed by a known casting method such as ingot-bundling rolling or continuous slab casting.

上記の如く得られた鋼素材に、熱間圧延を施すが、本発明においては、熱間圧延に先立ち、鋼素材をオーステナイト単相域に加熱する。熱間圧延前の鋼素材がオーステナイト単相域に加熱されていないと、鋼素材中に存在する炭化物(Tiを含む炭化物)の再溶解が進行せず、圧延後のTiを含む炭化物の微細析出が実現できない。   The steel material obtained as described above is hot-rolled. In the present invention, the steel material is heated to an austenite single-phase region prior to hot rolling. If the steel material before hot rolling is not heated to the austenite single-phase region, the re-dissolution of carbides (carbides containing Ti) in the steel materials will not proceed, and fine precipitation of carbides containing Ti after rolling Cannot be realized.

以上の理由により、本発明では熱間圧延に先立ち、鋼素材をオーステナイト単相域、好ましくは1200℃以上に加熱する。但し、鋼素材の加熱温度が必要以上に高くなると、鋼素材表面の酸化による歩留り低下が顕著となる。したがって、上記加熱温度は、通常、1350℃以下とすることが好ましい。なお、鋼素材に熱間圧延を施すに際し、鋳造後の鋼素材(スラブ)がオーステナイト単相域の温度となっている場合には、鋼素材を加熱することなく、或いは短時間加熱後、直送圧延してもよい。   For the above reasons, in the present invention, prior to hot rolling, the steel material is heated to an austenite single phase region, preferably 1200 ° C. or higher. However, when the heating temperature of the steel material becomes higher than necessary, the yield decrease due to oxidation of the steel material surface becomes remarkable. Therefore, the heating temperature is usually preferably 1350 ° C. or lower. In addition, when hot rolling the steel material, if the steel material (slab) after casting has a temperature in the austenite single-phase region, the steel material is not heated or directly heated after being heated for a short time. You may roll.

熱間圧延では、通常、まず、鋼素材に熱間粗圧延を施して、例えば、シートバーとなす。そして、このシートバーをデスケーリングし、熱間仕上げ圧延して熱延鋼板となすことができる。本発明において粗圧延の条件は特に限定されない。また、特に薄スラブ鋳造法を採用した場合には、粗圧延を省略してもよい。仕上げ圧延は、以下の条件で行う。なお、上記の鋼素材を粗圧延したシートバーと、シートバーを熱間仕上げ圧延した熱延鋼板とは、以下では夫々を鋼板とも記す。   In hot rolling, first, a hot rough rolling is first performed on a steel material to form, for example, a sheet bar. Then, the sheet bar can be descaled and hot-finish rolled to form a hot-rolled steel sheet. In the present invention, the conditions for rough rolling are not particularly limited. In particular, when a thin slab casting method is employed, rough rolling may be omitted. Finish rolling is performed under the following conditions. In addition, the sheet | seat bar which carried out rough rolling of said steel raw material, and the hot-rolled steel plate which hot-rolled the sheet | seat bar are each described also as a steel plate below.

仕上げ圧延前のデスケーリング:衝突圧力0.3MPa以上の高圧水
本発明では、後述する巻き取りの後に、内部酸化層の生成を抑制する必要がある。ここで、内部酸化層の生成を抑制するうえでは、巻き取り時の鋼板表面の酸化スケール(黒皮)を低減することが極めて有効である。内部酸化層は、SiやMnなどの易酸化性元素が、巻き取り後に鋼板表面の酸化スケールから酸素を奪うことによって、生成するためである。それゆえ、スケール厚を薄くすることで、酸素の供給を減らし、内部酸化層の生成を抑制することができる。また、スケールと地鉄の界面を平坦化することにより、スケールと地鉄の反応面積を減らし、内部酸化層の生成を抑制することができる。
Descaling before finish rolling: high-pressure water having a collision pressure of 0.3 MPa or more In the present invention, it is necessary to suppress the formation of an internal oxide layer after winding described later. Here, in order to suppress the formation of the internal oxide layer, it is extremely effective to reduce the oxide scale (black skin) on the surface of the steel sheet during winding. This is because the easily oxidized elements such as Si and Mn are formed by taking oxygen from the oxide scale on the steel sheet surface after winding. Therefore, by reducing the thickness of the scale, the supply of oxygen can be reduced and the generation of the internal oxide layer can be suppressed. Further, by flattening the interface between the scale and the ground iron, the reaction area between the scale and the ground iron can be reduced, and the generation of the internal oxide layer can be suppressed.

そこで、本発明においては、仕上げ圧延前に適切な圧力で十分にデスケーリングすることで、仕上げ圧延後以後の鋼板の表面を平坦化し、内部酸化層を抑制する。仕上げ圧延前のデスケーリングは、鋼板表面に高圧水を噴射することにより実施するが、鋼板表面に対する高圧水の衝突圧力が0.3MPa未満では、内部酸化層の生成を十分に抑制することができない。したがって、本発明では、仕上げ圧延前において衝突圧力0.3MPa以上の高圧水によるデスケーリングを実施する。また、上記衝突圧力は、0.5MPa以上とすることが好ましく、1.0MPa以上とすることがより好ましい。但し、上記衝突圧力が必要以上に大きくなると、デスケーリング時の過剰冷却によって鋼板表層部が仕上げ圧延前にフェライト変態することが懸念されるため、上記衝突圧力は10MPa以下にすることが好ましい。   Therefore, in the present invention, the surface of the steel sheet after finish rolling is flattened and the internal oxide layer is suppressed by sufficiently descaling with an appropriate pressure before finish rolling. Descaling before finish rolling is performed by injecting high-pressure water onto the steel sheet surface. However, when the collision pressure of high-pressure water against the steel sheet surface is less than 0.3 MPa, the generation of the internal oxide layer cannot be sufficiently suppressed. Therefore, in the present invention, descaling is performed with high-pressure water having a collision pressure of 0.3 MPa or more before finish rolling. The collision pressure is preferably 0.5 MPa or more, and more preferably 1.0 MPa or more. However, if the impact pressure becomes larger than necessary, it is feared that the steel sheet surface layer portion undergoes ferrite transformation before finish rolling due to excessive cooling during descaling, and therefore the impact pressure is preferably 10 MPa or less.

デスケーリング後、仕上げ圧延を開始するまでの時間:3s以内
仕上げ圧延前に適切なデスケーリングを実施しても、時間の経過と共に新たな酸化スケールが生成する。しかし、仕上げ圧延前のデスケーリング終了後3s以内に仕上げ圧延を開始すれば、新たに生成した酸化スケールによる悪影響は無視できる。したがって、本発明においては、デスケーリング後3s以内に仕上げ圧延を開始する。好ましくは、デスケーリング後3.0秒以内に仕上げ圧延を開始する。
Time until start of finish rolling after descaling: within 3 s Even if appropriate descaling is performed before finish rolling, new oxide scales are generated over time. However, if finish rolling is started within 3 s after the end of descaling before finish rolling, the adverse effects of the newly generated oxide scale can be ignored. Therefore, in the present invention, finish rolling is started within 3 s after descaling. Preferably, finish rolling is started within 3.0 seconds after descaling.

スタンド間冷却
通常、仕上げ圧延中においても、鋼板表面の酸化スケール生成は継続して起こる。それゆえ、本発明では、スタンド間で冷却水を鋼板表面に噴射するスタンド間冷却を行うことにより、仕上げ圧延中のスケール生成を抑制する。スタンド間で鋼板表面に冷却水を噴射すると、鋼板表面が冷却水で覆われ、鋼板表面が大気(酸素)に晒されるのを阻止することができる。その結果、鋼板と酸素の反応が抑止され、酸化スケールの生成を低減することができる。このような効果は、1つ以上のスタンド間で冷却水を噴射することで十分に達成される。但し、スタンド間冷却は、仕上げ圧延中、鋼板表面温度が850℃未満にならない程度に実施することが好ましい。
Cooling between stands Normally, even during finish rolling, generation of oxide scale on the surface of the steel sheet continues. Therefore, in this invention, the scale production | generation during finish rolling is suppressed by performing the cooling between stands which sprays a cooling water on the steel plate surface between stands. When the cooling water is sprayed on the steel plate surface between the stands, the steel plate surface is covered with the cooling water, and the steel plate surface can be prevented from being exposed to the atmosphere (oxygen). As a result, the reaction between the steel plate and oxygen is suppressed, and the generation of oxide scale can be reduced. Such an effect is sufficiently achieved by injecting cooling water between one or more stands. However, it is preferable to perform inter-stand cooling so that the surface temperature of the steel sheet does not become less than 850 ° C. during finish rolling.

なお、特に本発明を限定するものではないが、スタンド間を通過する鋼板の温度が1150℃以上の場合は、逐次冷却水を噴射することが好ましい。また、後述するように、本発明においては、熱間圧延終了後(仕上げ圧延終了後)の加速冷却(例えば水冷)を、スタンド間冷却を終了してから5s以内に実施する必要がある。したがって、本発明においては、上記加速冷却をスタンド間冷却終了後5s以内に実施できるように、スタンド間冷却を実施する位置(スタンド間)を適宜選択すればよい。   Although the present invention is not particularly limited, it is preferable to sequentially inject cooling water when the temperature of the steel sheet passing between the stands is 1150 ° C. or higher. Further, as will be described later, in the present invention, it is necessary to perform accelerated cooling (for example, water cooling) after completion of hot rolling (after completion of finish rolling) within 5 seconds after completion of cooling between stands. Therefore, in the present invention, a position (between stands) for performing the inter-stand cooling may be appropriately selected so that the accelerated cooling can be performed within 5 s after completion of the inter-stand cooling.

仕上げ圧延温度:850℃以上1100℃以下
仕上げ圧延温度が低くなると、圧延後の冷却においてフェライト変態が促進され、炭化物が粗大析出し易くなり、所定の鋼板強度を得ることが困難となる。そのため、仕上げ圧延温度、すなわち仕上げ圧延最終スタンド出側の温度は850℃以上とする必要がある。好ましくは880℃以上、より好ましくは920℃以上である。一方、仕上げ圧延温度が1100℃超の場合、鋼板表面に酸化スケールが生成し易くなるため、巻き取り後に内部酸化層の生成を十分に抑制することができなくなる。したがって、仕上げ圧延温度は1100℃以下に制限する。仕上げ圧延温度は、好ましくは1050℃以下、より好ましくは1000℃以下である。
Finish rolling temperature: 850 ° C. or more and 1100 ° C. or less When the finish rolling temperature is lowered, ferrite transformation is promoted in cooling after rolling, and carbides are likely to be coarsely precipitated, making it difficult to obtain a predetermined steel sheet strength. For this reason, the finish rolling temperature, that is, the temperature on the finish rolling final stand exit side needs to be 850 ° C. or higher. Preferably it is 880 degreeC or more, More preferably, it is 920 degreeC or more. On the other hand, when the finish rolling temperature is higher than 1100 ° C., oxide scale is likely to be generated on the surface of the steel sheet, and thus the generation of the internal oxide layer cannot be sufficiently suppressed after winding. Therefore, the finish rolling temperature is limited to 1100 ° C. or lower. The finish rolling temperature is preferably 1050 ° C. or lower, more preferably 1000 ° C. or lower.

スタンド間冷却後、加速冷却を開始するまでの時間:5s以内
上記仕上げ圧延温度は、鋼板表面に酸化スケールを生成する温度範囲にある。それゆえ、酸化スケールによる内部酸化層の生成を抑制するためには、仕上げ圧延終了後、直ちに水冷等の加速冷却を開始し、酸化スケールの生成を最小限にとどめる必要がある。スタンド間冷却が終了してから5s以内に加速冷却を開始すれば、新たに生成する酸化スケールを十分に減じることができる。したがって、本発明では、スタンド間冷却後5s以内に加速冷却を開始する。
Time to start accelerated cooling after inter-stand cooling: within 5 s The above finish rolling temperature is in a temperature range where oxide scale is generated on the steel sheet surface. Therefore, in order to suppress the generation of the internal oxide layer due to the oxide scale, it is necessary to start the accelerated cooling such as water cooling immediately after the finish rolling to minimize the generation of the oxide scale. If the accelerated cooling is started within 5 seconds after the inter-stand cooling is completed, the newly generated oxide scale can be sufficiently reduced. Therefore, in the present invention, accelerated cooling is started within 5 s after inter-stand cooling.

830℃から720℃までの平均冷却速度:30℃/s以上
平均粒子径が8nm未満の微細な炭化物(Tiを含む炭化物)を析出させるためには、加速冷却し、可能な限り低い温度でγ→α変態が生じるようにすることが必要である。830℃から720℃までの温度域における平均冷却速度が30℃/s未満になると、γ→α変態が高温で生じるようになり、フェライト中に析出した炭化物が粗大化し易くなる。したがって、上記温度域における平均冷却速度は30℃/s以上とする。好ましくは50℃/s以上である。但し、上記温度域における平均冷却速度が必要以上に大きくなると、巻取り温度の制御が困難となり安定した強度が得られ難くなるおそれがある。したがって、上記温度域における平均冷却速度は300℃/s以下とすることが好ましい。なお、本発明でいう平均冷却速度とは、所定の温度領域において冷却を開始してから冷却を終了するまでの平均の冷却速度をいう。
Average cooling rate from 830 ° C to 720 ° C: 30 ° C / s or more In order to precipitate fine carbides (carbides containing Ti) with an average particle size of less than 8 nm, accelerated cooling and γ at the lowest possible temperature → It is necessary to make α transformation occur. When the average cooling rate in the temperature range from 830 ° C. to 720 ° C. is less than 30 ° C./s, the γ → α transformation occurs at a high temperature, and the carbide precipitated in the ferrite tends to be coarsened. Therefore, the average cooling rate in the above temperature range is 30 ° C./s or more. Preferably, it is 50 ° C./s or more. However, if the average cooling rate in the above temperature range becomes larger than necessary, it is difficult to control the coiling temperature and it may be difficult to obtain a stable strength. Therefore, the average cooling rate in the above temperature range is preferably 300 ° C./s or less. The average cooling rate referred to in the present invention refers to an average cooling rate from the start of cooling in a predetermined temperature range to the end of cooling.

巻取り温度:520℃以上720℃以下
巻取り温度の適正化は、フェライト中に微細な炭化物(Tiを含む炭化物)を析出させ、且つ、熱延鋼板を所望の金属組織とするうえで重要である。巻取り温度が520℃未満であると、ベイナイトなどの低温変態相が生じ易くなり、金属組織を実質的にフェライト単相組織とすることが困難になる。一方、巻取り温度が720℃を超えると、鋼中のSiおよびMn等が鋼板表面の酸化スケールから酸素を奪って酸化物を形成する反応が促進され、内部酸化量を所定量以下とすることが困難になる。また、巻き取り後の熱延コイルの冷却中に、Tiを含む炭化物の粗大化が促進されるため、Tiを含む炭化物の平均粒子径を8nm未満とすることが困難になる。したがって、巻取り温度は520℃以上720℃以下とする。巻取り温度は、好ましくは550℃以上である。また、巻取り温度は、好ましくは700℃以下である。
Winding temperature: 520 ° C or higher and 720 ° C or lower Optimization of the winding temperature is important for precipitating fine carbides (carbides containing Ti) in ferrite and making the hot-rolled steel sheet a desired metal structure. is there. When the coiling temperature is less than 520 ° C., a low temperature transformation phase such as bainite is likely to occur, and it becomes difficult to make the metal structure substantially a ferrite single phase structure. On the other hand, when the coiling temperature exceeds 720 ° C., the reaction of Si and Mn in the steel deprives oxygen from the oxide scale on the surface of the steel sheet to form an oxide is promoted, and the internal oxidation amount is set to a predetermined amount or less. Becomes difficult. Moreover, since the coarsening of the carbide containing Ti is promoted during cooling of the hot-rolled coil after winding, it is difficult to make the average particle diameter of the carbide containing Ti less than 8 nm. Therefore, the winding temperature is set to 520 ° C. or higher and 720 ° C. or lower. The winding temperature is preferably 550 ° C. or higher. The coiling temperature is preferably 700 ° C. or lower.

巻き取り後、500℃から200℃までの平均冷却速度:10℃/h以上
Tiを含む炭化物の形成に寄与しない余剰Cは、通常、巻き取り後の冷却中に鋼中に析出する。巻き取り後、200℃までの平均冷却速度が10℃/hよりも遅くなると、フェライト中に固溶しているCがフェライト粒界に集まるのに十分な時間があるため、余剰Cの殆どが粒界セメンタイトとして析出し、十分な固溶C量を得ることができなくなる。また、粒界セメンタイトの析出により、鋼板の伸びフランジ加工性が劣化することもある。したがって、巻き取り後、500℃から200℃までの平均冷却速度を10℃/h以上とした。500℃から200℃までの平均冷却速度は、好ましくは15℃/h以上である。
After winding, average cooling rate from 500 ℃ to 200 ℃: 10 ℃ / h or more
Excess C that does not contribute to the formation of carbides containing Ti usually precipitates in the steel during cooling after winding. After winding, if the average cooling rate to 200 ° C is slower than 10 ° C / h, there is sufficient time for C dissolved in the ferrite to gather at the ferrite grain boundaries, so most of the excess C It precipitates as grain boundary cementite, and it becomes impossible to obtain a sufficient amount of solute C. Further, precipitation of grain boundary cementite may deteriorate the stretch flangeability of the steel sheet. Therefore, after winding, the average cooling rate from 500 ° C. to 200 ° C. was set to 10 ° C./h or more. The average cooling rate from 500 ° C. to 200 ° C. is preferably 15 ° C./h or more.

なお、巻き取り後、500℃から200℃までの平均冷却速度は、巻き取り後の熱延コイルの内側板幅中央部表面位置で測定される値とする。巻き取り後の熱延コイルの内側板幅中央部表面位置の平均冷却速度を所定の範囲内に制御することで、コイル内部の冷却速度も十分に高速となり、コイル全長に亘り鋼板中の固溶C量を規定の範囲内とすることができる。また、巻き取り後の熱延コイルの500℃から200℃までの平均冷却速度は、必要に応じてサーキュレータ等の使用による加速空冷や、水滴(ミスト)噴霧による気化熱を利用した冷却、或いは水槽中にコイルを浸漬する等の加速冷却を実施することによって、所望の値に調整することができる。   The average cooling rate from 500 ° C. to 200 ° C. after winding is a value measured at the surface position of the inner plate width central portion of the hot rolled coil after winding. By controlling the average cooling rate of the surface position of the central part of the inner plate width of the hot rolled coil after winding within a predetermined range, the cooling rate inside the coil also becomes sufficiently high, and the solid solution in the steel plate extends over the entire length of the coil. C amount can be within the specified range. In addition, the average cooling rate from 500 ° C to 200 ° C of the hot-rolled coil after winding is as follows: accelerated air cooling by using a circulator, etc., cooling using heat of vaporization by water droplet (mist) spray, or water tank It can be adjusted to a desired value by performing accelerated cooling such as immersing the coil therein.

以上により、所望の組織を有し、内部酸化量が0.15g/m2以下に制限され、引張強さ(TS):590MPa以上であり且つ伸びフランジ性が良好で、疲労特性にも優れた高強度熱延鋼板が得られる。本発明により得られる高強度熱延鋼板は、自動車足回り用鋼板として好適であるほか、常温で行われるプレス成形に好適である。また、本発明により得られる高強度熱延鋼板は、優れた耐熱処理特性を有するため、プレス前の鋼板を400℃から750℃に加温した後直ちにプレス成形する温間成形にも好適である。本発明における熱延鋼板の板厚は特に限定されないが、1.0mm以上8.0mm以下とすることが好ましい。なお、本発明で得られる熱延鋼板が黒皮材(熱延まま材)、白皮材(熱延酸洗材)のいずれの場合であっても、上記所望の効果が得られる。 As described above, it has a desired structure, the amount of internal oxidation is limited to 0.15 g / m 2 or less, tensile strength (TS): 590 MPa or more, stretch flangeability is good, and fatigue characteristics are high. A strength hot-rolled steel sheet is obtained. The high-strength hot-rolled steel sheet obtained by the present invention is suitable as a steel sheet for automobile undercarriage, and is suitable for press forming performed at room temperature. The high-strength hot-rolled steel sheet obtained by the present invention has excellent heat treatment characteristics, and is therefore suitable for warm forming in which a steel sheet before pressing is heated immediately from 400 ° C. to 750 ° C. and then press-formed immediately. . The thickness of the hot-rolled steel sheet in the present invention is not particularly limited, but is preferably 1.0 mm or more and 8.0 mm or less. In addition, the said desired effect is acquired even if the hot-rolled steel plate obtained by this invention is any case of a black skin material (material as hot-rolled) and a white skin material (hot-roll pickling material).

また、本発明においては、以上のようにして製造された熱延鋼板に対し、めっき処理を施して鋼板表面にめっき層を形成してもよい。めっき層を形成しても、本発明の効果を損なうことはない。めっき処理は、電気めっき、溶融めっきのいずれも適用可能である。また、めっき層の合金成分も特に問わず、溶融亜鉛めっき層、合金化溶融亜鉛めっき層などが好適な例として挙げられるが、勿論、これらに限定されない。アルミもしくはアルミ合金等をめっきすることもできる。
めっき処理を施した熱延鋼板も、常温で行われるプレス成形用素材に好適なほか、プレス前の鋼板を400℃から750℃に加温した後直ちにプレス成形される温間成形にも好適である。
In the present invention, the hot-rolled steel sheet produced as described above may be plated to form a plating layer on the steel sheet surface. Even if the plating layer is formed, the effect of the present invention is not impaired. As the plating treatment, either electroplating or hot dipping can be applied. Further, the alloy component of the plating layer is not particularly limited, and a hot dip galvanized layer, an alloyed hot dip galvanized layer and the like can be mentioned as suitable examples, but of course, it is not limited thereto. Aluminum or aluminum alloy can also be plated.
Hot-rolled steel sheets that have been plated are also suitable for press forming materials that are performed at room temperature, and also for warm forming in which press forming is performed immediately after heating the steel sheet before pressing from 400 ° C to 750 ° C. is there.

溶鋼を通常公知の手法により溶製、連続鋳造して、表1に示す組成を有する肉厚300mmのスラブ(鋼素材)とした。これらのスラブを、1250℃に加熱し、粗圧延し、表2に示す条件で仕上げ圧延を施し、仕上げ圧延終了後、加速冷却し、巻き取り、更に巻き取り後のコイルを冷却し、板厚:3.2mmの熱延鋼板(黒皮材)とした。   Molten steel was melted and continuously cast by a generally known method to obtain a slab (steel material) having a thickness of 300 mm having the composition shown in Table 1. These slabs are heated to 1250 ° C., roughly rolled, and subjected to finish rolling under the conditions shown in Table 2, accelerated cooling is performed after finishing rolling, winding is performed, and the coil after winding is further cooled to obtain a plate thickness. : 3.2 mm hot rolled steel sheet (black skin material).

続いて、一部の熱延鋼板(鋼板No.S3)を除き、上記により得られた熱延鋼板を酸洗して表層スケールを除去し、白皮材とした。また、一部の熱延鋼板(鋼板No.S7)については酸洗して表層スケールを除去した後、焼鈍温度720℃の溶融亜鉛めっきラインに通板し、460℃の亜鉛めっき浴(めっき組成:0.15mass%Al-Zn)中に浸漬し、片面当たり付着量45g/m2の溶融亜鉛めっき層を鋼板の表面に形成して溶融亜鉛めっき鋼板(GI材)とした。更に一部の熱延鋼板(鋼板No.S11)については、上記の如く溶融亜鉛めっき層を形成したのち、520℃で合金化処理を施して合金化溶融亜鉛めっき鋼板(GA材)とした。 Subsequently, except for some of the hot-rolled steel plates (steel plate No. S3), the hot-rolled steel plates obtained as described above were pickled to remove the surface scale, thereby obtaining a white skin material. In addition, some hot-rolled steel sheets (steel No. S7) are pickled to remove the surface scale, and then passed through a hot dip galvanizing line with an annealing temperature of 720 ° C, and a 460 ° C galvanizing bath (plating composition) : 0.15 mass% Al-Zn), and a hot-dip galvanized layer having an adhesion amount of 45 g / m 2 per side was formed on the surface of the steel plate to obtain a hot-dip galvanized steel plate (GI material). Further, some hot-rolled steel plates (steel plate No. S11) were subjected to alloying treatment at 520 ° C. after forming a hot-dip galvanized layer as described above to obtain alloyed hot-dip galvanized steel plates (GA material).

Figure 0006288321
Figure 0006288321

Figure 0006288321
Figure 0006288321

上記により得られた熱延鋼板(黒皮材、白皮材、GI材、GA材)から試験片を採取し、組織観察、引張試験、穴拡げ試験および疲労試験を行い、フェライト相の面積率、フェライト相以外の組織の種類および面積率、Tiを含む炭化物の平均粒子径、引張強さ、伸び、穴拡げ率(伸びフランジ性)および疲労強度を求めた。また、熱延鋼板(黒皮材、白皮材、GI材、GA材)から試験片を採取し、電解抽出法により固溶C量を測定した。更に、熱延鋼板(黒皮材、白皮材、GI材、GA材)から試験片を採取し、鋼板表層部の酸化量を定量し、鋼板表層部の内部酸化量を測定した。各種試験方法、測定方法は次のとおりとした。   Samples are taken from the hot-rolled steel sheets (black skin material, white skin material, GI material, GA material) obtained above, and subjected to structure observation, tensile test, hole expansion test and fatigue test, and the ferrite phase area ratio The type and area ratio of the structure other than the ferrite phase, the average particle diameter, tensile strength, elongation, hole expansion ratio (stretch flangeability) and fatigue strength of the carbide containing Ti were determined. In addition, test pieces were collected from hot-rolled steel sheets (black skin material, white skin material, GI material, GA material), and the amount of solute C was measured by electrolytic extraction. Furthermore, test pieces were collected from hot-rolled steel sheets (black skin material, white skin material, GI material, GA material), the oxidation amount of the steel plate surface layer portion was quantified, and the internal oxidation amount of the steel plate surface layer portion was measured. Various test methods and measurement methods were as follows.

(i)組織観察
得られた熱延鋼板から試験片を採取し、試験片の圧延方向と平行な板厚1/4位置の断面(L断面)を研磨し、ナイタールで腐食した後、光学顕微鏡(倍率:400倍)および走査型電子顕微鏡(倍率:2000倍)にて組織写真を撮影した。次いで、撮影した組織写真を用い、画像解析装置によりフェライト相、フェライト相以外の組織の種類、および、それらの面積率を求めた。
(I) Microstructure observation A test piece was taken from the obtained hot-rolled steel sheet, a cross section (L cross section) at a thickness of 1/4 position parallel to the rolling direction of the test piece was polished, corroded with nital, and then optical microscope. (Magnification: 400 times) and a scanning electron microscope (magnification: 2000 times) were taken for tissue photographs. Subsequently, using the photographed structure | tissue photograph, the kind of structure | tissue other than a ferrite phase and a ferrite phase and those area ratios were calculated | required with the image-analysis apparatus.

また、得られた熱延鋼板の板厚1/4位置から作製した薄膜を透過型電子顕微鏡(TEM)によって観察し、Tiを含む炭化物の平均粒子径を求めた。Tiを含む炭化物の平均粒子径は、透過型電子顕微鏡(倍率:300000倍)にて撮影した写真を用い、5視野合計で最低100個の炭化物(Tiを含む炭化物)について、粒子径を測定し、その平均値を平均粒子径とした。なお、炭化物の粒子径は、炭化物の最大径d(最も大きい部分の直径)とそれに直交する方向の径(厚さ)tとを測定し、これらの算術平均値ddef=(d+t)/2として求めた。また、Tiを含む炭化物の同定は、TEMに付帯するEDXによって分析した。 Moreover, the thin film produced from the plate | board thickness 1/4 position of the obtained hot-rolled steel plate was observed with the transmission electron microscope (TEM), and the average particle diameter of the carbide | carbonized_material containing Ti was calculated | required. The average particle size of carbides containing Ti was measured using a photograph taken with a transmission electron microscope (magnification: 300,000 times) for a minimum of 100 carbides (carbides containing Ti) in a total of 5 fields. The average value was defined as the average particle size. The carbide particle diameter is determined by measuring the maximum diameter d of the carbide (the diameter of the largest portion) and the diameter (thickness) t in the direction orthogonal thereto, and the arithmetic average value d def = (d + t) / 2 As sought. Moreover, the identification of the carbide containing Ti was analyzed by EDX attached to TEM.

(ii)引張試験
得られた熱延鋼板から、圧延方向に対して直角方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2241)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、降伏強さ(YS)、引張強さ(TS)、伸び(El)を測定した。
(Ii) Tensile test JIS No. 5 tensile test piece (JIS Z 2241) with the tensile direction in the direction perpendicular to the rolling direction (C direction) is taken from the obtained hot-rolled steel sheet and complies with the provisions of JIS Z 2241 The tensile test was performed, and the yield strength (YS), tensile strength (TS), and elongation (El) were measured.

(iii)穴拡げ試験
得られた熱延鋼板から、試験片(大きさ:100mm×100mm)を採取し、該試験片に初期直径d0:10mmφの穴を打抜き加工(クリアランス:試験片板厚の12.5%)で形成した。これら試験片を用いて、穴拡げ試験を実施した。すなわち、該穴に打ち抜き時のポンチ側から頂角:60°の円錐ポンチを挿入し、該穴を押し広げ、亀裂が鋼板(試験片)の板厚方向に貫通したときの穴の径dを測定し、次式で穴拡げ率λ(%)を算出した。なお、穴拡げ率λが75%以上の場合を、加工性(伸びフランジ性)が良好であると評価した。
穴拡げ率λ(%)={(d−d0)/d0}×100
(Iii) Hole expansion test From the obtained hot-rolled steel sheet, a test piece (size: 100 mm x 100 mm) was sampled, and a hole with an initial diameter d 0 : 10 mmφ was punched into the test piece (clearance: test piece plate thickness) Of 12.5%). Using these test pieces, a hole expansion test was performed. That is, a conical punch having an apex angle of 60 ° is inserted from the punch side at the time of punching into the hole, the hole is expanded, and the diameter d of the hole when the crack penetrates in the thickness direction of the steel plate (test piece) is set. The hole expansion ratio λ (%) was calculated by the following formula. In addition, when the hole expansion ratio λ was 75% or more, it was evaluated that the workability (stretch flangeability) was good.
Hole expansion rate λ (%) = {(d−d 0 ) / d 0 } × 100

(iv)疲労試験
得られた熱延鋼板から、試験片を採取し、JIS Z 2275(1978)に準拠した平面曲げ疲れ試験(両振り平面曲げ疲労試験)を実施した。試験片形状は、JIS Z 2275(1978)に規定の1号試験片(1-20)とした。107サイクルまで破断が認められなかった最大の応力を測定し、この応力を疲労強度とした。なお、疲労強度と上記(ii)で測定された引張強さの比(疲労強度/引張強さ)、すなわち耐久比が0.40以上の場合を、疲労特性が良好であると評価した。
(Iv) Fatigue test A specimen was collected from the obtained hot-rolled steel sheet, and a plane bending fatigue test (double swing plane bending fatigue test) based on JIS Z 2275 (1978) was performed. The shape of the test piece was the No. 1 test piece (1-20) defined in JIS Z 2275 (1978). The maximum stress at which no fracture was observed until 10 7 cycles was measured, and this stress was defined as fatigue strength. In addition, when the ratio of fatigue strength to the tensile strength measured in (ii) (fatigue strength / tensile strength), that is, the durability ratio was 0.40 or more, the fatigue characteristics were evaluated as good.

(v)鋼中の固溶C量
鋼中の固溶C量は、熱延鋼板に含まれる全C量から、TiCおよびFe3Cを形成するC量を減じることにより求めた。TiCおよびFe3Cを形成するC量は、得られた熱延鋼板の電解抽出により実験的に求めた。ここで、抽出残渣中に含まれるFeは全てFe3Cを形成していると仮定した。また、TiCを形成するC量は、鋼中に含まれるTiのうち、TiNおよびTiSを形成するTiと、固溶しているTiを除いたTiが、全てTiCを形成しているとして算出した。このとき、鋼中に含まれるNおよびSは全量TiNおよびTiSを形成していると仮定した。また、固溶Ti量は、電解後の電解液に溶解しているTi量を定量することにより求めた。なお、含有する元素量は得られた熱延鋼板の化学分析により求めた。電解抽出法は、以下の条件で実施した。
(V) Solid solution C amount in steel The solid solution C amount in steel was determined by subtracting the amount of C forming TiC and Fe 3 C from the total amount of C contained in the hot-rolled steel sheet. The amount of C forming TiC and Fe 3 C was experimentally determined by electrolytic extraction of the obtained hot-rolled steel sheet. Here, it was assumed that all the Fe contained in the extraction residue formed Fe 3 C. In addition, the amount of C that forms TiC was calculated assuming that Ti that forms TiN and TiS, and Ti that excludes Ti in solid solution, all of Ti contained in the steel forms TiC. . At this time, it was assumed that N and S contained in the steel form all TiN and TiS. Moreover, the amount of solid solution Ti was calculated | required by quantifying the amount of Ti melt | dissolved in the electrolyte solution after electrolysis. In addition, the amount of element to contain was calculated | required by the chemical analysis of the obtained hot-rolled steel plate. The electrolytic extraction method was performed under the following conditions.

得られた熱延鋼板から試験片を採取し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム・メタノール)中で、電流密度:20mA/cm2で、試験片全厚に対して定電流電解した。定電流電解後、得られた電解液を、孔径200nmフィルターを用いてろ過し、ろ紙に残った電解残渣を適切に処置した上で、ICP分光分析装置を用いて分析し、前記電解残渣中のFe量を測定した。また、ろ過後の電解液を、ICP分光分析装置を用いて分析し、電解液中のTi量を測定した。上述の仮定をもとに、次式を用いて固溶C量を算出した。
固溶C量(質量%)
= C(質量%)−{0.0717×[定量Fe(g)]/[電解質量(g)]×100}
−0.251×{[Ti(質量%)]−3.42×[N(質量%)]−1.49×[S(質量%)]
−([定量Ti(g)]/[電解質量(g)]×100)}
Test specimens were collected from the obtained hot-rolled steel sheet, and the current density was 20mA / cm 2 in 10% AA electrolyte (10vol% acetylacetone-1mass% tetramethylammonium chloride / methanol). On the other hand, constant current electrolysis was performed. After the constant current electrolysis, the obtained electrolytic solution was filtered using a 200 nm pore size filter, and after the electrolytic residue remaining on the filter paper was appropriately treated, it was analyzed using an ICP spectroscopic analyzer. The amount of Fe was measured. Moreover, the electrolytic solution after filtration was analyzed using an ICP spectroscopic analyzer, and the amount of Ti in the electrolytic solution was measured. Based on the above assumption, the amount of dissolved C was calculated using the following equation.
Solid C content (% by mass)
= C (mass%)-{0.0717 x [quantitative Fe (g)] / [electrolytic mass (g)] x 100}
−0.251 × {[Ti (mass%)] − 3.42 × [N (mass%)] − 1.49 × [S (mass%)]
− ([Quantitative Ti (g)] / [electrolytic mass (g)] × 100)}

上式中、C、N、SおよびTiは、熱延鋼板(鋼素材)のC含有量、N含有量、S含有量およびTi含有量(いずれも、質量%)を意味する。また、上式中、定量Feは電解残渣中のFe量(g)、定量Tiは定電流電解およびろ過後の電解液中のTi量(g)、電解質量(g)は定電流電解によって電解された試験片の質量(g)である。
なお、上式を導出するにあたり、Feの原子量を55.85(g/mol)、Cの原子量を12.01(g/mol)、Tiの原子量を47.88(g/mol)、Nの原子量を14.01(g/mol)、Sの原子量を32.07(g/mol)とした。上記電解質量は、電解後の電解用試験片を洗浄し、質量を測定して電解前の試験片質量から差し引くことにより求めた。
In the above formula, C, N, S and Ti mean the C content, N content, S content and Ti content (all by mass%) of the hot-rolled steel sheet (steel material). In the above formula, quantitative Fe is the amount of Fe in the electrolytic residue (g), quantitative Ti is constant current electrolysis and the amount of Ti in the electrolyte after filtration (g), and the electrolytic mass (g) is electrolyzed by constant current electrolysis. It is the mass (g) of the test piece made.
In deriving the above formula, the atomic weight of Fe is 55.85 (g / mol), the atomic weight of C is 12.01 (g / mol), the atomic weight of Ti is 47.88 (g / mol), and the atomic weight of N is 14.01 (g / mol). mol), and the atomic weight of S was 32.07 (g / mol). The electrolytic mass was determined by washing the electrolysis test piece after electrolysis, measuring the mass, and subtracting it from the test piece mass before electrolysis.

(vi)内部酸化量
熱延鋼板の鋼板表層部の内部酸化量は、以下のようにして求めた。
得られた熱延鋼板から、全厚試験片を採取した。更に、黒皮材およびめっき材(GI材、GA材)については、試験片の表裏面に形成されている黒皮(GI材、GA材の場合は、めっき層)を化学的に除去した。試験片表層部の片面当たりの酸素量は、インパルス炉−赤外吸収法で定量して求めた。具体的には、試験片(黒皮材およびめっき材については、黒皮およびめっき層剥離後の試験片)の鋼中酸素量M1を、インパルス炉−赤外吸収法により定量した。次いで、表裏面を10μm機械研磨した同試験片の鋼中酸素量M2を、インパルス炉−赤外吸収法により定量した。そして、表裏面を機械研磨する前の試験片の鋼中酸素量M1から、表裏面を機械研磨した後の試験片の鋼中酸素量M2を差し引いて、片面単位面積当たりに換算することで、試験片表層部の片面当たりの酸素量を求めた。
(Vi) Internal oxidation amount The internal oxidation amount of the surface layer portion of the hot-rolled steel plate was determined as follows.
A full-thickness test piece was collected from the obtained hot-rolled steel sheet. Further, for the black skin material and the plating material (GI material, GA material), the black skin formed on the front and back surfaces of the test piece (in the case of GI material, GA material, the plating layer) was chemically removed. The amount of oxygen per one side of the surface layer of the test piece was quantified by an impulse furnace-infrared absorption method. Specifically, the amount of oxygen M 1 in the steel of the test piece (for the black skin material and the plating material, the test piece after peeling the black skin and the plating layer) was quantified by an impulse furnace-infrared absorption method. Next, the amount of oxygen M 2 in the steel of the test piece whose front and back surfaces were mechanically polished by 10 μm was quantified by an impulse furnace-infrared absorption method. Then, subtract the oxygen amount M 2 in the steel of the test piece after mechanical polishing of the front and back surfaces from the oxygen amount M 1 in the steel before mechanical polishing of the front and back surfaces, and convert it per unit area of one side. Thus, the amount of oxygen per one side of the surface portion of the test piece was determined.

以上により得られた結果を、表3に示す。また、上記(v)により得られた固溶C量および上記(vi)により得られた内部酸化量と、上記(iv)により得られた耐久比との関係を、図2に示す。なお、図2中、○は耐久比:0.4以上(実質的には0.40以上)の場合を示し、×は耐久比:0.4未満の場合を示す。   The results obtained as described above are shown in Table 3. Further, FIG. 2 shows the relationship between the amount of solid solution C obtained by the above (v) and the amount of internal oxidation obtained by the above (vi) and the durability ratio obtained by the above (iv). In FIG. 2, ◯ indicates the case where the durability ratio is 0.4 or more (substantially 0.40 or more), and x indicates the case where the durability ratio is less than 0.4.

Figure 0006288321
Figure 0006288321

表3に示すように、発明例はいずれも、引張強さTS:590MPa以上の高強度と、穴拡げ率λ:75%以上の優れた加工性を兼備した熱延鋼板が得られている。また、発明例の熱延鋼板はいずれも、内部酸化量が0.15g/m2以下であり、耐久比が0.4以上と優れた疲労強度を示している。更に、図2に示すように、固溶C量を質量%で0.010%以上、鋼板表層部の内部酸化量を0.15g/m2以下とすることにより、耐久比が0.4以上となり、疲労特性に優れた熱延鋼板が得られることが理解できる。一方、本発明の範囲を外れる比較例は、所定の強度が得られていないか、加工性(穴拡げ率λ)或いは疲労特性が低下している。 As shown in Table 3, all the inventive examples have obtained hot-rolled steel sheets having high strength of tensile strength TS: 590 MPa or more and excellent workability of hole expansion ratio λ: 75% or more. In addition, all the hot-rolled steel sheets of the invention examples have excellent fatigue strength with an internal oxidation amount of 0.15 g / m 2 or less and a durability ratio of 0.4 or more. Furthermore, as shown in FIG. 2, by setting the solid solution C amount to 0.010% or more in mass% and the internal oxidation amount of the steel sheet surface layer portion to 0.15 g / m 2 or less, the durability ratio becomes 0.4 or more, and the fatigue characteristics are improved. It can be understood that an excellent hot-rolled steel sheet can be obtained. On the other hand, in a comparative example that is out of the scope of the present invention, a predetermined strength is not obtained, or workability (hole expansion rate λ) or fatigue characteristics is deteriorated.

1 … 黒皮
2 … 地鉄
3 … 界面(黒皮と地鉄との界面)
4 … 酸化物
10 … 表層部
1… black skin
2… Steel
3 ... Interface (Interface between black skin and steel)
4… Oxides
10… Surface layer

Claims (3)

質量%で、
C :0.020%超0.060%以下、 Si:0.40%以下、
Mn:0.50%超1.20%以下、 P :0.030%以下、
S :0.030%以下、 Al:0.10%以下、
N :0.0100%以下、 Ti:0.050%以上0.110%以下
を含有し、
更に、REM、Zr、V、Nb、As、Cu、Ni、Sn、Pb、Ta、W、Mo、Cr、Sb、Mg、Ca、Co、Se、Zn、Csのうちから選ばれた1種以上を合計で0.125%以下含有し、
残部がFeおよび不可避的不純物からなる組成を有し、
フェライト相の面積率が95%以上であり、鋼中の固溶C量が0.010%以上であり、前記フェライト相の結晶粒内にTiを含む炭化物が微細析出し、該炭化物の平均粒子径が8nm未満である組織を有し、鋼板表層部の内部酸化量が0.15g/m2以下であり、引張強さが590MPa以上であることを特徴とする高強度熱延鋼板。
% By mass
C: more than 0.020% and 0.060% or less, Si: 0.40% or less,
Mn: more than 0.50% and 1.20% or less, P: 0.030% or less,
S: 0.030% or less, Al: 0.10% or less,
N: 0.0100% or less, Ti: 0.050% or more and 0.110% or less,
Furthermore, one or more selected from REM, Zr, V, Nb, As, Cu, Ni, Sn, Pb, Ta, W, Mo, Cr, Sb, Mg, Ca, Co, Se, Zn, and Cs A total of 0.125% or less,
The balance has a composition consisting of Fe and inevitable impurities,
The area ratio of the ferrite phase is 95% or more, the amount of dissolved C in the steel is 0.010% or more, carbide containing Ti is finely precipitated in the ferrite phase crystal grains, and the average particle size of the carbide is A high-strength hot-rolled steel sheet having a structure of less than 8 nm, an internal oxidation amount of a steel sheet surface layer portion of 0.15 g / m 2 or less, and a tensile strength of 590 MPa or more.
鋼板表面にめっき層を有することを特徴とする請求項1に記載の高強度熱延鋼板。   The high-strength hot-rolled steel sheet according to claim 1, further comprising a plating layer on the steel sheet surface. 請求項1または2に記載の高強度熱延鋼板の製造方法であり、鋼素材を、オーステナイト単相域に加熱し、熱間圧延を施した後、加速冷却し、巻き取り、該巻き取り後の冷却を施し、熱延鋼板とするにあたり、
前記熱間圧延では、
仕上げ圧延前に衝突圧力が0.3MPa以上の高圧水によりデスケーリングし、
該デスケーリング後3s以内に前記仕上げ圧延を開始し、
前記仕上げ圧延のいずれか1つ以上のスタンド間で鋼板表面に冷却水を噴射するスタンド間冷却を施し、
仕上げ圧延温度を850℃以上1100℃以下とし、
前記加速冷却は、
前記スタンド間冷却後5s以内に開始し、
前記加速冷却の830℃から720℃までの温度域の平均冷却速度を30℃/s以上とし、
前記巻き取りでは、巻取り温度を520℃以上720℃以下とし、
前記巻き取り後の冷却では、500℃から200℃までの温度域の平均冷却速度を10℃/h以上とする高強度熱延鋼板の製造方法。
It is a manufacturing method of the high intensity | strength hot-rolled steel plate of Claim 1 or 2, and after heating a steel raw material to an austenite single phase area and performing a hot rolling, accelerated cooling, winding up, after this winding up When cooling to make a hot-rolled steel sheet,
In the hot rolling,
Descale with high-pressure water with impact pressure of 0.3 MPa or more before finish rolling,
The finish rolling is started within 3 s after the descaling,
The cooling between the stands which injects cooling water on the steel plate surface between any one or more stands of the finish rolling is performed,
The finish rolling temperature is 850 ° C or higher and 1100 ° C or lower,
The accelerated cooling is
Start within 5s after cooling between the stands,
The average cooling rate in the temperature range from 830 ° C. to 720 ° C. of the accelerated cooling is 30 ° C./s or more,
In the winding, the winding temperature is 520 ° C. or more and 720 ° C. or less,
The cooling after winding is a method for producing a high-strength hot-rolled steel sheet in which the average cooling rate in the temperature range from 500 ° C. to 200 ° C. is 10 ° C./h or more.
JP2017009880A 2014-02-05 2017-01-24 High strength hot rolled steel sheet and method for producing the same Active JP6288321B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020535 2014-02-05
JP2014020535 2014-02-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015521175A Division JP6135759B2 (en) 2014-02-05 2015-02-04 High strength hot rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017106121A JP2017106121A (en) 2017-06-15
JP6288321B2 true JP6288321B2 (en) 2018-03-07

Family

ID=53777675

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015521175A Active JP6135759B2 (en) 2014-02-05 2015-02-04 High strength hot rolled steel sheet and method for producing the same
JP2017009880A Active JP6288321B2 (en) 2014-02-05 2017-01-24 High strength hot rolled steel sheet and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015521175A Active JP6135759B2 (en) 2014-02-05 2015-02-04 High strength hot rolled steel sheet and method for producing the same

Country Status (2)

Country Link
JP (2) JP6135759B2 (en)
WO (1) WO2015118863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3959021B1 (en) 2019-04-20 2022-08-24 Tata Steel IJmuiden B.V. Method for producing a high strength silicon containing steel strip with excellent surface quality and said steel strip produced thereby

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668662B2 (en) * 2015-09-30 2020-03-18 日本製鉄株式会社 Steel sheet excellent in fatigue characteristics and formability and method for producing the same
CN107190203B (en) * 2017-05-31 2019-07-23 武汉钢铁有限公司 With the yield strength >=800MPa hot rolled sheet and production method of sheet billet Direct Rolling
CN113227416B (en) * 2019-03-11 2023-04-04 日本制铁株式会社 Hot rolled steel plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326709B2 (en) * 2008-04-03 2013-10-30 新日鐵住金株式会社 Low yield ratio type high burring high strength hot rolled steel sheet and method for producing the same
JP5609786B2 (en) * 2010-06-25 2014-10-22 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
WO2013061543A1 (en) * 2011-10-25 2013-05-02 Jfeスチール株式会社 High-tension hot-rolled steel plate and method for manufacturing same
JP5594438B2 (en) * 2011-11-08 2014-09-24 Jfeスチール株式会社 High tensile hot rolled galvanized steel sheet and method for producing the same
WO2015118864A1 (en) * 2014-02-05 2015-08-13 Jfeスチール株式会社 High-strength hot-rolled steel sheet and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3959021B1 (en) 2019-04-20 2022-08-24 Tata Steel IJmuiden B.V. Method for producing a high strength silicon containing steel strip with excellent surface quality and said steel strip produced thereby

Also Published As

Publication number Publication date
JPWO2015118863A1 (en) 2017-03-23
JP2017106121A (en) 2017-06-15
WO2015118863A1 (en) 2015-08-13
JP6135759B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6179584B2 (en) High strength steel plate with excellent bendability and method for producing the same
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
JP5041083B2 (en) High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR101923327B1 (en) High strength galvanized steel sheet and production method therefor
JP6879402B2 (en) High-strength galvanized steel sheet and high-strength members
CN109154045B (en) Plated steel sheet and method for producing same
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
JP6455461B2 (en) High strength steel plate with excellent bendability and method for producing the same
JP6589903B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
CN114645219A (en) High-strength galvanized steel sheet and method for producing same
JP6288321B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
CN114008231B (en) High-strength hot-rolled steel sheet and method for producing same
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP6131872B2 (en) High strength thin steel sheet and method for producing the same
JP5903883B2 (en) High-strength hot-rolled steel sheet for plating with excellent corrosion resistance and its manufacturing method
JPWO2018163871A1 (en) High strength hot rolled galvanized steel sheet
JP4172268B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability, strength-ductility balance, and strain age hardening characteristics
JP2020111770A (en) High strength cold-rolled thin steel sheet and its production method
JP6455462B2 (en) High-strength steel sheet with excellent toughness and ductility and method for producing the same
JP2005187947A (en) Hot dip galvanized steel sheet having excellent strain age hardening property, and its production method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250